

Dependability characteristics
and safety criteria for an
embedded distributed brake
control system in railway
freight trains

ROGER JOHANSSON

CHALMERS LINDHOLMEN UNIVERSITY COLLEGE
Göteborg, Sweden 2001

Report no.8, August 2001

REPORT No.8

Dependability characteristics and safety
criteria for an embedded distributed brake

control system in railway freight trains

ROGER JOHANSSON1
Department of Electrical and Computer Engineering

Chalmers Lindholmen University College
roger@chl.chalmers.se

Chalmers Lindholmen University College

Göteborg, Sweden, Aug. 2001

1 This work has been conducted within the Centre of Excellence CHARMEC (CHAlmers Railway MEChanics) –
a VINNOVA Competence Center under the “Programme area 4, SD3. Computer control of braking systems for
freight trains”

Dependability characteristics and safety criteria for an embedded distributed brake control
system in railway freight trains

ROGER JOHANSSON

 ROGER JOHANSSON, 2001

Report – Chalmers Lindholmen University College

Report no. 8

ISSN 1404-5001

Chalmers Lindholmen University College

P.O. Box 8873

SE-402 72 Göteborg

Sweden

Telephone + 46 31 772 1000

Chalmers Lindholmen University College

Göteborg, Sweden, Aug. 2001

Abstract

This paper provides a general discussion on the subject of distributed computer control for
safety critical train applications. As computer technology evolves it brings new opportunities
to achieve a higher degree of efficiency and safety. One of the keys to all these benefits is a
dependable computer based control system. Dependable computer systems have been
essential components in; for example, aircraft control systems for many years. Thus,
required techniques and methods for building such systems are well understood. The
important differences in train applications are mainly economical which brings us the
challenging question: how do we design and manufacture dependable train control systems
in a way so that they become attractive as standard components in future railway vehicles?
The objective of this paper is to investigate the fundamentals for distributed safety critical
computer control in trains and establish the prerequisites for these systems.

1

1. INTRODUCTION
Computers have been an integrated part of train traffic systems for many years mainly in centralized

control. Such systems are referred to as Automatic Train Control (ATC) systems [1]. For simplicity, ease
of comprehension and the desire to maintain consistent control, coordination and control functions have
been implemented into centralized systems. This concept often results in slow decision making, i.e.
system output such as route information exhibits latencies that sometimes even delays the transportation
units [2]. As slower decision-making implies imprecision and furthermore, centralized units are highly
susceptible to natural and artificial disasters, the needs of future transportation systems must necessarily
undergo radical transformations [2].

Even a single transportation unit (i.e. a train set) utilizes several different computers for automatic
controls. Driver-less trains are supported by Automatic Guided Transit (AGT) as well as Automatic
Train Protection (ATP) systems [3]. A single vehicle uses distributed computer systems for a number of
good reasons. The main reason is that the computer adds generality in control and flexibility to most
systems. Given a computer-controlled system it is beneficial to put the computing power close to the
sensors and actuators that are the interface between the control and the controlled systems. Electronic
systems can replace mechanical systems in a cost-efficient way and computer control can, properly
handled, add safety to a system.

In the near future, we are likely to see trains where computer control largely is brought into the
vehicles (locomotives and wagons) and perform safety critical functions related to the vehicle dynamics.
Consequently, we will have a thoroughly computerized transportation system with all its potential
benefits. There is, however, a dilemma; what if the electronic system (or part of it) fails? Clearly, the
complexity and hazards of such a system have to be carefully considered.

The primary objective of this paper is to provide a general discussion on safety related computer
based control (where control in all essentials applies to dynamics) in trains. A good reason for doing this
is to establish an interdisciplinary base for upcoming efforts of bringing sophisticated electronic devices
into new applications as well as replacing old solutions by means of new technology.

As a secondary objective, we will discuss in detail and elaborate on safety requirements placed on
train brake systems. With focus on the brake systems we get this important trade off that our results
become quite general since other potential computer controlled functions generally are categorized in
safety critical levels below (or the same as) the brake systems.

The scope of this work is distributed embedded safety-critical control applications. In this paper, we
focus on railway traffic even though most of the issues we discuss have very much in common with
similar application areas.

In contexts where restrictions due to geographical or national irregularitie s apply, we presume
European conditions, i.e. standards, recommendations and regulations from European Transport
Authorities are considered.

This paper is organized as follows; in chapter two, we review important aspects and characteristics of
real time systems for control applications. Essential terminology concerning the design of safety critical
systems will also be recaptured. Readers familiar with real time safety critical computing might want to
skip these parts and may do so without loss of continuity.

In chapter three, we discuss characteristic requirements for the train application control. The
application is viewed as a distributed real time system with emphasis upon the design and development
of such systems.

Chapter 4 gives a case study where we apply the general ideas discussing a brake control system.

Chapter 5 offers a discussion about available means and methods as well as an outline of our planned
future work within this area.

2

2. COMPUTER BASED CONTROL SYSTEMS
An important field of computer exploitation is real-time systems. A real-time system can be

understood as an information processing system, which has to respond to externally generated input
stimuli within a finite and specified period. We say that the services the system delivers have to be valid
both in the value domain (correct value) and in the time domain (result arrived in time). Expressed in
other words, each computational activity in the system must meet its deadline.

A distributed real-time system can be thought of as a set of micro controllers, which communicate via
a common (serial) bus. The choices of serial buses for these systems are often tradeoffs from economical
and practical aspects.

An important class of real-time systems deals with control applications. The functionality of such a
system may be divided into three major parts:

• Get information as soon as it is available (input).
• Process information, i.e. calculate new output values (calculate).
• Present result within the specified period, i.e. send the computed value to an actuator (output).
There are special time requirements emerging from typical control applications. Sensors and actuators

related to the same control object may be connected to different nodes in distributed systems. Delays are
introduced in the control loops, mainly because of communication delays. These might be minimised to
get a high control performance. The time between sampling and actuation for a given control loop is
generally required to be constant in consecutive samplings even if this means it cannot be minimal. This
is because the control laws are designed with specified delay compensation. A varying control delay
invalidates the compensation and causes reduced performance. Reduced performance and even
instability is also caused by variations in the sampling frequency, jitter. Periodic processes for sampling
and actuation must therefore be forced to execute with a fixed period. This may require a higher
sampling frequency to fit in the schedule and thus a modified control law.

 Various characteristics for different applications means we have to be more precise when we stipulate
real time requirements. We generally say that a computation must meet its deadline but that is not
enough. We speak about hard critical real time requirements when a missed deadline may cause a
disaster for the entire system. A hard deadline, on the other hand, is not equally severe, but the system
does not gain from a result produced after a hard deadline, i.e. the result is useless. If the result might be
useful even when the program has missed its deadline, we call this a soft deadline. However, the system
gains less and less from the result the later, it arrives.

tperiod tsample

tdelay

tactuate

t
varying
control
delay

jitter

Figure 1 Varying control delay and jitter

Real time systems may be implemented according to an event-triggered approach, a time triggered
approach or a combination of these approaches.

An event-triggered system is desired solely to respond as quickly as possible to the stimulus. Such
systems are interrupt-driven, i.e. they have a special mechanism that gets the processor's attention by
driving a signal active (interrupt-signal). This causes the processor to suspend current execution,
dispatch to a predefined interrupt service routine. The service routine then performs any action required
as a response to the stimuli.

Just as with an event-triggered system, a time triggered system should respond to external stimulus, a
time-triggered system, however, uses a polling technique to check for the event, i.e. the system now

3

checks for a real-time event at regular predetermined intervals. During each interval the input device that
reflects the event is monitored. Obviously, these intervals must be constructed to guarantee that all hard
or hard-critical real-time requirements should be met.

By removing hardware interrupts and software interrupt handling, time triggered systems provide us
with a fully time-deterministic behavior, we might exploit the system's functionality and performance at
compile time. The time-triggered approach is therefore often preferred to meet hard or hard critical
deadlines.

A real time system can seldom be considered either hard or soft as a whole; rather, the system delivers
services, which might fall into either of the categories. This is true for most cases and especially for
distributed real time systems. On the contrary, when we decide to distribute control throughout the
system we often (inherently) allocate dedicated nodes to local (hard-time critical) functions. At the same
time, we use the network to gather information about the entire system status and these tasks may or may
not have hard time-critical requirements. These are some of the considerations that lead to the conclusion
that a mix of the fundamental approaches (event triggered and time triggered) should bring the most
efficient solution to a real time system for distributed control.

2.1 Dependability
Dependability is that property of a system that justifies placing one's reliance on it [4]. Considerations

of dependability have implications for a complete system, and for all stages of its life from inception to
decommissioning. Dependability is an overall property, which has other measures such as safety,
reliability and availability. In [4] these terms are defined as follows:

• Safety is a measure of the continuous de livery of service free from occurrences of catastrophic
failures.

• Reliability is a measure of the continuous delivery of proper service (where service is delivered
according to specified conditions) or equivalently of the time to failure.

• Availability is a measure of the delivery of proper service with respect to the alternation of
proper and improper service.

A system failure occurs when the system fails to perform its required function (continuously deliver
service). System failures are caused by one or several errors'. An error is a deviation from the required
operation of the system or subsystem. A fault is a defect within the system that might lead to an error.
Consequently, a single fault could potentially lead to a system failure. Faults may be classified due to
their nature:

Permanent the observation of a permanent fault is always reproducible and it applies to both hardware
and software. The fault may have been present since the system was manufactured or emerged during
operation (hardware).

Transient a transient fault could be thought of as a temporary disturbance, which is not reproducible
in the general case. Transient faults apply to both hardware and software. In hardware, they can occur
because of electromagnetic or mechanical shocks, while in software they can arise from certain
combinations of input data for example.

Intermittent an intermittent fault is a special case of the transient fault in that it re-arrives and
therefore in general becomes observable. In hardware, these faults typically emerge from slipping
connectors.

When it comes to software, we sometimes speak of "Heisenbugs", as a particular nasty form of faults.
Their general characteristic is that while an error is observable in a particular environment it disappears
when the system is transferred to another. For example, when we introduce debug utilities, this affects
the system in a way that errors emerging from the fault we are looking for become invisible.

It should be noted that a fault may or may not be observed (fault detection mechanisms are seldom
perfect) while an error generally is detected. It should also be emphasized that while some system
failures may have severe consequences most of them will probably not. Thus, a carefully designed

4

system might exhibit faults, errors and even system failures and continue to deliver acceptable services
depending on its application.

There are four approaches to achieving system dependability: fault avoidance, fault tolerance, fault
removal and fault forecasting, called the means for dependability. It is commonly agreed that a
combination of these approaches must be used in order to achieve ultra-high dependability.

Fault avoidance methods apply to the construction phase of a system. These methods aim to prevent
faults from occurring or even prevent the introduction of faults. Tests and validation reside within this
category.

Fault tolerance methods use redundancy to maintain delivery of services even in the presence of
faults. We often use terms such as Fail Operational (FO) and Fa il Safe (FS) (or fail silent) to express the
degree of fault tolerance. The FO property means that a system will continue to deliver uninterrupted
service without loss of performance even in presence of a single fault regardless of where (in the system)
the fault emerged. The FS property means that a single unit turns itself off and does not deliver services
at all in presence of a single fault. This property is particularly important in distributed control systems
and will be further discussed in chapter 3.

Fault removal methods are used to minimize the presence of faults using different formal verification
techniques. Many of these methods apply to software. While the potential use of such methods would be
of tremendous value they are still not capable of handling real systems due to their large complexity.

Fault forecasting methods use evaluation to estimate the presence, the creation and the consequences
of faults. For example, statistical methods can be used to predict the probability of a future system
failure based on observations of errors during earlier system operation.

When designing a dependable system in general the design process may be divided into four
activities:

• abstraction, identifying the essentials
• decomposition, reducing objects into a number of simpler, smaller parts; analysis of interactions,

interfaces and structures; modularisation
• elaboration, adding and detailing features
• decision making, identification and selection of alternative strategies

2.2 Safety critical systems
A particularly important class of dependable systems are safety critical systems. The development of a

safety critical system may be considered as a series of transformations of its definition. These
transformations are often described with the 'V-model' of the development lifecycle (see Figure 2
below).

As the work proceeds from the requirements through to its implementation, work is organized in
phases where each phase takes as input a description of the system and develops this to form input to the
next stage. In order to have confidence in the final system, the work performed during each phase must
be verified.

Verification is the process of determining whether the output of a phase fulfills the requirements
specified by the previous phase. The task of verification is to demonstrate that the output of a phase
conforms to its input rather than to show that the output is actually correct. Consequently, errors in the
original requirement will propagate without notice through verifications.

Validation is the process of confirming that the specification of a phase, or the complete system, is
appropriate and is consistent with the original requirements. Thus, a validation of the complete system
demonstrates its suitability for use and confirms the appropriateness of original requirements.

Verification and validation are achieved by inspections and testing. Results from these procedures
may be used to investigate safety characteristics for example. Testing may also uncover faults that may
then be removed. Testing is performed at various stages during the development of a system and its role

5

in safety assessment makes testing an overpowering effort. This effort includes careful test planning
with detailed descriptions of test activities as well as prescribing the different test methods to be used. It
is, however, important to realize that testing itself is insufficient. Tests may only be used to demonstrate
the presence but not the absence of faults.

 Requirements
analysis

System
specification

High level
design

Detailed
 design

Construction
and coding

Module
 test

System
integration

System
test

Certification
Field Tests

Service

Requirements
document

Specification

Design
specification

Module design

Certified
system

Verified
system

Integrated
system

Tested
modules

MODULES

test
planning

test
planning

test
planning

test
pla nning

Figure 2: The ‘V’ development lifecycle

Dependability requirements are established during the overall requirements analysis phase. This is the
phase where situations that could possibly lead to catastrophic failures should be identified.

A hazard is a situation in which there is an actual or potential danger to people or to the environment.
In other words, a hazard might potentially lead to a possibly severe accident. Associated with each
hazard is a certain risk, related to the likelihood of the event occurring and to its likely consequences.
During requirements, analysis hazard analysis must be undertaken. Among the most widely used
techniques are:

• Failure modes and effects analysis (FMEA), a qualitative method of reliability analysis which
involves the study of the failure modes which can exist in every sub-system of the product.
FMEA also tries to determine the effects of each fault mode on other sub-systems and on the
required functions of the product.

• Failure modes, effects and criticality analysis (FMECA) is an extension of FMEA where
consequences of particular failures are considered. This allows efforts to be directed at the areas
of greatest needs.

• Hazard and operability analysis (HAZOP) investigates effects of deviations from normal
operating conditions.

• Event tree analysis (ETA) tries to identify the events that can affect the system and tracks them
forward to determine their possible consequences.

• Fault tree analysis (FTA) establishes a set of possible fault modes or external events that may
result in a stated fault. This can be thought of as ETA in reverse direction

6

Other system development processes include object-oriented techniques. Such processes exhibit
iterative and incremental cycles. A project is structured into time-base phases such as:

• Inception - specifying the project vision
• Elaboration - planning the necessary activities
• Construction - building the system as a series of incremental iterations
• Transition - delivering the system for services
Likewise the project is structured along the process component dimension, including the following

activity:

• Requirements capture - a narration of what the system should do
• Analysis and design - a description of how the system will be realised in the implementation

phase
• Implementation - the production of the code that will result in an executable system
• Test - verification of the system

System development proceeds as a series of iterations that evolve to the final system (Figure 3).

Risks
eliminated

Revise risk assessment Revise project plan

Plan and develop the
iteration

Define iteration to address
the highest risks

Initial
risks

Figure 3 Iterative and incremental development

The design and development of safety critical systems requires extensive efforts and resources and is
thus very expensive. Dependable computers have therefore preferably been used in military, space and
civil aircraft applications. To be useful within other areas such as automotive or train control
applications we must look for other solutions where we strive towards conceptual designs where we take
advantage of application inherent redundancy (application specific fault tolerance) and where we can
implement our designs with mostly standard, non-expensive electronic devices.

3. TRAIN APPLICATION CHARACTERISTICS
In a train, we might classify the fundamental objects according to their respective level of control as

follows (figure 4):

 traffic control

wayside control

vehicle control

train control

Figure 4 Levels of control

7

Train, which usually consists of a number of tractions and wagons and is the autonomous and
controllable entity that moves along a track.

Traction, one or several traction units pull the train and today house the command and control system.

Wagon, also referred to as "car" or "carriage", is the fundamental, payload-carrying entity in the
railway system. There must be a communication system in a wagon, which has the responsibility to
communicate with other objects (wagons and tractions) as well as with subsystems in the wagon.

Traffic control system, also known as ATC, which encompasses all the immobile systems. It has the
responsibility for route planning, navigation, signalling, surveillance and safety. It keeps track of all
trains that might interact, their current position and destination.

Wayside control, a set of systems primarily intended for surveillance and control, communicates
wirelessly with the traction.

Train command-and-control system (or simply "train control"). It has the responsibility for
navigation, safety and surveillance. It controls the speed and has to keep track of actual values of
allowed distance to go, braking distance and other dynamic properties of the train.

Vehicle control system, located in a car, encompasses overall responsibility for communication with
traction and other cars. Controls and synchronizes all computer based systems in the car.

Vehicle control subsystem, several types of computer-based subsystems can exist in a railway vehicle
and in a not too distant future, there will be a number of them. Examples for engines are drive control
and braking. Examples for wagons are braking, lights, comfort systems and surveillance.

The use of computers in control systems brings, through their flexibility, a huge potential for new,
innovative and cost efficient technical solutions. A future train car may be designed as a 'smart car' (see
figure 5) with capacity of autonomous behaviour and its own integrity. The 'smart-car' abstract concept
is introduced to denote an entity, carrying a load and at the same time keeping track of information
regarding the load. This information, available at any time, may be used for example by logistic systems
to track individual cargos. As another example, with
the same information it should be possible to
rearrange a train set practically without human
intervention on a rail-shunting yard.

The 'smart-car' application itself has both
interesting and challenging features. It shows a broad
range of functionality, a wide range of requirements
with different criticality that has to be integrated into
a single unit working under varying conditions.

In the remainder of this chapter, we will discuss
the 'smart car' in terms of suitability for the
implementation of a vehicle control in general terms
of dependability.

3.1 Vehicle control system
In Figure 4 at least three levels of application

control were implied. These levels may also be
described in a layered system structure where each
layer is depicted to a corresponding control level and
is designed to handle a finite set of system activities
(Figure 5). Neither train, traffic nor wayside control
is within our primary objectives in this work.
However, the reader should be aware that the
implementation of a future `smart car´ relies heavily
on a train control system adapted for these new cars.

car body
tilting

active vehicle
suspension

brake
control

car load
informati on

other and future
functionality

….

Wireless communication
with traffic control central

Communication within the
train

Traffic Control
 provides general traffic control information

Train Control – Wayside Control
assist engineer

Vehicle Control
Supervisor functionality
Diagnostics and statistics
Possibly different communication standards within a
vehicle

Figure 5 ‘Smart car’ system structure

8

various subsystems

vehicle control computers

previous vehicle next vehicle

Figure 6 Vehicle control system

A train car should be equipped with a vehicle control system. A vehicle control supervises and
controls one or several vehicle control subsystems.

A modern train car houses several applications suitable for computer control such as car body tilting,
active vehicle suspension and brake control. Such applications are generally implemented as separate
subsystems in the car. Figure 6 below, outlines an organization that might be used to house present and
future types of subsystems. The figure shows how a vehicle is connected via a double bus to its closest
neighbors (previous vehicle and next vehicle). The vehicle itself is always equipped with a vehicle
control computer and, for reasons that will be discussed below, a redundant unit. Various types of
vehicle subsystems are connected to and mastered by the vehicle control. Subsystems are assumed to be

vendor supplied in general and there has to be a set of standards, describing the communication interface
between the vehicle computer and its subsystems at different layers (in fact, such standards already exist
in the automotive industry [5]. Subsystems should be interconnected as well as connected to vehicle
control using at least two standard bus interfaces, for example UART and CAN. Depending on safety
criticality, the subsystem might then be implemented by a manufacturer according to safety requirements
and vehicle manufacturer requirements.

The vehicle control gets parameters from the train control system. The semantics of these parameters
are sufficient to determine each car's behavior in different situations, for example:

• Each brake unit could include individual intelligence according to its load, position in the train
etc. Such a system, presuming it is sufficiently dependable, will remove the needs for several of
today's pneumatic and hydraulic systems, leading to a cheaper solution by reducing the number
of system components.

• A vehicle control could provide for autonomous behavior in the event of extreme situations. For
example, by monitoring the push and pull forces applied to the wagon from the neighboring
wagons in the train, the local brake system could be made adaptive even in lack of train control.

• The vehicle control should also monitor each subsystem and provide diagnoses that can lead to
rationalized maintenance-efforts, and decreased costs.

Both train and vehicle controls are subject to different types of requirements, such as functional,
timing and dependability requirements. Although dependability requirements may be simila r to both, we
might expect large differences in functional as well as timing requirements. To further elaborate both
train control and vehicle control functions we might anticipate a basic set of operational modes.

Modes of operation are recognized mainly based on which normal state the system currently is in.
Additional modes of operation should be defined in order to handle exceptional system states.
Exceptional system states are introduced to handle error situations where a system failure should be
prevented, thus keeping the system in a safe state. Clearly different types of subsystems would react
differently on a particular exceptional state and the following characterizations are thus far from
complete.

The system might be in one of the following normal states depending on functional activities:

• Idle, parked - vehicle control is powered off

9

• Idle, configuration - vehicle control is powered on, train control system might inspect and
configure all vehicle control systems.

• Idle, ready - train is inspected and configured, all systems are operational, all subsystems have
potential of local control.

• Idle, ready, degenerated - train is inspected and configured, some systems may be non-
operational or lack potential of vehicle control.

• Moving - all systems fully operational
• Moving, degenerated - performance is sub-optimal since all vehicles cannot be fully

manoeuvred by train control
Note that the 'degenerated' state is not exceptional in this context. It merely denotes a train set where

some (not all) of the cars lack the facilities of vehicle control. In such situations, a train control cannot be
expected to deliver optimal performance. The degenerated state then implies that train control should
deliver services at a least required performance level.

3.2 Safety issues in the vehicle control
When the system is exposed to a hazard, an exceptional state may be entered. Safety hazards may be

observed at different levels. For example, if the engineer endangers the train by taking unpredicted
(abnormal) action or should fall asleep, there would be an obvious risk of an accident. Such hazards are
generally within concerns of train control. At vehicle control level hazards should solely be associated
with faults in the system hardware and/or software. This should hold regardless of their nature, transient
or permanent. We cannot, however, suffice with this observation. For example, a faulty neighboring
vehicle control could forward unreasonable parameters from train control, thus causing an otherwise
functional vehicle control to fail.

In [6], Kennedy discusses risk management and assessment for rolling stock safety cases. He
demonstrates the ALARP (As Low As Reasonably Practicable) principle. A risk has to be demonstrated
to either lie in the negligible range or if in the tolerable range, be ALARP. If we apply the same principle
at vehicle control then it is sufficient to demonstrate that the safety performance does not fall outside the
tolerable region. Consequently, standard methods for dependable computing can be used to demonstrate
compliance with safety requirements in the vehicle control and the fault tolerance requirements could
generally be stated as Fail Operational/Fail Safe (FO/FS) meaning that a device should continue deliver
services as required despite the presence of a single fault. When a second fault occur the device should
act safe i.e. the device should enter a pre determined fail safe mode defined so as to insure that no severe
consequences could arise as a result from the fault.

A vehicle control may fail in several different ways giving rise to different failure modes. Each of
these failure modes may expose the entire system to a smaller or a larger risk. The general approach is
that any single failure mode should never expose the entire system to a risk that endangers system safety.
Thus, we must assure that any single vehicle control failure mode should never propagate, nor give rise
to a faulty behavior from a neighboring control.

A vehicle control can be functional or faulty possibly as determined by a common agreement within
the system. A wide range of faults may occur and a certain range of faults have the potential to cause
commitment errors among its neighbors, for example, a faulty communication device may deliver
different status information to its neighbors or the communication medium may be corrupt. In either
case, the sending vehicle control will appear to deliver inconsistent information to the surrounding (see
Figure 7 below).

The situation may arise as result of a transient fault. If so we might attempt to handle the situation
with software in the neighboring nodes, for example by executing a communication protocol which
exchanges the message several times, providing several replicas of the same message and take a majority
decision to determine the correct message. This strategy uses time redundancy and may be unsuitable for
applications with tight real-time requirements. Furthermore it would not work in the case of a permanent
fault since the faulty communication device should either deliver the same erroneous message ("stuck at
- error") or deliver garbage unsuitable for a majority decision in the neighbor. Some strategies involve

10

message signatures providing means for error checking as well as error correction in the receiver,
however such methods introduce considerable overhead which generally make them unsuitable for real-
time applications.

sending
vehicle
control

Status message =
functional

Neighbor B

Deviated

Figure 7 Commitment error

Status message =
faulty

Neighbor A

Commitment faults are serious in that they might potentially introduce a large number of failure
modes, i.e. they may show up in numerous shapes. For these reasons we should not allow any form of
commitment errors i.e. we require that a faulty vehicle control is always detected by its neighboring
vehicle controls as well as the train control. We also require that such an agreement should be
established within a fixed time interval after the fault has been observed for the first time. Consequently,
a vehicle control must be at least outward fail silent. (Figure 8)

So far, we have focused on the vehicle control interface to train control and we have not really
reached the interior functions. The essential question, from dependability aspects of view, is what fault
tolerance requirements do we put on the vehicle control?

We should be aware that it is the overall safety requirement that leads to a FO/FS conclusion
regarding the vehicle control. For example, a climate control computer for deep fried goods, may be
designed fault-tolerant for a number of good reasons but probably not for the reason of satisfying any
safety requirement. On the other hand, a brake system should be designed to provide at least fail-safe
operation regardless of any failure mode in the vehicle control computer. In every design decision we
must be aware of the fact that fault tolerant design is tedious, complex and expensive, so we do not wish
to apply it unless it is strictly needed.

Redundant bus (train control)

Communicati
on

Vehicle
Control Computer

Subsystem interface

(point to point)

S
ub

sy
st

em

1

S
ub

sy
st

em

1

S
ub

sy
st

em

N

Redundant

unit

Subsystem interface

(point to point)

Communicati
on

Vehicle
Control Computer

Figure 8 FO/FS vehicle control system

11

The final design of a vehicle control computer system may or may not arrive at a fault-tolerant
solution due to the functionality that is actually allocated to it, i.e. safety requirements stated at "train
control level" might be fulfilled by carefully designed, more or less autonomous subsystems.

Now, assume that the various subsystems implement fault tolerance according to their criticality and
that all safety critical functions are maintained by each subsystem. The vehicle control computer
functionality is now restricted to command and control autonomous subsystems.

3.3 General requirements applied to vehicle control subsystems
There is a broad range of requirements placed on a vehicle control as well as its subsystems. In this

section, we will list the most important ones and then try to map them onto computer hardware and
software requirements.

Functional, performance and dependability requirements (commonly referred to as RAMS,
Reliability, Availability, Maintainability, and Safety) have traditionally evolved from national
legislations and standards. More recently great efforts have been made towards a commitment to a
common European standard. These efforts, performed by CEN (European Committee for
Standardization) have this far resulted in a set of standards, (ENxxxxx) as well as draft standards
(prEN), thus, this work is in progress. Document EN50126 [7] defines a process for the specification and
demonstration of dependability requirements for the railway industry. It aims to "promote a common
understanding and approach to the management of dependability". Other standards detail performance
requirements as well as methods of tests. Such standards state safety requirements in terms of failure
consequences. Precise measures and details concerning the formation of the train (the ordering of cars)
are left for consideration by Transport Authorities, i.e. they are determined on national basis, see for
example [8]. As a rule of thumb, however, for safety related functions the standard expresses that
"...performance following any single failure is not less than required". The reader should observe that
interpretation of this statement depends entirely on the observed system level. For example, a failing
brake actuator may not cause any degraded performance in a large freight train consisting of several
cars. However, the same failure might cause a disaster if it appeared in a tram.

A single car may be made out of parts from several different sub contractors. From the car
manufacturer this, of course, is preferable, since the competition between several different sub
contractors is assumed to produce parts of the highest quality at less expensive price. Moreover, a single
sub contractor may not be able at all to provide different subsystems for all functions. At the same time,
this might cause difficulties when integrating parts in a system. There is a prompt need for some sort of
standardization of "in-vehicle" structures, organization, and interfaces. The vehicle control system has to
be modular and flexible and adapt to safety critical as well as non safety critical subsystems.

Monitoring, diagnosing and statistics are examples of functionality that applies to the vehicle control
itself as well as its subsystems. Perhaps the vehicle control functionality is restricted to forwarding
messages between various subsystems and the train control but there might also be cases where these
activities are initiated from the vehicle control computer. Here again, we recognize a need for standards
or recommendations originating from vehicle manufacturers.

The implementation of hardware and software is always a trade-off between functionality, costs, time
to market and RAM (Reliability, Availability, Maintainability). Furthermore, it is a common experience
that newly designed software exhibits much more design faults than hardware does. In the following
sections, we will briefly discuss hardware/software requirements emanating from safety-critical
application requirements.

Hardware

Because it is used in safety critical applications, hardware should basically be designed fault-tolerant.
Fault tolerance relies on redundancy, which tends to give complex and expensive hardware. However,
for a range of vehicle subsystem control functions there is clearly a potential for application level fault
tolerance that can be utilised to meet safety requirements. For example, in a brake system, we might
exploit the fact that each wheel is equipped with a single brake actuator unit while the safety
requirements apply to the entire brake system, which consists of several actuators. Besides safety

12

aspects, we must consider the economy in terms of development, production and maintenance costs. As
an example, fault tolerant designs are often complex, application specific and dedicated and rely on the
use of high quality and sometimes custom designed components. To find a cost efficient solution we
would prefer to use standard components of commercial quality. At this point we meet the challenge
where we have to define a hardware architecture that provide basic dependable services with suitable
well defined fail-safe states and above this, a potential for the implementation of strategic intelligence by
means of software. The architecture must be realistic to implement mainly by use of standard
components.

Software

Use of software is a cost efficient means to fulfil requirements on flexibility, modularity, monitoring
functions and diagnosis. Carefully constructed software also has the potential of increasing system safety
by taking appropriate actions as response to exceptional events (failures). First of all we may consider
some general requirements:

• Efficiency: Computer applications in general are cost sensitive. Hardware resources have to be
utilised efficiently.

• Real-time support: The software has to support real-time requirements. There is a broad
spectrum of timing requirements ranging from milliseconds to a few minutes. Time-triggered
events as well as asynchronous events should be supported not only by blocking primitives such
as semaphores but also expressed as real-time requirements.

• Modularity and Maintainability: Software should be structured and partitioned in a way that
supports modular development and test. Modifications and extensions to existing software
should be possible for example by allowing for replacement of a software module with a later
revision. Such changes must not affect other functions if this can be avoided.

• Reusability: Software is commonly reused in different control systems and different projects.
Thus the functional implementation should be independent of timing aspects and properties such
as scheduling strategy.

• Diagnoseability: It should be possible to record and extract information about exceptional events
(errors and failures) during normal operation.

When we develop software for distributed applications we must also consider the distributed software
structure and allocation. The following normally calls for support from the implementation language:

• Transparent/Forced Distribution: In many cases the distribution of the software (between the
computer nodes) may be hidden for the programmer. In other cases, however, there is an obvious
allocation of tasks to specific nodes. Thus, an implementation language that provides semantics
for a distributed architecture would be preferable.

We might want to consider issues related to software robustness:

• General/Application defined exception handling: The implementation language should also
include semantics for differentiated exception handling. Clearly one can identify kinds of errors
that should be handled at system level but there are other kinds of errors that can be efficiently
handled by the application itself.

• Predictability: It should be possible to analyse an application with respect to functional and
temporal behavior at compile time. Static analysis may require the omission of common
programming constructs such as recursion and undetermined loops. However we must also
consider more subtle programming constructions (hidden recursions such as A calls B calls C
.....calls A). Temporal behavior is derived from (among other things) hardware characteristics
and we may presume that analysis tools as well as simulators will become vital components in
the program development environment.

• Fault Tolerant Software: Despite all efforts made during the program development process,
unfortunately there is still a reasonable risk that faults exist in the software. We might require
that redundant (diversified) software is executed, at least for our safety critical applications.

13

Choosing a good software implementation language is an essential step towards development of
software for safety critical applications. The Ada programming language was designed for such
purposes. However current Ada implementations often require powerful microprocessors and huge
amounts of primary memory. This is not always the case for embedded control systems and it seems,
current practices prefer to use the 'C' programming language or perhaps its object oriented ancestor
'C++'. Unfortunately, 'C++' suffers from similar restrictions as Ada as it requires large run-time libraries
as well as huge memories.

The 'C' programming language has been selected for a wide range of real-time embedded applications
within the automotive industry although the language itself allows program constructions that invites the
programmer to ambiguous and error prone programs. The MISRA (Motor Industry Software Reliability
Association) has tackled the problem by defining a restricted subset of 'C' called MISRA-C. Although
this is not an attempt to promote the use of 'C' for automotive applications, it seeks to promote the safest
possible use of the language.

4. CASE STUDY: THE BRAKE SUBSYSTEM
As an example of a vehic le subsystem with safety requirements, we now turn to a discussion about the

interior of a brake control.

Before entering the discussion about electronic train control, we would like to recapture some
essentials from historical and contemporary techniques and technology.

Today's train control, when discussing freight trains, is essentially a matter of braking the train.
Current techniques often rely on air pressure as the information carrier as well as the switch functions
that activate the physical brakes that applies physical pressure to the brake discs. This is an old technique
that has proven to be very reliable but with increasing demands on train sizes and carrier loads this
technique falls short depending on its physical constraints.

In order to release a car brake the pressure is pumped up to five Bars in the reservoir. The pressure is
however decreased throughout the train due to leaking valves and may fall below the level required by
the car brake to release. Thus, the length of a train set is physically constrained by this technique (Figure
9).

In order to brake the train set, the engineer opens a valve causing air pressure to drop. When reaching
a level of approx 3 Bars in each individual car, the car's brake is applied to the wheels. Thus, from
simple physics, the first car will come first and the last car will apply brakes last.

From this very brief description of today's brake systems, we identify at least two serious drawbacks:

• Train set length, today limited to about 750 meters and a maximum of 40 cars. This might be
compared to new limitations stated in INTELFRET1 where a maximum train set length of 2250
metres, a capacity of 128 cars and nominal freight train speed 160 km/h, is proposed.

1 INTELFRET - EU-project, intelligent freight trains

eng
ine

first
cars

last
cars

Air pressure tube
connecting main reservoir

with all cars

Figure 9 Air pressure drops with distance to car

14

• Today's method of braking a train set is clearly far from optimal. Substantial economic gains and
far less environmental impacts might be achieved with a brake system that takes the train set
dynamics into account when braking the train.

The FEBIS- (Freight Electronic Brake and Information System)2 [9] is currently developing ideas and
concepts for a new generation of electronic systems located in engines and cars. These systems
communicate digitally via electrical buses that connect local systems.

This new electronic platform provides entirely new capabilit ies and a range of new possibilities. In
this next generation system, train control is initiated from the command and control systems which are,
first of all, designed to assist the engineer. Global control is able to gather information such as train car
characteristics and current payload about each car in the train from the local control systems. It is
capable of calculating parameters used to describe the car's dynamics from a global point of view. The
parameters are calculated depending on the current train set e.g. number of wagons, payloads, types of
wagons etc. Characteristics may vary depending on the wagon itself, on the wagon's position in the train
but also on other wagons in the train. Global control is able to supply each wagon with such parameters
thus providing means for an individual adaptive local control.

Brake system functions

The brake system provides several functions. Basic requirements depend on the vehicle type, i.e.
demands on freight car brake systems differ significantly from demands on a Light Rail Vehicle (LRV)
or tram. Although some parts of the following discussion do not really apply to freight cars, we do treat
them here in order to keep our discussion as general as possible.

Service braking is frequently used by the driver in controlling the train. Service braking shall achieve
specified levels of performance at any time.

Emergency braking may be initiated by the driver or even by a passenger in the case of extreme
hazards. Emergency braking shall achieve a specified level of performance and a high level of integrity.

Security braking is a particular form of braking. Security braking is activated in the case of system
failure within the ordinary brake system, thus it is a redundant back-up system. The security brake
system is designed to apply maximum forces, so as to stop the car within shortest possible distance.
Security brake systems are often implemented using mechanical or electro-mechanical devices. A major
advantage with such solutions is the high reliability accomplished with these devices. The serious
drawbacks are the large size and high costs associated with this back up. From the contents, it is obvious
that security braking shall achieve a high level of integrity.

Holding brake is a short duration brake used for ensuring against moving a vehicle once stationary,
e.g. for un-load and load of passengers.

Parking brake should be able to hold a defined load on a defined gradient for an infinite time. It is
intended for use while the train is stabled. The parking brake should be designed to ensure that it will
automatically secure the train in the event of loss of emergency or service brake. On newly designed
trains, the parking brake should apply automatically to ensure the security against movement of the train.

Wheel slide protection is fitted to optimize braking performance and to provide protection against
wheel set damage e.g. during braking in poor adhesion conditions. Such systems are furthermore
designed to minimize the braking force so as to achieve minimal practical stopping distance.

5. DISCUSSION AND FUTURE WORK
Railway transportation is an international matter. Trains and cars cross borders daily and a single car

may be shifted among different trains during its journey to the destination. This is certainly an area
where international agreements, standards and certifications are needed.

2 FEBIS, a joint project between French and German National Railroads (SNCF and DB AG), for the design of a
train control communication system that may supply all vital information needed for a computer based brake
system situated in each vehicle.

15

A system such as a train carriage computer might soon become rather complex. It should provide for
integration of subsystems from different vendors still providing dependable services. Each subsystem
shall be maintainable in terms of various plug-in solutions. For example, a basic brake system adapts to
extreme requirements through special software. A programmable device provides attractive flexibility,
adaptive brake control is capable of compensate for worn-out mechanical parts as well as optimize wear
which will lead to less environmental pollution and lower maintenance costs.

Another interesting possibility that emerges from the computer-based control is diagnosability, i.e.
test programs that monitor different functions and establish status of mechanical and electrical parts in
the brake system. Such facilities can be used to improve and optimize maintenance, which will lead to
reduced costs and improved reliability.

The general train control application is naturally distributed, i.e. a set of carriages, possibly several
tractions each comprising several different functions. A centralised system would soon become rather
complex, probably be more vulnerable to disturbances, and require a tremendous amount of cabling. A
distributed computer control system further provides a higher degree of hardware redundancy as well as
means for a higher degree of software redundancy from the extra processing capacity added by the
redundant microprocessors.

Functions controlling the train carriage dynamics are generally considered safety critical, in that
failure to comply with the specified behavior might expose the entire system to great danger such as
derailment. System safety standards are also subject to national legislation, for example, in Germany a
non-mechanical-backup brake system in a car would currently be impossible since it is against the law.
However there are several implications towards a change and this area is subject to large research efforts
by several actors in the car supplier industry for the moment. In general, legislations concerning
transportation are getting increasingly international in conformance with common standards and
practices. A similar evolution is likely to be expected within the railway transportation area.

Today, computers are used for safety-critical control in space (i.e. space shuttle), in the air (civil and
military aircraft) and on the ground (transport vehicles and automotives). To some extent, computers are
also used in train carriages for passengers. Such systems are always combined with different types of
mechanical backups to maintain safety in hazardous situations. Often these strategies result in
electromechanical systems with massive and expensive redundancy.

We believe that during the years to come, technological innovations and scientific progress from the
field of dependable computing will bring tremendous new opportunities for the railway industries.

We are currently working on a conceptual architecture for use in safety critical train applications in
general. As a special case, we are developing these ideas for an all-electronic brake application, as we
believe that these functions exhibit the most extreme dependability requirements. The architecture is
suited for control applications where functional redundancy may be achieved at system level. The
architecture will be further developed and demonstrated in a distributed control of braking systems in a
train carriage. As a prerequisite, the architecture should allow for implementation using mostly standard
components of commercial quality. The major advantages of this new architecture is:

• it is scalable in that it might be implemented using two or more nodes depending on the
application.

• it provides basic fault tolerance of all transient and intermittent faults as well as at least one
permanent fault

• the implementation relies on contemporary technology and might thus rapidly gain from new
innovations in a revised implementation.

Our planned work for the near future aims at a full-scale implementation of a complete bogie brake
system. We will furthermore elaborate on reliability calculations for all vital components as well as
safety analysis of different configurations of the conceptual architecture.

Our goal with this work is to provide an open dependable distributed architecture for control
applications in trains as well as methods for different kinds of evaluations of the architecture and its
implementation.

16

Acknowledgments
Special thanks to Mr Jörgen Andersson of SAB WABCO AB for providing source material for this

research as well as comments and suggestions regarding this paper. I am also grateful to Prof. Jan Torin
and Mr. Håkan Edler for several valuable comments on earlier versions of this report.

References
[1] Coll, D.C.,Sheikh, A.U.,Ayers, R.G. and Baily, J.H. The communications system architecture of

the North American advanced train control system. IEEE Trans. Veh. Technol.,August 1990,
39(3), 244-255.

[2] Ghosh. S, Fundamental issues in intelligent transportation systems, Proc Instn Mech Engnrs, Vol
213 part F,125-131, 1999.

[3] Haspel, U. Wigger, P. Safety aspects of driverless metros - assessment of the Copenhagen Metro,
World Railway Management,1999

[4] Laprie, J,C. (ed.): Dependability: basic concepts and terminology (Springer Verlag 1991)

[5] Society of Automotive Engineers, SAE, Surface Vehicle Recommended Practice J1939-73.

[6] Kennedy, A, Risk management and assessment for rolling stock safety cases, Proc Instn Mech
Engnrs, Vol 213 part F,67-72, 1997.

[7] EN50126,1999, Railway Specifications - The specification and demonstration of dependability,
reliability, availability and safety (RAMS), CEN.

[8] B.O. Strab. ,Federal German LRT Construction and Use Regulations,1995, English translation

[9] Witke, Minde, Engelmann, Zentrale Komponenten eines Intelligenten Güterzuges, November
2000. ETR, Eisenbahn technische Rundshau.

