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Abstract

This work describes an extension made to a security library in Haskell that
guarantees confidentiality (i.e. that secrets are not leaked). The existence
of this library is possible due to Haskell’s strong type checker and controlled
side-effects. This security library uses monads with type parameters to
indicate security levels. The monad guarantees that once data is inside of
it, there is no way of getting it out. More precisely stated, the monad can
be used to enforce information-flow policies for confidentiality.

This work shows that integrity policies (i.e. policies that avoids data
from being intentionally or unintentionally destroyed) can be incorporated
as well, and thus defining a richer set of security policies. More precisely,
the integrity policies that are incorporated are Access-Control, Data Invari-
ant and Information-flow Integrity Policies. Access-control is implemented
using a wrapper data type to define permissions for resources (a variation
of an access-control list (ACL)), and uses a security lattice for permissions.
Data invariants are enforced at end points (inputs and outputs to a pro-
gram). This is done by extending the data types for files and checking
that the property holds, when an input or output operation is performed.
Information-flow integrity policies reuses the same techniques that enforce
confidentiality, by simply extending the security lattice with integrity levels.

Confidentiality and integrity are two key aspects of information security,
and by incorporating both in a light-weight library, we seek to increase the
use of language-based security when writing security critical applications.

A Password Administrator is used as an interesting case study. The
case study is organized in the modules Login, for authenticating, Reset, for
changing passwords, and Backup for backing up and restoring passwords.
This application incorporates confidentiality and all the different integrity
policies and described above.
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CHAPTER 1

Introduction

The use of computers has expanded rapidly the last decade. Data and infor-
mation that used to be stored in paper files and archives are now stored into
hard drives. More and more digital devices are sprouting up and intercon-
necting for fast access and usability. This tendency can leave a questionable
sense for security. For example, a web page can save credit card numbers
in their database for users’ convenience, so they do not have to type it ev-
ery time when making a purchase. This sensitive information should not be
leaked or exploited in any way. Some form of trust has to be placed upon the
companies that provide services in order to handle sensitive data properly.
Flaws and errors might happen at the code level of the application, which
might cause intentional or unintentional leaks, corruption of data, erroneous
states, etc. One way of aiding against these types of security breaches is by
adopting language-based security. Language-based security defends against
attacks at the application level by specifying security policies. More specifi-
cally, there are security-typed languages and extensions that supports infor-
mation flow control and other constructs, which restricts how information
flows inside programs. There exists programming languages that provide
this technology: Jif [1, 2, 3, 4](based on Java), Flow Caml [5, 6](based on
Caml) and SPARK [7, 8] (based on Ada). To adopt those languages, pro-
grammers require to learn a new language or syntax, and consider trade-offs
between security and other aspects, like performance or maintainability. An
alternative consists on providing security enforcements as a library, which
would allow the use of flexibilities and strengths of the chosen programming
language, while using the library’s functions to avoid breaches. This report
describes a security library for Haskell.

Haskell has a strong type checker and controlled side effects, which makes
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it a good candidate for a security library. To aid the process, modules are
distinct between trusted and untrusted. A trusted module describes the
policies and resources accessible to the untrusted modules. Untrusted mod-
ules are further divided into non-malicious and potentially malicious. A
non-malicious module would typically be written by programmers with no
intention to do harm, for example, programmers at the same company. A po-
tentially malicious module would typically be written by programmers that
cannot be trusted, for example, programmers from different companies. The
untrusted modules must not get access to the implementation details of se-
curity types or certain functions, otherwise security could be compromised.
Instead, the untrusted modules get access to a subset of functions and re-
sources through data abstraction. With a correct set up from the trusted
module, the untrusted ones are not able to violate security.

Security measurements are considered from two points of view: Confi-
dentiality and Integrity. Confidentiality ensures that sensitive information
is kept secret and what are the allowed disclosing mechanisms (declassifica-
tion). Integrity seeks to prevent the intentional or unintentional destruction
of data. More specifically, integrity policies can be classified into three
categories: Access control, Data invariant and Information-flow policies[9].
Access-control policies govern access to data (e.g. an application can have
read permission to a file, but cannot be able to write to it). Data invari-
ant policies govern the meaningfulness of data (e.g. a credit card number
must adhere to certain restrictions to be correct), and lastly information-
flow policies restrict the ways untrustworthy data can flow inside programs
(e.g. a vehicle’s entertainment system should not affect the cruise control
system, while the cruise control system should be able to shut down the
entertainment system in case of emergency).

Contributions The aim of this work is to extend the security library
by Russo et al.[10] to include integrity policies. To do that, we explore
what kind of integrity policies can be provided via a library. The difference
between non-malicious and potentially malicious modules is discussed, to
clearly shows limitations and restrictions. Access control, data invariant
and information-flow policies are combinable and thus being able to express
a richer set of security policies. There will be focus on maintaining the
library light-weight, modular and convenient to use, since the nature of a
library makes it easier to be adopted by programmers. We show that access-
control can be implemented using a simple data type and reusing the security
lattice, that data-invariants can be implemented as simple properties at end
points (inputs and outputs), and that information-flow integrity policies can
be implemented reusing the security lattice.
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This report is structured as follows: Chapter 2 goes deeper into the work
done by Russo et al.[10]. Chapter 3 explains integrity policies and describes
the implementation of integrity in the library and the case study. Chapter
4 discusses the current and future work, and Chapter 5 draws conclusions.
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CHAPTER 2

Confidentiality as a library in Haskell

This chapter describes the security library by Russo et al.[10], which enforces
confidentiality policies. Some small modifications are made to the library,
and reasons behind those changes will be detailed.

2.1 Non-Interference

As described in the introduction, confidentiality is about secrecy and pre-
venting disclosure of sensitive information. One security policy that the
library focuses upon is non-interference. Non-interference is an information-
flow policy for confidentiality, which prevents leaking secret data into public
channels. Non-interference policies address two types of leaks; explicit and
implicit flows. Explicit flows leak sensitive information by assigning se-
cret data into public variables, while implicit flows leak data indirectly, by
performing branching instructions based on secrets. In a pure functional
language, however, this distinction becomes less meaningful, since there are
no assignments or control constructs. For example, an if-then-else condition
is treated as a function where the information only flows from the function’s
arguments to the function’s results.

To illustrate an explicit flow in Haskell, assume that the function f ::
(Int, Int) -> (Int, Int) accepts a tuple as an argument, expecting the
first component of the pair to be secret and the second one to be public.
Function f performs some computations on the secret and public inputs,
and returns a tuple as a result. In the resulting tuple, the first and second
components are considered secret and public, respectively. The public input
can affect the secret output, but the secret input should not affect the public
output. Otherwise, the non-interference policy is violated. Assuming that a
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module Lattice where

data L = L
data H = H

class Less sl sh where
less :: sl -> sh -> ()

instance Less L L where
less _ _ = ()

instance Less L H where
less _ _ = ()

instance Less H H where
less _ _ = ()

Figure 2.1: The Lattice module

potentially malicious programmer writes function f, then the two following
implementations of function f adhere to the non-interference policy:

f (i, j) = (i+1, j-1)
f’ (i, j) = (i+j, j)

In contrast, there is nothing preventing the programmer to write any of
the following functions:

f (i, j) = (i, i)
f’ (i, j) = (i, if i > 5 then 0 else 1)

The new versions of functions f and f’ leak information about the secret,
thus violating the non-interference policy.

2.2 Security Lattice

A lattice of security levels is used to model how information can flow inside
programs[11]. The lattice defines an ordering relationship, v, based on
which direction information can flow. In this case, information is allowed
to flow from lower to higher positions in the lattice. The relation l1 v l2
describes that information associated with the security level l1 can flow into
entities at the security level l2. For simplicity, only two security levels are
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newtype Sec s a

instance Functor(Sec s)
instance Monad (Sec s)

Figure 2.2: The Sec s monad

up :: Less sl sh => Sec sl a -> Sec sh a

class Attacker s where
public :: Sec s a -> a

Figure 2.3: Combinators for Sec s

considered: H (high or secret) and L (low or public). The non-interference
policy then allows data to flow from low to high (written as L v H ), but
disallows flows from high to low (written as H 6v L).

In the library by Russo et al.[10], security levels are defined as singleton
types and the security lattice is then encoded using the type class Less, as
shown in Figure 2.1. The type class Less is flexible enough to encode more
complex security lattices by simply defining class instances of allowed flows.
The role of method less is explained in Section 2.6.

2.3 A Security Monad for Pure Computations

To keep track of how information flows inside a program, a monad is used
in order to make a distinction between data at different security levels. The
abstract type Sec s in Figure 2.2 is a monad[12, 13] and also a functor[14].
A value of type Sec s a indicates that the computed value of type a is at the
security level s. Besides the return and bind combinators, the Sec s monad
involves the combinators described in Figure 2.3. The combinator up is used
to capture the fact that information can flow from lower to higher security
levels in the security lattice. Observe that up requires a Less instance from
sl to sh. The class Attacker s is introduced by us in this work, to indicate
the observable capabilities of the attacker. The method public allows the
attacker to have access to data inside the Sec s monad, providing that data
with confidentiality level s can be observed by the attacker. For the two
point lattice (described in Figure 2.1), the attacker can only observe data
at security level L, which is captured by creating an instance of Attacker
L. In [10], restrictions regarding exporting constructors for security levels
are imposed, instead of the Attacker s class, and the reasoning behind the
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module SecIO where

newtype SecIO s a

instance Functor (SecIO s)
instance Monad (SecIO s)

Figure 2.4: The SecIO s monad

data File s = MkFile FilePath

Figure 2.5: The File s constructor

change is detailed in Section 4.3.
To ensure that function f is non-interferent, we modify its signature by:

f :: (Sec H Int, Int) -> (Sec H Int, Int)

Since Sec H is an abstract type, the only way to write f adheres to the
non-interference policy:

f (si, j) = ((\i -> i+p) ‘fmap‘ si, j+3)

There is no way of adding the protected variable si to the public output
j without returning a value of type Sec H, since it is impossible to go outside
of the monad (with the restrictions imposed in Section 2.6). This can be
formally stated that type Sec guarantees a non-interference property.

2.4 A Security Monad for Side Effects

The Sec s monad is not enough to deal with side effects. When reading a
file containing secrets and writing to another file, the computation will have
the type IO (Sec H (IO ())), which quickly becomes unmanageable and
unusable. Also, using standard IO poses no restrictions on the side effects
that can be executed. The type Sec H (IO ()) allows the inner IO to leak
information about the secret.

A new monad, called SecIO s as shown in Figure 2.4, is introduced
to guarantee that side-effects are safe to perform. Similar to Sec s, this
monad is an abstract data type. Intuitively, the type SecIO s a represents
computations that are allowed to write to entities of security label s or
higher, and where a has confidentiality level, at least, s.
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value :: Sec s a -> SecIO s a

readFileSecIO :: File s -> SecIO s’ (Sec s String)
writeFileSecIO :: File s -> String -> SecIO s ()

Figure 2.6: Methods for SecIO s

The SecIO module also defines entities with security labels s. For brevity,
only file resources are shown and considered in this paper, but other enti-
ties function in a similar fashion. For example, files are defined as shown
in Figure 2.5. The data type File s represents files which content has
confidentiality level s.

Additional combinators, detailed in Figure 2.6 are introduced to perform
controlled side-effects inside SecIO s. The combinator value transforms
pure computations into side-effect ones. The method readFileSecIO reads
a file with security label s, and then returns SecIO s’ with any level for
s’, and the string read protected in the security monad with security label
s. The method writeFileSecIO writes the string to the file with security
label s, and returns SecIO s with the security level of the file.

2.5 Implementation Details of SecIO
This section briefly covers the implementation details found within the SecIO
s module, more specifically readFileSecIO and writeFileSecIO. Later
chapters build upon the basic implementation of these methods to extend
them with integrity policies.

The SecIO s type is defined as such:

newtype SecIO s a = MkSecIO (IO (Sec s a))

The type SecIO s includes a security monad wrapped inside an IO
monad. The IO is used to perform safe side effects by SecIO s, as the
following implementation will show:

readFileSecIO :: File s -> SecIO s’ (Sec s String)
readFileSecIO (MkFile f) =

MkSecIO $
return ‘fmap‘ readFile f

writeFileSecIO :: File s -> String -> SecIO s ()
writeFileSecIO (MkFile f) s =

MkSecIO $
return ‘fmap‘ writeFile f s

8



In the implementation, both readFileSecIO and writeFileSecIO call
the prelude functions readFile and writeFile, respectively. The result is
then wrapped inside the security monad and then the SecIO s monad.

2.6 The Security Library’s API

The API provided by the library (shown in Figures 2.1, 2.2 and 2.4) is
almost sufficient to write interesting programs. The modules Sec, SecIO and
Lattice should only be imported by trusted programmers, while untrusted
programmers only are allowed to import the module called SecLib. SecLib
includes functions from the previous three modules, but only exports safe
functions, and is defined as follows:

module SecLib (
-- Sec module

Sec
, up
-- Attacker
, public
-- SecIO module
, SecIO
, value
, plug
-- Files
, File
, readFileSecIO
, writeFileSecIO
-- Lattice module
, L (..)
, H (..)
, Less ()
)

where

import Lattice
import Sec
import SecIO

It is important that the method less for the type class Less is not
exported. Otherwise untrusted code would be able to alter the security
lattice and thus violating, for example, the non-interference policy. Only
the import list has to be examined to ensure that untrusted modules are
safe. More specifically, the following modules should not be imported:
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• Sec, SecIO and Lattice

• any module that provides exception handling, for example
Control.Monad.Exception

• any module that provides unsafe extensions, for example
System.IO.Unsafe (unsafePerformIO)

Figure 2.7: Module Relationships

A typical example of import re-
lationships between modules are de-
picted in Figure 2.7. There, the
module MainX is trusted, and has
the duty to initiate the program and
call functions in the module X, which
is non-malicious or potentially mali-
cious. Module X imports SecLib, and
uses the secure functions which are ex-
ported there. When properly setting up confidentiality and integrity policies
in module MainX, such policies can be enforced1. The programmers for mod-
ule X is free to use feature of the programming language when considering
the implementation (e.g. recursion, function calls, type annotations, etc).

2.7 A Motivating Example

To show how to use the library, we present here the partial implementation
of a password administrator. A program that wishes to verify passwords
usually needs to be run by root. A lot of care has to be taken when writing
such a program, so no passwords are leaked. For example, in Linux[15], the
file /etc/passwd contains information about the users: for example their ID
and user name. This file is essential and used by many system programs. The
file /etc/shadow contains passwords and can only be read and written with
root permissions. If the file was readily available for anyone to read, it would
be subject to off-line dictionary attacks[16] (using cyphered passwords and
encrypting dictionary words in an attempt of finding a match). Assuming
that the only way of accessing the shadow file is through the library, we
show that dictionary attacks become impossible, thus making root privileges
unnecessary when dealing with the shadow file.

First thing to define is the access to the files:

module Files (passwdFile, shadowFile) where
-- Trusted module

1 Information-flow integrity policy in potentially malicious sources do not provide the
desired guarantees. More information can be found in Section 4.2
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-- Untrusted module Spwd
getSpwdName :: File L -> -- Passwd file

File H -> -- Shadow file
Name -> SecIO L (Maybe (Sec H Spwd))

putSpwd :: File H -> -- Shadow file
Spwd -> SecIO H ()

Figure 2.8: The Password Administrator API

passwdFile :: File L -- "/etc/passwd"
shadowFile :: File H -- "/etc/shadow"

The file passwdFile represents the file /etc/passwd and has the security
level L, since the content is public. The file shadowFile represents the file
/etc/shadow and has the security level H, since the content is secret.

Some data types are defined to represent the data stored in the files:

module SpwdData (Spwd, Name) where
-- Trusted module

type UID = Int
type Name = String
type Cypher = String
data Spwd = Spwd { uid :: UID, cypher :: Cypher }

A Spwd data type represents a value stored inside the shadowFile, which
consists of a user id and a cypher string. Names inside the passwdFile is
represented as strings.

The API for accessing the files is shown in Figure 2.8. The method
getSpwdName expects the passwd and shadow files as parameters, and a
name. The passwd file is searched for the name, and if found, it returns the
corresponding match in the shadow file. The match is returned with security
level H (since the shadowFile has security level H), or Nothing is returned if
no match was found. The returning SecIO has security level L, which poses
no security vulnerability since the interior security monad is protected by
level H. The method putSpwd accepts the shadow file, and a Spwd data type
with a user id and password. The method inserts a new entry in the shadow
file, or overwrites the old password if the user exists. The returned value is
of the type SecIO H, since a secret file is written to.

The signatures are slightly altered compared to the example in [10].
The files are sent as parameters, which is due to accommodating for access
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control later on in Section 3.1.2. The return type of IO a was changed to
SecIO s a as well, since using IO poses no restrictions on the side-effects
an untrusted source can perform (this is explained further in Section 2.8.4).

As we assumed earlier, getSpwdName is the only way of reading infor-
mation from the shadow password file, and the cyphered password is not
leaked or accessible inside the monad, making off-line dictionary attacks im-
possible. Using the API provided by SecLib also means that confidentiality
is preserved and the number of possible actions on the shadow password
file is limited, making root privilege unnecessary (with regards to accessing
and writing to the passwd and shadow files). Other untrusted modules,
for example a Login module, can import the Spwd.hs file and use the two
functions, without being able to violate confidentiality.

2.8 Declassification
The non-interference policy specifies that no flow of information is allowed
from secret to public data. However, this restriction makes it difficult to
implement certain real-world applications, which release specific information
as their intended behavior. Taking the above API (in Section 2.7), it is
not possible, for example, to create a login prompt. The return type of
getSpwdName is Sec H Spwd, which contains the id and password of the
user specified by the Name parameter. It is possible to compare a string with
the password inside the monad Sec H, but the resulting boolean will also
have the security level H. From here on, there is no manner of publishing
the result (if the match succeeded or failed) to the user, due to the nature
of the non-interference policy.

Declassifications policies relax the notion of non-interference to allow a
controlled leak of information. The chosen approach is a run-time mecha-
nism for declassification, which allows downgrading of information. This
mechanism introduces escape hatches [17], which are defined in the file
Declassification.hs. We altered the signature of escape hatches, shown
in [10], and the difference is detailed in 2.8.4. Our representation of escape
hatches is as follows.

type Hatch s s’ a b = Sec s a -> SecIO s’ b

A hatch is a function that takes secure data of security level s with type
a, and produces a secure side-effect computation with security level s’ and
type b. This representation of escape hatches allows for a lot of flexibility
when defining declassification policies. Only trusted code is allowed to define
escape hatches and specify intended release of information. Thus, untrusted
code should not import the file Declassification.hs.

The library provides combinators to work with escape hatches. The com-
binators provide means to deal with what, when, where and by whom data is
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released[18]. The simplest combinator always succeeds when downgrading
information, and is defined as follows.

hatch :: Less s’ s => (a -> b) -> Hatch s s’ a b

The combinator hatch takes a function and returns an escape hatch that
applies the given function as long as s′ v s.

The remainder of this section briefly explains the different dimensions.
The different dimensions are explained further in [10], coupled with examples
and code.

2.8.1 The What Dimension

In general, the enforcement for declassification policies mechanisms related
to the what dimension are somewhat conservative[17, 19, 20]. The reason
is that it is difficult to statically predict how the data to be declassified is
manipulated or changed by programs. Instead, the focus is shifted towards
"how much" information can be leaked. In light of this, a new combinator
is added:

ntimes :: Int -> Hatch s s’ a b -> IO (Hatch s s’ a b)

Basically, ntimes takes a number n and a hatch, and returns an escape
hatch that can be applied n times. The IO return type is safe here, since all
declassification combinators are for trusted code only.

To illustrate how the ntimes combinator works, consider the (untrusted)
Login module for the password administrator. The escape hatch defined for
that modules is as follows:

module Policies where
-- Trusted module
import Declassification

match_passwd :: IO (Hatch H L (Spwd, Cypher) Bool)
match_passwd = ntimes 3

(hatch (\(spwd,c) -> cypher spwd == c))

The hatch match_passwd takes a secret Spwd parameter, which includes
a user’s ID and password, and a public Cypher parameter, which is a string
representing the password the user typed in. Then, the password is extracted
from Spwd and compared with the Cypher, and the resulting boolean is
leaked. The ntimes combinator assures that match_passwd cannot leak
information more than three times per program run. Attempting to apply
it a forth time will result in a program crash. This is useful to slow down
automated scripts attempting to compromise accounts.
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2.8.2 The When Dimension

The when dimension specifies a declassification policy for when information
can be released. This is implemented using a notion similar to flow locks[25].
Flow locks are introduced by the following combinator:

when :: Hatch s s’ a b -> IO (Hatch s s’ a b, Open, Close)

Given an escape hatch, when returns the escape hatch and two functions
to open and close the lock, respectively. Using Open, which has the type
IO (), will open the flow lock it is associated with, thus making the escape
hatch able to declassify information. Close can be used in the same fashion
to close the lock.

2.8.3 The Who Dimension

In the Decentralized Label Model (DLM)[21, 22, 23], data is tagged with an
authority that owns it. These authorities are assigned security levels in the
security lattice[24], and are able to declassify information at that level. A
combinator is introduced to check the authority of the executing code before
applying an escape hatch.

data Authority s = Authority Open Close

who :: Hatch s s’ a b -> IO (Hatch s s’ a b, Authority s)

certify :: s -> Authority s -> IO a -> IO a

The who implementation uses a variation of flow locks[25], as seen above.
The data type Authority has a security level s associated with it. The
combinator who takes an escape hatch and returns the escape hatch and an
authority data type for declassifying at level s. The returned escape hatch
will release information when the authority of the level is authenticated
for security level s. To prove that an authority has security level s, the
function certify is used. The function requires the constructor for level s,
and thus proving that it is associated to the security level s. The function
also takes an authority data type for the escape hatch, an IO computation
and returns an IO computation where the locks for the escape hatch is open.
Before certify returns, the lock is closed. Declassifying information is only
possible in the computation sent to certify, therefore the escape hatch
should be used in that computation.

For the certify method to work, the constructors for security levels has
to be hidden (using data abstraction) from modules that are not acting for
that authority.
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2.8.4 Differences with original implementation

Some changes were introduced to escape hatches. The difference between
the implementation in [10] and our implementation is shown below.

-- Russo et al. 2008
type Hatch s s’ a b = Sec s a -> IO (Maybe (Sec s’ b))

-- Our Implementation
type Hatch s s’ a b = Sec s a -> SecIO s’ b

The difference lies in the return type, which was changed from IO (Maybe
(Sec s’ b)) to SecIO s’ b. The reason being that having a return type
of IO implies that functions using the hatch will also have a return type of
IO. Allowing a hatch to be used in an untrusted module, implies that the
untrusted module has access to the IO monad, which poses no restrictions on
the IO operations that can be performed. This is particularly problematic
in potentially malicious code. For example, the Login file can just directly
read the file /etc/shadow using the primitive Haskell function readFile,
thus compromising confidentiality. The return type SecIO s’ assures that
side-effects are controlled and do not violate confidentiality. Furthermore,
the inner Maybe in [10] is used to represent if a declassification is possible
under some circumstances. The return value is Nothing when, for example,
the ntimes combinator has already been applied the allowed times, or a flow
lock is closed. Since the returned Maybe constructor is public, an attacker
can inspect the value to determine if it is Just or Nothing. This means
that extra care has to be taken when defining escape hatches, since it is
important that declassification policies should not depend on secret values
in order to avoid unintended leaks. Otherwise, it would be possible to re-
veal information about secrets by inspecting the return value when applying
escape hatches. We removed the Maybe constructor from our implementa-
tion, and for simplicity, the program crashes if an escape hatch cannot be
applied.
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CHAPTER 3

Integrity as a Library

As briefly described in the Introduction (Chapter 1), integrity policies seeks
to prevent destruction of data, accidentally or maliciously. A piece of data
that has integrity is valid and has some meaning. Integrity can be compro-
mised by, for example, human error when entering data, transmission errors,
bugs or viruses. Integrity policies are as important as confidentiality when
regarding the whole security aspect of a system, and thus it is natural to
include them in a security library.

Integrity is hard to capture and context specific, however, three kind
of integrity policies frequently required by programs are identified[9]. More
precisely, we distinguish in this chapter access control, data invariants and
information-flow policies. Each section will cover how to incorporate each of
these kinds of policies in the library. The examples presented in this chap-
ter build upon the password administrator described in Section 2.7. The
password administrator example is divided into three modules. Each mod-
ule is responsible for providing different functionalities. The modules are:
Login (which performs user authentication), Reset (which changes users’
passwords) and Backup (which creates a copy of the passwd and shadow
files). These modules all benefit from integrity policies as a way of strength-
ening their security guarantees as shown in Table 3.1. The table shows the
modules and the desired policies that are to be enforced for each of them.

3.1 Access Control

Access control policies governs who has access to a resource and in which
way. With regards to integrity, this can protect resources from intentional or
unintentional modification or destruction, by simply not having the proper
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Module Confidentiality policies Integrity policies
Login The only acceptable informa-

tion leak comes from compar-
ing users’s input with user’s
stored password. Otherwise,
no passwords must be leaked.

The files passwd and shadow
cannot be written to.

Reset No passwords must be leaked. The file passwd can only be
read, while the file shadow
can be both read and written.
Users’ passwords must be dif-
ficult to guess by attackers.

Backup Password must not be leaked
unless they are copied and en-
crypted in the backup file.

The files passwd and shadow
can only be read. Untrust-
worthy data must not weaken
the encryption process. Cho-
sen encryption methods must
be strong.

Table 3.1: Confidentiality and integrity policies for the password adminis-
trator

permissions of performing certain tasks on given resources.
As an example, we have the policy "module X can only read file F". Access

control should then be responsible that module X cannot write into file F.
Access control policies are often enforced using a form of execution monitors.
Access control mechanisms can be classified as mandatory, discretionary, and
role-based[9]. Mandatory access control constraints the ability of subjects
on objects in order to enforce confidentiality[26, 27]. These mechanisms
are usually over restrictive. Discretionary access control allows users to
create and set permissions of resources, and is commonly used by operating
systems (Unix-like, Windows, etc). Lastly, role-based access control[28] is
more suitable for civilian or governmental organizations where employees
have different capabilities depending on their role in the organization. We
decided to extend the library to include discretionary access control since it
is widely used by operating systems.

3.1.1 Access Control Data Type

A new data type, AC, is introduced to restrict access to resources. Every
resource can be wrapped by the access control data type, which indicates
the allowed permissions on the given resource. An access controlled resource
is then created using the following data type and method:

data AC p r
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ac :: r -> AC p r

Type AC p r represents that resource r can only allow the operations
described by permissions p. Permissions are encoded as singleton types.
For example, the following singleton types represent reading and writing
permissions:

data Write = MkWrite
data Read = MkRead

We extend the combinators responsible to handle side-effects in SecIO to
work with access controlled objects. The signature for reading and writing
into files is changed to:

readFileSecIO :: AC Read (File s) -> SecIO s’ (Sec s String)
writeFileSecIO :: AC Write (File s) -> String -> SecIO s ()

These methods are defined in a new set of modules dealing with access
control. Their implementation is simply to assert that the right permission
is given, and then reroute the file to readFileSecIO and writeFileSecIO
in the SecIO module.

Observe that these methods can now be used to guarantee the policy
regarding module X:

module Files (acFile) where
-- Trusted code, only exports acFile
file :: File H

acFile :: AC Read (File H)
acFile = ac file

module X where
-- Untrusted code
import Files

readFile :: SecIO s’ (Sec H String)
readFile = readFileSecIO acFile

The function readFile reads the acFile file and returns the string that
is read. Attempting to call the method writeFileSecIO on acFile will
result in a type error.

There are situations when several permissions are needed for the same
resource, for example reading and writing to the same file. One way to do
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that is to check that a permission is in a list of capabilities. This can be
done by using the class Less described in Section 2.1. For example, the
next instances of Less check that some permissions are in a given list of
capabilities.

instance Less (Read,Write) Read where
less _ _ = ()

instance Less (Read,Write) Write where
less _ _ = ()

Using the class Less allows for greater flexibility and can be used to
create lattices for permissions, meaning that permissions can be extended
to imply other permissions. For example, when given the write permission,
the read permission can be implied by introducing:

instance Less Write Read where
less _ _ = ()

The methods for reading and writing to files can now be rewritten as
follows:

readFileSecIO :: Less p Read =>
AC p (File s) -> SecIO s’ (Sec s String)

writeFileSecIO :: Less p Write =>
AC p (File s) -> String -> SecIO s ()

For files with no need for access control policies, the singleton type Any
is introduced:

data Any = MkAny

instance Less Any s where
less _ _ = ()

Finally, the import restrictions, discussed in Section 2.6, is extended for
untrusted modules to not allow importing the access control modules. These
modules are:

• AC.hs, which includes the data type for the access control and a few
methods to work with.

• ACSecIO.hs, which defines new methods for readFileSecIO and
writeFileSecIO using access control.
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These files should not be directly imported by untrusted modules, since
they are not allowed to create access controlled resources. Instead, access
controlled resources are created by in a trusted module and that module is
imported (as shown with the module Files in the example earlier). When
several different files are needed by an untrusted module, the responsi-
bility can be placed upon the trusted main module calling the untrusted
code to supply the correct files via parameters. Furthermore, the meth-
ods readFileSecIO and writeFileSecIO from ACSecIO.hs are included
in SecLib.hs. The trusted users of the security library can customize
SecLib.hs to either export the methods from AcSecIO.hs or SecIO.hs,
depending if access control is desired.

3.1.2 Access Control in the Password Administration

The password administration example shown in Figure 2.8 can be extended
using access control as follows:

getSpwdName :: Less p Rd =>
AC p (File L) -> -- Passwd file
AC p (File H) -> -- Shadow file
Name -> SecIO L (Maybe (Sec H Spwd))

putSpwd :: Less p Wrt =>
AC p (File H) -> -- Shadow file
Spwd -> SecIO H ()

The passwd and shadow files, passed as arguments, are now wrapped
inside the AC data type. Function getSpwdName requires reading permis-
sions for the passwd and shadow files. Similarly, putSpwd requires write
permissions to the shadow file.

Reviewing the Table 3.1 shows that the modules Login, Reset and
Backup benefit from access control policies. The Reset module should be
able to write to the shadow file. This is done by creating an access control
data type for the shadow file and assigning the Read and Write permis-
sions to it. It is important that the created AC wrapper is only exported
to the Reset module, and not to other modules. The modules Login and
Backup should import the module that creates the read access for passwd
and shadow. Different AC data types have to be created to give different
permissions to the same resource in different modules.

3.2 Data Invariants

Data invariant integrity policies place constraints upon data, and certain
properties that the data must fulfill in order to be meaningful and correct.
Generally speaking, a computable predicate φ defines the quality of a piece
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of data d. If φ(d) holds, then d has good quality. Property φ is a safety
property, and there exists techniques to enforce it, e.g. execution monitors
and software-based fault isolation. These traditional techniques generally
suffer from overhead and scalability issues. As designers of a library, there
are difficulties to monitor that φ holds at every computational step. Compu-
tations that a module X performs on a piece of data cannot be tracked unless
calls to the library are made. As a consequence, verifying the computation
at every step implies calling the library continuously and thus becoming
computationally expensive. Instead, an alternative approach is to verify φ
at programs’ end points, i.e. inputs and outputs. By focusing on data in-
variants at end points, it is possible to capture some interesting integrity
policies required in practice while keeping the overhead at reasonable levels.
The library described in Section 2 provides access to end points for files
through reading and writing operations. By extending the File data type,
data invariants at end points can be enforced. We denote φi to predicates
that are checked when inputs are performed. Similarly, φo denotes the pred-
icate that is checked when outputs are performed. Both data invariants φi
and φo are specified by trusted code. For simplicity, programs crash when
an invariant is violated.

3.2.1 Data Invariant Implementation

One way of implementing a data invariant is as follows:

type DataInvariant d = (d -> IO Bool)

Data invariants are program specific, and the type d -> IO Bool allows
to investigate programs’ states when considering the quality of d. A data
invariant that is not fulfilled will return False, which will cause the program
to terminate before an input operation returns the result, or before an output
operation is performed.

The data types for resources are extended to handle data invariant poli-
cies. The constructor for files (show in Figure 2.5) is extended as follows:

data File s = MkFile FilePath
(DataInvariant String) -- input
(DataInvariant String) -- output

The DataInvariants represent φi and φo, respectively.
A new constructor is introduced to create files with data invariants as

tautologies:

makeFile :: FilePath -> File s
makeFile fp = MkFile fp (return True) (return True)

21



For trusted programmers, two methods are introduced for setting up φi
and φo in each file:

invariant_input :: DataInvariant a -> File s -> File s
invariant_input i (MkFile f _ o) = (MkFile f i o)

invariant_output :: DataInvariant a -> File s -> File s
invariant_output o (MkFile f i _) = (MkFile f i o)

These functions are self-explaining and thus they are not described any
further. Finally, functions that perform input and outputs (described in
Section 2.5) are extended to verify data invariants:

readFileSecIO :: File s -> SecIO s’ (Sec s String)
readFileSecIO (MkFile f i _) =

MkSecIO $
sec ‘fmap‘ (do a <- readFile f

b <- i a
if b then return a

else error "Data Invariant violated")

writeFileSecIO :: File s -> String -> SecIO s ()
writeFileSecIO (MkFile f _ o) s =

MkSecIO $
sec ‘fmap‘ (do b <- o a

if b then writeFile f s
else error "Data Invariant violated")

The string read from readFileSecIO is sent to φi which checks the
quality of the data, and either returns True and a string is returned, or
returns False and the execution is stopped.

To demonstrate the use of data invariants, assume a simple scenario
where one file is only allowed to hold positive integers, and another file is
only allowed to hold negative integers. One way of implementing this is as
follows:

module FilesDI (positive, negative) where
-- Trusted module
import Files(file1, file2)

positive :: File H
positive = invariant_input positive
(invariant_output positive file1)

where positive :: DataInvariant String
positive a = return (read a > 0)
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negative :: File H
negative = invariant_input negative
(invariant_output negative file2)

where negative :: DataInvariant String
negative a = return (read a < 0)

module Example where
-- Untrusted module

import FilesDI

copy :: SecIO H ()
copy = do a <- readFileSecIO positive

writeFileSecIO negative (show (-(read a)))

The example shows how to create two simple files with data invariants. If
the untrusted code attempts to write to the file negative without negating
the value read from positive, an exception will be thrown, leaving the file
negative unchanged.

3.2.2 Data Invariants in the Password Administrator

The password administrator can benefit from data invariant integrity poli-
cies in the module Reset, by placing constraints on the new passwords. A
password must be difficult to guess, which can be formalized as the pass-
words need to be at least eight characters long, composed of both letters
and numbers and, at least, one special character (e.g. ?, !, %). If these
requirements are not met when changing passwords, the new password is
rejected and no changes are made in the shadow file. The implementation
of the data invariant for password checking can be done as follows.

-- Trusted code
enforce_Password :: DataInvariant String
enforce_Password str = return $ and

[(length s >= 8 &&
isJust (find (isAlpha) s) &&
isJust (find (isDigit) s) &&
isJust (find (isSpecial) s)) | (_,s) <- spwd]

where isSpecial = \x -> x > ’z’ || x < ’0’
spwd = read str :: [(UID, Cypher)]

The enforce_Password data invariant expects a string as input. The
function writeFileSecIO is implemented using the function writeFile,
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which writes to a file as a single string with newlines. This has to be taken
into consideration by the data invariant, which first converts the string to a
list of pairs with user’s ID and passwords. Afterwards, every password to be
written to the shadow file is examined against the constraints. We assume
that all passwords have high integrity (fulfill the constraints) before a user
attempts to change her password, and thus if the new password does not
meet the requirements, the invariant will fail and the program will crash with
an error message. However, if the new password fulfills all requirements, the
invariant succeeds and the new password can then be written to the shadow
file. The enforce_Password data invariant is used for the shadow file as
follows:

module Files ( reset_shadow ) where
-- Trusted module

shadow :: File H
shadow = makeFile "/etc/shadow"

reset_shadow :: File H
reset_shadow = invariant_output enforce_Password shadow

The resource reset_shadow is the file that is given to, and used by, the
Reset module as shown:

module Reset where
-- Untrusted module

import SecLib
import Spwd
import SpwdData

reset :: UID ->
File H -> -- /etc/shadow with data invariant
SecIO L ()

The function reset takes a UID and the /etc/shadow file with the data
invariant. Then, it asks for a new password from the user and attempts
to write it to the shadow file. For simplicity, if the new password does not
fulfill the requirements of the data invariant, the program will crash.

3.3 Information-flow Policies
Information-flow integrity policies govern how untrustworthy data can flow
inside programs. The library is extended to accommodate integrity levels.
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Two new security labels are introduced: Hi and Li, denoting high (trustwor-
thy) and low (untrustworthy) integrity levels, respectively. Non-interference
in this setting requires that low integrity data cannot flow into high in-
tegrity entities (meaning Li 6v Hi), but high integrity data can flow into low
integrity ones (Hi v Li).

3.3.1 Information-flow Integrity Implementation

The integrity requirements Li 6v Hi and Hi v Li are dual to the ones for
confidentiality (L v H and H 6v L, as discussed in Section 2.2). Thanks
to this duality, the library abstractions for confidentiality can be used to
guarantee non-interference regarding integrity. To illustrate that, the lattice
involving integrity levels is easily incorporate into the library as follows:

data Hi -- High Integrity
data Li -- Low Integrity

instance Less Hi Hi where
less _ _ = ()

instance Less Hi Li where
less _ _ = ()

instance Less Li Li where
less _ _ = ()

It is then possible to present a non-interference example involving in-
tegrity security levels:

x :: Sec Hi Int
y :: Sec Li Int

z :: Sec Li Int
z = do x’ <- up x

y’ <- y
return (x’ + y’)

The example shows that a high integrity value (x) can be used in com-
putations involving low integrity data (z) by applying the up combinator.

In contrast, the following example violates non-interference and thus it
does not type check:

x :: Sec Hi Int
y :: Sec Li Int
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Figure 3.1: The allowed flows for confidentiality and integrity.

w :: Sec Hi Int
w = do x’ <- x

y’ <- y
return (x’ + y’)

In this example, a low integrity value (y) is used in a computation in-
volving high integrity data (w). A type error will be generated since the
non-interference integrity policy is violated.

To handle information-flow for confidentiality and integrity policies at
the same time, a new instance for Less is created to accept tuples of security
levels[29]:

instance (Less c1 c2, Less i1 i2) =>
Less (c1,i1) (c2,i2) where

less _ _ = ()

The tuple corresponds to the confidentiality and integrity levels of pro-
tected data, the first element of the tuple is related to confidentiality, while
the second one is related to integrity levels. For example, it is possible to
define values with different confidentiality and integrity levels:

x :: Sec (H, Hi) Int

y :: Sec (H, Li) Int

z :: Sec (L, Hi) Int

w :: Sec (L, Li) Int

The values y and w cannot affect x or z, since the non-interference in-
tegrity policy would be violated (Li 6v Hi). Similarly, the values x and y
cannot be transformed into z or w, since the non-interference confidentiality
policy would be violated (H 6v L).

To better show these relationships, consider the two lattices in Figure
3.1, describing the non-interference policies for confidentiality and integrity,
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respectively. This diagram captures the fact that data with the security level
at the bottom can flow into the security level at the top, but not the other
way around. The following diagram shows how the values x, y, z and w are
encoded in the product lattice by combining confidentiality and integrity:

secret/trustworthy data

��

y(H,Li)

x(H,Hi)

55kkkkkkkkkkkkkk
w(L,Li)

iiSSSSSSSSSSSSSSS

z(L,Hi)

iiSSSSSSSSSSSSSS

55kkkkkkkkkkkkkkk
public/untrustworthy data

OO

The above diagram shows the way security labels can be altered. New
values from untrusted code enter the lattice from the point specified as
public/untrustworthy values.

Two new instances for the class Attacker s (showed in Figure 2.3) are
defined to address integrity:

public :: Sec Li a -> a
public :: Sec (L, Li) a -> a

Applications might use the confidentiality and integrity lattices sepa-
rately, and then at some point need to compare values using different secu-
rity lattices. To address this issue, new combinators are added to transform
single security levels to a security level involving confidentiality and integrity.
To this end, the class Attacker s is used to transform a value in a security
lattice into a value of the product lattice, as follows.

addIntegrity :: Attacker s => Sec s’ a -> Sec (s’,s) a
addConfidentiality :: Attacker s => Sec s’ a -> Sec (s,s’) a

As an example of how to use these functions, we present the following
code:

-- Untrusted code
value :: Sec L Int

newValue :: Sec (L,Li) Int
newValue = addIntegrity value

The variable value is transformed from L to (L,Li) since there is an
instance for Attacker Li. However, there is also an instance for Attacker
(L,Li), which allows creation of security levels with the type (L,(L,Li)).
Levels of this type make no sense considering the lattices described previ-
ously, and two new type classes are introduced to address this issue:
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addIntegrity :: (Attacker s, Integrity s) =>
Sec s’ a -> Sec (s’,s) a

addConfidentiality :: (Attacker s, Confidentiality s) =>
Sec s’ a -> Sec (s,s’) a

Figure 3.2: Expanding the single security levels.

class Confidentiality s where
confidentiality s -> ()

instance Confidentiality H where
confidentiality _ = ()

instance Confidentiality L where
confidentiality _ = ()

class Integrity s where
integrity s -> ()

instance Integrity Hi where
integrity _ = ()

instance Integrity Li where
integrity _ = ()

The signatures for addIntegrity and addConfidentiality are slightly
changed to use the above type classes, as shown in Figure 3.2. Similar
methods are included for SecIO. The reason is, if confidentiality or integrity
was not considered during a computation, we allow for public levels to be
added later on when needed.

3.3.2 Endorsement

The need for declassifying data was presented in Section 2.8. This allows
for some information to be intentionally released, which essentially lowers
the security level of data, from higher to lower. This is the mechanism
which creates a controlled flow for that direction the non-interference policy
restricts, as shown in Figure 3.1. The same can be applied for integrity,
representing that untrustworthy data becomes trustworthy, meaning that
data flows from low integrity level into a higher integrity one. In the Figure
3.1, this implies that a data with level Li is turned into Hi. This action is
called Endorsement.

28



To illustrate how endorsement works, imagine a shell application. The
user inputs a command in the form of a string, which has low integrity (since
the user cannot be trusted). This command can contain malicious code and
affect the integrity of the computer executing it (which has high integrity).
Endorsement can be used to verify that user input is non-malicious. A non-
malicious string is then endorsed as high integrity data when it does not
contain malicious shell-commands.

The escape hatches and combinators (described in Section 2.8) used for
declassification can be used for endorsement.

3.3.3 Information-flow Integrity in the Password Adminis-
trator

The module Backup will benefit from using information-flow integrity poli-
cies. The users of the module are allowed to choose encryption algorithm
and key size by supplying a pair of strings. The reason for this is to accom-
modate different needs depending on the platform and application where
the password administrator is used. Since Backup encrypts the informa-
tion stored in the /etc/shadow file, it is important that the encryption is
strong enough, so the cypher cannot easily be broken. The notion of "strong
enough" varies depending on the computational power of the platform where
the module is run. For example, on a desktop PC the Serpent[30] algorithm
with a key size of 256 bits is quite strong, while on a mobile phone another
algorithm and smaller key size could be used instead (AES[31] with a key
size of 128 for example).

Therefore, the choice of encryption algorithm and key size has to be
verified by the module. This verification is done by endorsing the pair of
strings provided by the user in order to select the encryption method and
key size. The endorsement function takes the pair of strings and assesses
that the encryption algorithm and key size are allowed as well as that the key
size is usable with the chosen algorithm. If these conditions are not met, the
endorsement fails and produces an error. However, if they are satisfied, the
endorsement function labels the pair as having high integrity, and returns
it. The returned pair has security level (L,Hi), which is required by the
encryption function.

Some types are introduced to clarify the code:

-- Trusted code
newtype Key a = MkKey { unkey :: a }
type Content = String -- Unencrypted content
type Cypher = String -- Encrypted content
type Method = (String, String) -- Encryption method,

-- first string is algorithm,
-- second is key size
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type Usernames = String -- Content read from /etc/passwd
type Passwords = String -- Content read from /etc/shadow

Furthermore, two new kind of escape hatches are introduced for encrypt-
ing and decrypting strings, respectively, as follows:

-- Trusted code
encrypt_hatch :: Less (L,Hi) (s,Hi) =>

Method -> -- chosen encryption method
Hatch (s,Hi) (L,Hi) (Word128,Content) Cypher

decrypt_hatch :: Less (s,Hi) (H,Hi) =>
Method -> -- chosen encryption method
Cypher ->
Hatch (H,Hi) (s,Hi) Word128 Content

The encryption hatch takes an encryption method and creates a hatch
which returns the encrypted cypher text when given a pair of a key and
a plain text. The decryption hatch takes an encryption method, a cypher
text and creates a hatch which returns the plain text when given a key.
Both hatches expect the encryption method to be valid. The trusted module
defining the encryption resources for the Backup module is defined as follows:

module Encryption
(valid_enc, encrypt, decrypt) where

-- Trusted code
valid_enc :: Less s s => Hatch (s,Li) (s,Hi) Method Method

encrypt :: Sec (L,Hi) Method ->
Sec (L,Hi) Usernames ->
Sec (H,Hi) Passwords ->
SecIO (L,Hi) Cypher

decrypt :: Method -> Cypher ->
SecIO (L,Hi) (Usernames, Sec (H,Hi) Passwords)

The Encryption module defines the valid_enc, encrypt and decrypt
methods to be used by the Backup module. The escape hatch valid_enc
endorses an encryption method from low integrity to high integrity, while
disregarding confidentiality. For simplicity, the program is terminated if en-
dorsement fails. If it succeeds, then the returned encryption method with se-
curity level (L,Hi) can be used for encrypting and decrypting. The method
encrypt takes a valid encryption method (high integrity), the user names
and the passwords, and uses the encrypt_hatch to encrypt and declassify
the cypher text. The method decrypt takes an encryption method with-
out validating it first. This is because attempting to decrypt a cypher text
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with the wrong algorithm or key size will not produce the expected results.
Attempting to restore with a different encryption method will result in a
program error. Furthermore, decrypt also takes the cypher text, which is
read from a public file, and returns a pair representing the user names and
the passwords.

Lastly, the module Backup can be introduced using the methods de-
scribed above:

module Backup where
-- Non-malicious code

backup :: Less p Wrt =>
AC p (File L) -> -- destination file to backup to
Sec (L,Hi) Usernames ->
Sec (H,Hi) Passwords ->
Method ->
SecIO (L,Hi) ()

restore :: Less p Rd =>
AC p (File L) -> -- source file to restore from
Method ->
SecIO (L,Hi) (Usernames, Sec (H,Hi) Passwords)

The module Backup has two methods, backup and restore. The method
backup takes the information stored in /etc/passwd and /etc/shadow and
backs up the information to a public file (regardless of integrity level, due
to it being a new file) using the specified encryption method. The method
restore reads the data from the specified file (regardless of integrity level,
due to not yet being able to assert the integrity) and decrypts it with the
chosen encryption method. When restoring, the chosen encryption method
has to be the same that was used for backing up.

3.4 Completing the Case Study
Now when all the underlying mechanism for the password administrator has
been explained, this section will describe the main file that ties all of it
together and provides a secure API for the different functionalities present
in the password administrator.

module SecureAPI
( s_login, s_reset, s_backup, s_restore )

where
-- Trusted module
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import AC ( ac )
import SecIO ( run, makeFile )
import SecLib

import Files

-- Login
import Login
import Policies

-- Reset
import Reset

-- Backup & Restore
import Encryption ( Method )
import Backup

s_login :: IO (Maybe UID)
s_login =

do match <- declassification
uid <- run $ login match login_passwd login_shadow
return (public uid)

s_reset :: IO ()
s_reset =

do (Just uid) <- s_login
run $ reset uid reset_shadow
return ()

s_backup :: FilePath -> Method -> IO ()
s_backup f m =

do f’ <- run (newFileSecIO f)
:: IO (Sec L (AC Wrt (File L)))

run (do pass <- readFileSecIO backup_passwd
shad <- readFileSecIO backup_shadow
backup (public f’) pass shad m)

return ()

s_restore :: FilePath -> Method -> IO ()
s_restore f m =

do f’ <- return (ac $ makeFile f :: AC Rd (File L))
run (do (names,pass) <- restore f’ m
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writeFileSecIO restore_passwd names
plug (do p <- value pass

writeFileSecIO restore_shadow p))
return ()

All these functions perform the initialization required for the submod-
ules. The function s_login starts the escape hatch and sends it, along with
the corresponding files with the right permissions, to the Login module.
The Login module then asks the user for name and password, and attempts
to authenticate her. If s_login returns Nothing, it indicates that the au-
thentication failed, otherwise the user’s ID will be returned. The UID can
be made public since it is readily available in /etc/passwd. The function
s_reset first calls s_login to authenticate a user and expects a UID. It is
then passed to the Reset module with the corresponding file for that mod-
ule. Note that the file reset_shadow has a data invariant associated with
it, which requires that the password is strong. Function s_backup takes a
file path and an encryption method, and creates a new file specified by the
file path. Then the /etc/passwd and /etc/shadow files are read, and the
result passed to the Backup module. Similarly, function s_restore takes a
file path and a method, passing these to the Backup module (the restore
function) and writing the result into /etc/passwd and /etc/shadow.

A module diagram with import relationships for the Password Admin-
istrator is shown in Figure 3.3. An arrow from a module X to a module Y
implies that module Y imports X.
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Figure 3.3: Import relationship diagram for the Password Administrator
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CHAPTER 4

Discussions

In this chapter the restrictions and design choices are discussed for the in-
tegrity part of the library.

4.1 Access Control

4.1.1 Implementation

Access control is implemented using a simple wrapper data type and sin-
gleton data types representing permissions, due to the fact that it is light-
weight and can be very flexible using an already implemented mechanism
(the security lattice).

4.1.2 Permissions

The permissions for access control can be interpreted as sets and not lists,
meaning that the following two constructs are equivalent:

(Read,Write) ≡ (Write,Read)

It is possible to express that equivalence using the security lattice by in-
troducing the instance Less (Read,Write) (Write,Read). However, con-
sidering sets of permissions, rather than lists, requires to introduce, at least,
n! instances of Less, where n is the different numbers of permissions.

Permissions could also be encoded using type classes, but singleton data
types are used instead. The reason for this is that they are more elementary,
and then effectively making them simpler.

Another approach of enforcing permissions is by data abstraction, which
means that only the corresponding read or write functions are exported
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to the untrusted module. This would however mean that a module would
be separated, some times unnaturally, when using several read and write
operations on different files with different permissions. We want to avoid
these kind of restrictions that are forced upon the programmers.

4.2 Information-flow Integrity Policies
Currently, non-interference is enforced between high and low integrity levels,
but no guarantees can be placed on the integrity of data protected at high
integrity levels in potentially malicious code. Potentially malicious sources
can create and alter values at high integrity levels. An example of this is
shown below.

create = return 10 :: Sec Hi Int

alter :: Sec Hi Int -> Sec Hi Int
alter sec = (\s -> -100) ‘fmap‘ sec

As the example shows, untrusted sources can create values with high
integrity level by using return, and alter them by using fmap. One possi-
ble way to aid against this problem could be considering information-flow
integrity policies and data invariants. This work only considers information-
flow integrity policies in non-malicious code.

4.3 Public Information
The method public (introduced in Figure 2.3) underwent some change dur-
ing our work. Previously, public belonged to the Sec module, and was
defined as follows:

public :: Sec s a -> s -> a

Given a security monad, and a key representing the constructor for the
current security level, then the monad is "opened" and the value published.
This previously worked due to the fact that only observable security levels
had their constructor exported to the untrusted modules. In the two-point
lattice, SecLib in [10] exports the full constructor for L, but only the type
for H. In our implementation, public uses the Attacker s class and has the
type Sec s a -> a, since it is possible to export all the constructors for the
security levels without jeopardizing security.

To illustrate the difference, consider the two examples in Figure 4.1.
The Figure 4.1a shows a security lattice with several public levels (below
the line) and several secret levels (above the line). There are four public
levels bordering to the secret levels, and these are the ones that are required

36



(a) Many secret levels (b) One secret level

Figure 4.1: Different security lattice scenarios

to be fully exported or instantiated with Attacker s. For the public levels
further down in the lattice, the up combinator can be used before making
the information public. The implementation in [10] requires that all the
secret levels do not have their constructor exported. In Figure 4.1b, there
are six public levels bordering to a secret one. Similarly, the implementation
in [10] requires that the constructor of the secret level not be exported, while
all the other seven public levels need to be. However, our implementation
requires six instances of Attacker s.

The approach we settled on is using the Attacker s class, since this
version makes it a bit clearer what is actually publicly available, and it is
useful when defining the functions showed in Figure 3.2 (for expanding single
security levels to both confidentiality and integrity).
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CHAPTER 5

Conclusions

The aim of this work was to design a library that provides integrity and
confidentiality policies, which has been achieved. The integrity policies con-
sidered are access control, data invariants and information-flow integrity
policies. Access control is implemented using a variation of access control
list (ACL). Data invariants are enforced at program end points by inspecting
the property when providing input and output of data. For non-malicious
code, information-flow policies are incorporated by extending the security
lattice with integrity levels, and thus offering the code to work with un-
trusted and trusted data, without the risk of mixing them. A password
administrator that incorporates confidentiality and the mentioned integrity
policies is presented in this work. Parts of the implementation was described
and detailed to show how integrity policies can be incorporated to provide
a richer set of security policies. To the best of our knowledge, this is cur-
rently the only library that incorporates both information-flow policies for
confidentiality and integrity policies.

The integrity part of the library is designed with several aspects in mind
(beside security), to increase its usefulness. The entire library is small (less
than 400 lines of code) and includes only a few modules, making it light-
weight, and thus increasing its portability. Moreover, the library does not
introduce computational expensive functions. The parts of a program using
the security of the library should have small overhead, while the parts not
considering security have none at all. The library includes several security
parts (e.g. confidentiality levels, integrity levels, access control, data in-
variants, declassification, endorsement, etc), and these can be combined or
used separately. All these aspects give a good reason for using the security
library.
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APPENDIX A

Library Code

A.1 Sec.hs

-- | Provides security for pure computations (trusted).
module Sec where

import Lattice

-- Sec

-- | This type represents values of type a
-- | at confidentility level s.
newtype Sec s a = MkSec a

instance Functor (Sec s) where
h ‘fmap‘ (MkSec x) = MkSec (h x)

instance Monad (Sec s) where
return x = sec x

MkSec a >>= k =
MkSec (let MkSec b = k a in b)

sec :: a -> Sec s a
sec x = MkSec x
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-- | Lift information into higher positions
-- | on the security lattice.
up :: Less s s’ => Sec s a -> Sec s’ a
up sec_s@(MkSec a) = less s s’ ‘seq‘ sec_s’

where (sec_s’) = MkSec a
s = unSecType sec_s
s’ = unSecType sec_s’

-- | Break the abstraction provide by ’Sec’.
-- | It is used only in trusted code!
reveal :: Sec s a -> a
reveal (MkSec a) = a

-- | Internal function, not exported.
-- | For type-checking purposes.
unSecType :: Sec s a -> s
unSecType _ = undefined

A.2 Lattice.hs

-- | Encodes the security lattice used
-- | in the library (trusted).
module Lattice where

-- Security types

class Confidentiality s where
conf :: s -> ()

-- | Data type representing the security level
-- | associated to public information.
data L = L

-- | Data type representing the security level
-- | associated to secret information.
data H = H

instance Confidentiality L where
conf _ = ()

instance Confidentiality H where
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conf _ = ()

class Integrity s where
int :: s -> ()

data Li = Li

data Hi = Hi

instance Integrity Li where
int _ = ()

instance Integrity Hi where
int _ = ()

-- Less
class Less s s’ where

-- | This method determines that information
-- | at security level s can be pushed up to
-- | security level s’ (not exported to untrusted code).
less :: s -> s’ -> ()

-- Security lattice for confidentiality
instance Less L L where

less _ _ = ()

instance Less H H where
less _ _ = ()

instance Less L H where
less _ _ = ()

-- Security lattice for integrity
instance Less Hi Hi where

less _ _ = ()

instance Less Hi Li where
less _ _ = ()
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instance Less Li Li where
less _ _ = ()

-- Product lattice for confidentiality and integrity
instance (Less c1 c2, Less i1 i2) =>

Less (c1,i1) (c2,i2) where
less _ _ = ()

-- Access Control
data Wrt = MkWrt
data Rd = MkRd
data Any = MkAny

instance Less Rd Rd where
less _ _ = ()

instance Less Wrt Wrt where
less _ _ = ()

instance Less Wrt Rd where
less _ _ = ()

instance Less (Rd, Wrt) (Rd,Wrt) where
less _ _ = ()

instance Less (Rd, Wrt) Rd where
less _ _ = ()

instance Less (Rd, Wrt) Wrt where
less _ _ = ()

instance Less Any s where
less _ _ = ()

A.3 SecIO.hs

-- | Provide security for computations with side-effects.
module SecIO where
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import Lattice
import Sec
import Attacker

import Control.Monad
import System.Directory
import Data.IORef
import Network.Socket

-- Monad

{-| Secure side-effect computations.
These computations perform side-effects
at security level s (or above)
and return a value of type a.

-}
newtype SecIO s a = MkSecIO (IO (Sec s a))

instance Functor (SecIO s) where
h ‘fmap‘ (MkSecIO io) = MkSecIO ( do sec <- io

return (h ‘fmap‘ sec) )

instance Monad (SecIO s) where
return x =

MkSecIO (return (return x))

MkSecIO m >>= k =
MkSecIO (do sa <- m

let MkSecIO m’ = k (reveal sa)
m’)

-- SecIO functions

-- | Lift a pure confidential value into
-- | a secure side-effect computation.
value :: Sec s a -> SecIO s a
value sa = MkSecIO (return sa)

-- | Execution of secure computations.
run :: SecIO s a -> IO (Sec s a)
run (MkSecIO m) = m

48



-- | Safetly downgrade the security level that restrict
-- | the side-effects performed by the computations.
plug :: Less sl sh => SecIO sh a -> SecIO sl (Sec sh a)
plug secio_sh@(MkSecIO m) =

less sl sh ‘seq‘ secio_sl
where
(secio_sl) = MkSecIO (do sha <- m

return (sec sha))
sl = unSecIOType secio_sl
sh = unSecIOType secio_sh

-- | Internal function, not exported.
-- | For type-checking purposes.
unSecIOType :: SecIO s a -> s
unSecIOType _ = undefined

-- | Extending the security level of a single security type
addIntegritySecIO :: (Attacker s, Integrity s) =>

SecIO s’ a -> SecIO (s’,s) a
addIntegritySecIO (MkSecIO a) =

MkSecIO (addIntegrity ‘fmap‘ a)

addConfidentialitySecIO :: (Attacker s, Confidentiality s) =>
SecIO s’ a -> SecIO (s,s’) a

addConfidentialitySecIO (MkSecIO a) =
MkSecIO (addConfidentiality ‘fmap‘ a)

{-|
Represent secure locations.
Data type that is internally used to easily introduce
new side-effects into SecIO.
Type t is the raw type needed to perform side-effects.
For instance, t is ’FilePath’ for file, ’IORef’ a for
writing and reading references, etc.
Type s is the confidentiality level of the location.
Type a is the kind of values written and read form t.

-}

type DataInvariant a = (a -> IO Bool)
data Loc t s a b = MkLoc t (DataInvariant a) (DataInvariant a)
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invariant_input :: DataInvariant a ->
Loc t s a b -> Loc t s a b

invariant_input di (MkLoc t _ o) = MkLoc t di o

invariant_output :: DataInvariant a ->
Loc t s a b -> Loc t s a b

invariant_output di (MkLoc t i _) = MkLoc t i di

{-| Introduce unsecure read and write operations
for side-effects of type t
that stores and read values of type a.

-}
class UnsecureRW t a b | t -> a b where

unsec_write :: t -> a -> IO b
unsec_read :: t -> IO a

{-| Introduce safe read and write operations for locations
of type ’Loc’ t s a. This class acts as a wrapper for
the type class ’UnsecureRW’.

-}
class UnsecureRW t a b => SecureRW t s a b where

{-| Secure read operation when the fact of just
reading might be visible for the attacker from
inside of the program. For example, reading from
a channel in a network communication changes the
buffer pointer for that channel,
which can be exploited to leak information.

-}
effectful_read :: Loc t s a b -> SecIO s a
{-| Secure read operation when the fact of just

reading is not visible by the attacker from
inside of the program. For example, reading
from references does not produce any observable effect.

-}
effectless_read :: Loc t s a b -> SecIO s’ (Sec s a)
-- | Secure write operation.
effectful_write :: Loc t s a b -> a -> SecIO s b

-- Create read and write resource
create_resource :: t -> Loc t s a b

instance UnsecureRW t a b => SecureRW t s a b where

50



effectless_read (MkLoc loc i _) =
MkSecIO $ (sec.sec) ‘fmap‘

(do a <- unsec_read loc
b <- i a
if b then return a else diError)

where diError = error "Data invariant violated."

effectful_read (MkLoc loc i _) =
MkSecIO $ (sec ‘fmap‘

(do a <- unsec_read loc
b <- i a
if b then return a else diError))

where diError = error "Data invariant violated."

effectful_write (MkLoc loc _ o) a =
MkSecIO $ (sec ‘fmap‘

(do b <- o a
if b then unsec_write loc a else diError))

where diError = error "Data invariant violated."

create_resource t =
MkLoc t (\_ -> return True) (\_ -> return True)

-- | Locations that represent files.
type File s = Loc FilePath s String ()

instance UnsecureRW FilePath String () where
unsec_read file = readFile file
unsec_write file str = writeFile file str

-- | Secure reading from a file.
readFileSecIO :: File s -> SecIO s’ (Sec s String)
readFileSecIO = effectless_read

-- | Secure writing to a file.
writeFileSecIO :: File s -> String -> SecIO s ()
writeFileSecIO = effectful_write

makeFile :: FilePath -> File s
makeFile = create_resource

-- Creation of low files
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newFileSecIO :: Attacker s => FilePath -> SecIO s (File s)
newFileSecIO f = MkSecIO $

do b <- doesFileExist f
case b of

True -> error "File alredy exists."
False -> return $ sec (create_resource f)

-- | Derived operations for reading from files (legacy code).
s_read :: Less s’ s => File s’ -> SecIO s String
s_read file =

do ss <- readFileSecIO file
value (up ss)

-- | Derived operations for writing into files (legacy code).
s_write :: Less s s’ =>

File s’ -> String -> SecIO s (Sec s’ ())
s_write file s = plug (writeFileSecIO file s)

-- | Locations that represent references.
type Ref s a = Loc (IORef a) s a ()

instance UnsecureRW (IORef a) a () where
unsec_read ref = readIORef ref
unsec_write ref a = writeIORef ref a

-- | Secure reading from a reference.
readRefSecIO :: Ref s a -> SecIO s’ (Sec s a)
readRefSecIO = effectless_read

-- | Secure writing to a reference.
writeRefSecIO :: Ref s a -> a -> SecIO s ()
writeRefSecIO = effectful_write

{-| Secure creation of a reference.
We assume that the attacker has no manner to observe
the side-effect of creating a reference from inside of
the program, for example, by inspecting the free memory.
At the moment, there are no such functions inside
of ’SecIO’. Nevertheless, if there is a consideration of
include, for instance, a function that returns the
free memory in the program, then the function type of
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’newIORefSecIO’ needs to be changed.
-}
newIORefSecIO :: a -> SecIO s’ (Ref s a)
newIORefSecIO a =

MkSecIO ( (sec.create_resource) ‘fmap‘ newIORef a )

{-| Location that represents the screen-keywoard.
Here, we can choose between
a) The attacker is on the screen-keyword,

which implies that when taking input
from the screen has an effect --
the attacker can detect the input. Therefore,
we need to implement taking input from
the keyword using ’effectful_read’.

b) The attacker is not on the screen-keyword.
In this case, we implement reading using
’effectless_read’. We choose option a) as a model.

-}
type Screen = Loc () L String ()

instance UnsecureRW () String () where
unsec_read _ = getLine
unsec_write _ a = putStr a

-- | Secure input from the keyword.
getLineSecIO :: Screen -> SecIO L String
getLineSecIO = effectful_read

-- | Secure output to the screen.
putStrSecIO :: Screen -> String -> SecIO L ()
putStrSecIO = effectful_write

makeScreen :: Screen
makeScreen = create_resource ()

{------------------------------------
--- Network operations

-------------------------------------}

type SecSocket s = Loc (Socket,Int) s String Int
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{- Data types needed to create a connection -}
{- Which connection is high or low is defined in the

trusted code!
-}
data SecSockAddr s = MkSockAddr SockAddr

inet_addrSecIO :: String -> SecIO s HostAddress
inet_addrSecIO s = MkSecIO $ (return ‘fmap‘ (inet_addr s))

socketSecIO :: Family -> SocketType -> ProtocolNumber ->
SecIO s’ (SecSocket s)

socketSecIO f s p =
MkSecIO ( (sec.(\s -> create_resource (s,0)))

‘fmap‘ socket f s p)

-- it might be possible to return SecIO s’ (), if it is the
-- case that sIsBoundSecIO is the only observer if a socket
-- is bound or not.
bindSocketSecIO :: SecSocket s -> SecSockAddr s -> SecIO s ()
bindSocketSecIO (MkLoc (s,_) i o) (MkSockAddr address) =

MkSecIO (sec ‘fmap‘ bindSocket s address)

sIsBoundSecIO :: SecSocket s -> SecIO s’ (Sec s Bool)
sIsBoundSecIO (MkLoc (s,_) i o) =

MkSecIO (sec ‘fmap‘ (sec ‘fmap‘ sIsBound s))

acceptSecIO :: SecSocket s ->
SecIO s (SecSocket s, SecSockAddr s)

acceptSecIO (MkLoc (s,_) i o) = MkSecIO (sec ‘fmap‘ m)
where m = do (sock, addr) <- accept s

return (MkLoc (sock,0) i o,
MkSockAddr addr)

instance UnsecureRW (Socket,Int) String Int where
unsec_read (sock,n) = recv sock n
unsec_write (sock,_) str = send sock str
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recvSecIO :: SecSocket s -> Int -> SecIO s String
recvSecIO (MkLoc (s,_) i o) n =

effectful_read (MkLoc (s,n) i o)

sendSecIO :: SecSocket s -> String -> SecIO s Int
sendSecIO = effectful_write

A.4 Attacker.hs

module Attacker where

import Sec
import Lattice

-- | The class Attacker s represents an attackers
-- | observational power
class Attacker s where

public :: Sec s a -> a

instance Attacker L where
public (MkSec a) = a

instance Attacker Li where
public (MkSec a) = a

instance Attacker (L,Li) where
public (MkSec a) = a

-- | Adds a public integrity level
addIntegrity :: (Attacker s, Integrity s) =>

Sec s’ a -> Sec (s’,s) a
addIntegrity (MkSec a) = return a

-- | Adds a public confidentiality level
addConfidentiality :: (Attacker s, Confidentiality s) =>

Sec s’ a -> Sec (s,s’) a
addConfidentiality (MkSec a) = return a
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A.5 SecLib.hs

-- | The security library.
-- | This is the * only * module of the library to be
-- | imported by untrusted code.
module SecLib

(
-- Sec

Sec
, up
-- Attacker
, addIntegrity
, addConfidentiality
, addIntegritySecIO
, addConfidentialitySecIO
, public
-- SecIO
, SecIO
, value
, plug
-- Files
, File
, ACSecIO.readFileSecIO
, ACSecIO.writeFileSecIO
, ACSecIO.newFileSecIO
-- , SecIO.readFileSecIO
-- , SecIO.writeFileSecIO
-- , SecIO.newFileSecIO
-- References
, Ref
, ACSecIO.readRefSecIO
, ACSecIO.writeRefSecIO
, ACSecIO.newIORefSecIO
-- , SecIO.readRefSecIO
-- , SecIO.writeRefSecIO
-- , SecIO.newIORefSecIO
-- Network
, SecSocket
, SecSockAddr
, inet_addrSecIO

-- AC is not needed here, since any
-- reasonable connection involves sending and
-- receiving data.

, bindSocketSecIO
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, sIsBoundSecIO
, acceptSecIO
, socketSecIO
, recvSecIO
, sendSecIO
-- Screen/Keyword
, Screen
, getLineSecIO
, putStrSecIO
, makeScreen
-- Legacy code
, s_read
, s_write
-- Declassification
, Hatch
, Open
, Close
, Authority
, certify
-- Access Control
, AC
-- Lattice
, L (..)
, H (..)
, Rd (..)
, Wrt (..)
, Any (..)

-- Method less must not be exported!
, Less ()
, Li ()
, Hi ()
)

where

import Lattice
import Sec
import SecIO
import Declassification
import AC
import ACSecIO
import Attacker
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A.6 Declassification.hs

-- | Privide declassification combinators (trusted).
module Declassification
(

Hatch
, Open
, Close
, Authority
, hatch
, ntimes
, flock
, dlm
, certify

)

where

import Sec ( reveal )
import SecIO
import Data.IORef
import Lattice ( Less )
import Sec ( Sec )

-- | Type for escape hatches.
type Hatch s s’ a b = Sec s a -> SecIO s’ b

-- | Used by ’flock’.
-- | ’Open’ represents computations that open flow locks.
type Open = IO ()
-- | Used by ’flock’.
-- | ’Close’ represents computations that close flow locks.
type Close = IO ()

-- | Used by ’dlm’.
data Authority s = Authority Open Close

-- | Creates an escape hatch.
hatch :: Less s’ s => (a -> b) -> Hatch s s’ a b
hatch f = \sa -> return ( ( f (reveal sa) ) )

{- | Limite the number of times that an escape hatch
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can be applied by a single run of the program.
-}
ntimes :: Int -> Hatch s s’ a b -> IO (Hatch s s’ a b)
ntimes n f =

do ref <- newIORef n
return $ \sa ->

MkSecIO $
do k <- readIORef ref

let MkSecIO m = f sa
if k <= 0

then error "ntimes fails"
else do writeIORef ref (k-1)

m

{- | This function associates a flow lock to an escape hatch.
Then, the escape hatch can be successfully applied when
the flow lock is open. In contrast, the escape hatch
cannot by applied after closing the flock lock.

-}
flock :: Hatch s s’ a b -> IO (Hatch s s’ a b, Open, Close)
flock f = do ref <- newIORef False

return (\sa -> MkSecIO $
do b <- readIORef ref

let MkSecIO m = f sa
if b then m

else error "flock fails!"
, writeIORef ref True
, writeIORef ref False

)

{- | This function allows to an escape hatch to be
applied only when the running code can be
certified with some authority.

-}
dlm :: Hatch s s’ a b -> IO (Hatch s s’ a b, Authority s )
dlm f = do (whof, open, close) <- flock f

return (whof, Authority open close)

-- | Certifies that a piece of code have certain authority.
certify :: s -> Authority s -> IO a -> IO a
certify s (Authority open close) io =

s ‘seq‘ ( do open ; a <- io ; close ; return a )
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A.7 AC.hs

module AC where

import Sec
import Lattice

data AC p o = MkAC o

-- Function to wrap access control around an object
ac :: o -> AC p o
ac = MkAC

plugAC :: Less p p’ => p’ -> (o -> b) -> AC p o -> b
plugAC p’ prim ac_p@(MkAC o) = less p p’ ‘seq‘ prim o

where p = unACType ac_p

unACType :: AC p o -> p
unACType = undefined

A.8 ACSecIO.hs

module ACSecIO where

import AC
import Sec
import SecIO
import Lattice
import Attacker
import Network.Socket

-- Reading primitives
plugRd :: Less p Rd => (o -> b) -> AC p o -> b
plugRd = plugAC MkRd

readFileSecIO :: Less p Rd =>
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AC p (File s) -> SecIO s’ (Sec s String)
readFileSecIO = plugRd SecIO.readFileSecIO

readRefSecIO :: Less p Rd =
AC p (Ref s a) -> SecIO s’ (Sec s a)

readRefSecIO = plugRd SecIO.readRefSecIO

-- recvSecIO :: Less p Rd =>
-- AC p (SecSocket s) -> Int -> SecIO s String
-- recvSecIO = plugRd SecIO.recvSecIO

-- Writing primitives
plugWrt :: Less p Wrt => (o -> b) -> AC p o -> b
plugWrt = plugAC MkWrt

writeFileSecIO :: Less p Wrt =>
AC p (File s) -> String -> SecIO s ()

writeFileSecIO = plugWrt SecIO.writeFileSecIO

writeRefSecIO :: Less p Wrt =>
AC p (Ref s a) -> a -> SecIO s ()

writeRefSecIO = plugWrt SecIO.writeRefSecIO

-- sendSecIO :: Less p Wrt =>
-- AC p (SecSocket s) -> String -> SecIO s Int
-- sendSecIO = plugWrt SecIO.sendSecIO

-- Creation
newIORefSecIO :: a -> SecIO ss (AC p (Ref s a))
newIORefSecIO a = do r <- SecIO.newIORefSecIO a

return (ac r)

-- socketSecIO :: Family -> SocketType ->
-- ProtocolNumber ->
-- SecIO s’ (AC p (SecSocket s))
-- socketSecIO f s pro = do r <- SecIO.socketSecIO f s pro
-- return (ac r)

newFileSecIO :: Attacker s =>
FilePath -> SecIO s (AC p (File s))

newFileSecIO f = do ff <- SecIO.newFileSecIO f
return (ac ff)
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APPENDIX B

Code for the Password Administrator

B.1 SecureAPI.hs

module SecureAPI
( s_login, s_reset, s_backup, s_restore )

where

import AC ( ac )
import SecIO ( run, makeFile )
import SecLib
import Files

-- Login
import Login
import Policies
import SpwdData ( UID )

-- Reset
import Reset

-- Backup & Restore
import Backup
import Encryption ( Method )

s_login :: IO (Maybe UID)
s_login = do match <- declassification

uid <- run $ login match login_passwd
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login_shadow
return (public uid)

s_reset :: IO ()
s_reset = do (Just uid) <- s_login

run $ reset uid reset_shadow
return ()

s_backup :: FilePath -> Method -> IO ()
s_backup f m = do f’ <- run (newFileSecIO f)

:: IO (Sec L (AC Wrt (File L)))
run (do pass <- readFileSecIO backup_passwd

shad <- readFileSecIO backup_shadow
backup (public f’) pass shad m)

return ()

s_restore :: FilePath -> Method -> IO ()
s_restore f m =

do f’ <- return (ac $ makeFile f :: AC Rd (File L))
run (do (names,pass) <- restore f’ m

writeFileSecIO restore_passwd names
plug (do p <- value pass

writeFileSecIO restore_shadow p))
return ()

B.2 Files.hs

module Files where

import SecLib
import SecIO ( makeFile, DataInvariant, invariant_output )
import AC ( ac )

import SpwdData

import List ( find )
import Maybe ( isJust )
import Data.Char ( isAlpha, isDigit )

login_passwd :: AC Rd (File L)
login_passwd = ac (makeFile "./passwd")
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login_shadow :: AC Rd (File H)
login_shadow = ac (makeFile "./shadow")

reset_shadow :: AC Wrt (File H)
reset_shadow = ac (invariant_output enforce_Passwd

(makeFile "./shadow"))

backup_passwd :: AC Rd (File (L,Hi))
backup_passwd = ac $ makeFile "./passwd"

backup_shadow :: AC Rd (File (H,Hi))
backup_shadow = ac $ makeFile "./shadow"

restore_passwd :: AC Wrt (File (L,Hi))
restore_passwd = ac $ makeFile "./passwd"

restore_shadow :: AC Wrt (File (H,Hi))
restore_shadow = ac $ makeFile "./shadow"

enforce_Passwd :: DataInvariant String
enforce_Passwd str = return $ and

[(length s >= 8 &&
isJust (find (isAlpha) s) &&
isJust (find (isDigit) s) &&
isJust (find (isSpecial) s)) | (_,s) <- spwd]

where
isSpecial = \x -> x > ’z’ || x < ’0’
spwd = read str :: [(UID, Cypher)]

B.3 SpwdData.hs

module SpwdData
(

-- Datatypes
UID

, Cypher
, Name
, Spwd (..)

)
where
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type UID = Int
type Cypher = String
type Name = String

data Spwd = Spwd { uid :: UID, cypher :: Cypher }

B.4 Spwd.hs

module Spwd
(

-- API
getSpwdName
, putSpwd
, getUID

)
where

import SecLib
import SpwdData

getSpwdName :: (Less p Rd, Less p’ Rd) =>
AC p (File L) ->
AC p’ (File H) ->
Name ->
SecIO L (Maybe (Sec H Spwd))

getSpwdName pwd ac nam =
do se <- plug (parseSpwd ac)

pw <- parsePwd pwd
case lookup nam pw of

Nothing -> return Nothing
Just n -> return $

Just ((\e -> do e’ <- e
case lookup n e’ of

Nothing -> error "impossible"
Just c -> return (

Spwd { uid = n ,
cypher = c})) se)

putSpwd :: (Less p Rd, Less p Wrt) =>
AC p (File H) ->
Spwd -> SecIO H ()
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putSpwd ac spwd =
do se <- parseSpwd ac

let (id, c) = (uid spwd, cypher spwd)
(ts,ds) = span (\(u,_) -> u /= id ) se
updated = if null ds

-- new record
then ts++[(id,c)]
-- update record
else ts++[(id,c)]++(tail ds)

writeFileSecIO ac (show updated)

getUID :: Less p Rd =>
AC p (File L) -> Name -> SecIO L (Maybe UID)

getUID f nam = do pw <- parsePwd f
case lookup nam pw of

Nothing -> return Nothing
Just n -> return (Just n)

parseSpwd :: Less p Rd =>
AC p (File H) -> SecIO H ([(UID, Cypher)])

parseSpwd f = do s <- readFileSecIO f
ss <- value s
return (read ss :: [(UID, Cypher)])

parsePwd :: Less p Rd =>
AC p (File L) -> SecIO L ([(Name, UID)])

parsePwd f = do s <- readFileSecIO f
ss <- value s
return (read ss :: [(Name, UID)])

B.5 Policies.hs

module Policies ( declassification ) where

import SecLib
import Declassification

import SpwdData
import Spwd

declassification :: IO (Hatch H L (Spwd, Cypher) Bool)
declassification = ntimes 3
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(hatch (\(spwd,c) -> cypher spwd == c))

B.6 Login.hs

module Login ( login ) where

import SecLib

import SpwdData
import Spwd
import Maybe

login :: Less p Rd =>
(Hatch H L (Spwd, String) Bool) ->
AC p (File L) ->
AC p (File H) ->
SecIO L (Maybe UID)

login match pwd spwd =
do let ?match = match

let ?screen = makeScreen
putStrSecIO ?screen "Welcome!\n"
putStrSecIO ?screen "login: "
u <- getLineSecIO ?screen
src <- getSpwdName pwd spwd u
case src of

Nothing -> do putStrSecIO ?screen "Invalid user!\n"
return Nothing

Just p -> do u’ <- getUID pwd u
auth 3 (fromJust u’) p

auth:: (?screen::Screen,
?match::Hatch H L (Spwd, Cypher) Bool) =>

Int -> UID -> Sec H Spwd -> SecIO L (Maybe UID)
auth 0 _ spwd = return Nothing

auth n u spwd =
do putStrSecIO ?screen "Password: "

pwd <- getLineSecIO ?screen
check spwd pwd n u

check :: ( ?match :: Hatch H L (Spwd, Cypher) Bool,
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?screen :: Screen ) =>
Sec H Spwd ->
String -> Int -> UID -> SecIO L (Maybe UID)

check spwd pwd n u =
do acc <- ?match ((\s -> (s,pwd)) ‘fmap‘ spwd)

if acc then do putStrSecIO ?screen "Valid login!\n"
return (Just u)

else do putStrSecIO ?screen "Invalid login!\n"
auth (n-1) u spwd

B.7 Reset.hs

module Reset ( reset ) where

import SecLib

import SpwdData
import Spwd
import Maybe

reset :: (Less p Rd, Less p Wrt) => UID ->
AC p (File H) -> SecIO L ()

reset uid spwd = do let ?screen = makeScreen
putStrSecIO ?screen "New password: "
p <- getLineSecIO ?screen
plug $ putSpwd spwd (Spwd uid p)
return ()

B.7.1 Encrypted passwords in the Password Administrator

For simplicity, we do not consider encrypted passwords within the shadow
file. If the passwords were encrypted when writing to the shadow file, the
invariant would not work as expected. To address this issue, the data type
of invariants can be altered to type DataInvariant a = a -> IO a, and
slightly altering the implementations of the functions readFileSecIO and
writeFileSecIO. This new notation allows greater flexibility when defining
data invariants. This can now be used to accept the new password before it
is encrypted, examine the constraints, and then encrypt it before returning
the string.

B.8 Encryption.hs

module Encryption
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( Key ()
, Content, Cypher, Method, Usernames, Passwords
, valid_enc
, Encryption.encrypt
, Encryption.decrypt
) where

import Codec.Encryption.AES as AES
import Codec.Encryption.Blowfish as Blowfish

import Codec.Encryption.Padding
import Codec.Encryption.Modes
import Codec.Utils
import Data.Char
import Data.LargeWord
import Random

import Sec
import SecIO
import SecLib
import Declassification

newtype Key a = MkKey { unkey :: a }
type Content = String -- Unencrypted content
type Cypher = String -- Encrypted contetn
type Method = (String,String) -- Encryption settings
-- first string is algorithm, second is wordsize
type Usernames = String -- Content read from /etc/passwd
type Passwords = String -- Content read from /etc/shadow

-- The Key
key128 :: Key Word128
key128 = MkKey 0x06a9214036b8a15b512e03d534120006

secureKey :: Sec (H,Hi) (Key Word128)
secureKey = return key128

-- Function to produce a seed using /dev/random
-- (or /dev/urandom for non-blocking)
makeSeed128 :: IO (Word128)
makeSeed128 =

do s <- readFile "/dev/urandom"
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return $ fromIntegral
$ fromTwosComp
$ map (fromIntegral . ord) (take 128 s)

secureSeed :: SecIO (L,Hi) Word128
secureSeed = MkSecIO (return ‘fmap‘ makeSeed128)

-- Endorsing the users choice of
-- encryption method and key size
valid_enc :: Hatch (s,Li) (s,Hi) Method Method
valid_enc = hatch(\(e,s) ->

case (e,s) of
("AES","128") -> (e,s)
("Blowfish",s) -> case s of

"64" -> (e,s)
"128" -> (e,s)

_ -> error "Endorsement failed")

-- Takes an encryption method, a key and string,
-- and encrypts the string
encrypt_hatch :: Less (L,Hi) (s,Hi) =>

Method ->
Hatch (s,Hi) (L,Hi) (Word128,Content) Cypher

encrypt_hatch (alg,word) sec =
do iv <- secureSeed

hatch (\(key,text) ->
case alg of

"AES" -> show (iv:(encryptString
(AES.encrypt) iv key text))

"Blowfish" ->
case word of
-- Seed and key is 64bit
"64" -> let (seed,key’) = to64(iv,key) in

show (seed:
(encryptString (Blowfish.encrypt)
seed key’ text))

-- Text block and seed is 64bit
-- Key is left at size 128
"128" -> let (seed,_) = to64(iv,key) in

show (seed:
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(encryptString (Blowfish.encrypt)
seed key text))

where
to64 :: (Show a, Show b) =>

(a,b) -> (Word64,Word64)
to64 (a,b) = (convert a, convert b)

) sec

-- Encrypts the given content
-- using the encryption method supplied
encrypt :: Sec (L,Hi) Method ->

Sec (L,Hi) Usernames ->
Sec (H,Hi) Passwords -> SecIO (L,Hi) Cypher

encrypt e names passwds =
do method <- value e

skey <- return secureKey
let arg = do key <- skey

k <- return $ unkey key
c <- text
return (k, c)

encrypt_hatch method arg

where text = do n <- up names
p <- passwds
return (show (n,p))

-- Takes an encryption method, a cypher and a key,
-- and decrypts
decrypt_hatch :: Less (s,Hi) (H,Hi) =>

Method ->
Cypher ->
Hatch (H,Hi) (s,Hi) Word128 Content

decrypt_hatch (alg,word) cypher key’ = hatch (\key ->
do (iv:cypher) <- return $

map fromIntegral (read cypher::[Integer])
case alg of

"AES" -> decryptString (AES.decrypt) iv key cypher
"Blowfish" ->

case word of
-- Converts the seed, key and cypher
-- to 64bits ((iv:cypher) bound to 128bits by AES)
"64" -> let (seed’,key’,cypher’) =
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to64(iv,key,cypher) in
decryptString (Blowfish.decrypt)

seed’ key’ cypher’
-- Converts the seed and cypher to 64 bits
"128" -> let (seed’,_,cypher’) =

to64(iv,key,cypher) in
decryptString (Blowfish.decrypt)

seed’ key cypher’
where
to64 :: (Show a, Show b, Show c) =>

(a,b,[c]) -> (Word64, Word64, [Word64])
to64 (s,k,c)=(convert s, convert k, map convert c)

) key’

-- Decrypting a cypher with the given encryption method
decrypt :: Method ->

Cypher ->
SecIO (L,Hi) (Usernames, Sec (H,Hi) Passwords)

decrypt e c =
do key <- secureKey

text <- decrypt_hatch e c (unkey key)
(names,passwds) <- return (read text::(String,String))
return (names, return passwds)

-- Encrypts with the given encryption method,
-- initialization vector, key and string
encryptString encryptF iv key s =

cbc encryptF iv key $ pkcs5 $ strToWord s
-- Decrypts with the given encryption method,
-- initialization vector, key and cypher text
decryptString decryptF iv key c =

wordToStr $ unPkcs5 $ unCbc decryptF iv key c

-- String to Word
strToWord = map (fromIntegral . ord)
-- Word to String
wordToStr = map (chr . fromIntegral)

-- Used to convert a higher Word to a lower one
convert w = fromIntegral (read (show w) :: Integer)
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B.9 Backup.hs
module Backup ( backup, restore ) where

import Encryption

import SecLib

import Monad

-- Backups the content, with the specified encryption method
-- to the specified file
backup :: Less p Wrt =>

AC p (File L) ->
Sec (L,Hi) Usernames ->
Sec (H,Hi) Passwords ->
Method -> SecIO (L,Hi) ()

backup f names passwds enc =
do e <- plug $ endorse (return enc)

c <- encrypt e names passwds
let write =

(addIntegritySecIO $ writeFileSecIO f c)
:: SecIO (L,Li) ()

plug write
return ()

-- Restore the content, with the specified encryption method
-- from the specified file
restore :: Less p Rd =>

AC p (File L) ->
Method ->
SecIO (L,Hi) (Usernames, Sec (H,Hi) Passwords)

restore f enc =
do let read =

(addIntegritySecIO $ readFileSecIO f)
:: SecIO (L,Li) (Sec L Cypher)

cypher <- plug read
decrypt enc (public (public cypher))
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