
SCHEDULING IN DACAPO PAGE 1

Scheduling in DACAPO

Roger Johansson
Chalmers University of Technology

Department of Computer Engineering
DRAFT(00-03-08)

Abstract

The Dacapo architecture has been designed as a
platform on which distributed safety-critical
applications are executed. Great care must be taken
when specifying, designing and implementing such
applications. The scheduled application must be
analysed and proven capable to meet every time-
requirement.

The Dacapo scheduler is a tool that provide such
analyse and, moreover has been designed to meet
special requirements introduced by control laws.
This report describes the first implementation of the
Dacapo scheduler.

Keywords: Distributed Real-Time Systems, Static
cyclic scheduling, Fixed Priority Scheduling.

INTRODUCTION

The Dacapo architecture has been designed to meet
the requirements of a hard real-time system for
distributed control of safety critical
applications[Bri93]. The Dacapo architecture
implements hardware fault-tolerance by means of
redundant units and supports software fault-
tolerance by means of an application development
system and a dedicated operating system. From the
programmers point of view, Dacapos main features
are:
• hardware error detection with high coverage
• fine grain synchronisation of global time
• predetermined "semi"-consistency of distri-

buted global data
• fast recovery from transient faults
• short and predictable communication latencies

In this paper we discuss the application
development process and focus on the scheduler.
The paper is structured as follows: the next section
gives an overview of the DACAPO architecture and
its communication subsystem. Section 3 deals with
the application design process; structuring,
decomposition and task allocation. In section 4 we
give an overview of the scheduler. Section 5
illustrates use of the scheduler as well as a simulator
used to visualize the schedule. Finally, section 6
offers a discussion and outlines of future work.

OVERVIEW OF THE DACAPO

ARCHITECTURE

A DACAPO system consists of nodes interconnected
by a Global Bus. Each node has a set of sensors and
actuators and the node is supposed to be located
near the physical objects that it controls. In each
node, there is an embedded controller (EC) with a
local memory. Moreover there is a dual-port RAM
(DPRAM) that interfaces the EC to the global
communication interface (GCI) [Sn95]. Figure 1
shows an example of a DACAPO system with 4
nodes.

Node 1

Global
Communication

Interface

DP-
RAMEC

IO-
BUS

sensor actuator

sensor

actuator

Node 4

Global
Communication

Interface

DP-
RAMEC

IO-
BUS

sensor

actuator

Node 3

Global
Communication

Interface

DP-
RAMEC

IO-
BUS

actuator

sensor actuator

actuator

Node 2

Global
Communication

Interface

DP-
RAMEC

IO-
BUS

sensor actuator

actuator

Figure 1: Sample DACAPO system

DACAPO utilises a synchronous bus protocol that
repetitively transfers data on the bus. This activity is
periodic and exhibits the system cycle (SC) (See
figure 2) as its life-time. Each SC is divided into N
communication cycles (CC), which in turn, are
divided into communication frames (CF). During
one CC; each node transmits one message and thus,
the number of CF:s equals the number of nodes in
the system.

PAGE 2 SCHEDULING IN DACAPO

System Cycle

Communication
Cycle

Communication Frame

Time base τ

CN

N τ

τ

Figure 2: Periodic intervals in DACAPO

The GCI provide a fine grain global synchronisation
as well as predictable internode message latency.
Global time is divided into time slices and each time
slice has the duration of one CF. GCI provides a
signal indicating the start of each time slice in the
node. Communication is pre-scheduled and fully
time-deterministic. Apart from handling
communication between nodes, each GCI maintains
the nodes view of the global data pool. The
DPRAM interfaces GCI to the node’s CE and
updates four entries (64 bits) in the DPRAM during
each communication frame.

DP-RAM
(node A)

CMU A

sender
process

CMU B

DP-RAM
(node B)

receiver
process

Figure 3: Principle of message passing in Dacapo

It is possible to know what data has been updated at
any point in time because of the pre-scheduled
communication. The following characteristics are
essential for calculating the worst case response
time of a message:
1. Queuing of messages from the sender node
2. Latency for the sending node to become the bus-

master, i.e. await next CF for the node
3. Delay for transferring message on the bus
4. Delay for updating the receiver node’s DP-RAM

Queuing of messages may result from a temporary
high rate of produced messages in a single node
when the required bus capacity exceeds 64 bits/CC.

Since the node is only allowed to transfer messages
in one CF of a CC, this latency is determined by in
which CF the message is produced. The Worst Case
Latency, assuming no queuing, for messages from
node i appears when the sender process response
time exceeds the nodes CF (CFi) in the current CC
(Figure 4). The Worst Case Latency then becomes

one CC. Best Case occurs when the sender process
response time is less than start of CFi (Figure 5).

C F 1 C F i C F N

C C

R e s p o n s e t i m e f o r
s e n d e r p r o c e s s

Figure 4: Worst case for message latency

C F 1 C F i C F N

C C

R e s p o n s e t i m e fo r
s e n d e r p r o c e s s

Figure 5: Best case for message latency

Delay for transferring the messages on the bus, that
is the duration of one CF, is determined by
hardware (currently 118 micro seconds) and the
delay for updating the receiver node’s DP-RAM
(currently < 4 microseconds).

APPLICATION DESIGN METHODOLOGY

The vast majority of tasks in a DACAPO application
are performing periodic control There is however a
need for support of sporadic events as well. A task
is further classified as either safety-critical or not
safety-critical.

A task is “mapped” onto DACAPO processes with
distinctive properties. A process may be executed
repeatedly, once in each fixed period of time. We
call such activity a red activity. On demand, or
sporadic tasks, are called blue activities.1 A
fundamental property in DACAPO is that this
important fundamental assumption that safety
critical tasks should be periodically executed and
the associated processes should be guaranteed to
terminate within its deadline. As a consequence, a
safety critical task is classified as a red activity and
should thus be performed periodically regardless of
the nature of the task in other aspects.

DACAPO uses a pre-run-time scheduling strategy to
guarantee that all red activity time requirements are
fulfilled while blue activities are scheduled during
run-time. All messages passing between nodes are
regarded as red activities in DACAPO. Since a
DACAPO task, is a formal description derived from a

1 The concept of red and blue activities was introduced in
[Base95]

SCHEDULING IN DACAPO PAGE 3

high level specification, a task may contain red as
well as blue activities. For example, a task that is
partitioned in two nodes may consists of two blue
activities, one in each node. They may be connected
via the message passing mechanism in DACAPO.
Since global message passing is a red activity (by
definition) the entire task is built from red as well as
blue activities (processes).

As another example of a heterogeneous task we may
consider the control of a car’s side window. Start of
motion of the side window elevator is triggered by a
blue process since it’s quit rare and certainly not
safety-critical. When the elevator has started it is
regarded as a red activity in order to prevent human
injury or other damages. In contrast to this consider
control of the "airbag" in a car which should be
monitored by a red activity since the latency of a
blue activity (if classified so) would eventually
cause the airbag to blow in case of an accident.

The above examples show that there is no obvious
connection between the events that invokes safety-
critical handling and other events by means of
periodically monitoring versus event triggered
monitoring. Thus events with a periodic nature do
not necessarily map onto a red activity and events of
sporadic nature can be regarded as red activities.
Rather, the examples suggests a design-heuristic
view of the Real-Time-System design. Each task is
analysed, structured and decomposed into processes
to which the systems resources are allocated, made
at an early state (before compile time) by the system
designer. (See for example [Tö95].)

After structuring and decomposition of the
applications entire set of tasks into red and blue
processes, this formal description is compiled.
During the compilation, program flow is analyzed
and machine code is merged with directives for the
scheduler. After translation the application is
assembled, analyzed with respect to time properties
and scheduled. The final schedule is then verified as
feasible and fed into a simulator capable of
visualizing the entire schedule.

Execution time analysis

Temporal aspects of the application should be
analysed during, at least, three major phases. During
the first phase, the analysis is performed at basic
block level. Sequential lists of machine instructions
are examined and an Estimated Worst Case
Execution Time (EWCET) is established for each
list. During the second phase a Timing Graph
[Nie91], representing the program timing properties
is established and reduced to obtain an EWCET for
the program. Finally, schedulability analysis is used
to verify the schedule of the entire application.
Analysing the timing behaviour of a program soon
becomes a non-trivial exercise for pipelined

processors and in the presence of cache memories.
Worst case assumptions often lead to useless results
due to their too pessimistic approach. However,
there exists methods by which we can reduce the
overestimation of pipelined processors execution
time and analyse dynamic program behaviour in
order to eliminate infeasible paths thereby reducing
the overestimation [Rts99].

Scheduling

A DACAPO system is always assumed to be resource
adequate with respect to all safety critical
processing. As a consequence, the Rate-Monotonic
Criteria [JoPa86] is generally satisfied and finding a
feasible schedule, is not the difficult part. The
Dacapo off-line scheduler is designed to meet the
special requirements emerging from typical control
applications. Sensors and actuators related to the
same control object may be connected to different
nodes in distributed systems. Delays are introduced
in the control loops, mainly, as a consequence of
communication delays. These might be minimised
to get a high control performance. The goal is then
to schedule processes that perform sampling to
complete just before the next free communication
frame (CF) mastered by the node in which the
process executes and to start the related actuation
process (or processes) as soon as the sample has
arrived. The time between sampling and actuation
for a given control loop is generally required to be
constant in consecutive samplings even if this
means it cannot be minimal. This is because the
control laws are designed with a specified delay
compensation. A varying control delay invalidates
the compensation and cause reduced performance.
Reduced performance and even instability is also
caused by variations in the sampling frequency,
jitter. Periodic processes for sampling and actuation
must therefore be scheduled to execute with a fixed
period. This may require a higher sampling
frequency to fit in the schedule and thus a modified
control law.

tperio dtsample

tdelay

tactuate

t
varying
control
delay

jitter

Figure 6: Scheduling limitations cause control delay
and jitter.

THE SCHEDULER

For all red activities, Dacapo uses off-line,
scheduling strategy to prepare a table (static
schedule, which determines when the associated
processes are executed. The table is followed with
the schedule repeated cyclically at run-time. Each

PAGE 4 SCHEDULING IN DACAPO

process that has periodicity requirements, has been
assigned a runtime period that is either equal to or a
multiple of another process. The duration of the
schedule is thus equal to the least common multiple
(LCM) of all the red processes in the application.
The LCM is constructed, during scheduling, to fit
the system cycle (SC) in Dacapo. After that, the
blue processes are added assigned a lower fix
priority than the red processes. Finally the resulting
schedule is analysed and visualised.

To prepare a schedule, the following major actions
must take place:

1. Assemble application specific tasks characte-
ristics

2. Decompose tasks into red and blue processes
3. Define groups of processes as “transactions”
4. Establish final periods for all red activities
5. Assign priorities, starting with red processes
6. Verify the schedule using fixed priority

scheduling analysis
7. Simulate and visualise the schedule output

For the analysis, in step 6 we have adopted previous
work at the University of York [Tin93] which we
modified and extended to fit the distributed Dacapo
architecture.

Current analysis does not allow a process to receive
more than one message. The workaround is to
introduce “abstract” processes (with utterly short
execution times) during the analysis and then assign
an offset, large enough, for the real receiver process
release time.

EXAMPLE:
Three different processors (in different nodes) are
allocated to processes Ps1, Ps2 and Pa. Pa receives
messages from Ps1 and Ps2.(Figure 7)

Ps1

Ps2

Ps1

Pa

Node 1

Node 2

Node 3

Mv1

Mv2

time

Figure 7:

Since we want the analysis to account for this
message passing, we introduce the “abstract”
processes Pr31 and Pr32. Pr31 receives the message
(Mv1) from Ps1. Pr31 is located in the same node as

the actual receiver process and the abstract process
Pr32 analogous. Then we form a “barrier” built of
these abstract processes and instruct the scheduler to
delay the actual receiver process until the barrier is
achieved.(Figure 8).

Ps1

Ps2

Pr31

Pr32

Ps1

Pa

Node 1

Node 2

Node 3

“barrier”

Mv1

Mv2

time

Figure 8:

Scheduler input
Input to the scheduler is provided as a text file with
directives. Some of these directives are designed
with application specific requirements in mind
while others can be recognised as quite general. We
will now turn to a brief description of those
directives that are of importance for the example in
the next section.

The scheduler starts with gathering information
about the system. The PROCESSOR-directive is
used to introduce a unique processor and connect
this processor to a physical node in the system.
There might be arbitrary number of processors in a
node:

PROCESSOR name physical_node

where:
• name, is a unique character string identifying the

processor
• physical_node, is an integer specifying the

actual target node in the Dacapo system

EXAMPLE:
The directives
PROCESSOR cpu1 1
PROCESSOR cpu2 2
introduce two processors called “cpu1” and “cpu2”
allocated to physical node 1 and 2.

SCHEDULING IN DACAPO PAGE 5

The PROC-directive details a process. It is
described by the following scheduler input:

PROC name cpu trans D C T J O

The attributes of a process are;
• name, a unique character string identifying the

process
• cpu, is a unique character string denoting the

processor allocated to the process
• trans, a unique character string denoting the

transaction to which the process belongs (further
discussed below)

• D, the process deadline
• C, the process estimated worst case execution

time
• J, the process release-jitter
• O, the process offset within the transaction

Each process is a member of one (and only one)
transaction. A transaction is specified by the
TRANS-directive as:

TRANS name T

where:
• name is a unique character string identifying the

transaction
• T is the transaction period in micro-seconds

EXAMPLE:
Two processes “pa” and “pb” with the same
periodicity (100 ms), the same deadline (10000
micros) and the same execution time (8000 micros)
where we want “pa” to execute 50 ms before “pb” is
expressed as:
....
PROCESSOR cpu1 1
TRANS t1 100000
PROC pa cpu1 t1 10000 8000 0 0
PROC pa cpu1 t1 10000 8000 0 50000
....

Message passing is introduced to the scheduler by a
MESSAGE-directive:
....
MESSAGE mID size FROM sID to dID
where:
• mID, is a unique character string identifying the

message
• size, is the number of bytes in the message
• sID, is the source of the message
• dID, is the destination of the message

In order to facilitate message passing of the type
“several to one”, two different directives is used.
The WAITBARRIER-directive instructs the
scheduler to introduce an offset, large enough to

await the latest process given in the corresponding
BARRIER-directive.

EXAMPLE:

BARRIER barr1 WAITS FOR pa pb pc

states that termination of processes “pa”, “pb” and
“pc” constitutes an earliest release-time for some
process or processes and the directive

WAITBARRIER barr1 BY pd pe END

identifies the processes “pd” and “pe” that have to
wait. Each barrier must be uniquely defined by a
character string such as “barr1” in this example.

We summarise the descriptions of these scheduler
directives by the following sample input file. This
input describes the first example in this paragraph:

-- SAMPLE1.SI
-- Models 2 to 1 message passing
tauCF 118
PROCESSOR cpu1 1
PROCESSOR cpu2 2
PROCESSOR cpu3 3
TRANS trans1 100000
TRANS trans2 100000
TRANS trans3 100000
PROC Ps1 cpu1 trans1 550 500 0 0
PROC Ps2 cpu2 trans2 620 600 0 0
PROC Pr31 cpu3 trans3 2000 1 0 0
PROC Pr32 cpu3 trans3 2000 1 0 0
PROC Pc3 cpu3 trans3 3000 700 0 0
MESSAGE Mv1 2 FROM Ps1 TO Pr31
MESSAGE Mv2 2 FROM Ps2 TO Pr32
BARRIER barr WAITS FOR Pr31 Pr32 END
WAITBARRIER barr BY Pc3 END

Scheduler output is illustrated in Figure 9.

Figure 9

In the next paragraph we will turn to a more
complex example and further describe and discuss
the tool.

PAGE 6 SCHEDULING IN DACAPO

SCHEDULING EXAMPLE

The Computational Model
Our sample model for safety-critical distributed
control is a car. There are five nodes in the system.
One node is located near each wheel and one node
is located near the instrumental panel. Each wheel-
node has a sensor, indicating the angular velocity of
the wheel and an actuator that affect break pressure.
The drivers break pedal is monitored by the
instrumental node (Figure 10).

Dacapo busnode 5
(panel)

node 1
(left front

wheel)

node 2
(right front

wheel)

node 4
(left rear
wheel)

node 3
(right rear
wheel)

Figure 10: Computational Model

We further make the following assumptions:
• In each wheel-node the velocity is sampled

periodically.
• Each sample is distributed throughout the

system.
• In each wheel-node, there is a process that

computes a new value for the actuator. This
value is based on samples from every node, i.e.,
other wheel’s velocity as well as the break pedal
pressure.

• Sampling and actuation should start
concurrently, at the same time, in the wheel
nodes.

We denote the sampling processes “PSx”, where
“x” stands for the node, the computation processes
“PCx” and the actuation processes “PAx”
analogous. Finally we denote the sampling process
in the instrumentation node “PB”. Figure 11
illustrates how the nodes are allocated to processes
as well as the process communications

For the execution times we do the following general
assumptions:
• Sampling processes are short. We assume

different execution times for front and rear
wheel sampling processes (perhaps due to
different types of sensors).

• The computation processes are relatively long,
but not equal, due to unique control algorithms
for each wheel.

• The actuation processes are short and their
execution time equals.

• All processes have the same periodicity (100
ms)

node PS4

PS3

PS2

PS1

PC4

PC3

PC2

PC1

PA4

PA2

PA3

PA1

node

node 2

node

node 5 PB message (to
each node)

message
(to each

Figure 11: Process allocation and
interprocess communication

SCHEDULING IN DACAPO PAGE 7

We summarise our assumptions about worst case
execution times and dependencies in the following
scheduler input:

-- 4COMM.SI
-- Models 4 to 4 communication
tauCF 118
PROCESSOR cpu1 1
PROCESSOR cpu2 2
PROCESSOR cpu3 3
PROCESSOR cpu4 4
PROCESSOR cpu5 5
TRANS trans1 100000
TRANS trans2 100000
TRANS trans3 100000
TRANS trans4 100000
TRANS trans5 100000
PROC Ps1 cpu1 trans1 1200 900 0 0
PROC Pr11 cpu1 trans1 3000 1 0 0
PROC Pr12 cpu1 trans1 3000 1 0 0
PROC Pr13 cpu1 trans1 3000 1 0 0
PROC Pr14 cpu1 trans1 3000 1 0 0
PROC Pr15 cpu1 trans1 3000 1 0 0
PROC Pc1 cpu1 trans1 10000 7000 0 0
PROC Pa1 cpu1 trans1 1000 500 0 9000
PROC Ps2 cpu2 trans2 620 600 0 0
PROC Pr21 cpu2 trans2 3000 1 0 0
PROC Pr22 cpu2 trans2 3000 1 0 0
PROC Pr23 cpu2 trans2 3000 1 0 0
PROC Pr24 cpu2 trans2 3000 1 0 0
PROC Pr25 cpu2 trans2 3000 1 0 0
PROC Pc2 cpu2 trans2 13000 7000 0 0
PROC Pa2 cpu2 trans2 1000 500 0 9000
PROC Ps3 cpu3 trans3 800 700 0 0
PROC Pr31 cpu3 trans3 3000 1 0 0
PROC Pr32 cpu3 trans3 3000 1 0 0
PROC Pr33 cpu3 trans3 3000 1 0 0
PROC Pr34 cpu3 trans3 3000 1 0 0
PROC Pr35 cpu3 trans3 3000 1 0 0
PROC Pc3 cpu3 trans3 13000 6500 0 0
PROC Pa3 cpu3 trans3 500 500 0 9000
PROC Ps4 cpu4 trans4 800 700 0 0
PROC Pr41 cpu4 trans4 3000 1 0 0
PROC Pr42 cpu4 trans4 3000 1 0 0
PROC Pr43 cpu4 trans4 3000 1 0 0
PROC Pr44 cpu4 trans4 3000 1 0 0
PROC Pr45 cpu4 trans4 3000 1 0 0
PROC Pc4 cpu4 trans4 13000 7500 0 0
PROC Pa4 cpu4 trans4 500 500 0 9000
PROC Pb cpu5 trans5 1000 500 0 0

BARRIER allrec1 WAITS FOR Pr11 Pr12 Pr13 Pr14 Pr15 END
WAITBARRIER allrec1 BY Pc1 END

BARRIER pa1_ready WAITS FOR Pc1 END
WAITBARRIER pa1_ready BY Pa1 END

BARRIER allrec2 WAITS FOR Pr21 Pr22 Pr23 Pr24 Pr25 END
WAITBARRIER allrec2 BY Pc2 END

BARRIER allrec3 WAITS FOR Pr31 Pr32 Pr33 Pr34 Pr35 END
WAITBARRIER allrec3 BY Pc3 END

BARRIER allrec4 WAITS FOR Pr41 Pr42 Pr43 Pr44 Pr45 END
WAITBARRIER allrec4 BY Pc4 END

BARRIER Pc_ready WAITS FOR Pc1 Pc2 Pc3 Pc4 END
WAITBARRIER Pc_ready BY Pa1 Pa2 Pa3 Pa4 END

MULTICAST Mv1 2 TO PROC Pr11 Pr21 Pr31 Pr41 FROM Ps1
MULTICAST Mv2 2 TO PROC Pr12 Pr22 Pr32 Pr42 FROM Ps2
MULTICAST Mv3 2 TO PROC Pr13 Pr23 Pr33 Pr43 FROM Ps3
MULTICAST Mv4 2 TO PROC Pr14 Pr24 Pr34 Pr44 FROM Ps4
MULTICAST Mv5 2 TO PROC Pr15 Pr25 Pr35 Pr45 FROM Pb

We introduce the “abstract” processes “PrXX” so that the analysis will account for message delays.

Ps1 Pr11

Pr12

Pr13

Pr14

Pc1 Pa1

“abstract” processes

barrier

to node 2

to node 3

to node 4

from node 2

from node 3

from node 4

Figure 12: “Abstract” processes are introduced in all nodes. Only node 1 is shown here (for clarity)

All transactions have the same periodicity (100 ms)

One processor in each physical node

Duration of one communication frame (CF)

“Abstract” processes “PrXX” introduced to facilitate
“several to one” message passing

Definition of messages

“BARRIER” and “WAITBARRIER”’s for the
message passing

PAGE 8 SCHEDULING IN DACAPO

After scheduling, analysis and simulation we obtain
the following output:

Figure 13: Output received from the scheduler

Bus allocation is illustrated by coloring the CF’s
with the same color (pattern) as the processes to
which the slots are allocated

Figure 14: Bus allocation

From Figure 14 we may observe that three of the
computation processes have inherited a too
pessimistic offset for release. This is due to the
Worst Case Assumptions concerning the bus-
allocation that is done during the analysis. Since
Bus Allocation is not known (at that time) during
the analysis we have to assume (at least) one
Communication Cycle as the response time for the
message. This however, is not generally a good
estimation as implied by Figure 14.

SUMMARY, CONCLUSIONS AND

FURTHER WORK

In this report we have given an overview of the
communication system architecture in Dacapo. We
illustrated schedulability analysis with focus on
message passing and synchronisation of processes in
different nodes.

The results presented in this report was obtained
with an early version of the scheduler/analyzer. The
tool may be improved upon in several ways; for
example, it is time consuming and error pronous to
prepare scheduler input manually. The task
specification should be designed to allow straight
forward (automatic) decomposition and allocation.
Priority assignments should be derived more or less
directly from the specification. Final periods should
be checked against the specification. The final
schedule may be improved upon by introducing
multi-pass scheduling/analysis. When all sender-
processes has been scheduled and the bus-allocation
is performed (message arrival time is determined)
we should move processes, reallocate commu-
nication slots and invoke another pass. This would
significantly reduce the currently pessimistic worst
case latency for a message.

We should also construct a significantly larger and
more realistic task specification in order to further
test and improve the basic ideas behind the Dacapo
scheduler.

REFERENCES

[Bri93] Bridal, O. et alt, “Dacapo: A dependable
distributed computer architecture for control of
applications with periodic operation”, Tech.
Report 165, Department of Computer
Engineering, Chalmers University of
Technology, Göteborg, 1993.

[Base95] Hansson,H. ,Lawson,H.W.,CUT, Strömberg,
M., and Larsson, S, Mecel AB, “BASEMENT®:
A Distributed Real-Time Architecture for
Vehicle Applications”, Proc. of the IEEE Real-
Time Technology and Applications
Symposium (RTAS’95), IEEE Computer
Society Press, Chicago, May, 1995.

[Sne95] Snedsböl, R. and Lönn, H. “Timely fault
tolerance in responsive systems for distributed
control” , Department of Computer
Engineering, Chalmers University of
Technology, Göteborg, 1995

[Rts99]
 Thomas Lundqvist and Per Stenström: "An

Integrated Path and Timing Analysis Method
based on Cycle-Level Symbolic Execution"
Real-Time Systems, 17 (2/3):183-207,
November 1999.

[Tör95] Törngren, M. “Modelling and design of
distributed real-time control applications”,
PhD thesis, DAMEK Research group,
Department of Machine design, Royal Institute
of Technology, KTH, Stockholm, 1995.

[Tin93] Tindell, K.,”Fixed priority scheduling of hard
real-time systems”, PhD thesis, Department of
Computer Science,University of York, 1993.

Sampling processes

Computation processes

Actuator
processes

Bus Communication

pessimistic estimated offset

