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This Course: What is it?

● Programming language technology
● Type-systems (                                             )
● Monitoring

● Theory and practice
● Haskell 
● Python

● Focus on providing security via a library
● Based on recent research results

void main () { return ; }

http://www.chalmers.se/cse/EN/
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This Course: Learning Outcomes

● Security policies 
● Intended behavior of secure systems

● Identify useful programming languages concepts  
to provide security via libraries

● Practical experience with Haskell and Python
● Identify the scope of certain security libraries and 

programming language abstractions or concepts  
● Some experience on formalization of security 

mechanisms
● To prove that they do what they claim!

http://www.chalmers.se/cse/EN/
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Organization

● Web page of the course
● http://www.cse.chalmers.se/~russo/eci2011/

● Discussion email list
● http://groups.google.com/group/eci-2011-security?hl=es
● eci-2011-security@googlegroups.com

● 5 Lectures (3hs, 20-25 minutes break)
● Exercises 

● Exam in the end of the course 

http://www.cse.chalmers.se/~russo/eci2011/
http://groups.google.com/group/eci-2011-security?hl=es
mailto:eci-2011-security@googlegroups.com
http://www.chalmers.se/cse/EN/
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Haskell in a Nutshell

● Purely functional language 
● Functions are first-class citizens!
● Referential transparency

● Lazy evaluation
– Expressions are evaluated at most once

● Advance type system

int plusone(int x) {return x+1;}

int plusone(int x) {calls++ ; 
return x+1;}

http://www.chalmers.se/cse/EN/
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Haskell Overview

● Definition of functions

● Hindley-Milner Polymorphism 

● Built-in lists

plusone :: Int -> Int
plusone x = x + 1

first :: forall a b. (a,b) -> a 
first (x,_) = x

lst1 = [1,2,3,4]  lst3 = lst1 ++ lst2
lst2 = 5 : []

http://www.chalmers.se/cse/EN/
file:///home/ale/Dropbox/ECI11/Lectures/1/Overview.hs
file:///home/ale/Dropbox/ECI11/Lectures/1/Overview.hs
file:///home/ale/Dropbox/ECI11/Lectures/1/Overview.hs
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Haskell Overview

● User-defined data types

data Nationality = Argentinian | Swedish

f :: Nationality -> String
f Argentinian = "Asado"
f Swedish   = "Surströmming"
 
data Tree a = Leaf | Node a (Tree a) (Tree a)

nodes :: Tree a -> [a]
nodes Leaf           = []
nodes (Node a t1 t2) = a : (nodes t1 ++ nodes t2)

http://www.chalmers.se/cse/EN/
file:///home/ale/Dropbox/ECI11/Lectures/1/Overview.hs
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Haskell Overview

● Type classes

● What is the type for the function?

● Type classes

bcmp x y = x == y 

bcmp :: forall a. (Eq a) => a -> a -> Bool

bcmp :: forall a. a -> a -> Bool

class Eq a where
 (==) :: a -> a -> Bool 
 (/=) :: a -> a -> Bool

instance Eq Int where ...
instance Eq Float where ...
instance Eq a => Eq [a] where ....

http://www.chalmers.se/cse/EN/
file:///home/ale/Dropbox/ECI11/Lectures/1/Overview.hs
file:///home/ale/Dropbox/ECI11/Lectures/1/Overview.hs
file:///home/ale/Dropbox/ECI11/Lectures/1/Overview.hs
file:///home/ale/Dropbox/ECI11/Lectures/1/Overview.hs
file:///home/ale/Dropbox/ECI11/Lectures/1/Overview.hs
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Haskell Overview

● Input and Output (IO)

● If computations produce side-effects (IO) is reflected 
in the types!
● Distinctive feature of Haskell. 
● Very useful for security!

hello :: IO ()
hello = do putStrLn "Hello! What is your name?"
           name <- getLine 
           putStrLn $ "Hi, " ++ name ++ "!" 

http://www.chalmers.se/cse/EN/
file:///home/ale/Dropbox/ECI11/Lectures/1/Overview.hs
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Monads in Haskell

● What is a monad? (Explanation for the masses)
● ADT denoting a computation that produces a value.

– We call values of this special type monadic values or 
monadic computations

● Two operations to build complex computations from 
simple ones
– return creates monadic computations from simple values 

like integers, characters, float, etc. 
– bind takes to monadic computations and sequentialize 

them. The result of the first computation can be used in the 
second one.

● Examples: IO

http://www.chalmers.se/cse/EN/
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Monads in Haskell

● Bind  
getLine :: IO String putStrLn :: String -> IO ()

c :: IO ()
c = do name <- getLine 
       putStrLn $ "Hi, " ++ name ++ "!" 

hello :: IO ()
hello = do putStrLn "Hello! What is your name?"
           name <- getLine 
           putStrLn $ "Hi, " ++ name ++ "!" 

http://www.chalmers.se/cse/EN/
file:///home/ale/Dropbox/ECI11/home/ale/Dropbox/ECI11/Lectures/1/Overview.hs
file:///home/ale/Dropbox/ECI11/home/ale/Dropbox/ECI11/Lectures/1/Overview.hs
file:///home/ale/Dropbox/ECI11/Lectures/1/Overview.hs
file:///home/ale/Dropbox/ECI11/Lectures/1/Overview.hs
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Monads in Haskell

● return 

return :: a -> IO a
return 42 :: IO Int

nextPrime :: Int -> Int
nextPrime = ....

prim :: IO (Int,Int)
prim = do number <- getLine 
          let n = toInt number
          return (n, nextPrime n)

http://www.chalmers.se/cse/EN/
file:///home/ale/Dropbox/ECI11/Lectures/1/Overview.hs
file:///home/ale/Dropbox/ECI11/Lectures/1/Overview.hs
file:///home/ale/Dropbox/ECI11/Lectures/1/Overview.hs
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Exercise

● Write programs that do the following

*Overview> quiz1
What day were you born?
28
Not interesting.
*Overview>

*Overview> quiz1
What day were you born?
11
It is a prime number!
*Overview> 

quiz1 :: IO () 
quiz1 = do putStrLn "What day were you born?"
           (n, np) <- prim 
           if n == np 
              then putStrLn $ "It is a prime number!"
              else putStrLn $ "Not interesting."

http://www.chalmers.se/cse/EN/
file:///home/ale/Dropbox/ECI11/home/ale/Dropbox/ECI11/Lectures/1/Overview.hs
file:///home/ale/Dropbox/ECI11/home/ale/Dropbox/ECI11/Lectures/1/Overview.hs
file:///home/ale/Dropbox/ECI11/Lectures/1/Overview.hs
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Why Monads?

● Monads represent computations. 
● Different kind of monads represent different 

kind of computations
● IO monad represents computation with 

inputs and outputs
● In this course, we will define a monad to 

represent secure computations
● Computations where security is preserved

http://www.chalmers.se/cse/EN/
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Introduction

● Computer systems usually send, 
receive, and store confidential 
information

● Computer networks provides benefits 
but exposes systems to attacks 
(malicious code)

● We want to preserve confidentiality
● End-to-end security policy

http://www.chalmers.se/cse/EN/
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End-to-end Security Policies

● Security policies (intended behavior) 
that speaks about end-points of the 
system

● End-points? 
● Inputs and outputs!

● Confidentiality?

http://www.chalmers.se/cse/EN/
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Language-based Security 
[Kozen 99] 

● How to  to guarantee and end-to-end 
security requirements as confidentiality?

● Language-based security technology 
inspects the code of applications to 
guarantee security policies.
● Fusion of programming languages 

technology and computer security
● Information-flow security

http://ecommons.cornell.edu/bitstream/1813/7405/1/99-1751.pdf
http://www.chalmers.se/cse/EN/
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Language-based Information-Flow Security
[Sabelfeld, Myers 03]

● Programming languages techniques to track how data flows 
inside programs
● Preserve confidentiality
● Preserve some integrity of data 

– Corrupt data does not influence security critical operation

● It can be performed
● Statically 

– Type-system [Volpano Smith Irnive 96] 
● Dynamically

– Monitor [Volpano 99] [Le Guernic et al. 06]
● Hybrid [Le Guernic et al. 06] [Russo, Sabelfeld 10]

● Comparison between static and dynamic techniques 
[Sabelfeld, Russo 09]

http://www.cse.chalmers.se/~andrei/jsac.pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.152.7374&rep=rep1&type=pdf
http://citeseer.ist.psu.edu/viewdoc/download;jsessionid=FF105EAB7B3ECC7D56466F98645257FB?doi=10.1.1.41.3870&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.68.1317&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.68.1317&rep=rep1&type=pdf
http://www.cse.chalmers.se/~russo/publications_files/csf2010.pdf
http://www.cse.chalmers.se/~russo/publications_files/psi09.pdf
http://www.chalmers.se/cse/EN/
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Security Lattice

● Assign security levels to data representing their 
confidentiality

● Security levels are placed in a lattice (security lattice)

● Information can flow from low to high positions in 
the lattice

● For simplicity, we only consider two security levels 

H

L
• 

• 

• 
• 

http://www.chalmers.se/cse/EN/
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Non-interference
[Goguen Meseguer 82]

● Security policy to preserve confidentiality

● Given the two-point security lattice, then 
non-interference establishes that public 
outputs should not depend on secret data

● Programs have secret and public inputs and outputs, 
respectively

● More formally,  

H

L

http://www.cs.uiuc.edu/class/fa05/cs498cag/reading/Chapter8/GoguenM82.pdf
http://www.chalmers.se/cse/EN/
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Types of Illegal Flows
[Denning, Denning 77]

● Explicit flows

● Implicit flows

l := h

if h>0 
    then l:=1 
    else  l:=2

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.108.995&rep=rep1&type=pdf
http://www.chalmers.se/cse/EN/
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Covert Channels

●  Besides explicit and implicit flows, programs can leak information by 
other means

● Not originally designed for that purpose

● It depends on the attacker observational power

● Energy consumption (e.g. Smartcards [Messerges et al])

● External timing 

● Arbitrarily precise stopwatch [Agat 00]
● Cache attacks [Jackson et al 06]
● Termination [Askarov et al 08]

● Internal timing

● No precise stopwatch, but rather affecting the behavior of threads 
depending on the secret [Russo 08]

http://www.usenix.org/events/smartcard99/full_papers/messerges/messerges.pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.39.9553&rep=rep1&type=pdf
http://crypto.stanford.edu/safecache/sameorigin.pdf
http://www.cse.chalmers.se/~andrei/esorics08.pdf
http://www.cse.chalmers.se/~russo/russothesis.pdf
http://www.chalmers.se/cse/EN/
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Termination Insensitive Non-interference 
[Askarov et al 08]

● Non-interference security policy that ignores leaks due to termination

● Main information-flow compilers 
ignore leaks due to termination
[Jif] [FlowCaml]

● What is the bandwidth of 
this covert channel?

● A secret cannot be leaked 
in polynomial time

● For uniform distributed secrets, 
the advantage to gain when guessing
the secrets (after a polynomial amount
of observation) is negligible

● From now on, we ignore termination.

● Non-interference means termination insensitive non-interference

l:=0 ;
if h>0 
    then while true do skip ;

h<=0  → l = 0 (Ok) 
h>0    → (Loop)

http://www.cse.chalmers.se/~andrei/esorics08.pdf
http://www.cs.cornell.edu/jif/
http://pauillac.inria.fr/~simonet/soft/flowcaml/
http://www.chalmers.se/cse/EN/
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Declassification
[Sabelfeld, Sands 07]

● Useful system intentionally release information as 
part of its behavior
● Password checker (pwd  == input)

● Dimensions and principles of declassification
● What information can be leak?
● When can information be leaked?
● Where in the program is safe to leak information?
● Who can leak information?

● How to be certain that our programs
leak what they are supposed to leak?

http://www.cse.chalmers.se/~andrei/sabelfeld-sands-jcs07.pdf
http://www.chalmers.se/cse/EN/
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Where Information-flow security is 
useful?

● It originally emerges from military settings
● Mandatory access control [Bell and LaPadula 73]

● Nowadays, the web is an exciting scenario to apply 
information-flow control [FlowSafe Mozilla] 

● Affects everyone, not just military people!

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.20.6361&rep=rep1&type=pdf
https://wiki.mozilla.org/FlowSafe
http://www.chalmers.se/cse/EN/
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Web Security and Information-flow
[OWASP 10]

● Ten most frequent attacks 
● A1 – Injection (SQL, OS, etc) 

– Information-flow 
● A2 – Cross Site Scripting (XSS)

– Information-flow
● A3 – Broken Authentication and Session Management

– Information-flow helps here as well 
● A4 – Insecure Direct Object References

– Information-flow
● ....

● Very hot area at the moment for doing research

http://www.owasp.org/index.php/Top_10_2010-Main
http://www.chalmers.se/cse/EN/
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Static vs. Dynamic Enforcement for 
Information-flow

● Security policy: secrets must no be leaked!

● Termination insensitive non-interference
● Some purely dynamic mechanisms are as secure as 

traditional type-systems [Sabelfeld, Russo 09]

● Should we go dynamic or static?

● Several arguments are possible to argue against 
[Le Guernic et al, 06] [Shroff et al, 07] [Vogt et al, 07]

● In favor of dynamic monitors

– Permissiveness
– Dynamic code evaluation (eval in JavaScript) 

● Web applications permissiveness is very important !

http://www.cse.chalmers.se/~russo/publications_files/psi09.pdf
http://hal.inria.fr/docs/00/13/02/10/PDF/automatonBasedNiMonitoring.pdf
http://www.cs.jhu.edu/~pari/papers/ShroffSmithThober-DynamicCaptureOfDependencies-JCS-22April2008.pdf
http://www.iseclab.org/people/vogge/docs/da_xss_prevention.pdf
http://www.chalmers.se/cse/EN/
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Flow-sensitive and Flow-insensitive Enforcement
for Non-interference [Hunt, Sands 06]

● Traditional enforcements 

● Avoid illegal explicit and implicit flows

● Fix sources of secret and public
inputs and outputs

● Flow-insensitive (FI)

● Each variable has a fix security 
level during the execution of the program

● Flow-sensitive (FS)

● Variables can change their security level
during execution according to the data 
stored at a given time

● More convenient for programmers! 

● A program accepted by traditional 
FS type-system is also accepted by 
traditional FI type-system (rewriting)

v1 v2 v3 ... v40 v50 v60 … 

v1 v2 v3 ... v40 v50 v60 … 

v1 := h ;
v2 := v1+l ;
v1 := l ; 
h  := v1 + v2 ;

http://www.cse.chalmers.se/~dave/papers/Hunt-Sands-POPL06.pdf
http://www.chalmers.se/cse/EN/
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● Hunt and Sands compare two static enforcements 

● FI and FS type-systems

● Flow-insensitive

● FI monitor is as secure as 
traditional FI type-sytems

● Monitor accepts more 
programs

● Flow-sensitive

● No possible to obtain a sound and more permissive (than a FS type-
system) purely dynamic monitor  

● To recover the picture above for FS, static analysis is needed!
● Is it desired to recover the picture above? [Austin, Flanagan 09] 

– Open question

Flow-sensitive and Flow-insensitive Enforcement for 
Non-interference [Sabelfeld, Russo 09] [Russo, Sabelfeld 10]

 FI type-systems

FI purely dynamic monitors

Secure programs

http://slang.soe.ucsc.edu/cormac/papers/plas09.pdf
http://www.cse.chalmers.se/~russo/publications_files/psi09.pdf
http://www.cse.chalmers.se/~russo/publications_files/csf2010.pdf
http://www.chalmers.se/cse/EN/
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Information-flow Security
● Active research area

● No more only motivated by military applications

● Web security and information-flow is a hot topic!
● Companies are showing interests on this technology 

● During the 70's dynamic techniques were pioneers
● Operating system security 

● During the 90's static techniques were dominant
● Language-based security 

● During 00's, dynamic techniques are back! 
● We can see combination of both

● Exiting times to do research on the area!

http://www.chalmers.se/cse/EN/
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