

Time and event triggered communication
scheduling for automotive applications

ROGER JOHANSSON

CHALMERS LINDHOLMEN UNIVERSITY COLLEGE
Göteborg, Sweden 2004

Report No.17

 2

REPORT No. 17

Time and event triggered communication
scheduling for automotive applications 1

ROGER JOHANSSON

Department of Electrical and Computer Engineering
Chalmers Lindholmen University College

roger@chl.chalmers.se

Chalmers Lindholmen University College

Göteborg, Sweden, September, 2004

1 This work has been conducted within the Centre of Excellence CHARMEC (CHAlmers
Railway MEChanics) – a VINNOVA Competence Center under the “Programme area 4, SD3.
Computer control of braking systems for freight trains”

 3

Time and event triggered communication scheduling for automotive
applications
ROGER JOHANSSON

 ROGER JOHANSSON, 2004

Report – Time and event triggered communication scheduling for automotive applications

Report no. 17

ISSN 1404-5001

Chalmers Lindholmen University College

P.O. Box 8873

SE-402 72 Göteborg

Sweden

Telephone + 46 31 772 1000

Chalmers Lindholmen University College

Göteborg, Sweden, September, 2004

 4

Abstract

The CAN protocol has become the primary choice of protocol for real time communication
sub systems within automotive electronics applications by a number of European car and
heavy truck manufacturers. This is despite the fact that CAN, according to many opinions, is
unsuitable for distributed real-time applications with hard real-time requirements due to the
protocol’s bus contention. This mechanism is likely to introduce jitter, which sometimes is
highly undesirable regardless of application criticality. The latest protocol specification
TTCAN (Time Triggered CAN), addresses exactly this problem. With the TTCAN extension
the CAN protocol has matured. It now support time-triggered operation as well as priority
based event triggered message handling. In this paper, we will present a method for message
scheduling and analysis in real time systems using TTCAN/CAN hybrid communication
systems. We have applied our model and used our scheduling method on a non-trivial set of
messages designed to be representative for a real application. The message set consists of 65
different messages, divided into three classes based on their respective timing requirements.
We describe our method as well as our results. Our primary objective with this paper is to
provide the reader with new ideas and concepts addressing application-derived problems in
real-time communication scheduling. We concentrate on heuristic methods to solve
engineering problems rather than formal methods to solve general scheduling problems.

Keywords:

Hard real-time requirements, automotive electronics applications, heuristic scheduling

 5

1 INTRODUCTION
When designing embedded systems for automotive applications a common engineering
approach is to integrate as much functionality as possible into as few hardware computer
nodes as possible. Consequently, a cluster of nodes is likely to exchange messages with a
broad range of timing requirements via the communication bus. Over time, the Controller
Area Network (CAN) protocol has become the primary choice of protocol for real time
communication sub systems within automotive electronics applications by a number of
European car and heavy truck manufacturers. There are currently numerous of CAN-
implementations in a wide range of automotive applications in operation, and has so been,
for several years. It is a common opinion that only time triggered protocols can guarantee
response times and minimize message jitter delay at the same time. The Time Triggered Can
(TTCAN) extension to the CAN protocol is designed to meet such requirements.

1.1 The CAN protocol

The Controller Area Network (CAN) [1] is a serial communications protocol, which supports
distributed real-time control applications. CAN is a multi-master, broadcast protocol with
collision detect and a resolution mechanism based on message priorities. I.e. each message
on the CAN bus has a unique priority and is only transmitted from a single node on the bus.
In particular CAN is used in higher layer protocol for automotive applications, e.g. SAE
J1939 protocol [2] that has become a ‘de facto’ standard for commercial trucks
manufacturers throughout the world. Another example is Volcano [3] used by Volvo Cars in
recent car models. Thus, CAN is used in automotive electronics such as engine control
modules, transmission control modules, anti brake-lock systems and anti skid systems, just to
mention a few, with bit rates up to 1 Mbit/s.

It has sometimes been argued that CAN is unsuitable for dependable, distributed real-time
applications due to the protocol’s bus contention. I.e. the protocol is unable to guarantee
deadlines for messages transmitted on the bus [4]. Others have demonstrated that this is only
a matter of how the application is implemented and that the protocol easily can be applied on
the assumption that a carefully designed static schedule designed and analyzed pre run-time,
is used, see for example references [5] and [6]. Right or wrong, the CAN protocol speci-
fication has evolved, from its initial release in 1986, also known as ‘Standard CAN’ through
the extended protocol definition in 1991, ‘Extended CAN’, and recently a new specification
where, in particularly, time triggered communication issues are addressed.

1.2 TTCAN

Time Triggered Can (TTCAN) is specified as an additional layer to the CAN standard, se
reference [7]. There are two possible levels in TTCAN, level 1 provides time-triggered
operation using a cycle time, and level 2 provides increased synchronization quality, global
time and external clock synchronization. In both levels, timing features are based on local
clocks from which each node derives its opinion of the Network Time Unit (NTU). Each
node is allowed to have a slightly diverging view of NTU. Synchronization is accomplished
by means of a reference message that starts a basic cycle. Thus the length of a basic cycle
determines maximum allowed clock drifts in the nodes attached to a TTCAN network. When
all nodes are synchronized, any message may be transmitted at a specific time slot, without
competing with other messages for the bus. The loss of buss arbitration is thus avoided and
any latency time or jitter becomes predictable.

Membership at application level is supported by protocol implicit atomic broadcast property.
The protocol’s error handling assures that a message is either received correctly by all
controllers or, in the case that at least one controller fails to receive the message; an “error
frame” is transmitted by that controller, thus destroying the remaining message. The result is
that no other controller will receive a correct message either. TTCAN provides hardware

 6

supported global time while software implemented clock synchronization is required in a
standard CAN system. .

With the TTCAN extension the CAN protocol has indeed matured. It now support priority
based event triggered message handling as well as time-triggered operation. Furthermore,
there are numerous of CAN-implementations in a wide range of real-time applications in
operation, and has so been, for several years. In particular the new extension to the CAN
protocol might be of interest within new as well as existing applications addressed by the
automotive industries.

1.3 Related Work

There is a substantial amount of work done on CAN from different aspects and even more on
real time systems and scheduling methods. Stankovic et. al. (reference [8]) provides an
overview of classical scheduling results for real time systems. This is good background
reading for anyone who wishes to become acquainted with this field.

Our CAN communication scheduling analysis is based on Rate Monotonic Scheduling
Analysis, which was introduced by Liu and Layland in reference [9]. Sha et. al., reference
[10], presents a matured framework with a generalized approach on which work in references
[5] and [6] was based.

Methods that assumes a worst case scenario often tends to give overly pessimistic results. In
reference [11] a method, striving at reducing overestimations is presented.

Real time communication scheduling analysis sometimes faces the problem of handling
unreliable communication media. In reference [12] a communication fault hypothesis is used
and a method for handling analysis in the presence of faults is presented.

Reference [13] gives an introduction to the use of TTCAN in practice. A scheduling method
where jitter is minimized in TTCAN networks is presented in reference [14].

1.4 Objectives and outline

Our primary objective with this paper is to provide the reader with new ideas and concepts
addressing application-derived problems in real-time communication scheduling. We
concentrate on heuristic methods to solve engineering problems rather than formal methods
to solve general scheduling problems. This approach should make this paper of interests
particularly for experienced engineers with focus on applied research working within this
area. The text may also serve as an introduction to TTCAN scheduling for anyone interested,
but still not familiar to the subject.

This paper is outlined as follows; in chapter two, we review an important result from earlier
efforts on the use of CAN in hard real time applications and summarize a common
computational model that applies to CAN bus message scheduling. In chapter three, we
introduce an extended model, which adds the concepts of Time Triggered CAN, resulting in
our new “hybrid” method. In chapter four, we apply our new method on a non-trivial
message set. In chapter five we summarize our results, present our conclusions and give
some suggestions on future work.

 7

2 BASIC COMPUTATIONAL MODEL
This entire chapter is based on results from previous work on fixed priority scheduling, in
particular, we will review the adaptation of rate monotonic scheduling analysis for CAN
based communication system found in reference [6]. Readers are supposed to have a brief
knowledge of the CAN protocol properties. Readers familiar with CAN as well as work
described in [6] may skip this chapter without loss of continuity.

The ”response time” of a CAN-message is considered to be the time interval from that the
message was eligible for transmission until the time it was acknowledged and thus
successfully received by any (i.e. all) other node (nodes) on the CAN-bus. The response time
thus constitutes the total occupation of the bus for a successful transmission. The message
does not have to be repeated in any sense and will thus not demand any further bus resource.
Each successful transmission is also considered as a successful atomic broadcast since the
CAN-protocol insures that a single acknowledge guarantees a through out correct reception
of the message (otherwise an error frame would have disturbed the message). The “delivery
time” of a CAN message is considered to be the time interval from that the message is
delivered by an application in a node until it becomes available for other application in other
nodes.

For each message we (a priori) must have established:
• A unique priority m, i.e. the CAN identifier.
• Length of the message m.
• The m message period time p.

We consider the CAN-bus to be an indivisible resource i.e. once allocated it cannot be
shared. (This is most appropriate applied to the CAN-protocol due to its bus arbitration).

We furthermore assume a constant transmission time, this is also straightforward since we
know each message length (number of bits in the message) as well as the CAN bus baud rate
(bits/second).

A message transmission is “non-pre-emptive” i.e. once its started it’s guaranteed to complete
(also follows from the CAN-protocol). The schedule is determined by CAN message
identifiers a priori and we use Fixed Priority Scheduling analysis to compute the response
time of each CAN message.

 The total message delivery time Dm for a message m is the time from which it has been
disposed by an application to a CAN controller in the sending node, until the message is
available for another application in the receiving node. The message delivery time is then
contributed to by:
• Time for preparing (formatting) the message for transmission on the CAN-bus.
• Queuing, i.e. waiting time due to lost bus arbitration.
• Transmission time depends on the message length and the bit rate.
• Time for unpacking (de-format) the message and notify the application in the receiver

node.

Figure 2.1: Message delivery time

Dm

formatting de-formatting Queuing Transmission

Rm

 8

While the time for preparing and unpacking normally is considered constant (depending on
the actual CAN controller and operating system) and the transmission time may be calculated
for each message, the queuing time depends on the actual schedule. Then, for a message m,
in a set (schedule) of N periodic messages (m = 1..N) with period pm and transmission time
Tm the message response time Rm is bounded by:

Rm = Qm + Tm

where:

• Qm is a queuing time for message m as a result of higher priority messages
transmitted and thus delayed the message m.

• Tm is the transmission time for message m.

Note that messages with Rm > pm are not guaranteed to be transmitted.

The queuing term is illustrated by the following example; assume a time interval t. where
three messages, M1, M2 and M3 m =1,2 and 3, are to be transmitted from different nodes. It
can be shown that the worst-case queuing time occurs if all three messages arrive (become
eligible for transmission) at the same time. Further, assume that message 1 has the highest
priority and message 3 has the lowest priority. Message 1 will not exhibit any delay from
queuing since the CAN-bus arbitration mechanism will resolve the bus conflict in favor to
message 1.

Figure 2.2: Queuing, awaiting transmission on the CAN bus

In general, the queuing for message m is determined by:

Equation 2.1

• Tj is the transmission time for a higher priority message j and pj is the period time of
a higher priority message j.

I.e. during examining of all higher priority messages (j ⊂ hp(m)), where: Q1 = 0, i.e. highest
priority message can not be delayed by queuing, Equation 2.1 will converge to the solution
giving a maximum queuing time.

Due to the non pre-emptive property of a CAN message transmission, we also has to consider
blocking, which causes additional queuing delay imposed from a message with lower
priority. Consider the following situation where a high priority message suffers delay due to
such blocking.

1 2 3

t

T1

Q2+T2
Q3+T3

j
mhpj j

m
m T

p
Q

Q ∑
∀ 











=

1

)(:

 9

Figure 2.3: Queuing delay due to blocking

Figure 2.3 illustrates message blocking. The situation arises because of a low priority
message become eligible for transmission just before release of a high priority message.
Since the transmission is non pre-emptive, the entire message is transmitted and delays the
message delivery time R1,2 (second invocation of message 1 transmission). We do however
observe that the high priority message can only be blocked by at most one low priority
message since during the next bus arbitration; the bus will be allocated to the high priority
message, which will be immediately transmitted. Hence, we extend the queuing term with a
blocking term defined as:

Equation 2.2

I.e. the blocking term Bm for message m is obtained by examining all lower priority messages
and selects the one with greatest transmission time T. We now arrive at our final expression
for message transmission time:

Equation 2.3

Where:

• Bm is the blocking time for message m as a result of interference from lower priority
messages and is defined by Equation 2.2.

• Qm is the queuing time for message m as a result of higher priority messages
transmitted and thus delayed the message m and defined by Equation 2.1.

• Tm is the transmission time for message m.

We will use this result in the next chapter.

1
medium priority

low
priority

p1

R1,1

1

R1,2

}{)()(max mlpkTB km ∀=

mmmm QTBR ++=

 10

3 TTCAN COMPUTATIONAL MODEL
In this chapter, we will extend the previous computational model. We do this to provide for
the implementation of time-triggered communication. Since this is an extension, we still
support the earlier model and we end up with a communication subsystem, which efficiently
supports time triggered operation as well as event triggered operation. We first describe the
features known as time-triggered CAN. We then define different real time requirements
designed as to support the semantics and requirements for a wide range of real time
applications. Finally, in this chapter, we describe our scheduling method in detail.

3.1 Time Triggered CAN

Besides the features of CAN, which is a Collision Detect Collision Resolution (CD/CR)
protocol, TTCAN also supports static scheduling in predefined time slots. Another
enhancement with TTCAN from the CAN protocol is support for handling global time. The
protocol comprises special slots devoted solely to synchronization of every TTCAN-node in
the network. Time is measured with a granularity of Network Time Units (NTU) that is
determined from the configuration of the actual system.

A time triggered communication schedule is always determined a priori, off line. During run-
time, all nodes within the network have complete information about the schedule. Messages
are periodic and there exists a least common period where all messages has been transmitted
due to their respective periodicity. This reflects in the TTCAN system matrix, divided in
basic cycles. The number of basic cycles is configuration dependent and the common period
of all messages shall always correspond to the system matrix. Each basic cycle starts with a
reference message that is used for synchronization purposes. Apart from the reference
message, there are three different types of time windows in the system matrix:

• Exclusive, this window type is used for a statically scheduled message.

• Arbitration, this window type is used for ordinary CAN communication.

• Free, this window type is reserved for future use. This provides for simpler future
integration of nodes where these windows might come to use.

Figure 3.1 Example: TTCAN system matrix with four basic cycles

There are two possible levels of operation. Level 1 provides time triggered operation while
level 2 additionally provides increased synchronization quality, global time and external
clock synchronization. In both levels all timing features are based on a local time base, the
local time. Ideally, all nodes in the network shall measure their local times using the same
time unit (NTU), in reality a particular nodes view of NTU might differ marginally from the
common view due to slight differences in local oscillators.

Basic cycle 0

Basic cycle 1

Basic cycle 2

Basic cycle 3

Transmission Columns

time windows

 11

3.2 Overview of real time communication requirements

In this paragraph we will give some presumptions intended to clarify the terminology we are
about to use. Although quite formally expressed, they should not be confused with
definitions, since they lack the completeness of real definitions.

• A task is a sequence of ordered machine instructions carried out by a microprocessor.
Each instruction takes a finite amount of time to be executed. A task may interact with
other tasks by means of message passing or with the surrounding environment by means
of input-/output- devices.

• A message carries information between tasks, the message initiator (sender) and message
receiver(s). The message passing mechanism is responsible for delivering the message
from its initiator to all intended receivers.

• A message is said to be periodic if it is initiated with regular equidistant time intervals.

• A message is said to be sporadic if it is initiated at least once, and if repeated, generally
with no regular equidistant time intervals

• All messages passes through an indivisible resource, called the bus.

• When two or more messages contents for bus access the arbitration mechanism decides
the order in which the messages will gain access to the bus. The order is determined by
pre assigned message priorities.

• We assume that there is a global time base denoted NTU (Network Time Unit) which is
consistent through all nodes in the network.

3.3 The Scheduling activities

The scheduling process is divided in three major phases:
• Structuring, the entire set of messages is analyzed. Messages are assigned to a category

depending on application-derived requirements. Within two of the categories, a unique
message priority is assigned to each message in the category.

• Simulation, a finite amount of communication cycles is simulated, and data from the
simulation is assembled. This means that message response times are either calculated or
estimated depending on message category.

• Analysis, the resulting schedule is analyzed by merging data from the simulations with
criteria for a final schedule. This phase will flag for messages that are required to, but not
guaranteed to meet their deadline. It will also point out potentially discriminated
messages, i.e. messages that are not required to meet a certain deadline but are unlikely
to be scheduled at all during run-time.

We will now turn to a more thoroughly description of these activities

Structuring

The task set is analyzed with respect to all messages passing. Depending on task criticality as
well as timing requirements, the messages fall into exactly one of the following categories:

Hard real time – This category is devoted for messages that exchange data between
tasks with highest priorities. Although this mostly applies to periodic messages this
is not always the case. A sporadic message might still fall into this category presume
that it is of vital importance for the system. Each message will be assigned a pre-
scheduled exclusive time window and each instance (repetition) of the message is
guaranteed to get sufficient bandwidth for its requirements. Anticipated jitter is
neglect able.

 12

Firm real time – This category is for messages, which still have to be guaranteed a
bounded response time but where a certain amount of jitter is tolerable. These
messages are assigned high CAN priority and they are scheduled in arbitration time
windows. All messages should be guaranteed to meet their deadline.

Soft real time – Messages that falls into this category have no strict timing
requirements. These messages are assigned low CAN priority and they are scheduled
in arbitration time windows. In most applications, where bus utilization is high,
response times for these messages can only be calculated probabilistic.

The structuring activity aims at assigning each application message according to criteria
above to exactly one group.

We consider a message set M where each member has the following properties:
Mi , message identifier i, which is unique in the set
Mc, message class, which is exactly one of h (hard real time), f (firm real time) or s
(soft real time)
Mp, message period time, expressed as an integer in the global time base.
Me, message delivery time, length of message expressed as an integer in the global
time base.

A message is said to be defined when all these properties has been assigned to it.

Besides from establishing message properties it is necessary to provide means for defining
relations between messages. In general the predecessor and successor relational operators
shall be valid within the system matrix. As an example (See Figure 3.2 below), consider an
application where a physical sensor is attached to node 1, the sensor is sampled, the value is
checked in this node and then passed to two other nodes in the network (2 and 3) in message
S. Calculation based on the sensor value is now performed in nodes 2 and 3, results are
transmitted, messages C1 and C2, to node 4, which establishes the final value and then
transmits it to the actuator node 5, (message A).

Figure 3.2: Messages ordered by relational operators

A complete analysis of the example is of course far more complex than this but we can
clearly see the need for expressing interrelations between messages rather than only focus on
message properties.

M(S) pred {M(C1) AND M(C2) }

M(A) succ {M(C1) AND M(C2)}

C1 C2 A S

1

3

2 4 5

node

message

t

 13

3.4 Allocation to Mf

From structuring we have:

M : {Mh, Mf, Ms}

Assume that Mh is defined.

We will now construct the Matrix Cycle for a schedule of Mh.

A feasible schedule must fulfil:

LCM(Mh
p) = x 2n (Equation 3.1)

where:
 LCM denotes the Least Common Multiple period for all messages in the set.
 x denotes the basic cycle length in a TTCAN schedule matrix cycle.
 n denotes the TTCAN schedule basic cycle.

A feasible solution must also adhere to hardware constraints. We can not expect that a
hardware implementation supports arbitrary x and n, so we stipulate that:

Equation must be solved with the following hardware constraints:
Hwc1: 1 = x = 2y
Hwc2: 0 = n = k

Hwc1: The basic cycle length must never exceed 2y NTU’s. This is from the fact that any
basic cycle length should be held in a hardware register, the register is limited to y bits.

Hwc2: The number of basic cycles must be a power of 2; this is derived from the TTCAN
specification, and must never exceed 2k, where k is a basic cycle counter held in a hardware
register limited to k bits.

The maximum number of columns in a matrix cycle is determined by hardware in terms of
Triggers. One Trigger is allocated to each time window. Hardware is supposed to provide a
limited number of Triggers for each basic cycle, thus we introduce a third hardware
constraint:
Hwc3: Tr = m

where m is the maximum number of possible Triggers during a basic cycle in the schedule.

As an example, the following hardware constraints apply to the BOSCH TTCAN_EC module
(see reference [15]).

Hwc1: 1 = x = 216
Hwc2: 0 = n = 6
Hwc3: Tr = 32

There might still be several solutions to Equation 3.1 that fulfils hardware constraints and in
theory we might arbitrarily choose one. We now establish two different strategies for
determination of the matrix cycle:

Strategy 1:

Minimize the number of basic cycles at the cost of an increased basic cycle length.
This will require more columns in the system matrix and thus maximizing the
required number of triggers. This can be suitable for small message sets and will
generally produce a comprehensible schedule.

Strategy 2:

Minimize the basic cycle length at the cost of more basic cycles. This will require
fewer columns, since this also distributes the use of Triggers through several basic
cycles. Thus, improve possibility on a feasible schedule for large message sets.

 14

EXAMPLE 3.1 Strategy 1

Assume we want to construct a schedule for TTCAN_EC and the message set Mh = (M1, M2 ,
M3) with the following properties, all expressed in Network Time Units (NTU):

M1
p = 1000, M1

e = 168
M2

p = 2000, M2
e = 184

M3
p = 3000, M3

e = 216

I.e. the set consists of three messages with respective period times 1000, 2000 and 3000 and
with delivery times 168, 184 and 216 NTU’s.

It’s trivial to find:

LCM(M1, M2 , M3) = 6000.

so we have from Equation 3.1:

 6000 = x 2n

Minimising the number of basic cycles means n = 0, so x = 6000. We establish that both
Hwc1 and Hwc2 are fulfilled.

Total number of triggers for a set of N messages in the case of a single basic cycle can be
easily calculated as:

of triggers =∑
=

N

i iM
)LCM(

1

M

in this case:

of triggers = 11
30
60

20
60

10
60

=++

Thus, choosing Strategy 1 leads to a solution where we have:
1 basic cycle with 11 Triggers
Matrix cycle length is 6000 NTU’s.

Figure 3.3 illustrates a feasible schedule using a single basic cycle. Note: time axis is not
proportional, unused transmit columns are greyed.

 Basic Cycle Triggers
0 168 352 1000 2000 2168 3000 3352 4000 4168 5000

M1 M2 M3 M1 M1 M2 M1 M3 M1 M2 M1

Figure 3.3: Example 3.1 feasible schedule using a single basic cycle

End of EXAMPLE 3.1.

EXAMPLE 3.2 Strategy 2

Now, assuming the same preconditions as in example 3.1, applying Strategy 2 leads us to the
following problem:

Solve equation:
 6000 = x 2n

when n is maximised (= 6) and x is an integer value less than 216.

 15

The solution is straightforward2:
 n = 0: 6000 = x 20 ⇒ x = 6000
 n = 1: 3000 = x 21 ⇒ x = 3000
 n = 2: 1500 = x 22 ⇒ x = 1500
 n = 3: 750 = x 23 ⇒ x = 93.75
 n = 4: 93.75 = x 24 ⇒ x = 5.859...
 n = 5: 5.859= x 25 ⇒ x = 0.1831...
 …

We find that this choice yields a schedule with cycle length of 1500 NTU’s using 22 = 4
basic cycles.

Basic
cycle

1
2
3
4

0
-

3000
-

168
-
-
-

352
-

3352
-

-
2000

-
5000

-
2168

-
-

-
-

4000
-

1000
-

4168
-

 Trigger
Information

Minimum
Triggers

1 M1 M2 M3 M1 4
2 M1 M2 2
3 M1 M3 M1 M2 4
4 M1 1

Figure 3.4: Example 3.2 feasible schedule using a minimal basic cycle length

End of EXAMPLE 3.2

Now we have shown a simple but yet efficient method for constructing a feasible matrix
cycle using message properties class, period and delivery time. We have seen that the matrix
can be constructed in several ways as long as Equation 3.1 is satisfied. Thus, the schedule for
a set of given messages, can be implemented in TTCAN in different ways still obeying the
standard. The real time properties are of course consistent across different choices, however,
due to hardware constraints as well as properties of remaining message sets (Mf and Ms)
there are still some questions to be answered relating to the actual allocation in the matrix
cycle.

The actual allocation of NTU-slots to messages within the matrix cycle is arbitrary from Mh
message set point of view. The TTCAN protocol brings timeliness with very small jitter.
There are however, other considerations to take into account. The message set Mf comprises
ordinary CAN messages exhibiting requirements on deadlines and desires of minimal jitter.
Our choice of NTU-allocation to Mh messages will have impact on this. We can for example
stuff all Mh messages in the beginning of the first cycle as we did in our previous examples;
we call this dense allocation. The case for this choice could be a distributed control
application where sensor values are gathered from different nodes and broadcasted on the
bus. These values should be made public as soon as possible to minimize control delay and
dense allocation of such messages should therefore be preferable.

On the other hand, this will create long intervals where all messages that use Arbitration
slots are blocked. Since we might anticipate messages from the Mf class with deadline
requirements this packing might eventually lead to violation of such requirements as
illustrated by Figure 3.5 below.

2 It is sufficient to stop iteration after determination of the case n=3 since: For(A,k,n integer
numbers = 0); if A 2–n is fractional then for any integer k such that
k > n ; A 2-k is fractional. Proof is left as a mathematical underpinning.

 16

M1 M2 M3 M1 M1 …

Figure 3.5: Dense allocation leads to large blocking factors

Another allocation strategy would be to spread out all time triggered messages as much as
possible, we call this sparse allocation. This would result in shorter blocking periods, see
Figure 3.6.

M1 M2 M1 M3 M1 …

Figure 3.6: Sparse allocation of time-triggered slots

Finally, applications may impose in-time requirements. Again consider Figure 3.2, this
example implies that there would be a demand for a distinct time offset between the message
passing to guarantee that nodes have completed computations and actually delivered their
messages to the controller. We call this demanded allocation. The current scheduler
implementation implements demanded allocation by means of release time directives.

The choice of a good allocation strategy may be crucial for some message sets while it is of
less importance in others thus it is indeed dependent on the application. Regardless of our
choice of allocation strategy we need a third step, where we analyze our solution in order to
find out whether or not all deadlines in the Mf set are met.

3.5 Analysis of message set Mf

TTCAN allocation activities will leave a number of arbitration slots. Interleaving of these
slots depends on how the allocation was made. These allocation slots are all available for
firm and soft requirements CAN messages. Since all messages in the firm class have been
assigned higher priority, we concentrate our analysis on this class. The only exception is that
we must include soft messages when we determine the blocking factor.

We can reuse results showed in the previous chapter with some minor modifications.
Consider an arbitrary matrix cycle, after allocation of exclusive time windows we are left
with a list of arbitration slots (q0..qN-1) where N is the number of arbitration slots, see Figure
3.7.

Grey slots are supposed to be allocated for Mh Basic
Cycle

NTU-slots (Columns)

1 q0

2 q1 q2

3 q3 q4 q5

….. … … … …

2n qN-3 qN-2 qN-1

Figure 3.7: Illustration of Arbitration slots

Regular CAN-
messages are

blocked
Arbitration slots

Regular CAN-
messages are blocked Arbitration slots

 17

We now introduce each exclusive time window as a virtual message in the firm set. This
virtual message is assigned a higher priority than the highest priority message in the ordinary
firm set. All virtual firm messages will have a defined start time denoting start of an
exclusive window as well as completion time indicating end of the exclusive time window.
Calculation of the queuing term is now done according to the following algorithm:

Algorithm 3.1 Modified queuing calculation

Exclusive time slots appears as messages with priority 0, release times that may be none zero
and they are released exactly once during the analyzed time window (LCM). Ordinary
messages in the firm set are arranged according to descending priority with priority 1 being
the highest priority within the ordinary firm message set.

for each message m:
 for message j within hp(m)
 Q_Assigned = FALSE
 for all virtual messages i
 if(Qm + Tm) falls within (Mi,start , Mi,completion)
 Qm = Mi,completion
 Q_Assigned = TRUE
 endif
 endif
 if not Q_Assigned

 end
 end
end

End Algorithm 3.1

3.6 Analysis of message set Ms

The messages assigned to this class are by definition less critical in the application. Analysis
may therefore be relaxed. The current scheduler implementation simply reports the minimum
time available for the class.

3.7 Summary

In this chapter, we have introduced an extended computational model for message scheduling
and analysis in real time systems using TTCAN/CAN hybrid communication systems.

Our method requires knowledge of a complete message set intended for a common
TTCAN/CAN communication bus

We applied our model and used the proposed scheduling method on a non-trivial set of
messages designed to be representative for a real application. This experiment will be
detailed in the next chapter.

j
mhpj j

m
m T

p
QQ ∑

∀ 










=

1

)(:

 18

4 A SAMPLE APPLICATION
In this chapter, we will demonstrate our scheduling method by applying it to a non-trivial set
of messages. We have designed a prototype scheduling-tool TTCST (TTCAN Scheduling
Tool) where we implemented most vital parts of our ideas. This tool was used for design of
schedule for the case we use in this chapter, reference [16].

4.1 The application

The FAR-car described in reference [17] is an experimental mechatronical platform
developed for evaluation of electronic hardware and software for distributed drive by wire
concepts. The car has multiple steer mode functionality:

1. Standard 2-wheel steering, rear wheels are locked in straight forward position.

2. Four wheel parallel steering; Front and Rear wheel pairs are parallel.

3. Four wheel full steering, Front and Rear wheel pairs are synchronized to minimize
steering radius.

The car also has throttle and brake functions and limited fault tolerance is implemented.

Figure 4.1: FAR-car and some of the developers (left), electronics hardware platform (right)

Figure 4.2: Implementation of Front Right node (3 PCB’s)

 19

4.2 Control system software

Control software is executed according to a static schedule using a very simple supervisory
kernel (dispatcher). The entire schedule uses 32 ms cycle time (LCM) and the different tasks
are executed according to Table 4.1.

Task
No

Release
time (ms)

Worst Case
Execution
Time (ms)

Description

1 0 1 Synchronize; synchronizations of TTCAN global time with
kernel time.

2 1 3 Fault detection internal; check for consistent values in local
node.

3 4 3 Fault detection external; check for consistency of values in
the node that is monitored.

4 7 2 Reserved 1; planned functionality is not yet implemented.
5 9 3 Fault detection global; assembles error signals and

communication faults.
6 12 3 Local control external; perform local control loop for

monitored node.
7 16 4 Global control; main control.
8 21 5 Read data; sensor data acquisition.
9 23 2 Voting; local self checks.

10 26 3 Reserved 2; planned functionality is not yet implemented.
11 28 4 Local control internal; perform local control loop.

Table 4.1: Overview of FAR control system software

The message set

There are totally 30 unique messages associated with application data. Additional triggers
are used for TTCAN reference message transmission. In the following Table 4.2 application
messages has been assigned symbolic names indicating the node that transmits the message.
The following symbolic names are used:
• FLx - Front Left node
• FRx – Front Right node
• RLx – Rear Left node
• RRx – Rear Right node
• HMIComx – Interface node to radio control

The first transmit column is always used for a TTCAN synchronization message (time 0),
transmitted by the current time master. In the Table 4.1 this column also indicates the
activities undertaken in the nodes. The matrix cycle consists of 32 basic cycle of 1 ms length.
Each message is transmitted once during the matrix cycle, i.e. all messages have period time
32 ms. Digits are simply used to enumerate the messages.

Time
(ms)

0/Activity 250 us 500 us 750 us

0 TTCAN Sync Message
RTOS error check

1 Fault detection internal FL2 FR3 RL4
2 RR5 Env6
3 HMICom7
4 Fault detection external
5 FL8 FR9 RL10
6 RR11

 20

7 FL12 FR13
8 RL14 RR15
9 Fault detection node radio

10
11
12 Local control external
13
14 FL16 FR17 RL18
15 RR19
16 Global control
17
18
19 FL20 FR21 RL22
20 RR23
21 Read data from sensors FL24 FR25
22 RL26 RR27
23 Voting
24
25
26 FL28 FR29
27 RL30 RR31
28 Local control internal
29
30
31

Table 4.2: Process and message scheduling

From the above we conclude that the application communication scheduling is fully
determined pre run-time. The prerequisites are all handled by the scheduling tool by means
of definitions and directives in the input file. The following syntactic elements are used:

A message is introduced to TTCST as directive with the following syntactic form:

message (MSG_ID, class , period , size)
Message is a reserved word and:

MSG_ID is a unique symbolic name
 class denotes one of h (hard), f (firm) or s (soft)
 period is message period time, a floating point constant, in seconds
 size is the number of bytes in the message

Ordering of messages; Messages can be ordered by using a precedence relation statement:

MSG_ID1 prec { MSG_ID2 [and MSG_ID3 ...[and MSG_IDn]..] }

Prec is a reserved word which states that MSG_ID1 always should precede the messages that
are named within the “curly brackets”. The list should consist of at least one message,
additional messages should be preceded with the reserved word and.

The prerequisites impose that we use demanded allocation of TTCAN message slots. This is
accomplished by specifying release times for all messages.

Release time statement:

MSG_ID release (release_time)

Release is a reserved word which states that message MSG_ID can not be scheduled for
transmission before time release_time (a floating point constant) in the matrix cycle.

A complete listing of the input file used for this case can be found in Appendix A.

 21

4.3 Class h messages schedule

Scheduler output is extensive, a complete listing can be found in Appendix B. The TTCAN
messages schedule (messages in class h) are listed in two forms, the second form ”schedule
by release” look like this:
-- SCHEDULE BY RELEASE------------
-- Start .. Stop (NTU) Start .. Stop (us) Basic Cycle Invocation Message
 000000 .. 000048 -- 00000000 .. 00000060 -- 0 -- 0 -- 'SYNC'
 000800 .. 000848 -- 00001000 .. 00001060 -- 1 -- 1 -- 'SYNC'
 001000 .. 001112 -- 00001250 .. 00001390 -- 1 -- 0 -- 'FL2'
 001200 .. 001312 -- 00001500 .. 00001640 -- 1 -- 0 -- 'FR3'
 001400 .. 001512 -- 00001750 .. 00001890 -- 1 -- 0 -- 'RL4'
 001600 .. 001648 -- 00002000 .. 00002060 -- 2 -- 2 -- 'SYNC'
 001800 .. 001912 -- 00002250 .. 00002390 -- 2 -- 0 -- 'RR5'
 002000 .. 002112 -- 00002500 .. 00002640 -- 2 -- 0 -- 'Env6'
 002400 .. 002448 -- 00003000 .. 00003060 -- 3 -- 3 -- 'SYNC'

Each invocation of a message is written on one line. Start and stop times are given in both
NTU’s and real time (us). It is easy to verify congruence with the specification in Table 4.2.

4.4 Class f messages schedule

Although there are only time triggered messages used in the present FAR car we might
expect the need for event triggered messages in a future extension. In this case study we
therefore added a hypothetic message set including both firm and soft real time requirements.
We only analyze the class f messages for schedulability. If the analysis shows that one or
more messages in this class not can be guaranteed to complete, an error message will be
displayed. A simulation, written to a file (see Appendix C) shows the entire schedule of class
h and class f messages during a LCM. The scheduler output file contains only the first
invocation of each class f message (see Appendix B).

Finally a schedule summary is written to the output file:
-- UTILISATION ------------
-- Class h messages: 3408 NTU (13%)
-- Class f messages: 11424 NTU (44%)
-- Class s messages: 8624 NTU (33%)
-- END OF SCHEDULE---

The summary displays percentage usage within the three message classes. Note that total
utilization can be over 100% as long as the class h and f messages are schedulable. In such
cases, this implies that the soft message set cannot be guaranteed to meet deadlines. The
scheduler will not flag for this.

 22

5 CONCLUSIONS
In this paper, we have demonstrated a method for handling communication scheduling in
distributed control system where real-time requirements range from hard to soft. We
implemented our method in a prototype tool called TTCST (TTCan Scheduler Tool). We used
the tool in a case study adapted from ongoing work within a steer-by wire application. The
tool, a short user description and example files is available as download from [16] or by
email requisition from the author.

5.1 Discussion of work

Although straight forward in theory it turned out that that implementation of the scheduling
tool became time consuming and sometimes cumbersome. Therefore the tool has not been
exhaustively tested or validated by any mean.

Our choice of case for test and demonstration for the scheduling tool was based on two
primary factors.

1. Although realistic input “real-world” data could have been used this would have
introduced irrelevant complexity and made the case more difficult to comprehend.

2. The FAR car system has been implemented and a TTCAN communication
subsystem has been programmed and tested.

Thus this work has gained a lot from experiences from the FAR car project.

5.2 Discussion of results

We do believe that our method of dividing an application message set into classes and then
treat these classes according to criticality is a realistic and suitable approach for engineering
purposes. By introduction of simple directives to introduce message properties, control e.g.
precedence’s and release times the input language of the scheduler tool further approaches
the engineers’ needs.

There is certainly a need for new hybrid scheduling methods today. Contemporary protocols,
such as TTCAN and FlexRay supports both time triggered and event triggered message
communication mechanisms. It is likely that future protocol specifications for real-time
communication will follow the same path.

The method itself, although now implemented and demonstrated with TTCAN does not rely
explicitly on the TTCAN protocol. Modifications in the static scheduling phase (class h)
messages can be undertaken for adoption to another hybrid protocol.

5.3 Future work

Development of test and validation suites; as mentioned above, the scheduling tool has not
been extensively tested. A validation suite is needed.

A code generator for TTCAN controllers; programming of communication controllers can be
both difficult and tedious, automatic code generation for initialization of controller, message
transmission and reception is highly desirable.

Interface to message databases; it would be very challenging if the tool could be
automatically fed with existing applications (e.g. SAE J1939) for further evaluation.

Extension to meet further needs; a more semantic powerful input language designed to meet
design engineers demands and needs.

Variants for other communication protocols; this would make the tool more general and
provide means for efficient comparisons between different protocol specifications and their
implementations.

 23

Acknowledgement
The author wishes to thank Prof. Jan Torin for valuable comments and appreciated support.
This work has been conducted within The Centre of Excellence CHARMEC (CHAlmers
Railway MEChanics).

REFERENCES
[1] International Organization for Standardization. ISO 11898-1: Road vehicles – Controller area

network (CAN) Part1: Data link layer and physical signalling, 2003.

 [2] Society of Automotive Engineers, SAE, Surface Vehicle Recommended Practice J1939-7x.
1996.

[3] Rajnak, A., Ramnefors, M., The Volcano Communication Concept, SAE 2003-01-0114, SAE
Technical Paper Series, 2002.

[4] Rushby, J. A Comparison of Bus Architectures for Safety-Critical Embedded Systems, CSL
Technical Report, SRI International, September 2001.

[5] Tindell, K., Hansson.H and Welling A., Analysing Real-Time Communications: Controller Area
Network CAN), In F. Jahanian and K. Ramaritham, editors, Proc. 15 th RealTime Systems
Symposium, pages 259--263. IEEE Computer Society Press, 1994.

[6] Tindell, K. , Burns, A. and Wellings, A.J. , Calculating Controller Area Network (CAN)
Message Response Time, Control Engineering Practice, Vol. 3(8), pp. 1163-1169 (1995).

[7] International Organization for Standardization. ISO 11898-4: Road vehicles – Controller area
network (CAN) Part4: Time- triggered communication, 2004.

[8] Stankovic, J.A. , Spuri, M. , Di Natale M. and Butazzo, G. , Implications of Classical Scheduling
Results for Real-Time Systems, IEEE Computer, 28(6), June 1995.

[9] Liu, C. and Layland, J. , Scheduling Algorithm for Multiprogramming in a Hard Real-time
Environment, Journal of the ACM, 20(1), pp. 41 – 61, January 1973.

[10] Sha, L. ,Rajkumar, R. ,Sathaye, S. , Generalized Rate-Monotonic Scheduling Theory: A
Framework for Developing Real-Time Systems. Proceedings of the IEEE, Vol 82, No 1, January
1994, pp 68-82.

[11] Nolte, T. , Hansson, H. , Norström, C. , Probabilistic Worst-Case Response-Time Analysis for
the Controller Area Network , In Proceedings of the The 9th IEEE Real-Time and Embedded
Technology and Applications Symposium, May 27 - 30, Toronto, Canada, 2003, pp 200-207.

[12] Broster, I. Burns, A. Rodriguez-Navas, G. , Probalistic Analysis of CAN with Faults, In
Proceedings of the 23rd Real-time Systems Symposium, Austin, Texas, December 3-5, 2002, pp
269-278.

[13] Hartwich, F. , Müller, B. , Führer, T. , Hugel, R. , CAN Network with Time Triggered
Communication, In 7th iCC Proceedeings, CAN in Automation (CiA), Holland, 2000.

[14] Fonseca, J. , Coutinho, F. , Barreiros, J., Scheduling for a TTCAN network with a stochastic
optimization algorithm, In 8th iCC Proceedeings, CAN in Automation (CiA), Las Vegas, USA,
February, 2002.

[15] TTCAN IP Module User’s Manual Revision 1.6, At: http://www.can.bosch.com

[16] At: http://www.chl.chalmers.se/~roger/research/ttcst/tool.zip

[17] Cornelsen, J. and Dahlqvist, P. Development of a Safety Critical Mechatronical System used as
Demonstrator for the GAST Project, Master´s Degree Project MMK 2004:76 MDA 233,
Department of Machine Design, Royal Institute of Technology, Stockholm, 2004.

 24

Appendix A: Input file for case study
//
// far-sched.txt
// scheduler input example
// options:
// -pbc=1000 i.e basic cycle is 1000 us
// -ntu=1250 i.e. 1250 ns
// -cbt=1250 i.e. 1250 ns bit time

// Synchronisation message
message(SYNC , h , 0.001e0 , 0)
// Declarations of messages with
// HARD real time requirements
// All period times 32 ms...

message(FL2 , h , 0.032e0 , 8)
message(FR3 , h , 0.032e0 , 8)
message(RL4 , h , 0.032e0 , 8)
message(RR5 , h , 0.032e0 , 8)
message(Env6 , h , 0.032e0 , 8)
message(HMICom7 , h , 0.032e0 , 8)
message(FL8 , h , 0.032e0 , 8)
message(FR9 , h , 0.032e0 , 8)
message(RL10 , h , 0.032e0 , 8)
message(RR11 , h , 0.032e0 , 8)
message(FL12 , h , 0.032e0 , 8)
message(FR13 , h , 0.032e0 , 8)
message(RL14 , h , 0.032e0 , 8)
message(RR15 , h , 0.032e0 , 8)
message(FL16 , h , 0.032e0 , 8)
message(FR17 , h , 0.032e0 , 8)
message(RL18 , h , 0.032e0 , 8)
message(RR19 , h , 0.032e0 , 8)
message(FL20 , h , 0.032e0 , 8)
message(FR21 , h , 0.032e0 , 8)
message(RL22 , h , 0.032e0 , 8)
message(RR23 , h , 0.032e0 , 8)
message(FL24 , h , 0.032e0 , 8)
message(FR25 , h , 0.032e0 , 8)
message(RL26 , h , 0.032e0 , 8)
message(RR27 , h , 0.032e0 , 8)
message(FL28 , h , 0.032e0 , 8)
message(FR29 , h , 0.032e0 , 8)
message(RL30 , h , 0.032e0 , 8)
message(RR31 , h , 0.032e0 , 8)

// Declarations of messages with
// FIRM real time requirements
message(f1 , f , 0.0025e0 , 8)
message(f2 , f , 0.0025e0 , 8)
message(f3 , f , 0.0025e0 , 8)
message(f4 , f , 0.0025e0 , 8)
message(f5 , f , 0.005e0 , 8)
message(f6 , f , 0.005e0 , 8)
message(f7 , f , 0.005e0 , 8)
message(f8 , f , 0.005e0 , 8)
message(f9 , f , 0.005e0 , 8)
message(f10 , f , 0.005e0 , 8)
message(f11 , f , 0.010e0 , 8)
message(f12 , f , 0.010e0 , 8)
message(f13 , f , 0.010e0 , 8)
message(f14 , f , 0.010e0 , 8)
message(f15 , f , 0.010e0 , 8)

// Declarations of messages with
// SOFT real time requirements
message(s1 , s , 0.010e0 , 8)
message(s2 , s , 0.010e0 , 8)
message(s3 , s , 0.010e0 , 8)
message(s4 , s , 0.010e0 , 8)
message(s5 , s , 0.010e0 , 8)
message(s6 , s , 0.010e0 , 8)
message(s7 , s , 0.010e0 , 8)
message(s8 , s , 0.010e0 , 8)
message(s9 , s , 0.010e0 , 8)
message(s10 , s , 0.010e0 , 8)

message(s11 , s , 0.010e0 , 8)
message(s12 , s , 0.010e0 , 8)
message(s13 , s , 0.010e0 , 8)
message(s14 , s , 0.010e0 , 8)
message(s15 , s , 0.010e0 , 8)
message(s16 , s , 0.010e0 , 8)
message(s17 , s , 0.010e0 , 8)
message(s18 , s , 0.010e0 , 8)
message(s19 , s , 0.010e0 , 8)
message(s20 , s , 0.010e0 , 8)

// Optional section: Precedence’s
SYNC pred { FL2 }
FL2 pred{ FR3}
FR3 pred{ RL4}
RL4 pred{ RR5}
RR5 pred{ Env6 }
Env6 pred{ HMICom7 }
HMICom7 pred{ FL8 }
FL8 pred{ FR9 }
FR9 pred{ RL10 }
RL10 pred{ RR11 }
RR11 pred{ FL12 }
FL12 pred{ FR13 }
FR13 pred{ RL14 }
RL14 pred{ RR15 }
RR15 pred{ FL16 }
FL16 pred{ FR17 }
FR17 pred{ RL18 }
RL18 pred{ RR19 }
RR19 pred{ FL20 }
FL20 pred{ FR21 }
FR21 pred{ RL22 }
RL22 pred{ RR23 }
RR23 pred{ FL24 }
FL24 pred{ FR25 }
FR25 pred{ RL26 }
RL26 pred{ RR27 }
RR27 pred{ FL28 }
FL28 pred{ FR29 }
FR29 pred{ RL30 }

// Optional section: Release times
FL2 release (0.001250e0)
FR3 release (0.001500e0)
RL4 release (0.001750e0)
RR5 release (0.002250e0)
Env6 release (0.002500e0)
HMICom7 release (0.003250e0)
FL8 release (0.005250e0)
FR9 release (0.005500e0)
RL10 release (0.005750e0)
RR11 release (0.006250e0)
FL12 release (0.007500e0)
FR13 release (0.007750e0)
RL14 release (0.008250e0)
RR15 release (0.008500e0)
FL16 release (0.014250e0)
FR17 release (0.014500e0)
RL18 release (0.014750e0)
RR19 release (0.015250e0)
FL20 release (0.019250e0)
FR21 release (0.019500e0)
RL22 release (0.019750e0)
RR23 release (0.020250e0)
FL24 release (0.021500e0)
FR25 release (0.021750e0)
RL26 release (0.022250e0)
RR27 release (0.022500e0)
FL28 release (0.026500e0)
FR29 release (0.026750e0)
RL30 release (0.027250e0)
RR31 release (0.027500e0)

// end of input

 25

Appendix B: Scheduler output

The scheduler produces vast output; less important text is omitted here.

-- TTCAN Scheduler (TTCST) Version 0.8.0
-- Compilation started: 08/18/04 17:31:04
-- Input file: 'far-sched.txt'

-- Option settings:
-- NTU: 1250
-- Can Bit Time: 1250
-- Basic cycle default overridden
-- END of translation, No Errors
-- Created output file 'ttcst.out'

-- TIMING PROPERTIES:
-- NTU (Network Time Unit) = 1250 (ns)
-- Can Bit Time = 1250 (ns)

-- SCHEDULE SUMMARY
-- Message Set Hard LCM = 25600 NTU (32 ms)
-- Matrix Cycle using 32 basic cycle with length = 800 NTU (1000 us)
-- Minimum number of triggers required during LCM = 62
Note: This figure accounts even for Synchronisation messages, so it is not really true. In fact, the
number of triggers is 30 since each basic cycle starts with a synch-message.
-- Total utilisation = 97 % (Required = 100 %)
-- (Total utilisation lower than requirement)

-- MESSAGE SET OVERVIEW:
A list of all defined messages is omitted here.

-- SCHEDULE BY RELEASE------------
A list of time triggered messages, start and stop times for the entire LCM.
-- Start .. Stop (NTU) Start .. Stop (us) Basic Cycle Invocation Message
 000000 .. 000048 -- 00000000 .. 00000060 -- 0 -- 0 -- 'SYNC'
 000800 .. 000848 -- 00001000 .. 00001060 -- 1 -- 1 -- 'SYNC'
 001000 .. 001112 -- 00001250 .. 00001390 -- 1 -- 0 -- 'FL2'
 001200 .. 001312 -- 00001500 .. 00001640 -- 1 -- 0 -- 'FR3'
 001400 .. 001512 -- 00001750 .. 00001890 -- 1 -- 0 -- 'RL4'
 001600 .. 001648 -- 00002000 .. 00002060 -- 2 -- 2 -- 'SYNC'
 001800 .. 001912 -- 00002250 .. 00002390 -- 2 -- 0 -- 'RR5'
 002000 .. 002112 -- 00002500 .. 00002640 -- 2 -- 0 -- 'Env6'
 002400 .. 002448 -- 00003000 .. 00003060 -- 3 -- 3 -- 'SYNC'
 002600 .. 002712 -- 00003250 .. 00003390 -- 3 -- 0 -- 'HMICom7'
 003200 .. 003248 -- 00004000 .. 00004060 -- 4 -- 4 -- 'SYNC'
 004000 .. 004048 -- 00005000 .. 00005060 -- 5 -- 5 -- 'SYNC'
 004200 .. 004312 -- 00005250 .. 00005390 -- 5 -- 0 -- 'FL8'
 004400 .. 004512 -- 00005500 .. 00005640 -- 5 -- 0 -- 'FR9'
 004600 .. 004712 -- 00005750 .. 00005890 -- 5 -- 0 -- 'RL10'
 004800 .. 004848 -- 00006000 .. 00006060 -- 6 -- 6 -- 'SYNC'
 005000 .. 005112 -- 00006250 .. 00006390 -- 6 -- 0 -- 'RR11'
 005600 .. 005648 -- 00007000 .. 00007060 -- 7 -- 7 -- 'SYNC'
 006000 .. 006112 -- 00007500 .. 00007640 -- 7 -- 0 -- 'FL12'
 006200 .. 006312 -- 00007750 .. 00007890 -- 7 -- 0 -- 'FR13'
 006400 .. 006448 -- 00008000 .. 00008060 -- 8 -- 8 -- 'SYNC'
 006600 .. 006712 -- 00008250 .. 00008390 -- 8 -- 0 -- 'RL14'
 006800 .. 006912 -- 00008500 .. 00008640 -- 8 -- 0 -- 'RR15'
 007200 .. 007248 -- 00009000 .. 00009060 -- 9 -- 9 -- 'SYNC'
 008000 .. 008048 -- 00010000 .. 00010060 -- 10 -- 10 -- 'SYNC'
 008800 .. 008848 -- 00011000 .. 00011060 -- 11 -- 11 -- 'SYNC'
 009600 .. 009648 -- 00012000 .. 00012060 -- 12 -- 12 -- 'SYNC'
 010400 .. 010448 -- 00013000 .. 00013060 -- 13 -- 13 -- 'SYNC'
 011200 .. 011248 -- 00014000 .. 00014060 -- 14 -- 14 -- 'SYNC'
 011400 .. 011512 -- 00014250 .. 00014390 -- 14 -- 0 -- 'FL16'
 011600 .. 011712 -- 00014500 .. 00014640 -- 14 -- 0 -- 'FR17'
 011800 .. 011912 -- 00014750 .. 00014890 -- 14 -- 0 -- 'RL18'
 012000 .. 012048 -- 00015000 .. 00015060 -- 15 -- 15 -- 'SYNC'
 012200 .. 012312 -- 00015250 .. 00015390 -- 15 -- 0 -- 'RR19'
 012800 .. 012848 -- 00016000 .. 00016060 -- 16 -- 16 -- 'SYNC'
 013600 .. 013648 -- 00017000 .. 00017060 -- 17 -- 17 -- 'SYNC'
 014400 .. 014448 -- 00018000 .. 00018060 -- 18 -- 18 -- 'SYNC'
 015200 .. 015248 -- 00019000 .. 00019060 -- 19 -- 19 -- 'SYNC'
 015400 .. 015512 -- 00019250 .. 00019390 -- 19 -- 0 -- 'FL20'
 015600 .. 015712 -- 00019500 .. 00019640 -- 19 -- 0 -- 'FR21'
 015800 .. 015912 -- 00019750 .. 00019890 -- 19 -- 0 -- 'RL22'
 016000 .. 016048 -- 00020000 .. 00020060 -- 20 -- 20 -- 'SYNC'
 016200 .. 016312 -- 00020250 .. 00020390 -- 20 -- 0 -- 'RR23'
 016800 .. 016848 -- 00021000 .. 00021060 -- 21 -- 21 -- 'SYNC'
 017200 .. 017312 -- 00021500 .. 00021640 -- 21 -- 0 -- 'FL24'

 26

 017400 .. 017512 -- 00021750 .. 00021890 -- 21 -- 0 -- 'FR25'
 017600 .. 017648 -- 00022000 .. 00022060 -- 22 -- 22 -- 'SYNC'
 017800 .. 017912 -- 00022250 .. 00022390 -- 22 -- 0 -- 'RL26'
 018000 .. 018112 -- 00022500 .. 00022640 -- 22 -- 0 -- 'RR27'
 018400 .. 018448 -- 00023000 .. 00023060 -- 23 -- 23 -- 'SYNC'
 019200 .. 019248 -- 00024000 .. 00024060 -- 24 -- 24 -- 'SYNC'
 020000 .. 020048 -- 00025000 .. 00025060 -- 25 -- 25 -- 'SYNC'
 020800 .. 020848 -- 00026000 .. 00026060 -- 26 -- 26 -- 'SYNC'
 021200 .. 021312 -- 00026500 .. 00026640 -- 26 -- 0 -- 'FL28'
 021400 .. 021512 -- 00026750 .. 00026890 -- 26 -- 0 -- 'FR29'
 021600 .. 021648 -- 00027000 .. 00027060 -- 27 -- 27 -- 'SYNC'
 021800 .. 021912 -- 00027250 .. 00027390 -- 27 -- 0 -- 'RL30'
 022000 .. 022112 -- 00027500 .. 00027640 -- 27 -- 0 -- 'RR31'
 022400 .. 022448 -- 00028000 .. 00028060 -- 28 -- 28 -- 'SYNC'
 023200 .. 023248 -- 00029000 .. 00029060 -- 29 -- 29 -- 'SYNC'
 024000 .. 024048 -- 00030000 .. 00030060 -- 30 -- 30 -- 'SYNC'
 024800 .. 024848 -- 00031000 .. 00031060 -- 31 -- 31 -- 'SYNC'
-- END OF MESSAGE SET H SCHEDULE---

-- FIRM MESSAGES SCHEDULE BY PRIORITY------------
A list of event triggered messages, start and stop times only the first invocation.
-- Start .. Stop (NTU) Start .. Stop (us)
 000048 .. 000160 -- 00000060 .. 00000200 -- -- 'f1' (0)
 000160 .. 000272 -- 00000200 .. 00000340 -- -- 'f2' (1)
 000272 .. 000384 -- 00000340 .. 00000480 -- -- 'f3' (2)
 000384 .. 000496 -- 00000480 .. 00000620 -- -- 'f4' (3)
 000496 .. 000608 -- 00000620 .. 00000760 -- -- 'f5' (4)
 000608 .. 000720 -- 00000760 .. 00000900 -- -- 'f6' (5)
 000848 .. 000960 -- 00001060 .. 00001200 -- -- 'f7' (6)
 001088 .. 001200 -- 00001360 .. 00001500 -- -- 'f8' (7)
 001312 .. 001424 -- 00001640 .. 00001780 -- -- 'f9' (8)
 001648 .. 001760 -- 00002060 .. 00002200 -- -- 'f10' (9)
 001872 .. 001984 -- 00002340 .. 00002480 -- -- 'f11' (10)
 002712 .. 002824 -- 00003390 .. 00003530 -- -- 'f12' (11)
 002976 .. 003088 -- 00003720 .. 00003860 -- -- 'f13' (12)
 003088 .. 003200 -- 00003860 .. 00004000 -- -- 'f14' (13)
 003248 .. 003360 -- 00004060 .. 00004200 -- -- 'f15' (14)
-- END OF MESSAGE SET F SCHEDULE---

-- UTILISATION ------------
-- Class h messages: 3408 NTU (13%)
-- Class f messages: 11424 NTU (44%)
-- Class s messages: 8624 NTU (33%)
-- END OF SCHEDULE---

 27

Appendix C: Simulation output

Simulation displays class h and f messages during the entire LCM.
class message invocation start-stop
h 'SYNC'(1) 0-48
f 'f1'(1) 48-160
f 'f2'(1) 160-272
f 'f3'(1) 272-384
f 'f4'(1) 384-496
f 'f5'(1) 496-608
f 'f6'(1) 608-720
h 'SYNC'(2) 800-848
f 'f7'(1) 848-960
h 'FL2'(1) 1000-1112
f 'f8'(1) 1112-1224
f 'f9'(1) 1312-1424
h 'SYNC'(3) 1600-1648
f 'f10'(1) 1648-1760
h 'RR5'(1) 1800-1912
f 'f11'(1) 1912-2024
f 'f1'(2) 2048-2160
f 'f2'(2) 2160-2272
f 'f3'(2) 2272-2384
f 'f4'(2) 2384-2496
h 'HMICom7'(1) 2600-2712
f 'f12'(1) 2712-2824
f 'f13'(1) 2976-3088
f 'f14'(1) 3088-3200
h 'SYNC'(5) 3200-3248
f 'f15'(1) 3248-3360
h 'SYNC'(6) 4000-4048
f 'f1'(3) 4048-4160
f 'f2'(3) 4160-4272
f 'f3'(3) 4272-4384
f 'f4'(3) 4384-4496
f 'f5'(2) 4496-4608
f 'f6'(2) 4608-4720
h 'SYNC'(7) 4800-4848
f 'f7'(2) 4848-4960
h 'RR11'(1) 5000-5112
f 'f8'(2) 5112-5224
f 'f9'(2) 5312-5424
h 'SYNC'(8) 5600-5648
f 'f10'(2) 5648-5760
h 'FL12'(1) 6000-6112
f 'f1'(4) 6112-6224
f 'f2'(4) 6224-6336
f 'f3'(4) 6336-6448
f 'f4'(4) 6448-6560
h 'RL14'(1) 6600-6712
h 'RR15'(1) 6800-6912
h 'SYNC'(10) 7200-7248
h 'SYNC'(11) 8000-8048
f 'f1'(5) 8048-8160
f 'f2'(5) 8160-8272
f 'f3'(5) 8272-8384
f 'f4'(5) 8384-8496
f 'f5'(3) 8496-8608
f 'f6'(3) 8608-8720
h 'SYNC'(12) 8800-8848
f 'f7'(3) 8848-8960
f 'f8'(3) 9088-9200
f 'f9'(3) 9312-9424
h 'SYNC'(13) 9600-9648
f 'f10'(3) 9648-9760
f 'f11'(2) 9872-9984
f 'f1'(6) 10048-10160
f 'f2'(6) 10160-10272
f 'f3'(6) 10272-10384
f 'f4'(6) 10384-10496
f 'f12'(2) 10712-10824
f 'f13'(2) 10976-11088
f 'f14'(2) 11088-11200
h 'SYNC'(15) 11200-11248
f 'f15'(2) 11248-11360
h 'FL16'(1) 11400-11512
h 'FR17'(1) 11600-11712
h 'RL18'(1) 11800-11912
h 'SYNC'(16) 12000-12048
f 'f1'(7) 12048-12160

f 'f2'(7) 12160-12272
f 'f3'(7) 12272-12384
f 'f4'(7) 12384-12496
f 'f5'(4) 12496-12608
f 'f6'(4) 12608-12720
h 'SYNC'(17) 12800-12848
f 'f7'(4) 12848-12960
f 'f8'(4) 13088-13200
f 'f9'(4) 13312-13424
h 'SYNC'(18) 13600-13648
f 'f10'(4) 13648-13760
f 'f1'(8) 14048-14160
f 'f2'(8) 14160-14272
f 'f3'(8) 14272-14384
f 'f4'(8) 14384-14496
h 'SYNC'(20) 15200-15248
h 'FL20'(1) 15400-15512
h 'FR21'(1) 15600-15712
h 'RL22'(1) 15800-15912
h 'SYNC'(21) 16000-16048
f 'f1'(9) 16048-16160
f 'f2'(9) 16160-16272
f 'f3'(9) 16272-16384
f 'f4'(9) 16384-16496
f 'f5'(5) 16496-16608
f 'f6'(5) 16608-16720
h 'SYNC'(22) 16800-16848
f 'f7'(5) 16848-16960
f 'f8'(5) 17088-17200
h 'FL24'(1) 17200-17312
f 'f9'(5) 17312-17424
h 'SYNC'(23) 17600-17648
f 'f10'(5) 17648-17760
h 'RL26'(1) 17800-17912
f 'f11'(3) 17912-18024
f 'f1'(10) 18048-18160
f 'f2'(10) 18160-18272
f 'f3'(10) 18272-18384
f 'f4'(10) 18384-18496
f 'f12'(3) 18712-18824
f 'f13'(3) 18976-19088
f 'f14'(3) 19088-19200
h 'SYNC'(25) 19200-19248
f 'f15'(3) 19248-19360
h 'SYNC'(26) 20000-20048
f 'f1'(11) 20048-20160
f 'f2'(11) 20160-20272
f 'f3'(11) 20272-20384
f 'f4'(11) 20384-20496
f 'f5'(6) 20496-20608
f 'f6'(6) 20608-20720
h 'SYNC'(27) 20800-20848
f 'f7'(6) 20848-20960
f 'f8'(6) 21088-21200
h 'FL28'(1) 21200-21312
f 'f9'(6) 21312-21424
h 'SYNC'(28) 21600-21648
f 'f10'(6) 21648-21760
h 'RL30'(1) 21800-21912
h 'RR31'(1) 22000-22112
f 'f1'(12) 22112-22224
f 'f2'(12) 22224-22336
f 'f3'(12) 22336-22448
f 'f4'(12) 22448-22560
h 'SYNC'(30) 23200-23248
h 'SYNC'(31) 24000-24048
f 'f1'(13) 24048-24160
f 'f2'(13) 24160-24272
f 'f3'(13) 24272-24384
f 'f4'(13) 24384-24496
f 'f5'(7) 24496-24608
f 'f6'(7) 24608-24720
h 'SYNC'(32) 24800-24848
f 'f7'(7) 24848-24960
f 'f8'(7) 25088-25200
f 'f9'(7) 25312-25424

