
Secure Programming via
Libraries

Escuela de Ciencias Informáticas (ECI) 2011
UBA, Buenos Aires, Argentina

A library for information-flow in Haskell
Alejandro Russo (russo@chalmers.se)

http://www.chalmers.se/cse/EN/

Secure Programming via Libraries - ECI 2011 2

Encoding information-flow in Haskell
[Li, Zdancewic 06]

● Show that it is possible to guarantee IFC by a
library

● Implementation in Haskell using Arrows
[Hughes 98]

● Arrows? A generalization of
Monads [Wadler 01]

● Pure values only
● No side-effects

● One security label for data
● All secret or all public!

http://repository.upenn.edu/cis_papers/333/
http://citeseer.ist.psu.edu/viewdoc/download;jsessionid=4A2924C4DC47CC38404FC2FB107A75AB?doi=10.1.1.29.4575&rep=rep1&type=pdf
http://homepages.inf.ed.ac.uk/wadler/papers/marktoberdorf/baastad.pdf
http://www.chalmers.se/cse/EN/

Secure Programming via Libraries - ECI 2011 3

Encoding information-flow in Haskell
[Tsai, Russo, Hughes 07]

● Extend the library by Li and Zdancewic
● More than one security label for data
● Concurrency

● Major changes in the library
● New arrows
● Lack of arrow notation

● Why arrows?
● Li and Zdancewic argue that monads are

not suitable for the design of such a library

http://www.cse.chalmers.se/~russo/publications_files/tsai-russo-hughesCSF.ps
http://www.chalmers.se/cse/EN/

Secure Programming via Libraries - ECI 2011 4

A lightweight library for Information-flow in Haskell
[Russo, Claessen, Hughes 08]

● Lightweight
● Approximately 325 lines of code
● Static type-system of Haskell to enforce

non-interference
● Dynamic checks when declassification

occurs
● Use Monads (not Arrows!)

● Programmers are more familiar with
Monads than Arrows

http://www.cse.chalmers.se/~russo/seclib.htm
http://www.chalmers.se/cse/EN/

Secure Programming via Libraries - ECI 2011 5

A lightweight library for Information-flow in Haskell
[Russo, Claessen, Hughes 08]

● The library relies on Haskell
● Capabilities to maintain abstraction of data types

– Haskell module system
● Haskell is strongly typed

– We cannot cheat!
● There are extensions of Haskell that break these two

requirements!

● For a full list, please visit the proposal of SafeHaskell
● An extension of Haskell to disallow those dangerous

features than can jeopardize security
● Join work with David Mazieres et al. at Stanford university.

unsafePerformIO :: IO a -> a
unsafeCoerce :: a -> b

http://www.cse.chalmers.se/~russo/seclib.htm
http://hackage.haskell.org/trac/ghc/wiki/SafeHaskell
http://www.scs.stanford.edu/~dm/
http://www.chalmers.se/cse/EN/

Secure Programming via Libraries - ECI 2011 6

Why Haskell?

● Clear separation of pure computations with those with
side-effects

● Every computation with side-effects is encapsulated
into the IO monad

● Side-effects can encode information about secret data

● It is necessary to control them
● It is known where they occur! Just look at the type!

http://www.chalmers.se/cse/EN/

Secure Programming via Libraries - ECI 2011 7

Side-effects and IO

● Just look at the type!

● All bets are off if an IO computation comes from
untrustworthy code
● It is not known the side-effects that it will produce

f1 :: Eq a => a -> [a] -> ([a], Bool)

f2 :: (Show a, Eq a) => Int -> a -> ([a], IO Bool)

f2 n x = (take n (iterate id x),
 do putStrLn "Hi!"
 putStrLn "The arguments of the function are"
 putStrLn $ "x = " ++ show x
 putStrLn $ "n = " ++ show n
 return True)

f1 x xs = (take 10 (cycle xs), elem x xs)

http://www.chalmers.se/cse/EN/
file:///home/ale/Dropbox/ECI11/Lectures/1/ExamplesIO.hs
file:///home/ale/Dropbox/ECI11/Lectures/1/ExamplesIO.hs
file:///home/ale/Dropbox/ECI11/Lectures/1/ExamplesIO.hs

Secure Programming via Libraries - ECI 2011 8

Secure Pure Computations

f :: (Char {- secret -}, Int)
 -> (Char {- secret -}, Int)

f (c, i) = (chr(ord c + i), i)

f (c, i) = (chr(ord c + i), ord c)

f (c, i) = (chr(ord c + 1), i+1)

f (c, i) | c > 65 = (c, 42)
 | otherwise = (c, i)

YES

NO

YES

NO

YES

http://www.chalmers.se/cse/EN/

Secure Programming via Libraries - ECI 2011 9

A Security Monad for Pure
Computations

data Sec s a -- abstract
instance Monad (Sec s)

● Security monad
● It assigns a security level to data
● Once inside the monad, it is not possible to escape!

● We represent security levels by singleton types

H

L

secret :: Sec H Int
secret = ...

known :: Sec L Int
known = ...

http://www.chalmers.se/cse/EN/

Secure Programming via Libraries - ECI 2011 10

Using Sec

f :: (Char {- secret -}, Int)
 -> (Char {- secret -}, Int)

f' :: (Sec H Char, Int)
 -> (Sec H Char, Int)

f (c, i) = (chr(ord c + i), i)

YES

f' (sec_c, i) = (do c <- sec_c
 return (chr(ord c + i))
 ,i)

YES

http://www.chalmers.se/cse/EN/
file:///home/ale/Dropbox/ECI11/Lectures/1/SPure.hs

Secure Programming via Libraries - ECI 2011 11

Using Sec

f :: (Char {- secret -}, Int)
 -> (Char {- secret -}, Int)

f' :: (Sec H Char, Int)
 -> (Sec H Char, Int)

f' (sec_c, i) = (do c <- sec_c
 return (chr(ord c + i))
 ,do c <- sec_c
 return (ord c))

f (c, i) = (chr(ord c + i), ord c) NO

NO

http://www.chalmers.se/cse/EN/

Secure Programming via Libraries - ECI 2011 12

Security Guarantee

Type checks!

Non-interferece

http://www.chalmers.se/cse/EN/

Secure Programming via Libraries - ECI 2011 13

A Security Monad for Pure
Computations

data Sec s a -- abstract
instance Monad (Sec s)

● Security monad
● It assigns a security level to data
● Once inside the monad, it is not possible to escape!

● We represent security levels by singleton types
● What about the security lattice?

H

L

http://www.chalmers.se/cse/EN/

Secure Programming via Libraries - ECI 2011 14

Security Lattice

● We model it using type classes in Haskell
● Constrains to polymorphic types

● Encoding two-point lattice is just provide instances for
that type class

H

L

class Less s s' where
 less :: s -> s' -> ()

instance Less L H where
less _ _ = ()

instance Less L L where
less _ _ = ()

instance Less H H where

less _ _ = ()

http://www.chalmers.se/cse/EN/

Secure Programming via Libraries - ECI 2011 15

Security Monad and
the Security Lattice

● Push up information in the security lattice

● It allows to convert public values into secrets

● What if it is possible to make the following instance?

up :: Less s s' => Sec s a -> Sec s' a

fup :: Sec L Int -> Sec H Char

fup sec_i = do i <- up (sec_i)
 return (chr i)

instance Less H L where
less _ _ = ()

http://www.chalmers.se/cse/EN/
file:///home/ale/Dropbox/ECI11/Lectures/1/SPure.hs

Secure Programming via Libraries - ECI 2011 16

Security Monad and
the Security Lattice

● The library works as long as
● Attackers cannot define method
less for arbitrary instances of the
type class Less

● How to ensure that?
● Mainly by the abstraction power of

Haskell's module system

http://www.chalmers.se/cse/EN/

Secure Programming via Libraries - ECI 2011 17

SecLib.Trustworthy

Arquitecture

module X where

import SecLib.Untrustworthy
import SecLib.LatticeLH

...

SecLib.UntrustworthySecLib.LatticeLH

http://www.chalmers.se/cse/EN/

Secure Programming via Libraries - ECI 2011 18

Importing SecLib.Trustworthy

● SecLib.Trustworthy must not be imported by
untrustworthy code
● Otherwise, no security guarantees are possible

instance Less H L where
less _ _ = ()

http://www.chalmers.se/cse/EN/
file:///home/ale/Dropbox/ECI11/Lectures/1/SPureBroken.hs

Secure Programming via Libraries - ECI 2011 19

Other Assumptions

● The monad Sec s must remain abstract

● Guarantee by the installation of the library

● Sec.hs is not an exposed module

● Use of unsafe Haskell extensions
● StandaloneDeriving

● System.IO.Unsafe

– unsafePerformIO, unsafeIterleaveIO, etc.

● OverlappingInstances

● Check SafeHaskell (work-in-progress)

● A Haskell extension to safely execute
untrusted Haskell code

http://hackage.haskell.org/trac/ghc/wiki/SafeHaskell
http://www.chalmers.se/cse/EN/

Secure Programming via Libraries - ECI 2011 20

Security API for Pure Computations

up :: Less s s' => Sec s a -> Sec s' a

data Sec s a -- abstract
instance Monad (Sec s)

module X where

import SecLib.Untrustworthy
import SecLib.LatticeLH

http://www.chalmers.se/cse/EN/

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20

