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Abstract 
 
In this paper we will present a computer architecture suitable for distributed control systems 
where fault tolerance is desired. Today these are commonly referred to as "brake by wire" or 
"steer by wire" -systems. The architecture is designed for implementation mainly with 
standard components “off the shelf” (COTS).  In particular there is only a comparable small 
device called FTCC (Fault Tolerant Communication Control) that requires extensive 
redundancy. 
 
The FTCC is used to close control loops as tight to the controlled physical device as possible, 
gaining from the excess computing capacity that a distributed system offers but at the same 
time remove impact of increased fault intensity from an increased number of processing 
elements.   
 
The architecture preferences applications where there is some kind of natural, inherent, 
redundancy. As a starting point, and a case, we consider a state of the art brake control 
system for railway vehicles. We recapture common computer architectures designed to handle 
safety critical applications and arrive at a feasible solution in the shape of a slightly modified 
distributed architecture. We then apply this revised distributed architecture and describe a 
revised brake control system. 
    
The FTCC device has been implemented, however without redundancy, with standard VHDL-
tools and tested in a simulator environment. Results are promising and indicates that the 
FTCC-device has a great potential in future "control-by-wire" designs. 
 
Keywords: 
Control by Wire, Inherent redundancy, Fault Tolerance, Hard Real-Time requirements 
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1. INTRODUCTION 

For the last couple of decades, computers have been used for control of railway signals and for 
many years they have also been used on board trains. Railway signals and automatic train control 
place extreme demands on safety. Applications on board trains have not yet been subjected to 
corresponding demands, but as more and more functions are computerised, the need for reliability will 
increase. One example is train brakes. Today’s method of braking a train set has proven highly reliable 
and served well for nearly a hundred years. However, this is a good case for where computers can 
bring increased performance and functionality. A distributed computer system can give shorter 
response times and better means of controlling braking processes than pneumatic systems. A computer 
controlled brake system, sometimes known as a “brake-by-wire” system will provide major 
advantages such as; Reduced wear out of wheels and rail due to more adaptive and economical brake 
functions, less mechanical/hydraulic/pneumatic components due to replacement of electronic parts, at 
the same time it will be possible to optimise maintenance intervals thanks to diagnostic functionality 
exercised by software. 

The important issue when implementing safety critical functionality, such as a vehicle car brake 
function, is how to achieve a satisfactory level of safety and still using today’s technology. In this 
paper we will present a conceptual computer architecture that is suitable for distributed control 
systems where fault tolerance is required. As a special important case we consider brake systems for 
rail vehicles such as lightweight trains and trams. This architecture can be easily implemented with 
standard components with a few extensions. The architecture has been primarily targeted for an 
intelligent brake system adapted for railway vehicles but should work for other control applications as 
well.  

In particular the conceptual architecture is intended for applications where we might extract 
natural redundancy from the application. As examples of generalisation of the architecture we find an 
aircraft which might be controlled even in the absence of one control surface provided that the faulty 
surface has entered a fail-safe state. Another example is found in automotives, consider a car with four 
wheel   steering, it can obviously be satisfactory controlled even in the case that one wheel steering 
fails again though provided that the faulty wheel has entered a fail safe state.  

The paper is organised as follows; the remainder of this chapter is devoted to a short background 
and a brief review of related work.  We will as an example describe a state of the art electromechanical 
brake system manufactured by SAB WABCO. We will summarize essential requirements on such a 
system. In chapter two we will describe conceptual fault tolerant designs known from a broad range of 
safety critical applications. We will then suggest a new architecture design with a minimum of impact 
on the current solution. The major invention with this new architecture is the introduction of a Fault 
Tolerant Control and Communication unit (FTCC). In chapter three we detail the FTCC and apply it 
within our revised architecture, on our generic brake system as presented in this chapter. Finally, 
chapter four offers discussions and conclusions. 

1.1 Brake system functions 
The brake system provides several functions. Basic requirements depend on the vehicle type, i.e. 

demands on freight car brake systems differ significantly from demands on a Light Rail Vehicle 
(LRV) or tram. Although some parts of the following discussion do not really apply to freight cars, we 
do treat them here in order to keep our discussion as general as possible. 

Service braking is frequently used by the driver in controlling the train. Service braking shall 
achieve specified levels of performance at any time. 

Emergency braking may be initiated by the driver or, in some cases, even by a passenger in the 
case of extreme hazards. Emergency braking shall achieve a specified level of performance and a high 
level of integrity.  

Security braking is a particular form of braking. Security braking is activated in the case of system 
failure within the ordinary brake system, thus it is a redundant back-up system. The security brake 
system is designed to apply maximum forces, so as to stop the car within the shortest possible 
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distance. Security brake systems are often implemented using mechanical or electro-mechanical 
devices. A major advantage with such solutions is the high reliability accomplished with these devices. 
The serious drawbacks are the large size and high costs associated with this back up. From the 
contents, it is obvious that security braking shall achieve a high level of integrity. 

Holding brake maintains speed during downhill movements. The term is sometimes also used to 
denote a short duration brake used for ensuring against moving a vehicle once stationary, e.g. for un-
load and load of passengers.  

Parking brake should be able to hold a defined load on a defined gradient for an infinite time. It is 
intended for use while the train is stabled. The parking brake should be designed to ensure that it will 
automatically secure the train in the event of loss of emergency or service brake. On newly designed 
trains, the parking brake should apply automatically to ensure no movement of the train. 

Wheel slide protection is fitted to optimize braking performance and to provide protection against 
wheel set damage e.g. during braking in poor adhesion conditions. Such systems are furthermore 
designed to minimize the braking force so as to achieve minimal practical stopping distance. 

1.2 The SWEBC10 system design 
The SAB WABCO “SWEBC10” is an electromechanical brake system for 4 axle vehicles. 

SWEBC10 is fault tolerant with Fail Safe properties. I.e. upon a system failure as signalled by the 
Safety signal line, or a failure in the vehicle Brake Control Unit (BCU), the safety loop will be 
asserted (meaning the current loop will be braked). This information will reach all brake actuators 
almost simultaneously and make them apply maximal pressure to activate the brakes. Thus the Fail 
Safe state is when maximum brake forces are applied to all axles (Figure 1.1). 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.1: Electromechanical brake system for 4-axle vehicle (SAB WABCO) 

 

1.3 The brake actuator 
The physical brake actuator in SWEBC10 (see Figure 1.2 below), Electronic Brake Control (EBC) 

is an electro-mechanical device which controls a yoke, the device that finally applies pressure to the 
brake disc. The unit utilises two separate motors (M), the primary, which is used to control the yoke 
(apply and release mechanical force), the secondary which is used to conserve mechanical energy in a 
spring (S). In the case of a failure, the spring force is released through mechanical couplings (C). This 
force is sufficient to apply maximum pressure at the brake discs. During normal operation the primary 
motor is operated from the CPU which communicates with the brake control unit via a serial 
communication bus. 
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Figure 1.2: EBC Brake Actuator 

 
1.4 Scope and objectives 

The control of a train set dynamics may be described as a hierarchy of control levels (Figure 1.3). 
In this paper we are mainly concerned with a computer based brake control system. Our conceptual 
brake control in mind is intended for by-wire control applications. By this we mean that we do not 
anticipate any non-electronic information carrying components. We further assume very high safety 
and reliability requirements and we strongly emphasis the economy (production and maintenance) 
aspects. We do not treat physical actuators in this context. We do assume that a vehicle is equipped 
with more than one physical actuator. In fact, the key point is to design a brake control, built mostly 
around standard components (COTS) and still provide adequate dependability. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.3: Control levels 
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1.5 Requirements on the redesigned system 
A brake control system is a safety critical application. System failures may introduce hazards with 

accidents and severe damage and human injuries as consequences. Above all, dependability 
requirements apply. See for example [1,2] for detailed discussions of general requirements on 
computer based safety critical control applications. 

A train brake control system should provide several functions. See [3,4] for requirements on 
functionality. 

The use of electronic devices for safety critical train applications are subject to standardisation, see 
for example [5,6,7]. 

Now, turning to a potential manufacturer’s point of view we might identify following 
requirements: 

Weight and volume; units should be easily adaptable to different types of bogies. This normally 
means that they should be small, compact and low weight. 

Maintainability; units should be easy to install and configure (deliverance). They should be easy to 
repair during rest of their life cycle. 

Environmental; unit should be design to have lowest possible negative environmental impacts. 

Economy; units are highly cost sensitive. Unlike, for example, automotive applications they do not 
manufacture in high volume. On the other hand they are likely to exhibit a longer life cycle.  

The requirement analysis will expose some key design issues: 

• Economy, the redesigned system should be less expensive to manufacture (production and 
test), deliver (install and configure). Product diversion (variants) should be achieved by 
the diversity of software modules. As a trade off, it becomes attractive to design the 
system with standard components as far as possible. This will cut both development and 
production costs. 

• Maintainability, the redesigned system shall provide extensive support for diagnose 
facilities. These facilities shall be designed in a way that they ease and simplify diagnose, 
optimises maintenance intervals and provide detailed information on parts needing to be 
replaced or repaired. As a trade off, the system relies heavily on well designed software 
and adequate sensors to establish the units overall condition as well as individual key parts 
conditions. 

 

1.6 Related work 
The subject of distributed control has been studied for many years. Several problem areas has been 

identified and substantial efforts has been undertaken in studies within some of the areas. In particular, 
system dependability and safety assessment has gained focus [8,9,10,11]. 

Fault-tolerant computing addressing train transportation at high velocities such as the Japanese 
Shinkansen is treated in [12]. A discussion of French high speed train SACEM can be found in [13]. 

Brake-by-wire systems for railway vehicles are predicted in [14]. Deceleration can be 
accomplished without any blocks or discs. A recent study [15] shows promising within the application 
of pure electric braking systems. Economy and maintainability in computer controlled brake systems 
are addressed in [16] and [17]. 

Brake functionality is distributed, i.e. a single railway car is equipped with several devices 
implementing the physical brake function Contemporary proposed computer architectures for avionics 
and automotive electronics control by-wire systems are distributed [18,19,20,21,22,23]. 
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2. CONCEPTUAL ARCHITECTURES  
We now turn to a discussion of a suitable architecture for the revised implementation of a 

computer based brake control. The architecture should address all initial requirements on functionality 
and dependability but now we also emphasis economy. Our architecture of choice should further 
support a true brake by-wire system, i.e., a final system that can be implemented without use of any 
mechanical information system or expensive mechanical backup-systems. In the final system 
mechanical or pneumatic devices should be used only to distribute the forces required to apply or 
release pressure at the brake discs. 

We will recapture three conceptually different architectures for potential use in safety critical 
applications. We start by describing the architectures and discuss them from our new point of view. As 
we find that no one of the discussed architectures meets our requirements on dependability and 
economy at the same time, we finally propose a new conceptual architecture we believe will comply. 

 

2.1 Prerequisites and assumptions 
In our model, the brake control system interfaces to: 

• The supervisor, a command system that supplies the brake control system with 
information such as: 

o Configure,  

o Diagnose, demand for various system status such as actuators condition, operating 
conditions and the need for maintenance. 

o Required speed, demand for maximum vehicle speed. 

o Environmental changes, for example, the vehicle is about to enter an environment 
where appropriate actions undertaken upon failure should change. 

• Physical actuators; in our model we assume reliable actuators that takes as input a digital 
value and apply disc pressure proportional to this value. 

In other words, the brake control system should transform trusted instructions from the supervisor 
to trusted values for the actuators and safely deliver these values to the actuators. 

 
2.2 N-modular redundant 

In centralised control solution computer architectures all processing units, memory and IO-
peripherals are housed in a few cabinets located near by each other. Several buses connect the units 
and fault tolerance is achieved by means of hardware and/or software redundancy. Sensors and 
actuators are connected directly to IO-peripherals in the system. Sensors are normally duplicated for 
reliability and actuators with fail-safe properties must be used to prevent hazards in the case of a fault 
in the actuator.  

 

 

 

 

 

 

 

 

Figure 2.1: TMR control system architecture 
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Figure 2.1 illustrates a TMR (Triple Modular Redundancy) system with redundant input and 
sensor group as well as a redundant fail-safe actuator (fault tolerant). A single voter is used to 
determine a majority vote for the value that should be sent to the actuator. Each processor computes 
the same output, possibly by use of diverse software. The processors may use a shared memory with 
additional EDAC (Error Detection and Correction) logic for processor/memory communication. 

The centralised solution has been used for space and avionic application for many years and has 
been proven highly reliable in a number of missions.  A recent design is the primary flight control 
computer of the Boeing 777 airplanes fly-by-wire system [24]. Some of the requirements for the flight 
control computer include; No single fault of any kind should cause degradation below the minimum 
configuration to meet requirements; no single fault should result in the transmission of erroneous 
outputs without a failure indication; fully automatic redundancy management; Mean-Time-Between-
Maintenance-Action of 25,000 hours assuming 13,6 operating hours per day.  

The major drawbacks with NMR-architectures are their large complexity and the huge costs for 
developing these kinds of systems. Massive redundancy also contributes to high unit costs. Therefore 
they are not realistic as solutions in a brake-by wire system for rail vehicles. 

 
2.3 Master Slave Solution 

A Master/Slave, or duplex system has two computers providing the same functionality. They 
might have an error detection capability which creates output to an executive unit which chooses the 
computational result from either the Master or the Slave. As an alternative, an operator (human) can 
act as executive and switch from Master to Slave upon detection of a computer failure.  

 

Figure 2.2: Master/Slave control system architecture 

The European aircraft Airbus 340 flight control system is comprised of five computers: three 
primary computers and two secondary computers. The primary computers employ Intel 80386 
processors while the secondary computers employ Intel 80186 processors. The computers use diverse 
software and hardware implementations.  One of the primary computers is active, another standing by 
prepared to take over and the third computer is spare. Thus, in effect there are four dissimilar 
computers, with four software packages used to perform the flight control function when one would 
functionally suffice [25]. 

A Master/Slave-solution was also designed into the European space shuttle Hermes [26] however 
this vehicle was never taken into service. 
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2.4 Distributed Solution 
By adding a general communication interface/bus the control computer processing may be 

distributed among several, more or less, independent computers (nodes). The nodes may be identical, 
or there may be nodes of varying types according to performance, size, power consumption, cost etc. 
A system may be distributed for a number of reasons.  

 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 2.3: Distributed control system architecture 

 
Distributed solutions are attractive in systems where sensors and actuators are distributed because 

they reduce cabling. A node can be implemented with a single microcontroller which makes efficiency 
in size, power consumption and price. As new nodes are added to the system the computational 
capacity will be linearly increased, the added capacity can be used to increase system throughput or as 
redundant (spare) capacity. The latter thus makes provision for fault-tolerance. However a distributed 
solution can be vulnerable since it might expose single point of failures; a malfunctioning 
communication unit or microprocessor may cause a node failure. A crucial bottleneck is the 
communication bus and the attached controllers. Any communication system introduce delays which 
might be susceptible to violate real-time constraints. There are only a few protocols capable of 
handling hard real-time requirements [27] and thus, despite the potential, distributed control systems 
are rare in safety-critical applications.  

 

2.5 Trade off 
We believe that both NMR and Master/Slave solutions are less suitable for a new brake control 

design. If anyone of them were chosen as a centralised brake control unit then the result would be a 
system that differs only slightly from the current system and it would probably not be less expensive 
than the current system, we cannot gain from such solutions. At the same time, it is not very attractive 
to equip each actuator with a separate NMR or Master/Slave design. This would probably be far too 
expensive. 

In a distributed brake control unit we find several attractive features. The hardware in each node 
can be made identical. Each node, in the distributed control, could easily be integrated with a single 
actuator and there is no need for a separate Brake Control Unit with accompanying Distribution Units 
as in the SWEBC10. The resulting system should be less expensive to manufacture and easier to 
maintain. Thus, a distributed solution is well suited to meet economical requirements, however we has 
to make the final design fault tolerant to fulfil reliability and safety requirements. 

A vehicle is always equipped with several actuators. Thus, by choosing a hardware distributed 
solution we already have the basic redundant configuration required to build a fault tolerant system. 
The question now becomes how to take full advantage of the natural redundancy in the distributed 
system at minimal costs? We now arrive at our proposal of the fault tolerant distributed computer 
architecture (See figure 2.4). 
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Figure 2.4: Distributed control system architecture with Fail Operational actuator control and sensor 

data acquisition 
 

The main idea is to add a small “voting unit” between the microprocessor and the physical 
actuator(s) and sensors in each actuator device. The new units communicate with each other 
distributing computed values for actuators as well as sensor values for the physical actuators. This unit 
also performs voting before writing a final value to the physical actuator. 

The resulting architecture could provide N-modular redundancy, where N is the number of 
actuators mounted in a single vehicle.  

At this point we should realize some basic assumptions about the configuration. 

The microprocessor/memory and communication unit(s) is considered far more complex than the 
voting unit.  

A highly complex electronic device is much more likely to fail than a simpler one, due to its 
higher fault intensity. 

If these assumptions hold, we should realize the ‘voting unit’ in hardware and add fault tolerance 
to the unit. Otherwise we would prefer to realize the unit in software which would be a much less 
expensive solution. 
3. REFINING A DISTRIBUTED ARCHITECTURE 

In this chapter we will apply a slightly modified distributed architecture by adding a small unit we 
call Fault Tolerant Control and Communication unit (FTCC). The primary purpose with this unit is to 
make it possible to take full advantage of application inherent redundancy and to provide adaptive fail 
safe states from the  rail vehicle brake system. 

In the railway car model each bogie has two stiff axles with a brake actuator attached to each axle. 
A fault tolerant actuator configuration i.e. a vehicle brake system should have at least four physical 
actuators, which are able to independently apply pressures to the brake disks. One or more brake 
systems are connected to a vehicle control computer also referred to as “supervisor”. A vehicle control 
computer operates the brake system via the vehicle bus. 

 

 

 

 
 
 

Figure 3.1: Railway car model 
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The brake system is organized in four physical brake actuator units where each unit is connected to 
all other units via the FTCC bus forming a cluster of brake actuators. Furthermore each unit 
communicates directly with the supervisory vehicle control computer via the vehicle bus.  

 
3.1 Physical actuator organisation 

An actuator is organized in three significant modules; Brake Intelligence Module (BIM), 
Actuator/Sensor Control Unit (ASCU) and Fault Tolerant Control and Communication unit (FTCC). 

 

 

 

 

 

 

 

Figure 3.2: Brake actuator unit overview 

The Brake Intelligence Module (BIM) can be thought of as a conventional embedded system 
(microprocessor, memory, communication units and ports). The software is designed to achieve 
optimal brake functionality, for example, compensate for worn discs, implement wheel slide 
protection etc. BIM should also be able to supply diagnostic information about the physical brake 
system to the vehicle control computer. Such diagnostics could be used to optimize the maintenance of 
the brakes. BIM thus handles all communication with the supervising vehicle computer and carries out 
all data processing needed to transform commands from the vehicle computer into appropriate 
instructions (apply/release force etc.). The calculated result, typically a binary value within the range 
of 12-16 bits, is then supplied to the FTCC by means of a register set: Write, where values may be 
written into FTCC state memory, Read where values from FTCC state memory may be read, and 
Control, where the watchdog function and fail safe states are initiated. The BIM is assumed to be far 
more complex than any of the other modules in the physical actuator. It is expected to have at least a 
magnitude of ten lower reliability. The module is not generally required to be fault tolerant to 
accomplish a safe brake system. There are however common mode software failures that could be 
fatal. Software fault-tolerance is not within the scope of this paper and will not be considered. 

The Actuator/Sensor Control Unit (ASCU) is used to transform a digital value (brake pressure 
information) into mechanical force and apply pressure to the disc, thus accomplishing the actual brake 
function. The ASCU also provides sensor values for real applied pressure as well as real axle 
rotational speed. Obviously this is one of the most critical parts in the entire system and it must be 
extremely safe. However a detailed discussion of the ASCU’s implementation is not within the scope 
of this work, we therefore assume a perfect ASCU and leave these discussions as further work. 

The FTCC, is used to distribute critical data among all physical actuators in the cluster. This 
module also supplies final values to the ASCU’s in each actuator. The modules organization and 
function will be thoroughly detailed below. 

3.2 State memory interface 
A BIM interfaces to FTCC through two sets of registers. One register set is used to verify 

functionality and establish FTCC mode of operation (Control Registers). Another set is used to 
communicate data via FTCC state memory to other nodes in the network (Data Registers). The actual 
number of data registers is configuration (application) dependent. The general idea is that each 
actuator and each sensor is allocated a matrix in FTCC state memory. The matrix is of size N*N, 
where N is the number of nodes in the network.  BIM continuously computes values for all physical 
actuators in the system (regardless of which node the actuator is attached to) writes the values to 
FTCC state memory via the data registers. Then, the FTCC is responsible for distributing all values in 
its state memory to all other nodes in the network. Each entry (value) emerging from remote nodes in 
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a matrix has a corresponding update bit, which is set and cleared by FTCC according to message 
transmission status.  
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Figure 3.3: State memory representation of sensor and actuator values 

Figure 3.3 illustrates how a row represents all actuator A’s values computed in a node while a 
column represents actuator A values as computed by all nodes. Each location in all matrixes, except 
from those marked ‘not used’ is accessible from BIM via the FTCC data registers. The FTCC control 
registers are used for three purposes. 

1) To configure FTCC matrixes when powering on the device. 
2) Implement a watchdog function to tell FTCC that BIM is working properly. 
3) Define the current Fail Safe Mode (further discussed below). It is desirable to allow different 

actions to be taken by the FTCC upon fatal failures. Application software is responsible for 
setting the appropriate Fail Safe Mode depending on system state and environmental 
conditions. 

The use of data and control registers will be further discussed below. 

3.3 FTCC operation 
In this paragraph we begin with describing FTCC operation during normal conditions. We then 

describe the alternate modes, which are used to handle exceptional (error) conditions. 

 FTCC is a small unit located between the BIM and the actuator in each node. The primary 
purposes with FTCC are: 

• Supply value(s) to the ASCU. 
• Gather sensor(s) data from the ASCU. 
• Communicate results from the node to all other nodes in the brake actuator cluster. 

There are three essential parts in the FTCC: 

• Communication unit, a time triggered communication subsystem used to interchange data 
among all FTCC’s in the system. Since the FTCC should be implemented fault-tolerant, 
the communication subsystem utilizes a two separate buses. 

• The voter, performs majority voting before a value is distributed to the physical actuator. 
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• The State Memory is used to hold data from all sensors and for all actuators from all nodes 
in the system. 

Figure 3.4: FTCC Blocks 

The communication subsystem uses a TDMA (Time Division Multiple Access) protocol to 
distribute data among the FTCC’s. During a TDMA-round (communication cycle) each node transmits 
it’s sensor and actuator values. Thus, upon the completion of a communication cycle, all 
sensor/actuator values has been updated to reflect the latest samples. 

Figure 3.5: Static Bus Communication Schedule in FTCC 

 

Three signals are used to determine the FTCC mode of operation: 

• Comm, (Communication). If at least one nodes messages were received correctly this 
signal is set to TRUE upon the completion of a communication cycle. The signal is set to 
FALSE if the unit entirely failed to execute the communication protocol. If this signal is 
FALSE then the FTCC assumes a faulty communication subsystem and will take 
appropriate actions. Since this signal is checked every communication cycle reintegration 
will be attempted immediately and, in the simplest case, a transient fault with short 
duration, reintegration will take place already in the next cycle. 

• MP,  (Micro Processor). The signal is set to TRUE and a watchdog is initiated each time 
the BIM executes a Watchdog Refresh protocol through the control registers. If the BIM 
fails to comply with the protocol then the FTCC assumes a faulty BIM and will take 
appropriate actions. This signal is checked at the end of each cycle so the BIM is allowed 
to try reintegrating immediately upon a failure.  
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• FS State, this signal is accomplished by the BIM executing a Set Fail Safe State protocol.  
Fail safe state may be set to one of: 

o MAX, use maximum value according to representation. 
o MIN, use minimum value according to representation 
o SENS, use value(s) obtained from sensor(s). 

The FTCC communication cycle is divide into thee phases (Figure 3.6). Applications synchronise 
with these phases by checking a status register in the FTCC. 

 

 

 

 

 

Figure 3.6: FTCC phases 

 

Phase 1: 
FTCC:Synchronising bus. Actuator values as determined during previous cycle is transferred to, 

and sensor values are sampled from, the nodes ASCU. The new sensor values will be propagated into 
state memory during phase 3. State machines are checked. If the Watchdog Refresh protocol has been 
successfully executed MP is set TRUE, otherwise FALSE. State memory is accessible (readable) via 
data registers. 

Application: 
Read distributed sensor and actuator values from state memory, i.e. data from previous cycle is 

made available for calculations.  

 

Phase 2:  
FTCC: Bus communication, message exchange with all nodes in the cluster takes place during 

phase 2. For each successfully received message an update bit is set and the message is transferred to 
it’s propriate position in state memory. FTCC data registers should not be accessed during this phase, 
any write will be ignored and any read may return unconsistent data since the state memory is updated 
during this phase. FTCC control registers are writeable. 

Update bits for values from remote nodes are cleared. 
Application: 
During this phase application should do control loop calculations, error checks and so on based on 

values from the previous cycle. 
 

 
 

 

 

 

 

 

 

Figure 3.7: Data transfer to state memory during phase 2 
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Phase 3:  

For each successfully received message the corresponding values update bits now has been set. If 
no message was recieived correctly, Comm is set to FALSE otherwise it is set to TRUE. Fail Safe state 
is latched from the last executed Set Fail Safe State protocol. If the BIM has complied to update the 
watchdog (MP is TRUE) then this value is fetched from BIM interface registers and transferred into 
state memory for distribution during the next cycle.  

 

 
Figure 3.8: Data transfer from BIM  to state memory 

In situations where either or both MP and Comm are false alternate data flows will occur. This will 
be described in the next paragraphs.   

Finally, during phase 3, voting takes place. A weitghted majority decision is made based upon 
values in the state memory, e.g. a value who’s update bit is zero has lower weight than a recently 
refreshed value. This value is passed to a multiplexer node value select. This selector disqualifies the 
value if (and only if) both the MP and Comm signals are FALSE. In this case, the new value is chosen 
based on the current fail safe state selection, i.e. apply minimum value, apply maximum value or apply 
current value as obtained from a sensor in the brake unit. 

 

 
Figure 3.9: If either MP or Comm is TRUE, value from voter is used 

 

In situations where either or both MP and Comm are false alternate data flows will occur, or more 
formally, the FTCC will change mode of operation. Figure 3.10 shows the possible nodes and the next 
paragraphs are devoted to a more detailed description of the different modes. 

 

MP Comm Mode 

TRUE TRUE Normal 

TRUE FALSE Local 

FALSE TRUE Neighbour 

FALSE FALSE Stand Alone 

Figure 3.10: FTCC operating modes 
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3.3.1 Normal Mode 
A Normal Mode cycle is started when the status signals MP and Comm generated by the previous 

cycle both were set to TRUE. Data from the nodes BIM as well as data from all other nodes in the 
cluster which was stored in State Memory during the previous cycle is passed to the majority voter and 
then via the actuator value selector to the actuator. 

 

 
Figure 3.11: Data flow in Normal Mode 

Since no errors were detected during the last communication cycle the system now acts as an 
NMR-configuration, data computed in all actuators are used in a majority decision of each actuator 
value. This implies that software should be designed so as to compute values for all actuators making 
up the cluster. 

3.3.2 Locally controlled 
The locally controlled mode is entered when bus communication during the previous cycle failed 

to communicate data via the FTCC bus (Comm is FALSE) but the local microprocessor is working 
properly (MP is TRUE). Data from BIM is now copied to all placeholders for the actual cycle in State 
Memory before they are passed to the voter.  

 
 

Figure 3.12: Data flow when node is locally controlled 

This is equivalent to a simplex system; however we know that BIM ha exercised a watchdog refresh 
protocol  and thus we may rely on the computed values. 
 
 
3.3.3 Neighbor controlled 

When the local microprocessor fails (MP is FALSE) but the communication unit works properly, 
placeholder in State Memory for BIM value is left unchanged. Other placeholders are updated from 
the communication unit. 

 
 

Figure 3.13: Data flow when node’s microprocessor fails 

The actuators microprocessor has failed. Since there is at least four actuators in the cluster we still 
have three working properly (assuming a single fault). The majority voter will discriminate any 
deviating value from the local BIM and send the working nodes values to the physical actuator. 
During the next communication cycle the FTCC will tag the failing nodes value as "not updated", i.e. 
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since state memory was not updated the node sends a copy of the previous cycle value but with this 
special notification. This allows the voters to exclude the old value from voting during the next cycle 
and thus there is provision for tolerating even a second fault. 

 

 
Figure 3.14: Multiple node failure 

As a special case, when all values in the State Memory are tagged "old” the FTCC shifts to a final 
mode (Stand Alone) described below. 

 

3.3.4 Stand alone 
Stand alone mode is introduced to handle the severe case where neither the local BIM nor the 

communication unit works properly. Actuator value is now taken from the FS State Selector, which in 
turn holds one of: 

MIN, application defined value where the semantic of MIN stands for minimal actuating. This 
could for example be to release pressure from the brake discs. 

MAX, application defined value where the semantic of MAX is maximum actuating. This could 
for example be to apply maximum pressure to the brake discs. 

A feedback value as obtained from a corresponding sensor, which causes actuating to maintain 
current dynamic behavior. 

 
 

Figure 3.15: Data flow when node’s microprocessor and the communication unit fails 

 

This is an abnormal case with low probability. In the case of transient or intermittent occurrence 
the system will degrade during the persistence of errors influence. In absence of disturbances it will 
immediately recover during the next communication cycle and enter a controlled mode (described 
above).  If the mode stays permanent this indicates a more or less total blackout, all microprocessors in 
the cluster are malfunctioning or the FTCC communication system is down and the local 
microprocessor is faulty. The FTCC will still assure a decent behavior from the physical actuator since 
it is continuously updated with a reasonable value.  

 
 
 

single node failure excluded from vote 

second node failure excluded from vote 
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4. THE REDESIGNED BRAKE SYSTEM 
In our redesign the original Brake Control Unit has been replaced by four Break Intelligence 

modules which are integrated into the physical actuators. Thus the cost for the microcomputer (cpu, 
memory communication units and IO-units) has been roughly increased by a magnitude of four. We 
have on the other hand removed the need for a separate housing for the BCU as well as the need for 
separate distribution units. This savings compensate for substantial more than the cost increase for 
duplicated microcomputers. At the same time we use the redundant microcomputer configuration for 
implementation of fault tolerance via the FTCC module.  

The introduced FTCC-module improves on both system functionality and dependability. We have 
added programmable Fail Safe behaviour as an option. Because the FTCC is time-triggered control 
jitter is reduced to a minimum. 

Despite the relatively low complexity of the FTCC it can add substantially to brake system 
reliability and safety. At the same time it will increase availability. Consider the original system 
(Figure 1.1), assuming the safety line works properly, the system will enter a fail-safe state (FS) which 
is defined so that all brake actuators will be activated and brake the vehicle. The use of FTCC would 
only slightly degrade the brake system using available redundancy upon a single failure in any of the 
nodes and brake performance would be maintained. 

We have successfully implemented the first specification of FTCC using standard VHDL. It has 
been synthesized in “Xilinx Spartan 2” (FPGA, 100 000 gates). Functionality was verified in a simple 
test bench where four nodes were used. We believe that valuable experiences can be gained from such 
implementations even though an FPGA solution, due to the expected fault intensity, would hardly be 
used in an implementation for real use.  

Currently, the FTCC is being redesigned and a specification for the next version (2) is prepared. In 
version 2 we will put efforts in a modular design with generic specification of the parts that builds the 
FTCC. This will form the basis of a full-scale fault tolerant design which can then be implemented and 
assessed. 
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