

On calculating guaranteed message response
times on the SAE J1939 bus

ROGER JOHANSSON
JAN TORIN

CHALMERS LINDHOLMEN UNIVERSITY COLLEGE
Göteborg, Sweden 2002

RReport no.10, Feb. 2002

REPORT No.10

On calculating guaranteed message response
times on the SAE J1939 bus

ROGER JOHANSSON1

JAN TORIN

Department of Electrical and Computer Engineering
Chalmers Lindholmen University College

roger@chl.chalmers.se

Chalmers Lindholmen University College

Göteborg, Sweden, Feb. 2002

1 This work has been conducted within the Centre of Excellence CHARMEC (CHAlmers
Railway MEChanics) – a VINNOVA Competence Center under the “Programme area 4, SD3.
Computer control of braking systems for freight trains”

On calculating guaranteed message response times on the SAE J1939 bus

ROGER JOHANSSON, JAN TORIN

 ROGER JOHANSSON, JAN TORIN 2002

Report – On calculating guaranteed message response times on the SAE J1939 bus

Report no. 10

ISSN 1404-5001

Chalmers Lindholmen University College

P.O. Box 8873

SE-402 72 Göteborg

Sweden

Telephone + 46 31 772 1000

Chalmers Lindholmen University College

Göteborg, Sweden, Feb. 2002

Abstract

Heavy truck manufacturers in automotive applications extensively use the SAE J1939
protocol definition. In this paper we demonstrates two simple methods for analysing worst-
case scenarios on a J1939 CAN-bus. The first method can be used for quick estimation of
bandwith requirements while the second method illustrates how maximum message delivery
time (response time) can be calculated.

1. INTRODUCTION
Since it’s introduction in 1995 the SAE J1939 protocol [1] has become a ‘de facto’ standard for

heavy truck manufacturers throughout the world. The recommendation has several benefits; at first, it
constitutes a common interface between different control units, supplied by different vendors, on the
same bus. Secondly, it provides detailed information about signals (entities) that are communicated on
the bus. Thirdly, the recommendations, if accepted and adopted as a real standard, may reveal
vendors from the difficulties of certification when used in safety critical applications.

The background of this report is part wise the authors experiences gained from coop project with
Volvo Truck Corporation in Sweden (VTC) but also a result of joint projects with Saab-Ericsson
Space (earlier: Saab Space) and Volvo Car Corporation (VCC). An essential part of chapter 4 is based
on earlier published material [4][5].

The major contribution from this report is the derivation of simple, easy to comprehend, equations
that describe communication bus utilisation as well as message response latencies in terms of SAE
J1939 specification parameters. For all who are working with embedded systems, communicating via
a CAN-bus with a J1939 protocol and addressing time critical as well as safety critical application, this
report should apply well. The analysis is carried out under the assumptions of fault-free behaviour as
well as in the presence of transient faults on the communication bus.

The report is outlined as follows; Chapter 2 gives a short resume of the CAN-protocol. We turn on
to a brief description of SAE J1939 protocol concentrating on those fundamental properties of the
J1939-protocol that we use in order to derive parameters for our calculations. In chapter 3 we
demonstrate some simple derivations of bus utilisation. In chapter 4 we will demonstrate a method of
how to compute the worst-case response time of a particular J1939 message. In chapter 5 we
summarise our conclusions.

2. THE COMMUNICATION PROTOCOLS
This chapter offers a brief description of the CAN (Controller Area Network) protocol as well as

the SAE J1939 vehicle application layer protocol. It is by no mean complete descriptions. The purpose
with this chapter is just to provide readers with no previous extensive experiences from these protocols
with sufficient knowledge and understanding to comprehend chapters 3 and 4.

Readers with good experiences from CAN and the J1939 protocol might skip this chapter without
loss of continuity.

2.1 The CAN protocol
The Controller Area Network (CAN) is a serial communications protocol which supports

distributed real-time control applications with dependability requirements. CAN is used in automotive
electronics such as engine control modules, transmission control modules, anti brake-lock systems and
anti skid systems, just to mention a few, with bit rates up to 1 Mbit/s [1].

The CAN protocol has evolved, from it’s initial release in 1986 (also known as ‘Standard CAN’)
through the extended protocol definition in 1991 (‘Extended CAN’, [1]) and is currently under revision
for a new specification where, in particularly, time triggered communication issues are addressed
(‘Time Triggered CAN’, TTCAN,[2]).

CAN is a multi-master, broadcast protocol with collision detect and a resolution mechanism based
on message priorities. I.e. each message on the CAN bus has a unique priority and is only transmitted
from a single node on the bus.

A CAN message can have one of four different frames:

• A data frame carries data from a transmitter to one (or several) receiver(s).
• A node to request a specific data frame transmits a remote frame.
• Any receiving node that detects a bus error transmits an error frame.
• Any node can transmit an overload frame. The purpose with such a frame is to delay the

communication.

A data frame is composed of seven different fields (see Table 1 below). The identifier field is used
for arbitration in case of contention of the bus. A message with a lower identifier will win any
arbitration and lower priority message will have to queue until the bus becomes idle again.

The actual length of any CAN message is always data dependent. The message can contain zero up
to eight bytes of data. Furthermore, the number of bits depends on the data itself since the CAN
protocol stipulates that a sequence of more than five equal bits has to be broken by insertion of a stuff
bit to facilitate bit synchronisation by the receiver nodes.

The number of stuff bits may be calculated when we know the message contents; in particular, it is
easy to determine the worst case. For example, a CAN Extended data frame has 55 bits of overhead
that are subject to bit stuffing. Furthermore, the entire data field is bit stuffed and hence, if we assume
a message with i data bytes, the maximum number of stuff bits introduced is given by:





 +

5
855 i

The End of Frame and the Inter Frame Space, i.e. the bit intervals that must precede a new
message on the bus is defined to be total ten bits by the protocol.

 Extended CAN Subject to
bit-stuffing

Start Of Frame 1 X
Arbitration Field 11+2+18+1 X
Control 6 X
Data 64 X
CRC 11 X
CRC delimiter 1
ACK 2
EOF/IFS 10

Table 1 CAN message data frame lengths

The maximum length of an Extended CAN-message (in bits) thus becomes:

Equation 1

The CAN-protocol error handling mechanism is designed to reach immediate agreement upon
disturbed messages. The mechanism works as follow; upon detecting an erroneous CAN-frame, a
receiver will destroy the remainder of the message by transmitting an error frame consisting of six
dominant bits follow by eight recessive bits. Every node repeats this in the system (see Figure 1
below). The transmitting node, upon detection of the six dominant bits, reinitialises for a
retransmission of the frame. CAN-controllers have functions such as error counters designed to
achieve fault-tolerance. The subjects of handling errors within controllers are however, far beyond the
scope of this report.

Figure 1 Error handling on the CAN-bus

(1) node detects CAN-bus error

original message

(2) node sends ERROR frame

remaining nodes sends ERROR frames

(3) remaining nodes detect CAN bus error (4) bus idle for transmission again Intermission (3 bits)

i
i

s 867
5

855
++



 +

=

Consider Figure 1, at (1) any node exhibit an error. As a worst case, let us suppose that no other
node detects this error. The node immediately starts transmitting an error frame (2). The latest point
where an error is recognised throughout the network is at (3) where the remaining nodes starts sending
error frames. An “Intermission” field follows the latest error frame and at (4) latest, error handling are
done and the bus is idle for transmission again. Note that in the case where the error was exhibited by
all nodes in the system, the scenario is all the same except for that (3) will appear earlier.

We conclude that error handling on the CAN-bus has a bounded time duration determined by the
protocol. In the worst case with duration 23 bits (6+6+8+3). The CAN-standard however, stipulates 29
bits of error handling as a worst case when a massive disturbance occurs at the first error flag. We will
use this result in chapters 3 and 4.

2.2 SAE J1939 protocol
The J1939 protocol is a vehicle application layer built on top of the CAN-protocol. The central

entity is the Protocol Data Unit (PDU), which carries all the important information needed for
determination of a message’s priority and size. The protocol defines all but 8 bits in the CAN
identifier, namely the source address field. In fact those eight bits are reserved to uniquely identify a
control unit on the bus. Thus there are maximum 256 units allowed on a single J1939-bus. Since no
duplicate source id’s are allowed on the same bus, this insures that all CAN messages have unique
identifiers. It further allows a specific J1939 message to be transmitted from different nodes since they
will end up with different CAN identifiers anyway (see Figure 2).

Figure 2 CAN Identifier and the SAE J1939 Protocol Data Unit, bits with identical interpretation are
omitted

As shown, different bit fields of the CAN identifier is used for a distinct purpose in a J1939
message. The J1939 interpretation of a CAN identifier is as follows:

• P, priority field, a 3-bit field allowing priorities 1-8 for a message.

• R, reserved bit, set to zero by application.

• DP, data page, address extension (page 1) for pdu format (se below).

• PF, pdu format, specifies a group of messages.

• PS, pdu specific, used to further determine a specific message, depends on PF.

• SA, source address field , is the unique signature (0-255) for the electronic control unit that sends
the message.

For a specific J1939 message, all fields except the source address field are defined. Thus we
conclude that we may establish the necessary database of messages and their properties given that we
know all J1939 messages as well as their origins (source identifiers) on a J1939 bus.

We now establish requirements and assumptions that are needed for the development of our
analysis.

For the J1939 bus under observation, we require that:
• Bus arbitration, acknowledge and error handling mechanisms obeys the CAN protocol.
• We have established a message database, including all possible J1939 messages, and all control

units on the bus.

 id
28

id
0

P R D
P

PF PS SA

id
27

id
26

id
1

id
2

id
25

id
24

id
23

id
22

id
21

id
20

id
19

id
18

id
17

id
16

id
15

id
14

id
13

id
12

id
11

id
10

id
9

id
8

id
7

id
6

id
5

id
4

id
3

3. ESTIMATED BUS-UTILISATION
Consider a CAN bus with an arbitrary set of CAN-controllers connected. Assign a unique integer,

m, (m = 1,2,3...N) where N is the maximum number of unique messages, to each message transmitted
from any of the controllers.

For a message m, with period pm consisting of sm bits each of length τ, we write the message bus
utilisation Um:

Equation 2

Summarizing all N messages yields the total bus utilisation U (U ≥ 0):

Equation 3

In the equation we have assumed a strict periodic behaviour, which is somewhat unrealistic,
therefore let ε (0 ≤ ε ≤ 1) denote the fraction of uncertainty in the period time. The actual period of
message m now becomes pm ± εm pm. For a worst-case analysis we should throw the ‘+’-sign since it’s
not contributes to the worst case. The worst case is obtained if we underestimate the period, that is:

pm (1 - εm)

Which, combined with Equation 3 yields:

Equation 4

In the case of disturbances on the bus we might wish to compensate for extra bus utilisation
required for error handling in case of disturbed messages. This calculation involves two steps; first we
must determine the maximum frequency of disturbed messages, secondly we must calculate the worst-
case penalty for the disturbed message. While the first step must be an estimation, the CAN protocol
allows us to do a thorough analysis of the second step. Considering activities on the bus we conclude
that there are two phases: one, the CAN bus error protocol, i.e. each node sends an error frame upon
detecting an invalid message, and two, a retransmission of the message.

The total time for a disturbance ΤD , is a sum of the terms:

• ΤE, time to do error handling on the CAN-bus
• ΤM = mdisturbed {sm} τ , message transmission time lost due to disturbance

In this approach we have already accounted for retransmission of the message in Equation 3.

ΤM may be obtained from at least two different approaches; One, we might anticipate the very
worst case. i.e. the message which contributes most to U is disturbed. If so we choose the message
which yields max { Um } from our set of messages, or secondly, we might anticipate a more
stochastic behaviour and choose the message length of max {sm} (based on the assumption that a long
message is more likely to be disturbed than a short message. Here, we denote our disturbed message of
choice, sD.

Clearly, the things that determines ΤE is the time when the message is disturbed as well as the
negotiations and handling that occurs upon an erroneous message detected on the bus. The worst case
is obtained if is the disturbed message is corrupted in the last bits, as a worst-case assumption we
therefore choose sD here, we then add time for error handling (error frames) and arrive at the results:

ΤE = τ (sD + 20)

ΤM = τ sD

where sD = [sm of max { Um } if worst-case assumed, max { sm } otherwise] (Definition 1)







= ∑

=

N

m m

m

p
s

U
1

τ

m

m
m p

s
U

τ
=







−

= ∑
=

N

m mm

m

p
s

U
1)1(ε

τ

Now assuming our estimated frequency of disturbances is x during a period PD we write the bus
utilisation for disturbances:

Equation 5

We now arrive (combining Equation 4 and Equation 5) at our final expression for the bus
utilisation:

Equation 6

where:

U is the maximum bus utilisation for N messages
τ is the bit-length time
sm is the number of bits in message m
pm is the period of message m
ε m is the maximum fraction of deviation from the stipulated period time of message m
sD is determined from Definition 1, above
PD is the period time where at most x disturbances are expected.

For ease of comprehension we finally consider a case where all messages are equal in length (s),

there is no deviation from message period times and we have a fault free bus. Equation 6 then
simplifies to:

I.e. this is a formula, which might be applied upon a realistic set of CAN-bus messages still using

a simple hand-held calculator.

4. RESPONSE TIME ANALYSIS

The ”response time” of a CAN-message is considered to be the time interval from that the message
was eligible for transmission until the time it was acknowledged and thus successfully received by any
(i.e. all) other node (nodes) on the CAN-bus. The response time thus constitutes the total occupation of
the bus for a successful transmission. The message does not have to be repeated in any sense and will
thus not demand any further bus resource. Each successful transmission is also considered as a
successful atomic broadcast since the CAN-protocol insures that a single acknowledge guarantees a
through out correct reception of the message (otherwise an error frame would have disturbed the
message). The “delivery time” of a CAN message is considered to be the time interval from that the
message is delivered by an application in a node until it becomes available for other application in
other nodes.

For each message we (a priori) must have established:

• A unique priority, i, i.e. the CAN identifier or the J1939 identifier
• Length of the message i (as defined by J1939)
• The i message period time (also defined by J1939)

We consider the CAN-bus to be an indivisible resource i.e. once allocated it cannot be shared.

(This is most appropriate applied to the CAN-protocol due to its bus arbitration)

We furthermore assume a constant transmission time, this is also straightforward since we know
each message length sm as well as the CAN bus baud rate (bits/second).

A message transmission is “non-pre-emptive” i.e. once its started it’s guaranteed to complete (also
follows from the CAN-protocol). The schedule is determined by CAN message identifiers a priori and

D

ME
D P

TTxU +=








 +
+








−

= ∑
= D

D
N

m mm

m

P
s

x
p

s
U

202
)1(1 ε

τ









= ∑

=

N

m mp
sU

1

1
τ

we can use FPS (Fixed Priority Scheduling) analysis to compute response times for every CAN
message (see [4]).

 We now define the total message delivery time Dm for a message m as the time from which it has
been delivered by an application to a CAN controller in the sending node, until the message is
available for another application in the receiving node. The message delivery time is then contributed
to by:

• Time for preparing (formatting) the message for transmission on the CAN-bus.
• Queuing, i.e. waiting time due to lost bus arbitration.
• Transmission time depends on the message length and the bit rate.
• Time for unpacking (de-format) the message and notify the application in the receiver node.

Figure 3 Message delivery time

While the time for preparing and unpacking may be considered constant (depending on the actual
CAN controller and operating system) and the transmission time may be calculated for each message,
the queuing time depends on the actual schedule. Then, for a message m, in a set (schedule) of N
periodic messages (m = 1..N) with period pm consisting of sm bits each (as determined by Equation 1)
of length τ, the message response time Rm is bounded by (see also [4][5]):

Rm = Qm + Tm

where:

• Qm is the queuing time for message m as a result of higher priority messages transmitted and
thus delayed the message m.

• Tm is the transmission time for message m.

Note that messages with Rm > pm are not guaranteed to be transmitted.

We now turn to the queuing term considering the following example; assume a time interval t.
where three messages, m =1,2 and 3, are to be transmitted from different nodes. It can be shown that
the worst-case queuing time occurs if all three messages arrive (become eligible for transmission) at
the same time (for a proof see [6], Theorem 2). Further, assume that message 1 has the highest priority
and message 3 has the lowest priority. Message 1 will not exhibit any delay from queuing since the
CAN-bus arbitration mechanism will resolve the bus conflict in favour to message 1.

Figure 4 Queuing, awaiting transmission on the CAN bus

1 2 3

t

s1τ

Q2+T2
Q3+T3

Dm

formatting de-formattingQueuing Transmission

Rm

In general, the queuing for message m is determined by:

Equation 7

• Tj is the transmission time for a higher priority message j and pj is the period time of a higher

priority message j.

I.e. during examining of all higher priority messages (j ⊂ hp(m)), where: Q1 = 0, i.e. highest
priority message can not be delayed by queuing, Equation 7 will converge to the solution giving a
maximum queuing time.

Due to the non pre-emptive property of a CAN message transmission, Error! Reference source not
found. does not capture the worst case. We might anticipate a phenomenon called blocking [4], which
results in an extended queuing delay imposed from a message with lower priority. Consider the
following situation where a high priority message is delayed due to such blocking.

Figure 5 Queuing delay due to blocking

Figure 5 illustrates message blocking. The situation arises because of a low priority message
become eligible for transmission just before release of a high priority message. Since the transmission
is non pre-emptive, the entire message is transmitted and delays the message delivery time R1,2
(second invocation of message 1 transmission). We do however observe that the high priority message
can only be blocked by at most one low priority message since during the next bus arbitration, the bus
will be allocated to the high priority message, which will be immediately transmitted. Hence, we
extend the queuing term with a blocking term defined as:

Equation 8

I.e. The blocking term Bm for message m is obtained by examining all lower priority messages and
selects the one with greatest transmission time T. We now arrive at our final expression for message
transmission time:

Equation 9

where:

• Bm is the blocking time for message m as a result of interference from lower priority messages and
is defined by Equation 8

• Qm is the queuing time for message m as a result of higher priority messages transmitted and thus
delayed the message m and defined by Equation 7

• Tm is the transmission time for message m.

1
medium
priority

low
priority

p1

R1,1

1

R1,2

j
mhpj j

m
m T

p
Q

Q ∑
∀ 











=

1

)(:

}{)()(max mlpkTB km ∀=

mmmm QTBR ++=

4.1 Robustness
In the analysis we have not accounted for any kind of transmission errors thus far. As a general

fault model we might simply assume a disturbed CAN-message that causes other nodes to transmit an
error frame. We then further assume that the CAN protocol error handling is obeyed, i.e. the disturbed
frame is (eventually) re-transmitted. To establish a satisfactory analysis we must also establish an
appropriate fault model. For most cases, it would be naive to expect just a single disturbance. As an
example, experiences from measuring error rates on CAN buses in Volvo S80, S60 car models has
shown that transmission errors are rare under normal conditions. However, as they occur, one might
expect a burst behavior that lasts for a few milliseconds [6]. Consequently, in our response time
analysis, we should be able to account for single errors as well as such bursts. Note that we do not
address the issues of controller faults but only transmission errors.

4.1.1 Model

• Consider at set of messages, k, k+1, ... N-1, N; where k is the highest priority message.

• Construct a time interval Tx where all these messages become eligible for transmission at least
once.

• Assume a fault frequency x during the interval Tx.

• As a worst case, assume that the total penalty for a single disturbance equals TE+TM as defined in
chapter 3.

• Now the term:

)(ME TT
l
k

l
k

x +











−





Where k ≤ l ≤ N, and l denotes the disturbed message, accounts for a disturbed message
transmission as well as the associated CAN-bus error handling. I.e. we expect no contribution as long
as the disturbed message has a lower priority than our message under observation.

Figure 6 Fault model, delay as result of disturbed message i

From the fault model we observe that we has to modify our queuing term for all messages with
lower priority than the disturbed message.

Equation 10

Figure 6 illustrates the situation. An arbitrary chosen message l scheduled during Tx is disturbed

once. We expect penalty in form of lost transmission time (TM) as well as CAN bus error handling
(TE). These penalties however do not affect messages with higher priority than the disturbed message.

k l N k+1

l
TE TM

Tx

∑ ∑
∀ 










+












−



+












=

)(:

)(
mhpj

ME

N

l
j

j

m
m TT

l
j

l
j

xT
p
Q

Q

5. CONCLUSIONS
In this paper we have presented ideas for simple but still efficient tools for the analysis of activ ities

on a CAN-bus. In particular we concentrated on the SAE J1939 vehicle application layer.

In chapter 3 we presented, easy to use, formulas that might provide a range of useful information.
For example, by monitoring (or analysing) the messages that are transmitted from a particular control
unit (CAN-node) one might get an opinion about the total bus bandwith required by that unit.
Furthermore, by examining worst-case scenarios one might predict troublesome situations in a system.
For example by extensively studying situations where the bus utilisation is above 1, i.e. where
messages definitively is lost. In chapter 4 we give a receipt for those situations. By applying the
methods presented in chapter 4 it is possible to find the messages that will suffer from an overloaded
bus, i.e. the messages that will exhibit (perhaps substantially) jitter in their period.

While the method presented in chapter 3 is easy to carry out, even on a pocket calculator, the
method that is presented in chapter 4 might be more cumbersome to implement. A rudimentary
implementation has been done within this work. A more serious approach probably requires more
efforts, such as systemising the J1939 messages in a database and developing tools that extracts and
uses information from this database.

ACKNOWLEDGES
The authors wish to thank Lars Berno Fredriksson at KVASER for his comments and suggestions.

REFERENCES
[1] Society of Automotive Engineers, SAE, Surface Vehicle Recommended Practice J1939-7x.
[2] Robert Bosch GmbH, CAN Specification Version 2.0 , 1991.
[3] ISO/WD 11898-4, Road vehicles – Controller area network (CAN) – Part 4: Time triggered

communication , December 2000.
[4] Tindell, K., Burns, A., Wellings A.J., Calculating Controller Area Network (CAN) Message Response

Times, Software Engineering Journal, 1995.

[5] Sha, L.,Rajkumar, R.,Sathaye, S., Generalized Rate-Monotonic Scheduling Theory: A Framework for
Developing Real-Time Systems. Proceedings of the IEEE, Vol 82, No 1, January 1994, pp68-82.

[6] Ericson, R., Hagardzon, H., CAN-bus error counter (CANEC), Bach.Thesis, Chalmers Lindholmen
University College, May 2001.

