
Secure Programming via
Libraries

Escuela de Ciencias Informáticas (ECI) 2011
UBA, Buenos Aires, Argentina

A library for information-flow in Haskell
(side-effects)

Alejandro Russo (russo@chalmers.se)

http://www.chalmers.se/cse/EN/

Secure Programming via Libraries - ECI 2011 2

Side-effects?
[Russo, Claessen, Hughes 08]

● What about trying to do side-effects inside of the
security monad?

● Would you run the IO computation?

Sec H (IO ())
YES

NO

http://www.cse.chalmers.se/~russo/seclib.htm
http://www.chalmers.se/cse/EN/

Secure Programming via Libraries - ECI 2011 3

Malicious Code

● The following code shows malicious side-effects

● Important Haskell feature for security: by looking the
type of a piece of code, it is possible to determine
if it performs side-effects!

func :: Sec H Char -> Sec H (IO ())
func sec_c = do c <- sec_c
 return $ do putStrLn "The secret is gone!"
 writeFile "PublicFile" [c]

http://www.chalmers.se/cse/EN/

Secure Programming via Libraries - ECI 2011 4

Side-effects and Sec

● Trustworthy code

module SideEffectsSecT where

import Data.Char
import SecLib.LatticeLH
import SecLib.Trustworthy

import SideEffectsSecU (func) -- Import the untrustworthy function unsafe

secret :: Sec H Char -- This is the secret to be manipulated by the
 -- untrustworthy code
secret = return 'X'

execute :: IO ()
execute = reveal $ func secret

-- reveal :: Sec s a -> a and it is only used by trustworthy code!

http://www.chalmers.se/cse/EN/
file:///home/ale/Dropbox/ECI11/Lectures/2/SideEffectsSecT.hs

Secure Programming via Libraries - ECI 2011 5

Side-effects and Sec

● Untrustworthy code
module SideEffectsSecU where

import Data.Char
import SecLib.LatticeLH
import SecLib.Untrustworthy

-- Do not execute IO operations inside Sec!
func :: Sec H Char -> Sec H (IO ())
func sec_c = do c <- sec_c
 return $ do putStrLn "The secret is gone!"
 writeFile "PublicFile" [c]

http://www.chalmers.se/cse/EN/

Secure Programming via Libraries - ECI 2011 6

Little Quiz

● What about programs of the following type?

Sec H (IO (Sec L Int))

Sec H (Sec L (IO Char))

Sec L (Sec H (IO ()))

Sec L (IO (Sec H Char))

NO

NO

NO

YES

http://www.chalmers.se/cse/EN/

Secure Programming via Libraries - ECI 2011 7

Side-effects?
[Russo, Claessen, Hughes 08]

● What about trying to do side-effects inside of the
security monad?

● We do not know if the side-effects are safe to perform
● What should we do?
● IO is a monad that encapsulates side-effects
● Let us make another monad that encapsulates safe

side-effects!

Sec H (IO ())
YES

NO

http://www.cse.chalmers.se/~russo/seclib.htm
http://www.chalmers.se/cse/EN/

Secure Programming via Libraries - ECI 2011 8

Monad SecIO

● It is a monad that performs secure side-effects
● Side-effects that preserve confidentiality!

data SecIO s a -- abstract
instance Monad (SecIO s)

It is a computation that
a) can write to security locations above s and
b) which result, of type a, has confidentiality
 level at least a

http://www.chalmers.se/cse/EN/

Secure Programming via Libraries - ECI 2011 9

Monad SecIO

● We show how it works for files
● It also works for references and sockets (check the

library)

data SecIO s a
It is a computation that
a) can write to security locations above s and
b) which result, of type a, has confidentiality
 level at least a

c1 :: SecIO H Int

c2 :: SecIO L (Sec H Int)

c3 :: SecIO L Int

It can write to secret files and returns
a secret integer

It can write to public and secret files
and returns a secret integer

It can write to public and secret files
and returns public integer

http://www.chalmers.se/cse/EN/

Secure Programming via Libraries - ECI 2011 10

API for SecIO

data SecIO s a
instance Monad (SecIO s)

type File s

readFileSecIO :: File s -> SecIO s' (Sec s String)

writeFileSecIO :: File s -> String -> SecIO s ()

It is a file which content has confidentiality level s

The secure version of the operations to
read and write files in Haskell

readFile :: FilePath -> IO String

writeFile :: FilePath -> String -> IO ()

http://www.chalmers.se/cse/EN/

Secure Programming via Libraries - ECI 2011 11

value :: Sec s a -> SecIO s a

plug :: Less sl sh =>
 SecIO sh a -> SecIO sl (Sec sh a)

-- Used in trustworthy code
revealSecIO :: SecIO s a -> IO (Sec s a)

API for SecIO

It pushes any pure secure value
into a side-effectful computation

It plugs computations that
perform side-effects at a higher level

into computations that perform side-effect
into lower levels

http://www.chalmers.se/cse/EN/

Secure Programming via Libraries - ECI 2011 12

Small Example

● We want to write a function that copy contents of files

● We do not want the function to leak information

● The function should allow copying:
● a public file into another public file,
● a secret file into another secret file,
● a public one into a secret one

● It must avoid copying a secret file into a public one

● We will use the library to get the security part of the
code right!

http://www.chalmers.se/cse/EN/

Secure Programming via Libraries - ECI 2011 13

Small Example: Trustworthy code

module CopyT where

import SecLib.LatticeLH
import SecLib.Trustworthy

import CopyU (copy)

secret_file :: File H
secret_file = mkFile "SecretFile"

public_file :: File L
public_file = mkFile "PublicFile"

trusted_copy :: Less s s' => (File s -> File s' -> SecIO s' ())
 -> File s -> File s' -> IO ()

trusted_copy copy_func fs fs' = do sec <- revealIO $ copy_func fs fs'
 return $ reveal sec
execute :: IO ()
execute = trusted_copy copy public_file secret_file

It establishes the confidentiality level
of the files

Type for the untrustworthy
 copying function

It executes the untrustworthy function.
Does it preserve confidentiality?

It imports the untrustworthy
copying function

http://www.chalmers.se/cse/EN/

Secure Programming via Libraries - ECI 2011 14

Small Example: Untrustworthy code

module CopyU where

import SecLib.LatticeLH
import SecLib.Untrustworthy

copy :: Less s s' => File s -> File s' -> SecIO s' ()
copy file1 file2 = do sec_str <- readFileSecIO file1
 str <- value (up sec_str)
 writeFileSecIO file2 str

It provides a function with the type
requested by module CopyT

● Can you write the function above in such a way that
copies the content of a secret file into a public one?
● Try it out!

● The type-checker will not allow it

http://www.chalmers.se/cse/EN/

Secure Programming via Libraries - ECI 2011 15

Constructing a Secure Password
Administrator

● Linux Password Administrator
● /etc/passwd

● /etc/shadow

● Linux Shadow Password HOWTO: Adding shadow
support to a C program

bjorn:x:1003:100::/home/andrei:/bin/bash
hana:x:500:100::/home/tsa:
josef:x:1006:100::/home/john:/bin/bash

bjorn:$1$0ID5oZxB$0tdKR1VQWWQlkJR1Uj7na0:13397:0:99999:7:::
hana:1.28fO/M9$aaNMN4SWEKZiGPYoEq9996:13460:0:::::0
josef:1UP1uD.28$hi3vYEa20.zgWYNVN/Lq81:13539:0:99999:7:::

Adding shadow support to a program is actually fairly straightforward.
The only problem is that the program must be run by root (or SUID root) in
order for the the program to be able to access the /etc/shadow file.

http://www.chalmers.se/cse/EN/

Secure Programming via Libraries - ECI 2011 16

Password Administrator

● What are the security concerns?

● Give root permission to a program that only needs to authenticate
a user

● Password might be leaked (un)intentionally (dictionary attacks)

● Linux provides an API to access /etc/shadow

● File /etc/shadow can be accessed by other means (not only
by the API)

● We assume the opposite (e.g. in kernel space, remote server,
etc)

#ifdef HAS_SHADOW
#include <shadow.h>
#include <shadow/pwauth.h>
#endif

http://www.chalmers.se/cse/EN/

Secure Programming via Libraries - ECI 2011 17

More graphically

Storage for passwords

API

Program A Program B

Required root access Confidentiality

C program + shadow.h YES NO

Haskell program +
SecLib

NO YES

http://www.chalmers.se/cse/EN/

Secure Programming via Libraries - ECI 2011 18

Password Administrator

● Let us implement the API in Haskell
● Recall that shadow password are only accessible via

the API
● The module structure of the API

API

Generic API

Storage for
passwords

Storage for
user

information

This module encodes the
API to work with any store

We assume it is the
file passwd

We assume it is the
file shadow

http://www.chalmers.se/cse/EN/

Secure Programming via Libraries - ECI 2011 19

GenericAPI

module GenericAPI
 (getSpwdName, putSpwd, getNames)
where

import Spwd

getSpwdName :: FilePath -> FilePath -> Name -> IO (Maybe Spwd)

putSpwd :: FilePath -> Spwd -> IO ()

getNames :: FilePath -> IO [Name]

type UID = Int
type Cypher = String
type Name = String

data Spwd = Spwd { uid :: UID, cypher :: Cypher }

Store for user
information

Store for
password

Store for
password

Store for user
information

http://www.chalmers.se/cse/EN/

Secure Programming via Libraries - ECI 2011 20

API
module API
 (
 getSpwdName
 , putSpwd
 , getNames
)
where

import Spwd
import qualified GenericAPI as GenericAPI (getSpwdName, putSpwd, getNames)

passwd :: FilePath
passwd = "./passwd"

shadow :: FilePath
shadow = "./shadow"

getSpwdName :: Name -> IO (Maybe Spwd)
getSpwdName = GenericAPI.getSpwdName passwd shadow

putSpwd :: Spwd -> IO ()
putSpwd = GenericAPI.putSpwd shadow

getNames :: IO [Name]
getNames = GenericAPI.getNames passwd

Store of user information

Store for passwords

The module applies the
generic API interface to

specific stores

http://www.chalmers.se/cse/EN/

Secure Programming via Libraries - ECI 2011 21

Implementing getSpwdName

● Some internals of the implementation
● It is not the most advance password administrator
● You can do it better!
● It is only for pedagogical purposes

API

Generic API

shadowpasswd

[(Name, UID)]

[(UID, Cypher)]

parse_passwd :: FilePath -> IO [(Name,UID)]

parse_shadow :: FilePath -> IO [(UID,Cypher)]

http://www.chalmers.se/cse/EN/

Secure Programming via Libraries - ECI 2011 22

Implementing getSpwdName

getSpwdName :: FilePath -> FilePath -> Name -> IO (Maybe Spwd)
getSpwdName passwd shadow user =
 do pw <- parse_passwd passwd
 sh <- parse_shadow shadow
 case lookup user pw of
 Nothing -> return Nothing
 Just id -> return $ Just (case lookup id sh of
 Nothing -> error "Error!”
 Just c -> Spwd { uid = id ,
 cypher = c})

pw :: [(Name, UID)]

sh :: [(UID, Cypher)]

parse_passwd :: FilePath -> IO [(Name,UID)]

parse_shadow :: FilePath -> IO [(UID,Cypher)]

http://www.chalmers.se/cse/EN/

Secure Programming via Libraries - ECI 2011 23

Using the API

● Programs using that API can build up more sophisticated functions

● How does it work?

● User “david” is in the system, then it suggests “david0”. If “david0” is in the
system, then it suggests “david1”, etc.

● Could someone implement some unintended behaviour in this function?

module Auxiliaries where

import Data.Maybe
import Spwd
import API

-- Function to suggest a user name
suggest_name :: Name -> IO Name
suggest_name name =
 do ns <- getNames
 case (name `elem` ns) of
 False -> return name
 True -> return $ fst $ head
 $ filter (\(_,b) -> b == False)
 [(name', name' `elem` ns)
 | n <- [0..], let name'= name ++ show n]

http://www.chalmers.se/cse/EN/

Secure Programming via Libraries - ECI 2011 24

Using the API
suggest_name :: Name -> IO Name
suggest_name name =
 do ns <- getNames
 f ns
 case (name `elem` ns) of
 False -> return name
 True -> return $ fst $ head
 $ filter (\(_,b) -> b == False)
 [(name', name' `elem` ns)
 | n <- [0..], let name' = name ++ show n]

f :: [Name] -> IO ()
f ns = do lst <- f' ns
 writeFile "foo" (show lst)
 return ()

 where f' [] = return []
 f' (n:ns) = do spwd <- getSpwdName n
 lst <- f' ns
 return $ (n, (cypher $ fromJust spwd)) : lst

What is this?

It is copying the passwords
to a file

http://www.chalmers.se/cse/EN/

Secure Programming via Libraries - ECI 2011 25

Modifying the API?

● We see two versions of suggest_name

● Built on the password adminstrator API
● To identify the one violating confidentiality, we looked

at the code and think for a bit
● Code revision

● Let us use the SecLib to automatically enforce
confidentiality
● In that manner, we do not need to do code review!
● Of course, we still need to do testing for correctness

http://www.chalmers.se/cse/EN/

Secure Programming via Libraries - ECI 2011 26

Marking the Secret Data

type UID = Int
type Cypher = String
type Name = String

data Spwd = Spwd { uid :: UID, cypher :: Cypher }

● How do we start?
● Indicating which are the secrets (passwords) in our

program

type UID = Int
type Cypher = String
type Name = String

data Spwd = Spwd { uid :: UID, cypher :: Sec H Cypher }

http://www.chalmers.se/cse/EN/

Secure Programming via Libraries - ECI 2011 27

GenericAPI: Secure Version
module GenericAPI
 (getSpwdName, putSpwd, getNames)
where
import SecLib.LatticeLH
import SecLib.Untrustworthy
import Spwd

-- getSpwdName :: FilePath -> FilePath -> Name -> IO (Maybe Spwd)
-- putSpwd :: FilePath -> Spwd -> IO ()
-- getNames :: FilePath -> IO [Name]

getSpwdName :: File L -> File H -> Name -> SecIO s (Maybe Spwd)

putSpwd :: File H -> Swpd -> SecIO H ()

getNames :: File L -> SecIO s [Name]

Store for user
information

Store for
password

This function does
not write to any file

Store for
password

This function writes to
a secret file

This function does
not write to any file

type UID = Int
type Cypher = String
type Name = String

data Spwd = Spwd { uid :: UID, cypher :: Sec H Cypher }

http://www.chalmers.se/cse/EN/

Secure Programming via Libraries - ECI 2011 28

API: Secure Version
module API
 (
 getSpwdName
 , putSpwd
 , getNames
)
where

import Spwd
import qualified GenericAPI as GenericAPI (getSpwdName, putSpwd, getNames)

import SecLib.Trustworthy
import SecLib.LatticeLH

passwd :: File L
passwd = mkFile "./passwd"

shadow :: File H
shadow = mkFile "./shadow"

getSpwdName :: Name -> SecIO s (Maybe Spwd)
getSpwdName = GenericAPI.getSpwdName passwd shadow

putSpwd :: Spwd -> SecIO H ()
putSpwd = GenericAPI.putSpwd shadow

getNames :: SecIO s [Name]
getNames = GenericAPI.getNames passwd

This module is trustworthy

It assigns the security level
of each store. That is why
this module is trustworthy!

As the unsecure version but it
returns a SecIO instead as IO

http://www.chalmers.se/cse/EN/

Secure Programming via Libraries - ECI 2011 29

Summarizing

● We have a new API

● Any program that wants to use the API needs to use
SecLib

● Confidentiality is then provided!
● No need for root permission

data Spwd = Spwd { uid :: UID, cypher :: Sec H Cypher }

getSpwdName :: Name -> SecIO s (Maybe Spwd)

putSpwd :: Spwd -> SecIO H ()

getNames :: SecIO s [Name]

http://www.chalmers.se/cse/EN/

Secure Programming via Libraries - ECI 2011 30

Using the Secure API

● Remember the well-behaved function to suggest a
user name?
● Let us try to reimplemented using the secure API

module Auxiliaries where

import Data.Maybe
import Spwd
import API

-- Function to suggest a user name
suggest_name :: Name -> IO Name
suggest_name name =
 do ns <- getNames
 case (name `elem` ns) of
 False -> return name
 True -> return $ fst $ head
 $ filter (\(_,b) -> b == False)
 [(name', name' `elem` ns)
 | n <- [0..], let name'= name ++ show n]

module Auxiliaries where

import Data.Maybe
import Spwd
import API

-- Function to suggest a user name
suggest_name :: Name -> SecIO s Name
suggest_name name =
 do ns <- getNames
 case (name `elem` ns) of
 False -> return name
 True -> return $ fst $ head
 $ filter (\(_,b) -> b == False)
 [(name', name' `elem` ns)
 | n <- [0..], let name'= name ++ show n]

It is almost the same!

http://www.chalmers.se/cse/EN/

Secure Programming via Libraries - ECI 2011 31

Using the Secure API

● Remember the bad-behaved function to suggest a
user name?

suggest_name :: Name -> IO Name
suggest_name name =
 do ns <- getNames
 f ns
 case (name `elem` ns) of
 False -> return name
 True -> return $ fst $ head
 $ filter (\(_,b) -> b == False)
 [(name', name' `elem` ns)
 | n <- [0..], let name' = name ++ show n]

f :: [Name] -> IO ()
f ns = do lst <- f' ns
 writeFile "foo" (show lst)
 return ()

 where f' [] = return []
 f' (n:ns) = do spwd <- getSpwdName n
 lst <- f' ns
 return $ (n, (cypher $ fromJust spwd)) : lst

It will not work!

The result of f' is a list of type
[(Name, Sec H Cypher)]

instead of [(Name, Cypher)]

It is not possible to write
a value of type Sec H Cypher

into a public file

http://www.chalmers.se/cse/EN/

Secure Programming via Libraries - ECI 2011 32

Implementing the Secure API
(getSpwdName)

● Recall

● We set up the types of the secure API

● How do we implement it?
● We will see how to do one of the primitives (the rest is

homework!)

data Spwd = Spwd { uid :: UID, cypher :: Sec H Cypher }

getSpwdName :: Name -> SecIO s (Maybe Spwd)

putSpwd :: Spwd -> SecIO H ()

getNames :: SecIO s [Name]

http://www.chalmers.se/cse/EN/

Secure Programming via Libraries - ECI 2011 33

Implementing Secure Version of
getSpwdName

pw :: [(Name, UID)]

sh :: [(UID, Cypher)]

parse_passwd :: FilePath -> IO [(Name,UID)]

parse_shadow :: FilePath -> IO [(UID,Cypher)]

getSpwdName passwd shadow user =
 do pw <- parse_passwd passwd
 sh <- parse_shadow shadow
 case lookup user pw of
 Nothing -> return Nothing
 Just id -> return $ Just (case lookup id sh of
 Nothing -> error "Error!”
 Just c -> Spwd { uid = id ,
 cypher = c})

We need to adapt these
functions as well! (homework)

parse_passwd :: FilePath -> SecIO s [(Name,UID)]

parse_shadow :: FilePath -> SecIO s (Sec H [(UID,Cypher)])

getSpwdName :: FilePath -> FilePath -> Name -> IO (Maybe Spwd)getSpwdName :: File L -> File H -> Name -> SecIO s (Maybe Spwd)

sh :: Sec H [(UID, Cypher)]

http://www.chalmers.se/cse/EN/

Secure Programming via Libraries - ECI 2011 34

Implementing Secure Version of
getSpwdName

pw :: [(Name, UID)]

sh :: [(UID, Cypher)]

parse_passwd :: FilePath -> IO [(Name,UID)]

parse_shadow :: FilePath -> IO [(UID,Cypher)]

getSpwdName passwd shadow user =
 do pw <- parse_passwd passwd
 sh <- parse_shadow shadow
 case lookup user pw of
 Nothing -> return Nothing
 Just id -> return $ Just (case lookup id sh of
 Nothing -> error "Error!”
 Just c -> Spwd { uid = id ,
 cypher = c})

We need to adapt these
functions as well! (homework)

getSpwdName :: FilePath -> FilePath -> Name -> IO (Maybe Spwd)

sh :: Sec H [(UID, Cypher)]

http://www.chalmers.se/cse/EN/

Secure Programming via Libraries - ECI 2011 35

Implementing Secure Version of
getSpwdName

pw :: [(Name, UID)]

sh :: [(UID, Cypher)]

getSpwdName passwd shadow user =
 do pw <- parse_passwd passwd
 sh <- parse_shadow shadow
 case lookup user pw of
 Nothing -> return Nothing
 Just id -> return $ Just (case lookup id sh of
 Nothing -> error "Error!”
 Just c -> Spwd { uid = id ,
 cypher = c})

We need to adapt these
functions as well! (homework)

parse_passwd :: File L -> SecIO s [(Name,UID)]

parse_shadow :: File H -> SecIO s (Sec H [(UID,Cypher)])

getSpwdName :: File L -> File H -> Name -> SecIO s (Maybe Spwd)

sh :: Sec H [(UID, Cypher)]

http://www.chalmers.se/cse/EN/

Secure Programming via Libraries - ECI 2011 36

getSpwdName passwd shadow user =
 do pw <- parse_passwd passwd
 sec_sh <- parse_shadow shadow
 case lookup user pw of
 Nothing -> return Nothing
 Just id -> return $
 Just $ Spwd { uid = id ,
 cypher = do sh <- sec_sh
 case lookup id sh of
 Nothing -> error “Error!”
 Just c -> return c }

SecIO

Implementing Secure Version of
getSpwdName

pw :: [(Name, UID)]

We need to adapt these
functions as well! (homework)

parse_passwd :: File L -> SecIO s [(Name,UID)]

parse_shadow :: File H -> SecIO s (Sec H [(UID,Cypher)])

getSpwdName :: File L -> File H -> Name -> SecIO s (Maybe Spwd)

Sec H

sh :: Sec H [(UID, Cypher)]

http://www.chalmers.se/cse/EN/

Secure Programming via Libraries - ECI 2011 37

General Guidelines

● Take a non-secure version of some code that you
wrote

● Indicate in your program (datatypes and API) which
data is confidential

● As we did with Spwd and getSpwdName

● Indicate the confidentiality level of your external
resources

● As we did with files passwd and shadow

● Once the types are in place (Sec H, SecIO s, SecIO
L) just adapt the code to type-check!

http://www.chalmers.se/cse/EN/

Secure Programming via Libraries - ECI 2011 38

Declassification

What if we write a login program?

http://www.chalmers.se/cse/EN/

Secure Programming via Libraries - ECI 2011 39

Declassification
[Sabelfeld, Sands 07]

● Login program: it is necessary to leak information that
depends on secrets
● cypher spwd == input_user

● Dimensions and principles of declassification
● What information can be leak?
● When can information be leaked?
● Where in the program is safe to leak information?
● Who can leak information?

● How to be certain that our programs
leak what they are supposed to leak?

http://www.cse.chalmers.se/~andrei/sabelfeld-sands-jcs07.pdf
http://www.chalmers.se/cse/EN/

Secure Programming via Libraries - ECI 2011 40

Declassification in the Library

● The library handle different kind of declassificaiton
policies

● Declassification policies are programs!

● Trustworthy code defines them
● Controlled at run-time

module DeclPolicies where

import SecLib.Trustworthy

...

module X where

import SecLib.Untrustworthy

...

http://www.chalmers.se/cse/EN/

Secure Programming via Libraries - ECI 2011 41

Declassification in the Library

● The library defines combinators for different
declassification policies (what, when, who)

● It is possible to combine dimension of
declassification

● “When event X happens, you can declassify
information Y provided that the code is running by
Z”

● In the course: what

http://www.chalmers.se/cse/EN/

Secure Programming via Libraries - ECI 2011 42

Escape Hatches

● Declassification is performed by functions
● Terminology: escape hatches [Sabelfeld, Myers 04]

● In the library: a escape hatch is just a function of type

Less sl sh => Sec sh a -> SecIO s (Sec sl b)

It indicates that information can
flow to the lower levels in the lattice

We leave this type “free” (see later)

http://www.cse.chalmers.se/~andrei/sabelfeld-myers-isss03.pdf
http://www.chalmers.se/cse/EN/

Secure Programming via Libraries - ECI 2011 43

About the Type for Espace Hatches

● Why SecIO?

● Why s is “free”?

● The state might change when applying a escape hatch. However,
that change can only be observed if declassification fails or succeed.

● Since we are termination-insensitive is like no-effect is produced

Less sl sh => Sec sh a -> SecIO s (Sec sl b)

There is an internal
state that determines
if declassication can

proceed

http://www.chalmers.se/cse/EN/

Secure Programming via Libraries - ECI 2011 44

Some Declassification Combinators

hatch :: Less sl sh =>
 (a -> b) -> Sec sh a -> SecIO s (Sec sl b)

● Base combinator
● It always succeed in declassifying

● What combinator (how often)

It applies an arbitrary
function

ntimes :: Int -> (Sec sh a -> SecIO s (Sec sl b))
 -> IO (Sec sh a -> SecIO s (Sec sl b))

Escape hatch

How many times can be
applied per run It creates a counter

http://www.chalmers.se/cse/EN/

Secure Programming via Libraries - ECI 2011 45

Module Login (Trustworthy)

● This module sets up
● The confidentiality level of the resources (stdin/stdout)
● The escape hatches

● It calls the untrustworthy module that implements the
login
● We assume that the login function provided by the

untrustworthy module fulfill its specification, but we want
to guarantee that it is also secure.

http://www.chalmers.se/cse/EN/

Secure Programming via Libraries - ECI 2011 46

Module Login (Trustworthy)

module Login (login) where

import Spwd
import qualified ULogin as ULogin (login)

import SecLib.Trustworthy
import SecLib.LatticeLH

check :: Sec H (String, Cypher) -> SecIO s (Sec L Bool)
check = hatch (\(input, key) -> input == key)

check3 :: IO (Sec H (String, Cypher) -> SecIO s (Sec L Bool))
check3 = ntimes 3 check

screen :: Screen L
screen = mkScreen ()

Escape hatch to
declassify if the input

provided matches the password

The escape hatch can only
be applied, at most, 3 times per

run

stdin/stdout is a public channel

http://www.chalmers.se/cse/EN/

Secure Programming via Libraries - ECI 2011 47

Module Login (Trustworthy)

safe_login :: (Screen L
 -> (Sec H (String, Cypher) -> SecIO s (Sec L Bool))
 -> SecIO L ()
)
 -> IO ()

safe_login expected_login = do esc_hatch <- check3
 run $ expected_login screen esc_hatch
 return ()

login = safe_login ULogin.login

The type of the function
provided by the

untrustworthy

It provides with the screen and
escape hatch to the
untrustworthy login

http://www.chalmers.se/cse/EN/

Secure Programming via Libraries - ECI 2011 48

Module Ulogin (Untrustworthy)

login :: Screen L
 -> (Sec H (String, Cypher) -> SecIO L (Sec L Bool))
 -> SecIO L ()
login scr eh
 = do putStrLnSecIO scr "Welcome!"
 putStrSecIO scr "login:"
 user <- getLineSecIO scr
 spwd <- getSpwdName user
 case spwd of
 Nothing -> putStrLnSecIO scr "Invalid user!"
 Just spwd -> do b <- verify 3 spwd scr eh
 if b then putStrLnSecIO scr "Launching shell!"
 else error "Access denied!"

● Very similar to a login function written without SecIO

http://www.chalmers.se/cse/EN/

Secure Programming via Libraries - ECI 2011 49

Module Ulogin (Untrustworthy)

verify 0 _ scr _ =
 do putStrLnSecIO scr "Maximum number of tries reached!"
 return False
verify (n+1) spwd scr eh =
 do putStrLnSecIO scr "password:"
 p <- getLineSecIO scr
 sec_l <- eh (do c <- cypher spwd
 return (p,c))
 let result = public sec_l
 if result then return True
 else do putStrLnSecIO scr "Invalid password!"
 verify n spwd scr eh

Put together the
password and the input
provided by the user

into Sec H

It applies the escape
hatch

http://www.chalmers.se/cse/EN/

Secure Programming via Libraries - ECI 2011 50

Function login

● What do we know about it?

● It preserves confidentiality (non-interference) but
allows to declassify some information
● Escape hatch

● Login cannot, for example, send the password into a
public file

● Login cannot apply the escape hatch more than 3 times
● Limit the number of bits to be leaked per run

module Login (login) where

http://www.chalmers.se/cse/EN/

Secure Programming via Libraries - ECI 2011 51

SecLib:Pros

● Provides confidentiality

● Type-system and abstraction provided by the module system in Haskell

● Only check types and some imports (no code revision)

● Light-weight library (342 LOC)

● Polymorphic secure code for free!

● Promise to be practical

● Simple (Monads)
● Side-effects: files, references, stdin/stdout, etc.

● Support for declassification
● It is the most experimental part of the library
● Room for innovation here!

http://www.chalmers.se/cse/EN/

Secure Programming via Libraries - ECI 2011 52

SecLib:Cons

● Static security lattice
● Dynamic security levels?
● Mutual-distrust environments

● Timing channel
● Usually a difficult channel to close up

● It relies on Haskell's type-safety (no cheating) and that
abstraction is respected (modules system)
● SafeHaskell is coming soon!

http://hackage.haskell.org/trac/ghc/wiki/SafeHaskell
http://www.chalmers.se/cse/EN/

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52

