
Secure Programming via
Libraries

Escuela de Ciencias Informáticas (ECI) 2011
UBA, Buenos Aires, Argentina

Introduction
Alejandro Russo (russo@chalmers.se)

http://www.chalmers.se/cse/EN/

Secure Programming via Libraries - ECI 2011 2

This Course: What is it?

● Programming language technology
● Type-systems ()
● Monitoring

● Theory and practice
● Haskell
● Python

● Focus on providing security via a library
● Based on recent research results

void main () { return ; }

http://www.chalmers.se/cse/EN/

Secure Programming via Libraries - ECI 2011 3

This Course: Learning Outcomes

● Security policies
● Intended behavior of secure systems

● Identify useful programming languages concepts
to provide security via libraries

● Practical experience with Haskell and Python
● Identify the scope of certain security libraries and

programming language abstractions or concepts
● Some experience on formalization of security

mechanisms
● To prove that they do what they claim!

http://www.chalmers.se/cse/EN/

Secure Programming via Libraries - ECI 2011 4

Organization

● Web page of the course
● http://www.cse.chalmers.se/~russo/eci2011/

● Discussion email list
● http://groups.google.com/group/eci-2011-security?hl=es
● eci-2011-security@googlegroups.com

● 5 Lectures (3hs, 20-25 minutes break)
● Exercises

● Exam in the end of the course

http://www.cse.chalmers.se/~russo/eci2011/
http://groups.google.com/group/eci-2011-security?hl=es
mailto:eci-2011-security@googlegroups.com
http://www.chalmers.se/cse/EN/

Secure Programming via Libraries - ECI 2011 5

Secure Programming via
Libraries

Escuela de Ciencias Informáticas (ECI) 2011
UBA, Buenos Aires, Argentina

Overview Haskell
Alejandro Russo (russo@chalmers.se)

http://www.chalmers.se/cse/EN/

Secure Programming via Libraries - ECI 2011 6

Haskell in a Nutshell

● Purely functional language
● Functions are first-class citizens!
● Referential transparency

● Lazy evaluation
– Expressions are evaluated at most once

● Advance type system

int plusone(int x) {return x+1;}

int plusone(int x) {calls++ ;
return x+1;}

http://www.chalmers.se/cse/EN/

Secure Programming via Libraries - ECI 2011 7

Haskell Overview

● Definition of functions

● Hindley-Milner Polymorphism

● Built-in lists

plusone :: Int -> Int
plusone x = x + 1

first :: forall a b. (a,b) -> a
first (x,_) = x

lst1 = [1,2,3,4] lst3 = lst1 ++ lst2
lst2 = 5 : []

http://www.chalmers.se/cse/EN/
file:///home/ale/Dropbox/ECI11/Lectures/1/Overview.hs
file:///home/ale/Dropbox/ECI11/Lectures/1/Overview.hs
file:///home/ale/Dropbox/ECI11/Lectures/1/Overview.hs

Secure Programming via Libraries - ECI 2011 8

Haskell Overview

● User-defined data types

data Nationality = Argentinian | Swedish

f :: Nationality -> String
f Argentinian = "Asado"
f Swedish = "Surströmming"

data Tree a = Leaf | Node a (Tree a) (Tree a)

nodes :: Tree a -> [a]
nodes Leaf = []
nodes (Node a t1 t2) = a : (nodes t1 ++ nodes t2)

http://www.chalmers.se/cse/EN/
file:///home/ale/Dropbox/ECI11/Lectures/1/Overview.hs

Secure Programming via Libraries - ECI 2011 9

Haskell Overview

● Type classes

● What is the type for the function?

● Type classes

bcmp x y = x == y

bcmp :: forall a. (Eq a) => a -> a -> Bool

bcmp :: forall a. a -> a -> Bool

class Eq a where
 (==) :: a -> a -> Bool
 (/=) :: a -> a -> Bool

instance Eq Int where ...
instance Eq Float where ...
instance Eq a => Eq [a] where

http://www.chalmers.se/cse/EN/
file:///home/ale/Dropbox/ECI11/Lectures/1/Overview.hs
file:///home/ale/Dropbox/ECI11/Lectures/1/Overview.hs
file:///home/ale/Dropbox/ECI11/Lectures/1/Overview.hs
file:///home/ale/Dropbox/ECI11/Lectures/1/Overview.hs
file:///home/ale/Dropbox/ECI11/Lectures/1/Overview.hs

Secure Programming via Libraries - ECI 2011 10

Haskell Overview

● Input and Output (IO)

● If computations produce side-effects (IO) is reflected
in the types!
● Distinctive feature of Haskell.
● Very useful for security!

hello :: IO ()
hello = do putStrLn "Hello! What is your name?"
 name <- getLine
 putStrLn $ "Hi, " ++ name ++ "!"

http://www.chalmers.se/cse/EN/
file:///home/ale/Dropbox/ECI11/Lectures/1/Overview.hs

Secure Programming via Libraries - ECI 2011 11

Monads in Haskell

● What is a monad? (Explanation for the masses)
● ADT denoting a computation that produces a value.

– We call values of this special type monadic values or
monadic computations

● Two operations to build complex computations from
simple ones
– return creates monadic computations from simple values

like integers, characters, float, etc.
– bind takes to monadic computations and sequentialize

them. The result of the first computation can be used in the
second one.

● Examples: IO

http://www.chalmers.se/cse/EN/

Secure Programming via Libraries - ECI 2011 12

Monads in Haskell

● Bind
getLine :: IO String putStrLn :: String -> IO ()

c :: IO ()
c = do name <- getLine
 putStrLn $ "Hi, " ++ name ++ "!"

hello :: IO ()
hello = do putStrLn "Hello! What is your name?"
 name <- getLine
 putStrLn $ "Hi, " ++ name ++ "!"

http://www.chalmers.se/cse/EN/
file:///home/ale/Dropbox/ECI11/home/ale/Dropbox/ECI11/Lectures/1/Overview.hs
file:///home/ale/Dropbox/ECI11/home/ale/Dropbox/ECI11/Lectures/1/Overview.hs
file:///home/ale/Dropbox/ECI11/Lectures/1/Overview.hs
file:///home/ale/Dropbox/ECI11/Lectures/1/Overview.hs

Secure Programming via Libraries - ECI 2011 13

Monads in Haskell

● return

return :: a -> IO a
return 42 :: IO Int

nextPrime :: Int -> Int
nextPrime =

prim :: IO (Int,Int)
prim = do number <- getLine
 let n = toInt number
 return (n, nextPrime n)

http://www.chalmers.se/cse/EN/
file:///home/ale/Dropbox/ECI11/Lectures/1/Overview.hs
file:///home/ale/Dropbox/ECI11/Lectures/1/Overview.hs
file:///home/ale/Dropbox/ECI11/Lectures/1/Overview.hs

Secure Programming via Libraries - ECI 2011 14

Exercise

● Write programs that do the following

*Overview> quiz1
What day were you born?
28
Not interesting.
*Overview>

*Overview> quiz1
What day were you born?
11
It is a prime number!
*Overview>

quiz1 :: IO ()
quiz1 = do putStrLn "What day were you born?"
 (n, np) <- prim
 if n == np
 then putStrLn $ "It is a prime number!"
 else putStrLn $ "Not interesting."

http://www.chalmers.se/cse/EN/
file:///home/ale/Dropbox/ECI11/home/ale/Dropbox/ECI11/Lectures/1/Overview.hs
file:///home/ale/Dropbox/ECI11/home/ale/Dropbox/ECI11/Lectures/1/Overview.hs
file:///home/ale/Dropbox/ECI11/Lectures/1/Overview.hs

Secure Programming via Libraries - ECI 2011 15

Why Monads?

● Monads represent computations.
● Different kind of monads represent different

kind of computations
● IO monad represents computation with

inputs and outputs
● In this course, we will define a monad to

represent secure computations
● Computations where security is preserved

http://www.chalmers.se/cse/EN/

Secure Programming via Libraries - ECI 2011 16

Secure Programming via
Libraries

Escuela de Ciencias Informáticas (ECI) 2011
UBA, Buenos Aires, Argentina

Information-Flow Security
Alejandro Russo (russo@chalmers.se)

http://www.chalmers.se/cse/EN/

Secure Programming via Libraries - ECI 2011 17

Introduction

● Computer systems usually send,
receive, and store confidential
information

● Computer networks provides benefits
but exposes systems to attacks
(malicious code)

● We want to preserve confidentiality
● End-to-end security policy

http://www.chalmers.se/cse/EN/

Secure Programming via Libraries - ECI 2011 18

End-to-end Security Policies

● Security policies (intended behavior)
that speaks about end-points of the
system

● End-points?
● Inputs and outputs!

● Confidentiality?

http://www.chalmers.se/cse/EN/

Secure Programming via Libraries - ECI 2011 19

Language-based Security
[Kozen 99]

● How to to guarantee and end-to-end
security requirements as confidentiality?

● Language-based security technology
inspects the code of applications to
guarantee security policies.
● Fusion of programming languages

technology and computer security
● Information-flow security

http://ecommons.cornell.edu/bitstream/1813/7405/1/99-1751.pdf
http://www.chalmers.se/cse/EN/

Secure Programming via Libraries - ECI 2011 20

Language-based Information-Flow Security
[Sabelfeld, Myers 03]

● Programming languages techniques to track how data flows
inside programs
● Preserve confidentiality
● Preserve some integrity of data

– Corrupt data does not influence security critical operation

● It can be performed
● Statically

– Type-system [Volpano Smith Irnive 96]
● Dynamically

– Monitor [Volpano 99] [Le Guernic et al. 06]
● Hybrid [Le Guernic et al. 06] [Russo, Sabelfeld 10]

● Comparison between static and dynamic techniques
[Sabelfeld, Russo 09]

http://www.cse.chalmers.se/~andrei/jsac.pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.152.7374&rep=rep1&type=pdf
http://citeseer.ist.psu.edu/viewdoc/download;jsessionid=FF105EAB7B3ECC7D56466F98645257FB?doi=10.1.1.41.3870&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.68.1317&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.68.1317&rep=rep1&type=pdf
http://www.cse.chalmers.se/~russo/publications_files/csf2010.pdf
http://www.cse.chalmers.se/~russo/publications_files/psi09.pdf
http://www.chalmers.se/cse/EN/

Secure Programming via Libraries - ECI 2011 21

Security Lattice

● Assign security levels to data representing their
confidentiality

● Security levels are placed in a lattice (security lattice)

● Information can flow from low to high positions in
the lattice

● For simplicity, we only consider two security levels

H

L
•

•

•
•

http://www.chalmers.se/cse/EN/

Secure Programming via Libraries - ECI 2011 22

Non-interference
[Goguen Meseguer 82]

● Security policy to preserve confidentiality

● Given the two-point security lattice, then
non-interference establishes that public
outputs should not depend on secret data

● Programs have secret and public inputs and outputs,
respectively

● More formally,

H

L

http://www.cs.uiuc.edu/class/fa05/cs498cag/reading/Chapter8/GoguenM82.pdf
http://www.chalmers.se/cse/EN/

Secure Programming via Libraries - ECI 2011 23

Types of Illegal Flows
[Denning, Denning 77]

● Explicit flows

● Implicit flows

l := h

if h>0
 then l:=1
 else l:=2

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.108.995&rep=rep1&type=pdf
http://www.chalmers.se/cse/EN/

Secure Programming via Libraries - ECI 2011 24

Covert Channels

● Besides explicit and implicit flows, programs can leak information by
other means

● Not originally designed for that purpose

● It depends on the attacker observational power

● Energy consumption (e.g. Smartcards [Messerges et al])

● External timing

● Arbitrarily precise stopwatch [Agat 00]
● Cache attacks [Jackson et al 06]
● Termination [Askarov et al 08]

● Internal timing

● No precise stopwatch, but rather affecting the behavior of threads
depending on the secret [Russo 08]

http://www.usenix.org/events/smartcard99/full_papers/messerges/messerges.pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.39.9553&rep=rep1&type=pdf
http://crypto.stanford.edu/safecache/sameorigin.pdf
http://www.cse.chalmers.se/~andrei/esorics08.pdf
http://www.cse.chalmers.se/~russo/russothesis.pdf
http://www.chalmers.se/cse/EN/

Secure Programming via Libraries - ECI 2011 25

Termination Insensitive Non-interference
[Askarov et al 08]

● Non-interference security policy that ignores leaks due to termination

● Main information-flow compilers
ignore leaks due to termination
[Jif] [FlowCaml]

● What is the bandwidth of
this covert channel?

● A secret cannot be leaked
in polynomial time

● For uniform distributed secrets,
the advantage to gain when guessing
the secrets (after a polynomial amount
of observation) is negligible

● From now on, we ignore termination.

● Non-interference means termination insensitive non-interference

l:=0 ;
if h>0
 then while true do skip ;

h<=0 → l = 0 (Ok)
h>0 → (Loop)

http://www.cse.chalmers.se/~andrei/esorics08.pdf
http://www.cs.cornell.edu/jif/
http://pauillac.inria.fr/~simonet/soft/flowcaml/
http://www.chalmers.se/cse/EN/

Secure Programming via Libraries - ECI 2011 26

Declassification
[Sabelfeld, Sands 07]

● Useful system intentionally release information as
part of its behavior
● Password checker (pwd == input)

● Dimensions and principles of declassification
● What information can be leak?
● When can information be leaked?
● Where in the program is safe to leak information?
● Who can leak information?

● How to be certain that our programs
leak what they are supposed to leak?

http://www.cse.chalmers.se/~andrei/sabelfeld-sands-jcs07.pdf
http://www.chalmers.se/cse/EN/

Secure Programming via Libraries - ECI 2011 27

Where Information-flow security is
useful?

● It originally emerges from military settings
● Mandatory access control [Bell and LaPadula 73]

● Nowadays, the web is an exciting scenario to apply
information-flow control [FlowSafe Mozilla]

● Affects everyone, not just military people!

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.20.6361&rep=rep1&type=pdf
https://wiki.mozilla.org/FlowSafe
http://www.chalmers.se/cse/EN/

Secure Programming via Libraries - ECI 2011 28

Where Information-flow security is
useful?

● It originally emerges from military settings
● Mandatory access control [Bell and LaPadula 73]

● Nowadays, the web is an exciting scenario to apply
information-flow control [FlowSafe Mozilla]

● Affects everyone, not just military people!

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.20.6361&rep=rep1&type=pdf
https://wiki.mozilla.org/FlowSafe
http://www.chalmers.se/cse/EN/

Secure Programming via Libraries - ECI 2011 29

Web Security and Information-flow
[OWASP 10]

● Ten most frequent attacks
● A1 – Injection (SQL, OS, etc)

– Information-flow
● A2 – Cross Site Scripting (XSS)

– Information-flow
● A3 – Broken Authentication and Session Management

– Information-flow helps here as well
● A4 – Insecure Direct Object References

– Information-flow
●

● Very hot area at the moment for doing research

http://www.owasp.org/index.php/Top_10_2010-Main
http://www.chalmers.se/cse/EN/

Secure Programming via Libraries - ECI 2011 30

Static vs. Dynamic Enforcement for
Information-flow

● Security policy: secrets must no be leaked!

● Termination insensitive non-interference
● Some purely dynamic mechanisms are as secure as

traditional type-systems [Sabelfeld, Russo 09]

● Should we go dynamic or static?

● Several arguments are possible to argue against
[Le Guernic et al, 06] [Shroff et al, 07] [Vogt et al, 07]

● In favor of dynamic monitors

– Permissiveness
– Dynamic code evaluation (eval in JavaScript)

● Web applications permissiveness is very important !

http://www.cse.chalmers.se/~russo/publications_files/psi09.pdf
http://hal.inria.fr/docs/00/13/02/10/PDF/automatonBasedNiMonitoring.pdf
http://www.cs.jhu.edu/~pari/papers/ShroffSmithThober-DynamicCaptureOfDependencies-JCS-22April2008.pdf
http://www.iseclab.org/people/vogge/docs/da_xss_prevention.pdf
http://www.chalmers.se/cse/EN/

Secure Programming via Libraries - ECI 2011 31

Flow-sensitive and Flow-insensitive Enforcement
for Non-interference [Hunt, Sands 06]

● Traditional enforcements

● Avoid illegal explicit and implicit flows

● Fix sources of secret and public
inputs and outputs

● Flow-insensitive (FI)

● Each variable has a fix security
level during the execution of the program

● Flow-sensitive (FS)

● Variables can change their security level
during execution according to the data
stored at a given time

● More convenient for programmers!

● A program accepted by traditional
FS type-system is also accepted by
traditional FI type-system (rewriting)

v1 v2 v3 ... v40 v50 v60 …

v1 v2 v3 ... v40 v50 v60 …

v1 := h ;
v2 := v1+l ;
v1 := l ;
h := v1 + v2 ;

http://www.cse.chalmers.se/~dave/papers/Hunt-Sands-POPL06.pdf
http://www.chalmers.se/cse/EN/

Secure Programming via Libraries - ECI 2011 32

● Hunt and Sands compare two static enforcements

● FI and FS type-systems

● Flow-insensitive

● FI monitor is as secure as
traditional FI type-sytems

● Monitor accepts more
programs

● Flow-sensitive

● No possible to obtain a sound and more permissive (than a FS type-
system) purely dynamic monitor

● To recover the picture above for FS, static analysis is needed!
● Is it desired to recover the picture above? [Austin, Flanagan 09]

– Open question

Flow-sensitive and Flow-insensitive Enforcement for
Non-interference [Sabelfeld, Russo 09] [Russo, Sabelfeld 10]

 FI type-systems

FI purely dynamic monitors

Secure programs

http://slang.soe.ucsc.edu/cormac/papers/plas09.pdf
http://www.cse.chalmers.se/~russo/publications_files/psi09.pdf
http://www.cse.chalmers.se/~russo/publications_files/csf2010.pdf
http://www.chalmers.se/cse/EN/

Secure Programming via Libraries - ECI 2011 33

Information-flow Security
● Active research area

● No more only motivated by military applications

● Web security and information-flow is a hot topic!
● Companies are showing interests on this technology

● During the 70's dynamic techniques were pioneers
● Operating system security

● During the 90's static techniques were dominant
● Language-based security

● During 00's, dynamic techniques are back!
● We can see combination of both

● Exiting times to do research on the area!

http://www.chalmers.se/cse/EN/

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33

