
Secure Programming via Libraries (T3)
ECI 2011 - Day 2

Alejandro Russo

Chalmers University of Technology

Exercise 1 Monad Sec

For this exercise, we only assume two security levels: H and L for secret and public information,
respectively.

1. We want to implement a function that takes two public booleans and returns the integer that
those boolean values represent when interpreted as binary. The most significant bit is the last
boolean. More precisely, we want to implement the function

binToInt2 :: Sec L Bool → Sec L Bool → Sec H Int

For instance, if we apply the function to monadic values containing True and False (in that order),
the returned secret number must be 1. If the function is applied, on the other hand, to monadic
values containing False and True (in that order), then the secret number must be 2.

2. Implement the function

binToInt :: [Sec L Int] → Sec H Int

that takes a list of public booleans and return the secret number obtaining by interpreting that
list as a binary number. The most significant bit is the last element of the list.

Exercise 2 Monadic values of type Sec inside monadic values of type Sec

When writing problem, it might happen that it appears nested Sec s values. For instance, a program
might be manipulating values of type Sec H (Sec L a), Sec L (Sec H a), and so on. It is sometime
useful to remove such nested levels if possible. For example, having a value of type Sec H (Sec H Int)

is indicating that we have a computation producing a secret (first Sec H), which is another computation
producing a secret integer (Sec H Int).

1. Implement a function of type

simplify1 :: Sec H (Sec H a) → Sec H a

that shows that nested Sec H can be simplified.

2. Implement a function of type

simplify2 :: Sec H (Sec L a) → Sec H a

that indicates that a public value inside a Sec H is indeed a secret value.

3. Implement a function of type

simplify3 :: Sec L (Sec H a) → Sec H a

using simplify1 and the API of SecLib.

4. Can you generalize simplify1, simplify2, and simplify3? (Hint: you might need to use polymor-
phism and Less)

Exercise 3 Monad SecIO

In the lecture we describe how to write a function that securely copy files, i.e., how to ensure that
secret files cannot be copy into public ones. Similarly, in this exercise, you need to implement a secure
concatenation of files. Function cat2 takes three files as arguments and concatenate the content of the



first two into the third one. This function must preserve non-interference, i.e., it should not be possible to
concatenate two secret files and store the result of that into a public one. More precisely, the concatenation
function in the untrustworthy module must have the type

cat2 :: (Less s1 s3, Less s2 s3) ⇒
File s1 → File s2 → File s3 → SecIO s3 ()

Given the following untrustworthy module

module CatU where

import SecLib.LatticeLH

import SecLib.Untrustworthy

cat2 :: (Less s1 s3, Less s2 s3) ⇒
File s1 → File s2 → File s3 → SecIO s3 ()

1. Complete the definition of cat2 (so far, we have only the type of it).
Once you have done that, you can use the following trustworthy module that uses the untrust-
worthy one.

module CatT where

import SecLib.LatticeLH

import SecLib.Trustworthy

import CatU (cat2)

s_file1 :: File H

s_file1 = mkFile "SecretFile1"

s_file2 :: File H

s_file2 = mkFile "SecretFile2"

p_file :: File L

p_file = mkFile "PublicFile"

execute :: IO ()

execute = do revealIO $ cat2 s_file1 p_file s_file2

return ()

Load the module CatT in ghci and run the untrustworthy code by calling execute.

2. What does it happen if execute is instead defined as

execute = do revealIO $ cat2 s_file1 s_file2 p_file

return ()

Exercise 4 Potentially dangerous Sec or SecIO computations

As the trusted programmer, you are responsible to determine the type of the untrusted functions. In
the lectures, we show that untrustworthy computation returning values of type, for instance, Sec H (IO ())

or Sec H (Sec L (IO ())) might compromise security if the trustworthy code execute the monadic value
of type IO ().

Which one of the following types might be potentially dangerous to consider when determining the
security type of a computation returned by untrustworthy code. Justify every answer that you provide.

1. SecIO H (IO ())

2. IO (SecIO L Int)

3. SecIO L (SecIO H Int)

2



4. Sec H (SecIO L (IO ())) Moreover, can you ever execute the SecIO computation inside Sec H using
revealIO?

5. SecIO H (SecIO L Int)

3


