
Secure Programming via
Libraries

Escuela de Ciencias Informáticas (ECI) 2011
UBA, Buenos Aires, Argentina

Implementing Erasure Policies using
Taint Analysis

Alejandro Russo (russo@chalmers.se)

http://www.chalmers.se/cse/EN/

Secure Programming via Libraries 2

What is Erasure?

● A property of systems that require sensitive
information to complete their tasks

● Intuitively:

● A user owns some sensitive data
● The system takes user's input and processes it
● After the task is completed, user's input and any

derived data must be removed from the system

http://www.chalmers.se/cse/EN/

Secure Programming via Libraries 3

Language-based Erasure
[Chong, Myers 05]

● Consider programs where

● No I/O involved
● Each memory location is equipped with a policy

● Erasure policies:

● A conditional expression that raises the security
level to an higher one

● Erasure: a system is erasing if the memory location
policies are not violated during execution

● Enforcement: no mechanism is described

http://www.cs.cornell.edu/andru/papers/erasure.pdf
http://www.chalmers.se/cse/EN/

Secure Programming via Libraries 4

Just forget it
[Hunt, Sands 08]

● Programs in a simple I/O imperative language

● Erasure policies are embedded in the language by a
dedicated command
input x from a in C erasing to b

● A program is erasing if its behavior after the erasure
command does not depend on the input received

● Connection with information-flow
● A type system guarantees a static enforcement, but it

works only for that toy language

● Interesting theoretical result

http://www.cse.chalmers.se/~dave/papers/Hunt-Sands-ESOP08-extended.pdf
http://www.chalmers.se/cse/EN/

Secure Programming via Libraries 5

Ingredients for Erasure

● There are several design options to consider

● How to characterize an erasing system?

● One way is to define policies on its observable
behavior [Hunt, Sands 08]

● When, and under which conditions, should erasure
take place?

● Need for an erasure policy language
● How to enforce the erasure policies?

We propose a Python library attempts to answer these
questions

http://www.cse.chalmers.se/~dave/papers/Hunt-Sands-ESOP08-extended.pdf
http://www.chalmers.se/cse/EN/

Secure Programming via Libraries 6

The Erasure Library in a Nutshell
[Del Tedesco, Russo, Sands 10]

● It deals with interactive systems

● It enforces erasure by preventing differences in the
observable behavior of the system

● It takes into account complex policies

● Policies may involve time, or can be triggered by
updates in runtime values

● Python features make it possible to include the
library in a program with minor modifications

● It uses taint analysis to track derivate data from data
that need to be erased

http://www.cse.chalmers.se/~russo/publications_files/erasureTaint.pdf
http://www.chalmers.se/cse/EN/

Secure Programming via Libraries 7

The Erasure Library

● We have a system with I/O.

● What is the purpose of our library?

I
N
P
U
T

O
U
T
P
U
T

http://www.chalmers.se/cse/EN/

Secure Programming via Libraries 8

● We have a system with I/O

● The library provides wrappers and internal structures
to enforce erasure policies

The Erasure Library

Denote entry points for
erasure-aware information
(sensitive data)

Track the propagation of
erasure-aware data inside the
system.
Implementing the concrete
data removal operation

Specify which
output actions
we need to
“observe”

http://www.chalmers.se/cse/EN/

Secure Programming via Libraries 9

API: Indicating Erasure-aware Data

● Usually systems collect sensitive data from the outside
through auxiliary functions

● The library exports erasure_source to make such
functions erasure-aware

def aux():
 …
 input
 …
 return val

val

@erasure_source
def aux():
 …
 input
 …
 return val

val

http://www.chalmers.se/cse/EN/

Secure Programming via Libraries 10

API: Erasing information

● When information is no longer needed, it can be removed

● Derived information has to be removed as well!

● Taint analysis keeps track of derived information
● The library performs erasure by the erasure primitive

def function(val):
 …
 #code that needs val
 …
 erasure(val)
 …
 #code that no longer needs val
 …

Data may flow to
function from other
parts of the system

Before erasure:
val has its original
value

After erasure:
val and all its
related info are
erased!

http://www.chalmers.se/cse/EN/

Secure Programming via Libraries 11

API: Retaining Bits of Sensitive Data

● Sometimes it is necessary to retain portions of sensitive data

● Think about last digits of CC numbers in bills

● The library prevents those bits being retain (remembered) by
providing primitive retain

def function(cc):
 …
 sr=getSafePortion(cc)
 …

@retain
def getSafePortion(cc):
 ccsafe=cc[-4:]
 return ccsafe

An erasure-aware
value is provided

Regardless of
retain, cc is
still erasure-
aware

ccsafe
(therefore
sr) is no
longer
controlled
by the
library

http://www.chalmers.se/cse/EN/

Secure Programming via Libraries 12

Example

from erasure import erasure_source, erasure, retain
@erasure_source
def inputFromUser():
 x=raw_input()
 return x

@retain
def transform(st):
 return st[-4:]
def main():
 print "Please input your credit card number"
 cc=inputFromUser()
 last4=transform(cc)
 print "CC is [", cc,"]","derived info is [", last4, "]"
 print "Calling erasure"
 erasure(cc)
 print "CC is [", cc,"]","derived info is [", last4, "]"

Data return by this
function is erasure-aware

Imports the
library

The last four characters
of the input is not

erasure-aware anymore

Erase data

http://www.chalmers.se/cse/EN/
file:///home/ale/Dropbox/ECI11/Lectures/3/erasuree.py

Secure Programming via Libraries 13

Which policies do we support?

● The primitive erasure has to be called explicitly by
the programmer: it is part of the program!

● It means that policies are as expressive as the
programming language!

sensitive_val=raw_input()
ans=raw_input("Do you want to erase?")
if ans=="Yes":
 erasure(sensitive_val)

http://www.chalmers.se/cse/EN/

Secure Programming via Libraries 14

Is it everything that we need?

● The policies we can implement with the given API are
triggered when erasure is executed

● There are other policies that programmers might need
and are erasure-specific:

● “Erase sensitive_val in 5 days”

● “Erase sensitive_val if a low privileged user is
trying to get the data”

● Previous primitives allow to express those policies, but
in an unnatural style. It is better to have an explicit
notion for them (lazy erasure)

http://www.chalmers.se/cse/EN/

Secure Programming via Libraries 15

What is lazy erasure about?

● What we want to do is to enforce a “just in time”
erasure mechanism

● It is an extension to:

● Policy language
● Enforcing technique

● lazy_erasure associates objects to policies

● erasure_escape annotate functions that may
transmit erasure-aware data outside the system in
order to check their policies and eventually erase them
before it is too late

http://www.chalmers.se/cse/EN/

Secure Programming via Libraries 16

Lazy API: lazy_erasure

● lazy_erasure is meant to create an erasure contract
that will be used during an “observable action”

● It does not remove the data, but it allows the
controlling system to keep track of its propagation

def function(val):
 …
 #code that needs val
 …
 lazy_erasure(val)
 …
 #code that still uses val
 …

As it happened in
the previous
example, val is an
erasure-aware
value

Here val and all its
related info are still
available

http://www.chalmers.se/cse/EN/

Secure Programming via Libraries 17

Lazy API: triggering the policies
● We need to make the system “observationally independent”

on the sensitive data

● erasure_escape annotates output operations in such a
way that erasure-aware data will be erased if their policy
evaluates to true

def printer(val):
 …
 print val
 …

@erasure_escape
def printer(val):
 …
 print val
 …

either
val

or the
empty value

http://www.chalmers.se/cse/EN/

Secure Programming via Libraries 18

Example
from erasure import erasure_source, lazy_erasure, erasure_escape
import time
from datetime import datetime, timedelta

@erasure_source
def inputFromUser():
 x=raw_input()
 return x

def fiveseconds_policy(time):
 return (datetime.today()-time>timedelta(seconds=5))

@erasure_escape
def erasure_channel(a):
 print "The input you provided was [", a, "]"

def main():
 print "Please input your credit card number"
 cc=inputFromUser()
 lazy_erasure(cc,fiveseconds_policy)
 while(1):
 erasure_channel(cc)
 time.sleep(1)

The lazy erasure policies
are functions on the

timestamp of the input data

Observable channel

http://www.chalmers.se/cse/EN/
file:///home/ale/Dropbox/ECI11/Lectures/3/lazy_erasuree.py

Secure Programming via Libraries 19

Recall The Erasure Library

Denote entry points for
erasure-aware information
(sensitive data)

Track the propagation of
erasure-aware data inside the
system.
Implementing the concrete
data removal operation

Specify which
output actions
we need to
“observe”

http://www.chalmers.se/cse/EN/

Secure Programming via Libraries 20

● We need to keep track of dependencies among erasure-
aware values

● This means we need to identify them uniquely

● The blackboard keeps track of identities

Who is implemented?

Id1 → val1
Id2 → val2

@erasure_source
def aux():
 …
 input
 …
 return val

Id1 → val1
Id2 → val2
Id3 → val

@erasure_source
def aux():
 …
 input
 …
 return val

val

Bookkeeping from
previous operations

New information
triggers a
blackboard
modification

● Identities are time stamps: unique in our sequential
implementation and support time-based policies!

http://www.chalmers.se/cse/EN/

Secure Programming via Libraries 21

● It is the controller (it has two goals)

Who is ?

Id1 → v1
Id2 → v2

def f():
 …
 v3=v1.m(v2)
 …

Id1 → v1, v3
Id2 → v2, v3

def g():
 …
 erasure(v3)
 …

def g():
 …
 erasure(v3)
 …

Id1 → v1, v3
Id2 → v2, v3

def f():
 …
 v3=v1.m(v2)
 …

v1
v3=v1.m(v2)

v2
v3

TRACKING

unwrapping
delegation

wrapping

v3

ERASE

To erase:
Id1
id2

v1.erase()
v2.erase()
v3.erase()

dependencies
lookup

erasure

http://www.chalmers.se/cse/EN/

Secure Programming via Libraries 22

Future work

● On the theoretical side:
● Which formal guarantees can we prove for our

primitives?
● On the practical side:

● How does the library fit with large existing applications?
● How do the controller's storage interactions impact on

performance?

http://www.chalmers.se/cse/EN/

Secure Programming via Libraries 23

● Erasure is a property that should be enforced on all
systems dealing with sensitive data

● We provided a Python library to get this result for
existing code

● The whole library is based on a technique similar to
the library for taint-analysis in Python

● Therefore, it can be applied mostly transparently to
existing code

● The approach seems really flexible and promising

Conclusion

http://www.chalmers.se/cse/EN/

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23

