
Detailed Architecural Survey

Roger Johansson

Departement of Computer Engineering

Chalmers University of Technology

G�oteborg

December 13, 1990

Abstract

During the past years the aspects of computer architecture has undergone rapid and revolu-
tionary changes. Development of Reduced Instruction Set Computer (RISC) architectures has
introduced a number of new concepts in computer architecture and design. This paper discuss
RISC design methodologies in general and focusing on RISC processors in embedded Real-Time
Systems. It is as a part of the ESTEC "RISC evaluation study".

Contents

1 Introduction 3

1.1 Computer Architecture : 3
1.2 Trends in computer architectures : 4
1.3 Considerations that lead to the RISC : 5
1.4 A RISC design decision graph : 6
1.5 Early RISCs : 6
1.6 A brief overwiev of some RISC projects : 8

2 Description of RISC architectures 9

2.1 The Motorola MC88100 : 10
2.1.1 MC88100 data formats : 10
2.1.2 MC88100 instruction formats and addressing modes : : : : : : : : : : : : 10
2.1.3 MC88100 registers : 15
2.1.4 MC88100 instruction set : 16
2.1.5 MC88100 processor states : 19
2.1.6 MC 88000 Pipelining : 20

2.2 Intel 80960KB : 21
2.2.1 The 80960 data formats : 21
2.2.2 80960 Instruction Formats : 21
2.2.3 80960 Addressing Modes : 24
2.2.4 80960 Registers : 25
2.2.5 80960 Instruction Set : 26
2.2.6 i80960 processor states : 30
2.2.7 i80960 Pipelining : 31

2.3 The Am29000 : 33
2.3.1 Am29000 data formats : 33
2.3.2 Am29000 instruction format : 33
2.3.3 Am29000 register description : 34
2.3.4 Am29000 instruction set : 37
2.3.5 Am29000 Interrupts : 40
2.3.6 Am29000 Pipelining : 41

2.4 The MIPS R2000 processor : 42
2.4.1 MIPS data formats : 42
2.4.2 MIPS instruction format : 42
2.4.3 MIPS register description : 43
2.4.4 MIPS R2000 instruction set : 43
2.4.5 R2000 Exceptions : 45
2.4.6 R2000 Instruction Pipeline : 46

2.5 SPARC V7 : 47
2.5.1 SPARC V7 data types : 47

1

2.5.2 SPARC V7 instruction formats and addressing modes : : : : : : : : : : : 47
2.5.3 SPARC V7 registers : 48
2.5.4 SPARC V7 instruction set : 51
2.5.5 SPARC V7 traps and exceptions : 55

2.6 The INMOS T800 transputer : 58
2.6.1 T800 instruction formats and addressing modes : : : : : : : : : : : : : : : 58
2.6.2 The T800 registers : 58
2.6.3 The T800 instruction set : 59

2.7 Acorn : 64
2.7.1 Acorn data types : 64
2.7.2 Acorn instruction formats and addressing modes : : : : : : : : : : : : : : 64
2.7.3 Acorn registers : 65
2.7.4 Acorn instruction set : 66
2.7.5 Acorn processing states : 67

2.8 THOR : 69
2.8.1 THOR data types : 69
2.8.2 THOR instruction formats and addressing modes : : : : : : : : : : : : : : 69
2.8.3 THOR registers : 70
2.8.4 THOR instruction set : 73
2.8.5 THOR processing states : 74

3 RISCs in a real-time environment 77

3.1 Common RISC features : 77
3.2 Deviation from normal execution : 78
3.3 Context Switch : 82
3.4 Task Switch : 82
3.5 Subprogram Calls : 90
3.6 Data Interlocking and Delayed Branches : 93
3.7 Real Time System Support : 94
3.8 Conclusions : 95

2

Chapter 1

Introduction

This is a work on Reduced Instruction Set Computer design. It can, for short, be divided into
three parts:

� A historical background, fundamentals of RISC.

� RISC processor study:

{ "Motorola MC 88100"

{ "Intel Iapx80960".

{ "Advanced Micro Devices Am 29000"

{ "MIPS R2000"

{ "Sun SPARC version 7"

{ "Inmos T800 transputer"

{ "Acorn Risc Machine (VL86C010)"

{ "Saab THOR"

� RISC processors behaviour in real-time environments.

A major purpose with this report is to provide an overview of the fundamentals in RISC
design. Another important aim is to feature the RISC design concepts mainly by exemplifying
with existent processor designs, discussing how application of di�erent concepts may lead to
quite di�erent microprocessor designs.

1.1 Computer Architecture

A Computer is a high-speed device that performs arithmetic operations and symbol manipulation
through a set of machine dependent instructions. A computer consists of several important parts;
there are memory systems, input/output devices ranging within a large scale of complexity, the
Central Processing Unit (CPU) with datapaths, control unit and other subsystems.

There are, at least two, principal di�erent ways to manage the central processing. One, for
example, is the data-ow machine, another is the von Neumann- machine. A von Neumann-
machine does information processing by sequentially executing algoritms which are ordered
as programs and stored in a memory. The programs details interpretation and processing of
information coded as data and stored in the same memory. The von Neumann-machine consists
consequensly of at least a processor that sequentially interpret instructions in the program and
a primary memory that store program and data. These architectures may degrade performance
from the so called "von Neumann bottleneck" that is; execution speed is highly dependent of

3

the rate at which primary memory can be accessed, the memory bandwith. This comes from the
fact that code (processor instructions) and data resides in the same memory and are accessed
sequentially. Hence, the precense of data lacks the speed of instruction fetching. This is a fact
with inuence on RISC design considerations.

The principle of a "stored program" or a von-Neumann architecture can be implemented in
several ways and so has been done. To distinguish between di�erent von Neumann-architectures
we more generally speak about computer architecture. This concept, created by Amdahl while
working with the IBM 360,can be summarized as:

The image that the computer presents to the machine language programmer and the
compiler.

That is, the processors instruction set, its registers, and other details essential for program-
ming the device. The coding and interpretation of a program constitutes the instruction set,
thus, this is a main component of a computer architecture. The register �le is heavily utilized
by a compiler writer, thus it is another major component of the architecture. Di�erent instruc-
tion exhibits di�erent execution times, therefore in some special occasions, there is need for the
programmer to know something about the CPU-datapaths or at least the instruction timing.

The Amdahl de�nition of computer architecture is not the only one but it serves well its
purpose in this work.

1.2 Trends in computer architectures

To gain understanding about the design decisions behind RISC-machines it is necessary to
recapture the historical development of processors and their instruction-sets. Ever since the
�rst digital processing units, the instruction sets has been extended and the instructions have
grown in complexity. The MARK-1 (1948) had seven quite simple instructions while a mainframe
from the late seventies such as VAX has over 300 instructions. Some of these instructions are
extremely complex requiring a large amount of hardware and several clock cycles to execute.
This, in turn, leads to sophisticated technics for pipelining, prefetching and the use of cache
memories. This development, from small and simple to large and complex instruction-sets is
remarkable when it comes to single chip processors. For example, if comparing the Motorola
6800 with the 68020 we �nd that eleven new addressing modes has been added, the number of
instructions has doubled, new functions has been added for instruction caches and coprocessors.
Furthermore the instructions complexity has grown a tremendously.

The general trend towards modern CISC (Complex Instruction Set Computer) is a result
of several factors. New models, within a computer family is got to be compatible with their
predeccesors. As a result the number of functional units in the processor increases. By this
new functions can be added in new machines without wasting of earlier software development
e�orts. Several e�orts has been done in order to decrease the "semantic gap" between high
level programming languages and the instruction set. This has been done by implementing
instructions that were close to the high level statements. Such instructions have the tendency
to be extremely complex and not applicable for every possible language. Thus, it turns out
that the compiler can not make use of these special instructions. Meanwhile these instruction
requires a lot of hardware which in many cases increases the processor cycle time.

To make the machines run faster, designers have moved functions from assembly program
to microcode and further on from microcode to hardware. By adding extra hardware in the
decoding unit one could get to a point where a machine cycle has to be lengthed. Thus, adding
a certain instruction may slow down the execution of every instruction in the set. Development
tools and methods used in the design of large VLSI circuits, is a support for design of large
architectures.

4

Microcoding is a particular interesting technic that encourage complex instructions. It is a
structured way to implement, create and modify those algoritms that controls the execution of
complex instructions in the processor. The steady grow of CISC-functions is further supported
by large micromemorys. It is easy to add a new instruction if only there is room enough in the
micromemory.

1.3 Considerations that lead to the RISC

At least historically, in most computer applications, a program written in assembly language
exhibit the shortest execution times. This has been so due to the fact that assembly language
programmers know the computer architecture well and is capable of taking every advantage
of it. It is diÆcult to accomplish this in an automatic manner and for general cases as is
required in compiler generated code. However, assembly language programming, as a way of
increasing program performance lacks of some heavy disadvantages. It is probably the most
time-consuming method to write software. Thus it is very expensive and yields results much
later than high level programming. Hence, for a new processor architecture theres got to be a
compiler for a high level language.

It has been found that it is diÆcult to construct an eÆcient compiler for a computer with
a large instruction set. The compiler can't make use all of the sophisticated instructions that
the architecture o�ers. Therefore, the compiler using simpler instructions, generating larger
code making programs run slower, and wasting primary memory in a way that shouldn't be
needed if an assembly language programmer wrote the same piece of code. With the experience
of these facts some designers began to question whether CISCs are as fast as they could be,
bearing the capabilities of the underlying technology in mind. A few designers hypothesized
that increased performance should be possible through a streamlined design and instruction set
simplicity, hence a Reduced Instruction Set Computer.

A more analythical way to put these considerations may be as follows:
Consider this expression for processor performance:

P =
T ime

Task
= C T I

where:

� C = cycles/instruction

� T = time/cycle

� I = instructions/task

It is clear that P should be kept as small as possible under given circiumstances. There must
be at least three di�erent ways to minimize P.

1. Reduce the number of cycles per instruction.

2. Reduce the time per cycle.

3. Reduce the number of instructions per task.

Let us have a closer look at each of these.

1. The cycle time could be made very small through pipelining technics. I.e, several instruc-
tions can execute simultanously, each one occupying di�erent stages of the pipeline. This
will keep most of the hardware busy most of the time. The cycle time will be equivalent
to the slowest stage in the pipeline. Hence, pipeline is a way to reduce C.

5

2. To keep T low requires instructions that can be decoded and executed by non-complex,
and thereby fast, subsystems, therefore, keeping instructions simple will decrease T.

3. I can, theoretically, be made as low as 1. I.e when there exists an instruction for each
high-level program construction that a task can constitute. This is hard to achieve but
the principle is clear. To minimize I requires complex instructions.

As we can see, there is no way of meeting all of these requirements at the same time. In
fact, there is several contradictions in the requirements such as 1) and 3), 2) and 3), a closer
look will show even more.

The RISC approach is to reduce C and T. This can only be done at "the cost of" I. To min-
imize this cost, one attempts to reduce I with the aid of highly optimizing compilers. Therefor,
one must bear in mind, that the absence of such program development tools will dramatically
a�ect a RISC system.

1.4 A RISC design decision graph

The "Reduce P = C T I, at constant cost" , described above can be considered as the generic
RISC design concept. This besides other experiences has evolved in todays microprocessors.
It may prove helpful to look at some consequenses of design decisions made on a basic RISC
criteria. Figure 1.1 below is an attempt to sort things out. It is not a complete sketch but covers
most of the RISC design consideration interactions that shows up in this paper.

1.5 Early RISCs

The RISC concept was, in fact, adapted very early by Seymour Cray in an e�ort to design
a very fast vector processor. The CDC 6600 was register based and all operations used data
from registers local to the arithmetic units. The instruction set was simple and execution were
pipelined. Cray realized that all operations must be simpli�ed for maximal perfomance. One
bottleneck in processing may cause all other operations to degrade perfomance.

Starting in the mid 1970s, the IBM 801 research team investigated the e�ect of a small
instruction set and optimizing compiler design on computer performance. They performed
dynamic studies of the frequency of use of di�erent instructions in application programs. In
these studies, they found that approximately 20 percent of the available instructions were used
80 percent of the time. Also, complexity of the control unit necessary to support rarely used
instructions, slows the execution of all instructions. Thus through careful study of program
characteristics, one can specify a smaller instruction set consisting only of instructions which
are used most of the time, and execute quickly.

The �rst major university RISC research project was at the University of California, Berkeley.
David Patterson, Carlos Sequin and a group of graduate students investigated the e�ective use
of VLSI in microprocessor design. Shortly after the Berkeley group began its work, researchers
at Stanford University, under the direction of John Hennessy, began looking into the relationship
between computers and compilers. Their research evolved into the design and implementation
of optimizing compilers and reduced instruction sets. Since this research pointed to the need for
single cycle instruction sets, issues related to complex,deep pipelines also were investigated. This
research resulted in a RISC processor for VLSI that is commonly referred to as "the Stanford
MIPS".(Microprocessor without Interlocked Pipeline Stages).

6

Figure 1.1: A Risc Design Decision Graph

7

1.6 A brief overwiev of some RISC projects

The SOAR (Smalltalk On A RISC) project designed a computer to execute Smalltalk-80 faster
than existing VLSI systems.

Berkeley SPUR (Symbolic Processing Using RISC) is a multiprocessor research machine for
investigations in paralell processing.

Stanford MIPS-X is a successor to the Stanford MIPS design.
University of Wisconsin PIPE (Parallel Instructions and Pipelined Execution) project was

an attempt to reduce three commonn processor bottlenecks with a reduced architecture. In the
PIPE, programs are decomposed in separate address and computation tasks. Two independent
identical processors peforms these tasks. An access processor is responsible for all memory
addressing and access operations. An execute processor performs all data processing.

Reading University RIMMS(Reduced Instruction Set architecture for Multi- Microprocessor
Systems) resulted from a study of CPU design for SIMD and MIMD multiprocessor systems.
The research group saw that the performance gains through concurrency have the potential
beeing much more signi�cant than performance gains throuh increased device speeds.

Ben-Gurion University MODHEL RISC study was an attempt to investigate the space be-
tween RISC and SIC (Single Instruction Computer) design to determine the optimal instruction
mix.

Hewlett-Packard has developed a family of computers based upon RISC design. Two of these
computers, the Series 930 and the Series 950 are implementations of the Precision Architecture.

IBM ROMP/MMU Processor represents one of the commercial spino�s from the IBM 801
research project.

As one of the early commercial RISCs , the Pyramid 90x is a large, general purpose mini-
computer intended to be competitive with VAX 11/780.

The Ridge 32s is one member of a family of 32-bit RISC workstations.

References:

32-Bit Microprocessors,
Mitchell, H J,
William Collins Sons & Co,1986

High Level Language computer architecture,
Milutinovi�c (Editor),
Computer Science Press, 1989

RISC Architecture,
Tabak, Daniel,
Research Studies Press, 1987

8

Chapter 2

Description of RISC architectures

In this chapter, a detailed description of RISC processors, mostly from an architectural point of
view, will be given. Basic features that will be described are:

� Data types

� Instruction formats

� Addressing Modes

� CPU register description

� Instruction Set

� Processor states

The varying ways of implementing oating point support, memory management etc, will only
be mentioned short and no detailed description will be given.

The main purpose with this chapter are:Using common accessible information, give a stan-

dardised description of selected RISC processors architecture.
The literature selected are throughly each manufacturers Users Manual (or equvivalent).
In some cases, descriptions are not of the standardised form that is desired. This may be due

to the fact that the information is not available from the Users Manual or Di�erences between
the manuals do not allow a standardised description. Finally, attempts to avoid repetitions may
lead to discrepancies between the ways of describing two di�erent processors.

In cases where none or insuÆcient information is available from the documentation, para-
graphs may be entirely omitted or there might be a note about it.

9

2.1 The Motorola MC88100

In early 1988, Motorola Inc. presented 88000. The basic architecture consists of a processor chip,
MC88100 and two identical cache chips, MC88200. This o�ers a full system solution for a reduced
instruction set architecture. The MC88100 has capability for concurrent operations. There are
four execution units: the Integer/Bit-Field Unit and the Floating Point Unit execute data
manipulation instructions. The Data Unit performs data memory accesses while the Instruction
Unit performs instruction prefetches. There are separate data and instruction memory ports
(Harvard Bus Structure) and pipelined Load and Store operations. The MC88100 also has three
internal buses; a source 1 bus, a source 2 bus and a destination bus that are used for passing
operands between the register �le and the di�erent execution units.

2.1.1 MC88100 data formats

� Integer signed (2's complement) and unsigned data formats: 64-bits (double word), 32-bits
(word), 16- bits (half-word), 8-bits (byte). Data items are aligned so that they do not cross
word boundaries, i.e half-words may have only even addresses, words may have addresses
divisible by four, double words may have addresses divisible by eight and byte data may
be placed at any address. An attempt to cause misaligned access causes an exeption (if
enabled).

� Signed and unsigned bit �elds from 1 to 32 bits.

� IEE 754 single precision (32 bits) oating point. IEE 754 double precision (64 bits) oating
point

Bytes and half-words are packed, in memory, according to the "little endian" or the "big-
endian"-scheme. The byte ordering in e�ect is controlled by a bit in the processor status
register. A signed byte or half-word stored in a register is automatically signed-extented. Data
is placed in the least signi�cant part while remaining bits is �lled with the sign of the data value.
In the case of unsigned byte or half-word the most signi�cant part of the register is �lled with
zeros. The least signi�cant bit in a data item is denoted b0 the next bit b1 and so on.

2.1.2 MC88100 instruction formats and addressing modes

All instructions are 32 bits in length. Immediate operands and displacements are encoded in
the instruction word. All other operands are located in registers which can be moved to and
from memory with load and store instructions.

There are three instruction types; ow control, data memory accesses and register to register
operations. Each type has unique addressing capabilities. Flow control instructions references
are made by the instruction unit. Data memory access instruction address those sections of
memory that contain program data. Register to register instructions access only the general
purpose registers or, in some cases, the control registers.

� Register to Register Instructions

There are four addressing modes for register to register instructions.

1. Triadic Register Addressing Mode

Uses three �ve-bit �elds to specify two source registers and a destination register.
Some instructions do not use all three register selection �elds. Unused �elds should be
zero. For arithmetic and logical instructions there is a subopcode �eld wich speci�es
the full operation

Instruction Format (Floating Point):

10

31 26 25 21 20 16 15 5 4 0

1 0 0 0 0 1 D S1 SUBOPCODE S2

Instruction Format (Non Floating Point):

31 26 25 21 20 16 15 5 4 0

1 1 1 1 0 1 D S1 SUBOPCODE S2

D The D-�eld speci�es the destination register.

S1 Speci�es the source 1 operand register or zero.

SUBOPCODE Identi�es the particular instruction.

S2 Speci�es the source 2 operand register

2. Register with 10-bit immediate addressing

This mode is used in bit-�eld instructions. The 10- bit immediate �eld

serves as two 5-bit �elds specifying the width and o�set of the S1 operand

�eld.

Instruction Format:

31 26 25 21 20 16 15 10 9 0

1 1 1 1 0 0 D S1 SUBOPCODE IMM10

D Speci�es destination register

S1 Speci�es source 1 operand register

SUBOPCODE identi�es the particular instruction

IMM10 Contains a 10-bit value where: bits 9-5 is a 5-bit width bits 4-0 is

a 5-bit o�set

3. Register with 16-bit immediate addressing

This form is used by arithmetic and logical instructions requiring a 16-bit

immediate source value.

Instruction Format:

31 26 25 21 20 16 15 0

OPCODE D S1 IMM16

OPCODE identi�es the particular instruction

D Speci�es destination register

S1 Speci�es source 1 operand register

IMM16 contains an unsigned immediate value.

4. Control Register Addressing

This mode is used to reference the general control and FPU control reg-

isters. It applies to user as well as supervisor programming modes.

Instruction Format:

31 26 25 21 20 16 15 14 13 11 10 5 4 0

1 0 0 0 0 0 D S1 OP SFU CRS/CRD S2

D Speci�es destination register

S1 In case of store/exhange instructions this �eld speci�es the source

register. For load-instructions this �eld is ignored.

OP identi�es the particular instruction

11

SFU speci�es the special function unit accessed by the instruction.

CRS/CRD speci�es the control register, might be source as well as desti-

nation depending on instruction

S2 must contain the same value as the S1 �eld and serves the same pur-

poses.

� Data Memory Access Instructions

1. Register Indirect with zero-extended immediate index

The contents of rS1 are added to the 16-bit zero- extended immediate index contained
in the I16 �eld of the instruction. The result is a data memory address used to load
or store data. For a load instruction the data is loaded into the register speci�ed by
the D �eld. For a store or a exhange instruction the data in the register speci�ed by
the D �eld is stored to memory.

Instruction Format:

31 26 25 21 20 16 15 0

OPCODE D S1 I16

OPCODE identi�es the particular instruction

D Speci�es destination register

S1 speci�es the source 1 operand register usd in the address calculation.

I16 contains a 16-bit index.

2. Register indirect with index

The contents of rS1 is added to the contents of rS2 resulting in a data

memory address used to load or store data.

Instruction Format:

31 26 25 21 20 16 15 5 4 0

1 1 1 1 0 1 D S1 SUBOPCODE S2

D Speci�es destination register

S1 speci�es the source 1 operand register usd in the address calculation.

SUBOPCODE identi�es the particular instruction

S2 speci�es the source 2 operand.

3. Register indirect with scaled index

The contents of rS2 is scaled by the size of the access and then added to

the contents of rS1 resulting in a data memory address used to load or

store data.

Instruction Format:

31 26 25 21 20 16 15 5 4 0

1 1 1 1 0 1 D S1 SUBOPCODE S2

D Speci�es destination register

S1 speci�es the source 1 operand register usd in the address calculation.

SUBOPCODE identi�es the particular instruction including the scaling

factor.

S2 speci�es the source 2 operand.

12

� Flow Control Instructions

1. Triadic Register Addressing

This form is used to specify the target of a jump instruction or the operands of a
trap-on-bound instruction.

Instruction Format:

31 26 25 21 20 16 15 5 4 0

0 1 1 1 1 0 1 D S1 SUBOPCODE S2

D This �eld is ignored

S1 This �eld is ignored

SUBOPCODE identi�es the particular instruction

S2 speci�es the source 2 register

2. Trap generating bounds check instruction (tbnd)

The data in rS1 and rS2 is compared and a trap is taken if the source 1 data

is greater than the source 2 data (unsigned). If the trap is taken execution

transfers to the bounds check exception as follows: the 20-bit address in

the VBR is concatenated with the bounds check exception vector and

three trailing zeros to form the 30-bit instruction address. The result is

placed in the FIP, and program execution begins from that address.

Instruction Format:

31 26 25 21 20 16 15 5 4 0

1 1 1 1 0 1 D S1 SUBOPCODE S2

D This �eld is ignored

S1 This �eld speci�es the source 1 operand register

SUBOPCODE identi�es the particular instruction (tbnd).

S2 speci�es the source 2 register

3. Register with 9-bit vector table index

For bit test trap instructions (tb0, tb1 and tcnb) the bit in rS1 speci�ed by

the B5 �eld is tested for either a set or clear condition. For conditional trap

instructions, the source 1 register is tested for the condition(s) speci�ed in

the M5 �eld. In either case, if the test condition is true, the 20-bit address

in the in the VBR is concatenated with the VEC9 �eld of the instruction

and three trailing zeros to form the 30-bit instruction address. Exception

processing begins,and the vector is fetched from the resulting address.

Instruction Format:

31 26 25 21 20 16 15 9 8 0

1 1 1 1 0 0 B5/M5 S1 SUBOPCODE VEC9

B5/M5 For bit-test the B5 �eld speci�es the bit to be tested in the register

speci�ed by the S1 �eld. For conditional tests the M5 �eld specify which

conditions to test out of four possible conditions.

S1 This �eld speci�es the source 1 operand register

SUBOPCODE identi�es the particular instruction (tb0,tb1 and tcnb)

S2 speci�es the source 2 register

VEC9 contains the 9-bit vector numbert

13

4. Register with 16-bit displacement/immediate

This form is used by branch and trap instructions for target address and

test condition generation. For bit-test branch instructions, the bit in rS1

speci�ed by the B5 �eld is tested for either a set or clear condition. For

condition-test branch instructiuons, rS1 is tested for the condition(s) spec-

i�ed in the M5 �eld. In either case, if the test condition is true, the 16-bit

displacement speci�ed in the instruction is shifted left two positions and

sign-extended to 32 bits. The two least signi�cant bits are cleared to

force word alignement. This value is added to the execute instruction

pointer (XIP), and the result is loaded into the FIP. Program execution

is transferred to that address.

Instruction Format:

31 26 25 21 20 16 15 0

OPCODE B5/M5 S1 D16

OPCODE this �eld identi�es the particular instruction (bb0 ,bb0.n ,bb1,bb1.n

,bcnd, bcnd.n).

B5/M5 For bit-test the B5 �eld speci�es the bit to be tested in the register

speci�ed by the S1 �eld. For conditional tests the M5 �eld specify which

conditions to test out of four possible conditions.

S1 This �eld speci�es the source 1 operand register

D16 speci�es a signed 16-bit displacement.

5. Trap generating Bounds Check Instruction(tbnd)

The data in rS1 is compared to the speci�ed immediate operand, and a

trap is taken if the register data is greater than the immediate operand

(unsigned). If the trap is taken,the bounds check vector number is com-

bined with the VBR, and the result is concatenated with three trailing

zeros and loaded into the FIP. Exception processing begins for the bounds

check exception.

Instruction Format:

31 26 25 21 20 16 15 0

OPCODE D S1 IMM16

OPCODE this �eld identi�es the particular instruction(bb0,bb0.n,bb1,bb1.n,bcnd,bcnd.

D This �eld is not used.

S1 This �eld speci�es the source 1 operand register

IMM16 speci�es a 16-bit immediate operand for the tbnd-instruction.

6. 26-bit branch displacement

This form is used to specify the branch target instruction in unconditional

branch instructions (br,bsr). These instructions use a sign-extended 26-

bit displacement to calculate the location of a new target instruction. The

displacement is shifted left by two bits and sign-extended to 32 bits. The

two least signi�cant bits are cleared to force word alignement. This value

is then added to the XIP to form the address of the target instruction.

The computed address is placed in the FIP causing program execution to

be transferred to that address.

Instruction Format:

14

31 26 25 0

OPCODE D26

OPCODE This �eld identi�es the particular instruction (br,br.n,bsr,bsr.n).

D26 This �eld speci�es the displacement to the target instruction.

2.1.3 MC88100 registers

The register set consists of general-purpose registers, registers dedicated for oating point oper-
ations and control-registers. There are also some internal registers, not available in any of the
register models; they can only be used and modi�ed indirectly. They are essential for under-
standing of exeption processing, delayed branches etc. The following will briey describe these
registers.

1. General Purpose registers

r0-r31 contain program data. All of these registers with the exeption of r0 (constant zero)
has read/write access. A write operation to r0 has no e�ect.

r0 zero

r1 subroutine return pointer

r2-r9 called procedure parameter registers

r10-r13 called procedure temporary registers

r14-r25 calling procedure reserved registers

r26 linker

r27 linker

r28 linker

r29 linker

r30 frame pointer

r31 stack pointer

2. Floating-point operation registers

fcr0 f.p. exeption cause register

fcr1 f.p. source operand 1 high register

fcr2 f.p. source operand 1 low register

fcr3 f.p. source operand 2 high register

fcr4 f.p. source operand 2 low register

fcr5 precise operation type register

fcr6 f.p. result high register

fcr7 f.p. result low register

fcr8 f.p. imprecise operation type register

fcr62 f.p. user status register

fcr63 f.p. user control register

3. Control Registers

cr0 processor identification register

cr1 processor status register

cr2 exeption time processor status register

cr3 shadow scoreboard register

15

cr4 shadow execute instruction pointer

cr5 shadow next instruction pointer

cr6 shadow fetched instruction pointer

cr7 vector base register

cr8 transaction register 0

cr9 data register 0

cr10 address register 0

cr11 transaction register 1

cr12 data register 1

cr13 address register 1

cr14 transaction register 2

cr15 data register 2

cr16 address register 2

cr17 supervisor storage register 0

cr18 supervisor storage register 1

cr19 supervisor storage register 2

cr20 supervisor storage register 3

4. Internal Registers

� XIP execute instruction pointer contains the address of the instruction

that is currently being executed.

� NIP next instruction pointer contains the address of the instruction that

is currently being received from memory and decoded by the instruction

unit.

� FIP fetch instruction pointer points to the memory location of the next

accessed instruction. For sequential execution FIP=XIP+4. Jump target

addresses are received from the jump instruction operand. Unconditional

branch addresses are computed from the XIP and a 26-bit signed displace-

ment, i.e. FIP=XIP+d26. Conditional branch addresses for the branch

taken case are calculated as FIP=XIP+d16.

� SB scoreboard register contains a bit corresponding to each register r1-

r31. If a bit is set the corresponding register is currently in use. This will

be further discussed below.

2.1.4 MC88100 instruction set

The assembler mnemonics may have extensions with the following interpretations:

� .u denotes upper half word

� .c second operand is ones complemented before it is used in the operation

� .n delayed branch option

� .car (carry) may be

1. .ci carry in, include PSR carry in operation

2. .co carry out, a�ect PSR carry by operation

3. .cio both .ci and .co operations

16

� .sz size (default is "word") may be

1. .b byte

2. .bu unsigned byte

3. .h half word

4. .hu unsigned half word

5. .s single word (32 bits)

6. .d double word (64 bits)

� .fsz oating point operand size

1. .s single precision

2. .d double precision

Floating point operations support mixed operand sizes.

� .usr user memory option allows user memory to be accessed while in the supervisor mode

Instruction/ Operands Comments
Options
AND.U rD,rS1,IMM16 logical and
AND.C rD,rS1,S2 logical and
MASK.U rD,rS1,IMM16 logical mask immediate
OR.U rD,rS1,IMM16 logical or
OR.C rD,rS1,rS2 logical or
XOR.U rD,rS1,IMM16 logical exclusive or
XOR.C rD,rS1,rS2 logical exclusive or
ADD rD,rS1,IMM16 integer add
ADD.CAR rd,rS1,rS2
ADDU.CAR rD,rS1,IMM16 unsigned integer add

rD,rS1,rS2
CMP rD,rS1,IMM16 integer compare

rD,rS1,rS2
DIV rD,rS1,IMM16 integer divide

rD,rS1,rS2
DIVU rD,rS1,IMM16 integer unsigned divide

rD,rS1,rS2
MUL rD,rS1,IMM16 integer multiply

rD,rS1,rS2
SUB rD,rS1,IMM16 integer subtract
SUB.CAR rD,rS1,rS2
SUBU rD,rS1,IMM16 integer unsigned subtract
SUBU.CAR rD,rS1,rS2
CLR rD,rS1,IMM10 clear bit-�eld

rD,rS1,rS2
EXT rD,rS1,IMM10 extract bit-�eld

rD,rS1,rS2
EXTU rD,rS1,IMM10 extract unsigned bit-�eld

17

rD,rS1,rS2
FF0 rD,rS2 �nd �rst bit clear
FF1 rD,rS2 �nd �rst bit set
MAK rD,rS1,IMM10 make bit-�eld

rD,rS1,rS2
ROT rD,rS1,IMM10 rotate register (only 5 bits of IMM10 used)

rD,rS1,rS2
SET rD,rS1,IMM10 set bit-�eld

rD,rS1,rS2
LD.SZ rD,rS1,IMM16 load register rD from memory at address rS1+IMM16
LD.SZ.USR rD,rS1,rS2 load from address rS1+rS2 or rS1+(rS2[scale]

rD,rS1,(rS2) Scale might be 0,1,2 or 3
LDA.SZ rD,rS1,IMM16 load address

rD,rS1,rS2
rD,rS1,(rS2)

LDCR rD,crS load from control register
ST.SZ rD,rS1,IMM16 store contents of rD in memory rS1+IMM16
ST.SZ.USR rD,rS1,rS2 store in rS1+rS2 or rS1+(rS2[Scale]

rD,rS1,(rS2)
STCR rD,crD store to control register
XMEM.BU rD,rS1,IMM16 exhange register with memory
XMEM.BU.USR rD,rS1,rS2

rD,rS1,(rS2)
XCR rD,rS,crS/D exhange control register
JMP.N rS2 unconditional jump
JSR.N rS2 jump to subroutine
BB0.N B5,rS1,D16 branch on bit clear
BB1.N B5,rS1,D16 branch on bit set
BCND.N M5,rS1,D16 branch on condition met
BR.N D26 unconditional branch
TB0 B5,rS1,VEC9 trap on bit clear
TB1 B5,rS1,VEC9 trap on bit set
TBND rS1,IMM16 trap on bounds check

rS1,rS2
TCND M5,rS1,VEC9 conditional trap
RTE return from exeption
FADD.FSZ rD,rS1,rS2 oating point add
FCMP.FSZ rD,rS1,rS2 oating point compare
FDIV.FSZ rD,rS1,rS2 oating point divide
FLDCR rD,,fcrS load from oating point control register
FLT.FSZ rD,rS2 convert integer to oating point
FMUL.FSZ rD,rS1,rS2 oating point multiply
FSTCR rD,fcrD store to oating point control register
FSUB.FSZ rD,rS1,rS2 oating point subtract
FXCR rD,rS,fcrS/D exhange oatin point control registers
INT.FSZ rD,rS2 round oating point to integer
TRNC.FSZ rD,rS2 truncate oating point

18

2.1.5 MC88100 processor states

The MC88100 may be in one of three states:

� Normal instruction execution

� Exception

� Reset

Normal Execution

During normal execution the processor operates at either the supervisor or user level of privi-
lege. This levels de�ne which memory space is accessed during external bus transactions and
which registers are available to the programmer. When operating in supervisor mode memory
access reference the supervisor address space in data or instruction memory. This mode al-
lows execution of all instructions and allows access to all control registers and general purpose
registers.

Kernel software typically executes in supervisor mode. The kernel may provide services such
as resource allocation, exception handling and software execution control. Execution control
normally includes control of user programs and protecting the system from accidental corruption
by a user program.

The user mode changes to supervisor mode if:

� an exception occurs

� a reset is signaled

� a trap instruction is executed by a user program

� an interrupt or memory access fault occur

Exceptions

Exceptions are conditions that causes the processor to suspend execution of the current stream
and perform exception processing. Exceptions can occur at any time during normal instruction
execution. Exceptions are recognized internally when the processor is between instructions.

Exceptions occur due to to four types of conditions:

� Interrupts which are signaled externally

� Externally signaled errors (such as bus errors)

� Internally recognized errors (such as zero-divide)

� Trap instructions

The processor begins exception handling at the next instruction boundary after the event
is recognized. It freezes the execution context in "shadow-" and "exception time registers",
which also precludes other interrupts from occuring, and enters the supervisor mode. The FPU
is disabled and the data unit is allowed to complete pending accesses. Instruction execution
transfers in an orderly manner to the appropriate interrupt handler routine which is de�ned by
the "exception vector" associated with that particular interrupt.

Exceptions fall into two categories: precise and imprecise. With a precise exception, the
exact processor context, when the exception occured, is available, and the exact cause of the

19

exception is always known. With an imprecise exception, the exact processor context is not
known when the exception is processed. The context is not known because concurrent operations
have a�ected the information that comprises the processor context.

The integer unit maintains copies of certain internal registers for use during MC88100 ex-
ception processing. The data unit and FPU also maintain copies of internal registers to allow
full recovery when exceptions occur. The copies of internal registers are referred to as shadow
registers and are updated on every clock cycle when shadowing is enabled. For shadowing to
occur, it must be speci�cally enabled, this may be done by clearing the "shadow freeze bit"
in PSR or by executing an rte-instruction. The shadow freeze bit is set by hardware when an
exception is processed in order to preserve the processor context.

"Exception vectors" are entry points into the interrupt handler routines. The MC88100
maintain a vector table consisting of 512 exception vectors on a 4 KB memory page pointed to
by the vector base address in the "vector base address register" (VBR).

Each interrupt and "exception vector" has a corresponding number which is generated by
hardware or speci�ed as a nine-bit �eld in a trap instruction. This number is used as an index
into the vector table. Each "exception vector" is two instructions (eight bytes) long. "Exception
vectors" 0-127 are reserved for various events while "exception vectors" 128-511 are user de�ned.

Due to concurrent execution units of the MC88100 multiple exceptions can occur at the same
time whithin the processor. When this happens they are recognized by the processor according
to a prede�ned priority. Exceptions that have the same priority never occur simultaneously.

2.1.6 MC 88000 Pipelining

There are four separate execution units which allow MC88000 to perform up to �ve di�erent
operations simultanously:

� Access program memory

� Execute an arithmetic,logical or bit-�eld instruction

� Access data memory

� Execute oating point or integer divide instruction

� Execute oating point or integer multiply instruction

The instruction unit pipeline supplies the appropriate execution unit with instructions that
are to be executed by a concurrent pipeline. Data memory access instructions are dispatched to
the data unit, whereas, oating point , integer multiply and integer divide instructions are dis-
patched to the FPU. The FPU contains two pipelines one handling oating point add, subtract,
compare and conversions between integer and oating-point, as well as integer and oating-point
divide instructions. All other instructions are executed by the integer unit, or instruction unit
for branches, in one machine cycle.

All execution units contain an additional level of paralellism. Instruction decode and source
operand fetches from the registers are performed simultanously. Branch instruction decode and
branch target address calculation are performed in paralell with the next instruction fetch. Three
internal register buses allow three simultanously register accesses.

References:

MC88100 Risc Processor User's Manual,Second Edition
Prentice Hall, 1990

20

2.2 Intel 80960KB

The 80960 is a 32-bit architecture from Intel. This architecture has been designed to meet the
needs of embedded applications such as machine control, robotics, process control, avionics and
instrumentation.

The architecture provides 32 registers, 28 of which are available for general use. These are
divided into two types; globals and locals. There is a 512 byte instruction cache on chip and
multiple set of local registers. Execution of some instructions may me overlapped. This is
accomplished by register scoreboarding. All instructions are 32 bits long and aligned on 32 bit
boundaries. There are over 50 instructions that can be executed in a single clockcycle.

2.2.1 The 80960 data formats

The 80960 operates on seven data types; Integer, real, ordinal and decimal data types can be
thought of as numeric data types. The remaining types; bit- �eld, triple word and quad word
represents grouping of bits or bytes that the processor can operate on as whole, regardless of
the nature of the data contained in the group.

Integers are signed whole numbers, which are stored and operated on in two's complement
format. The processor recognizes four sizes of integers; 8-bit (byte integers), 16 bit (short
integers), 32-bit (integers) and 64-bit (long integers).

Ordinals are a general purpose data type. The processor recognizes four sizes of ordinals;
8-bit (byte ordinals), 16-bit (short ordinals), 32-bit (ordinals), and 64-bit (long ordinals). The
processor uses ordinals for both numeric and non- numeric operations. For numeric operations,
ordinals are treated as unsigned whole numbers. The processor provides several arithmetic
instructions that operate on ordinals. For non-numeric operations, ordinals contain bit-�elds,
byte strings, and Boolean values.

Reals are oating point numbers. The processor recognizes three sizes of reals; 32-bit (reals),
64- bit (long reals), and 80-bit (extended reals). The real number format conforms to the IEEE
standard for binary oating point arithmetic.

The processor provides three instructions that perform operations on decimal values when
the values are presented in ASCII-format. Each decimal digit is contained in the least signi�cant
byte of an ordinal (32 bits). For decimal operations, bit 8 through 31 of the ordinal containing
the decimal are ignored.

An individual bit is speci�ed for a bit operation by giving its bit number in the ordinal in
which it resides. The least signi�cant bit of a 32 bit ordinal is b0. The most signi�cant bit is b31.
A bit-�eld is a contignous sequence of bits of from 0 to 32 bits in length within a 32-bit ordinal.
A bit �eld is de�ned by giving its length in bits and the bit number of its lowest numbered bit.

Triple and Quad words refer to consecutive bytes in memory or in registers; a triple word is
12 bytes and a quad word is 16 bytes. These data types facilitate the moving of blocks of bytes.

2.2.2 80960 Instruction Formats

All of the 80960KB instructions are one word long and begin on word boundaries. One group
of instructions allows a second word which contains a 32-bit displacement. There are four basic
instructions formats: REG,COBR,CTRL and MEM. Each instruction has only one format which
is de�ned by the opcode �eld of the instruction.

� REG format

The REG-format is for operations that are performed on data contained in the global,
local or oating point registers.

21

31 24 23 19 18 14 13 12 11 10 7 6 5 4 0

OPCODE SRC/DST SRC2 M3 M2 M1 OPCODE 0 0 SRC1

The opcode is 12 bits long and is split between bits 7 through 10 and bits 24 through
31. The SRC1 and SRC2 operand �elds specify source operands for the instruction. The
operands can be either literals or registers. The mode bits, M1 for src1, M2 for src2 and
the instruction type, oating-point or non- oating point, determine whether an operand
is a register or a literal. For non-oating point instructions, if a mode bit is set to 0, the
respective, src1 or src2 �eld speci�es a global or local register. If the mode bit is set to
1, the �eld speci�es an ordinal literal (5 bits) in the range of 0 to 31. For oating-point
instructions, if the mode bit is set to 0, the respective src1 or src2 �eld speci�es a register
just as it does for non- oating point instructions. If the mode bit is set to 1 the �eld
speci�es either a oating point register or one of the two real number literals (+0.0 or
+1.0).

The src/dst �eld can specify either a source operand or a destination operand or both
depending on the instruction. The mode bit m3 and the instruction type determine how
this �eld is used. For non-oating point instructions, if m3 is clear the src/dst is a global or
local register. If m3 is set the src/dst operand can be used only as a src operand that is an
ordinal literal. For oating-point instructions the src/dst �eld is only used to encode the
destination operands. If m3 is clear the destination operand is a global or local register.
If m3 is set the destination operand is a oating point register.

� COBR format

The COBR format is used primarily for control-and- branch-instructions. The opcode �eld
is 8 bits.

31 24 23 19 18 14 13 12 2 1 0

OPCODE SRC1 SRC2 M1 DISPLACEMENT 0 0

The src1 and src2 �elds specify source operands for the instruction. The src1 �eld can
specify either a global or local register or a literal as determined by mode bit m1. The
src2 �eld can only specify a local or global register. The displacement �eld contains a
signed, twos complement number that speci�es a word displacement. The processor uses
this value to compute the address of a target instruction that the processor goes to as
a result of a comparision. The displacement �eld can range from �210 to 210 � 1. To
determine the IP of the target instruction, the processor converts the displacement value
to a byte displacement. It then adds the resulting byte displacement to the IP of the next
instruction.

� CTRL format

The CTRL format is used for instructions that branch to a new IP, including the branch-
if,"bal" and "call" instructions. The return instruction also uses this format. The opcode
�eld for this format is 8 bits.

31 24 23 2 1 0

OPCODE DISPLACEMENT 0 0

The instructions that use this format have no operands. The target address for a branch
is speci�ed with the displacement �eld in the same manner as is done with the COBR
format instructions. Here, the displacement �eld speci�es a word displacement that can
range from �221 to 221 � 1. For the "return" instruction displacement �eld are ignored.

22

� MEM format

The MEM(A or B) formats is used for instructions that require a memory address to be
computed. These instructions include the load-, store- and "lda" instructions. Also, the
extended versions of the branch, branch-and-link, and call instructions uses this format.
The MEMB format o�ers the option of including a 32-bit displacement contained in a
second word, to the instruction. Bit 12 of the �rst word of the instruction determines
whether the format is MEMA (clear) or MEMB (set).

1. MEMA format

31 24 23 19 18 14 13 12 0

OPCODE SRC/DST ABASE MD 0 OFFSET

For both formats the opcode �eld is 8 bits long. The src/dst �eld speci�es a global or
local register. For load-instructions, the src/dst �eld speci�es the destination register
for a word loade into the processor from memory or, for operands larger than one
word, the �rst of successive destination registers. For store instructions, this �eld
speci�es the register or group of registers that contain the source operand to be
stored in memory.

The mode bit (or for MEMB mode bits) determine the address mode used for the
instruction.

The MEMA format provides two addressing modes: absolute o�set and register indi-
rect with o�set. The o�set �eld speci�es an unsigned byte o�set from 0 to 4096. The
ABASE �eld speci�es a global or local register that contains an address in memory.
The address is interpreted as either a virtual address or a physical address depending
on whether the processor is operating in virtual addressing or physical addressing
mode respectivly.

For the absolute o�set addressing mode (the MD bit is clear), the processor interprets
the o�set �eld as an o�set from byte 0 of the current address space. The ABASE
�eld is ignored. Using this addressing mode along with the "lda" instruction allows
a constant of from 0 to 4096 to be loaded into a register.

For the register indirect with o�set addressing mode (the MD bit is set), the value
in the o�set �eld is added to the address in the ABASE register. Setting the o�set
value to zero creates a register indirect addressing mode, however, this operation can
generally be carried out faster by using the MEMB version of this addressing mode.

2. MEMB format

The MEMB format provides seven addressing modes: absolute displacement, register
indirect, register indirect with displacement, register indirect with index, register
indirect with index and displacement, index with displacement, IP with displacement.

31 24 23 19 18 14 13 10 9 7 6 5 4 0

OPCODE SRC/DST ABASE MODE SCALE 0 0 INDEX

The ABASE and INDEX �elds specify local or global registers, the contents of which
are used in the address computation. When the index �eld is used in an addressing
mode, the processor automatically scales the value in the index register by the amount
speci�ed in the scale �eld. The optional displacement �eld is contained in the word
following the instruction word. The displacement is a 32 bit signed, twos complement
value.

23

2.2.3 80960 Addressing Modes

The processor o�ers 11 modes for addressing operands. These modes are grouped as follows:
Literal, Register, Absolute, Register Indirect, Register Indirect with displacement, IP with dis-
placement. Most of the instructions use only the literal and register modes. The remaining
modes are used for memory related instructions.

Literals

The processor recognizes two types of literals: ordinal literal and oating point literal. An
ordinal literal can range from 0 to 31 (5 bits). When an ordinal literal is used as an operand the
processor expands it to 32 bits by adding leading zeroes. If the instruction speci�es an operand
larger than 32 bits, the processor zero-extends the value to the operand size. If an ordinal literal
is used in an instruction that requires integer operands, the processor treats the literal as a
positive integer value.

The processor also recognizes two oating point literals(+0.0 and +1.0). These oating
point literals can only be used with oating point instructions. As with the ordinal literals, the
processor converts the oating point literals to the operand size speci�ed by the instruction.

A few of the oating point instructions use both oating-point and non oating-point
operands , e.g the convert integer to real-instructions. Ordinal can be used in these instruc-
tionsfor non-oating point operands.

Register

A register is referenced as an operand by giving the register number. Both oating point and
non oating point instructions can reference global and local registers in this way. However
oating point registers can only be referenced in conjunction with oating-point instructions.

Absolute

Absolute addressing is used to reference a memory location directly as an o�set from address 0 of
the address space ranging from �231 to 231. At the machine level two absolute addressing modes
are provided, depending on the instruction format, i.e MEMA or MEMB. For the MEMB format
the o�set is an integer called a displacement ranging from �231 to 231 � 1. After evaluating an
absolute address, the assembler will convert the address into an o�set and select the appropriate
machine-level instruction type and addressing mode.

Register Indirect

The Register Indirect addressing modes allow an address to be speci�ed with an ordinal value
(32 bits) in a register or with an o�set or displacement added to a value in a register. Here the
value in the register is referred to as the address base.

Register Indirect with Index

The register indirect with index addressing modes allow a scaled index to be added to the value
in a register. The index is speci�ed by means of a value placed in a register. This index value
is then multiplied by the scale factor. The allowable scale factors are 1,2,4,8 and 16.

A displacement may also be added to the address base and scaled index.

24

Index with Displacement

A scaled index can also be used with a displacement alone. Again, the index is contained in a
register and multiplied by a scaling constant before the displacement is added to it.

IP with Displacement

The IP with displacement addressing mode is often used with load and store instructions to
make them IP relative. With this mode the displacement plus a constant of 8 is added to the
IP of the instruction.

2.2.4 80960 Registers

The processor provides three types of data registers: global, oating-point and local. The 16
global registers (g0-g15) constitute a set of general purpose registers, the contents of which are
preserved across procedure boundaries. The 4 oating point registers are provided to support
extended oating point arithmetic. Their contents are also preserved across procedure bound-
aries. The 16 local registers (r0-r15) are provided to hold parameters speci�c to a procedure.
For each procedure that is called, the processor allocates a separate set of 16 local registers. For
any one procedure within a program, 36 registers are thus available; the 16 global registers, the
4 oating point registers and the 16 local registers. These are all maintained on the processor
chip.

Global Registers

The 16 global registers are 32-bits registers. Registers g0 through g14 are general purpose
registers, g15 is reserved for the current frame pointer (FP). The FP contains the address of the
�rst byte in the current stack frame.

Floating-Point Registers

The four oating-point registers (fp0 through fp3) are 80-bits registers. These registers can be
accessed only as operands of oating-point instructions. All numbers stored in these registers
are stored in extended real format. The processor automatically converts oating point values
from real or long-real format into extended real format when a oating point register is used as
a destination for an instruction.

Local Registers

The 16 local registers are 32-bits registers, like the global registers. The purpose of the local
registers is to provide a separate set of registers aside from the global and oating point registers,
for each active procedure. Each time a procedure is called, the processor automatically sets up a
new set of local registers for that procedure and saves the local registers for the calling procedure.

Local registers r0 through r2 are reserved for special functions as follows: register r0 contains
the previous frame pointer (PFP), r1 contains the stack pointer (SP) and r2 contains the return
instruction pointer (RIP). The processor accesses the local registers at the same speed as it does
the global registers.

Register Scoreboarding

A mechanism called register scoreboarding can, in certain situations, permit instructions to
execute concurrently. While an instruction is being executed, the processor sets a scoreboard
bit to indicate that a particular register or group of registers is being used in an operation. If

25

the instruction that follows do not use registers in that group, the processor, in some instances
is able to execute those instructions before execution of the prior instruction is complete.

Instruction Pointer

The instruction pointer (IP) is the address of the instruction currently being executed. This
address is 32 bits and the 2 least signi�cant bits are always zero. Instructions in the processor
are one or two words long. The IP gives the address of the lowest order byte of the �rst word
of the instruction.

Arithmetic Controls

The processor arithmetic controls are made up of a set of 32 bits. These bits include condition
codes, oating-point control and status bits, integer control and status bits and a bit that
controls faulting on imprecise faults, i.e faults where the entire processor status not is known.

Process and Trace Controls

The processors process controls are a set of 32 bits that control or show the current execution
state of the processor. The trace controls are a set of 32 bits that control the tracing facilities
of the processor.

2.2.5 80960 Instruction Set

Instruction Operands Options

ADDC src1,src2,dst add ordinal with carry
ADDI src1,src2,dst add integer
ADDO src1,src2,dst add ordinal
ADDR src1,src2,dst add real
ADDL src1,src2,dst add long real
ALTERBIT bitpos,src2,dst alter bit
AND src1,src2,dst logical and
ANDNOT src1,src2,dst logical and, src1 inverted
ATADD src/dst,src,dst atomic add
ATANR src1,src2,dst arctangent real
ATANRL src1,src2,dst arctangent long real
ATMOD src,mask,src/dst atomic modify
BAL targ branch and link
BALX targ,dst branch and link extended
B targ branch
BX targ branch extended
BBC bitpos,src,targ check bit, branch if clear
BBS bitpos,src,targ check bit, branch if set
BE targ branch if equal
BNE targ branch if not equal
BL targ branch if less
BLE targ branch if less than or equal
BG targ branch if greater

26

BGE targ branch if greater or equal
BO targ branch if ordered
BNO targ branch if unordered
CALL targ call a new precedure
CALLS targ call a system procedure
CALLX targ call extended
CHKBIT bitpos,src check bit
CLASSR src classify real
CLASSRL src classify long real
CLRBIT bitpos,src,dst clear bit
CMPI src1,src2 compare integer
CMPO src1,src2 compare ordinal
CMPDECI src1,src2,dst compare and decrement integer
CMPPDECO src1,src2,dst compare and decrement ordinal
CMPINCI src1,src2,dst compare and increment integer
CMPINCO src1,src2,dst compare and increment ordinal
CMPOR src1,src2 compare ordered real
CMPORL src1,src2 compare ordered long real
CMPR src1,src2 compare real
CMPRL src1,src2 compare long real
COMPIBE src1,src2,targ compare integer, branch if equal
COMPIBNE src1,src2,targ compare integer, branch if not equal
COMPIBL src1,src2,targ compare integer, branch if not less
COMPIBLE src1,src2,targ compare integer, branch if not less or equal
COMPIBG src1,src2,targ compare integer, branch if greater
COMPIBGE src1,src2,targ compare integer, branch if greater
COMPIBO src1,src2,targ compare integer, branch if ordered
COMPIBNO src1,src2,targ compare integer, branch if unordered
COMPOBE src1,src2,targ compare ordinal, branch if equal
COMPOBNE src1,src2,targ compare ordinal, branch if not equal
COMPOBL src1,src2,targ compare ordinal, branch if not less
COMPOBLE src1,src2,targ compare ordinal, branch if not less or equal
COMPOBG src1,src2,targ compare ordinal, branch if greater
COMPOBGE src1,src2,targ compare ordinal, branch if greater
CONCMPI src1,src2 conditional compare integer
CONCMPO src1,src2 conditional compare ordinal
COSR src,dst cosine real
COSRL src,dst cosine long real

CPYRSRE src1,src2,dst copy sign real extended
CPYSRE src1,src2,dst copy reversed sign real extended
CVTILR src,dst convert long integer to real
CVTIR src,dst convert integer to real
CVTRI src,dst convert real to integer
CVTRIL src,dst convert real to integer long
CVTZRI src,dst convert truncated real to integer
CVTZRIL src,dst convert truncated real to long integer
DADDC src1,src2,dst decimal add with carry
DIVI src1,src2,dst divide integer

27

DIVO src1,src2,dst divide ordinal
DIVR src1,src2,dst divide real
DIVRL src1,src2,dst divide long real
DMOVT src,dst decimal move and test
DSUBC src1,src2,dst decimal subtract with carry
EDIV src1,src2,dst extended divide
EMUL src1,src2,dst extended multiply
EXPR src,dst exponent real
EXPRL src,dst exponent long real
EXTRACT bitpos,len,src/dst extract bits
FAULTE fault if equal
FAULTNE fault if not equal
FAULTL fault if less
FAULTLE fault if less or equal
FAULTG fault if greater
FAULTGE fault if greater or equal
FAULTO fault if ordered
FAULTNO fault if unordered
FLUSHREG ush local registers
FMARK force mark
LD src,dst load
LDOB src,dst load ordinal byte
LDOS src,dst load ordinal short
LDIB src,dst load integer byte
LDIS src,dst load integer short
LDL src,dst load long
LDT src,dst load triple
LDQ src,dst load quad
LDA src,dst load address
LOGBNR src,dst log binary real
LOGBNRL src,dst log binary long real
LOGEPR src1,src2,dst log epsilon real
LOGEPRL src,1src2,dst log epsilon long real
LOGR src1,src2,dst log real
LOGRL src1,src2,dst log long real
MARK generate breakpoint trace-event
MODAC mask,src,dst modify arithmetic control
MODI src1,src2,dst modulo integer
MODIFY mask,src,src/dst modify bit
MODPC src,mask,src/dst modify process controls
MODTC mask,src,dst modify trace controls
MOVE src,dst move
MOVL src,dst move long
MOVT src,dst move triple
MOVQ src,dst move quad
MOVR src,dst move real
MOVRL src,dst move long real
MOVRE src,dst move extended real
MULI src1,src2,dst multiply integer
MULO src1.src2,dst multiply ordinal

28

MULR src1.src2,dst multiply real
MULRL src1.src2,dst multiply long real
NAND src1,src2,dst bitwise nand
NOR src1,src2,dst bitwise or
NOT src1,src2,dst bitwise not
NOTAND src1,src2,dst bitwise notand
NOTBIT bitpos,src,dst not bit (bit toggle)
NOTOR src1,src2,dst not or
OR src1,src2,dst logical or
ORNOT src1,src2,dst logical or complemented
REMI src1,src2,dst remainder integer
REMO src1,src2,dst remainder ordinal
REMR src1,src2,dst remainder real
REMRL src1,src2,dst remainder long real
RET return from procedure
ROTATE len,src,dst rotate bits
ROUNDR src,dst round real
ROUNDRL src,dst round long real
SCALER src1,src2,dst scale real
SCALERL src1,src2,dst scale long real
SCANBIT src,dst scan for bit
SCANBYTE src1,src2 scan byte equal
SETBIT bitpos,src,dst set bit

SHLO len,src,dst shift left ordinal
SHRO len,src,dst shift right ordinal
SHLI len,src,dst shift left integer
SHRI len,src,dst shift right integer
SHRDI len,src,dst shift right dividing integer
SINR src,dst sine real
SINRL src,dst sine long real
SPANBIT src,dst span over bit
SQRT src,dst square root real
SQRTRL src,dst square root long real
ST src,dst store
STOB src,dst store ordinal byte
STOS src,dst store ordinal short
STIB src,dst store integer byte
STIS src,dst store integer short
STL src,dst store long
STT src,dst store triple
STQ src,dst store quad
SUBQ src1,src2,dst subtract ordinal with carry
SUBI src1,src2,dst subtract integer
SUBO src1,src2,dst subtract ordinal
SUBR src1,src2,dst subtract real
SUBRL src1,src2,dst subtract long real
SYNCF synchronize faults
SYNLD src,dst synchronize load

29

SYNMOV dst,src synchronous move
SYNMOVL dst,src synchronous move long
SYNMOVQ dst,src synchronous move quad
TANR src,dst tangent real
TANRL src,dst tangent long real
TESTE dst test for equal
TESTNE dst test for not equal
TESTL dst test for less
TESTLE dst test for less or equal
TESTG dst test for greater
TESTGE dst test for greater or equal
TESTO dst test for ordered
TESTNO dst test for unordered
XNOR src1,src2,dst exclusive nor
XOR src1,src2,dst exclusive or

2.2.6 i80960 processor states

The i80960 recognizes two di�erent kinds of events which may be considered as disturbance of
normal instruction execution. Thus the processor may be in on of three states:

� Normal Instruction Execution

� Interrupts

� Faults

Interrupts

An interrupt is a temporary break in the control stream of a program so that the processor
can handle a di�erent chore. Interrupts are generally requested from an external source. The
interrupt request either contains a vector number or else, points to a vector that tells the
processor what chore to do while in the interrupted state. When the processor has �nished
servicing the interrupt it generally returns to the program that was interrupted and resumes
execution where it left o�.

The processor provides a mechanism for servicing interrupts, which uses an implicit procedure
call to a selected interrupt handling procedure called the interrupt handler. To use the processors
interrupt handling facilities, software must provide the following items in memory

� Interrupt Table

� Interrupt Handler Routines

� Interrupt Stack

These items are generally established in memory as part of the initialization procedure. Once
these items are present in memory and pointers to them have been entered in the appropriate
system data sttructures the processor then handles interrupts automatically and independently
from software.

Each interrupt vector is 8 bits in length which allows up to 256 unique vectors to be de�ned.
Vectors 0-7 cannot be used and vectors 244 thru 251 are reserved. Each vector has a prede�ned
priority, which is de�ned by the expression: PRIORITY = VECTOR/8. The processor uses the

30

priority to determine whether or not to service the interrupt immediatly or to delay service. A
priority 31 is always serviced immediatly. The lowest program priority allowed is 0, thats why
vectors 0-7 cannot be used since interrupts with these prioritys never would be accepted.

Fault Handling

The processor is able to detect various conditions in code or its internal state called "fault
conditions". Such conditions could cause the processor to deliever incorrect or inappropriate
results or could cause it to follow an undesirable control path. A fault may be detected while the
processor is executing a program, an interrupt handler or a fault handler. When the procesor
detects a fault it handles the fault immediatly and independently of the program or handler it
is currently working on, using a mechanism similar to that used to service interrupts.

All of the faults that the processor detects are prede�ned. These faults are divided into types
and subtypes, each of which is given a number. The processor uses the type number to select a
fault handler. The fault handler then uses the subtype number to select a speci�c fault-handling
procedure.

It is possible for multiple fault conditions to occur simultaneously. For certain fault types,
bit positions in the fault-subtype �eld are used to indicate the occurence of multiple faults of
the same type. As a general rule, however, the processor does not indicate situations where
multiple faults occur. Instead it records one of the faults and does not report on the faults that
were not recorded. Faults occuring while the processor executng a fault handling routine causes
unpredictable operation by the processor.

Faults are grouped into the categories precise, imprecise and asynchronous. Precise faults
are those tat are intended to be recoverable by software. Imprecise faults are those that in some
instances are allowed to occur and not be signaled or be signaled out of order. Asynchronous
faults are those whose occurence has no direct relationship to the instruction pointer.

2.2.7 i80960 Pipelining

Pipelined execution is accomodated by the use of separate control units:

� Bus Control Logic BCL

� Instruction Fetch Unit with instruction cache IFU

� Instruction Decoder ID

� Microinstruction sequencer MIS

� Instruction Execution Unit IEU

The Instruction Fetch Unit acts as a bu�er for the Instruction Decoder . The IFU maintains
a 512 byte, direct-mapped instruction cache. While other units in the processor are executing
instructions the IFU looks ahead in instruction ow stored in the cache. If a cache miss is
detected the IFU issues a prefetch request to the BCL. The IFU works closely with the ID in
handling branch conditions. The ID informs the IFU of any branch operation that is to take
place. When the IFU is noti�ed of a branch, it checks for a cache hit on the desired instruction.
If the instruction is not present, the IFU begins fetching instructions for the new control path.
The ID may send a special signal to the IFU whenever instructions are required immediatly.
The IFU then passes the fetched instructions to the ID directly, rather than writing them to the
cache and reading them back again. This technique is called instruction-cache- bypassing.

The ID decodes the instructions it receives from the IFU and routes them to the appropriate
execution unit. Instructions are decoded into four groups, according to how the instructions are
executed:

31

� Simple Instructions

� Floating Point and branch instructions

� Complex instructions

� Load/Store Instructions

The MIS is a multipurpose unit designed to help in the execution of instructions that use
microcode. When the ID receives a complex instruction, the MIS supplies the microcode to the
IEU. The MIS also supplies microcode for oating-point instructions the power-up and self-test
performed during processor initialisation; interrupt handling and fault handling.

The IEU contains the Arithmetic Logic Unit ALU and the mechanisms for register and
condition-code scoreboarding. The IEU handles the reading and writing of global registers. It
also handles the allocation of local register sets on each procedure calls. The IEU allocates
a new set of registers on each procedure call. If all four register sets become allocated, the
IEU automatically ushes the oldest frame to the stack on the next procedure call. The IEU
also automatically retrieves any local register frame from the stack when required by a return
operation.

The register scoreboard provides scoreboarding for the global and the local registers. When,
one or more registers are being used in an operation they are marked as in use. The mechanism
allows the processor to continue executing subsequent instructions as long as those instructions
do not require the contents of the scoreboard registers.

References:

80960KB Programmer's Manual,
Intel Corporation, 1988

32

2.3 The Am29000

In 1987, Advanced Micro Devices (AMD) released the �rst microprocessor ever designed by the
company, the Am29000. The processor operates at a 25 MHz clock rate and a 40 ns instruction
cycle time. AMD claims that it can hit a peak execution rate at 25 mips and a sustained
performance level at 17 mips. Am29000 is an "enhanced RISC design", meaning that key RISC
concepts has been combined with conventional design to reach highest possible performance.
Among other things it features a four-stage pipeline, 128 bytes instruction branch target cache
and an on chip memory management unit.

2.3.1 Am29000 data formats

A word is de�ned as 32 bits of data. A half-word consists of 16 bits and a double-word consists
of 64 bits. Bytes are 8 bits in length. Within a word, bits are numbered in increasing order from
right to left, starting with the number 0 for the least signi�cant bit. Within a word, bytes and
half-words are numbered in increasing order from left to right starting with 0 (big endian scheme)
or right to left (little endian scheme) as controlled by the processor con�guration register.

Most instructions deal directly with word-length integer data; integers may be either signed
or unsigned depending on the instruction. Some instruction (e.g AND) treat word length
operands as strings of bits. In addition, there is support for character, half-word, and Boolean
data types. Floating point data (single and double precision) are de�ned but not directly sup-
ported by processor hardware.

The processor supports character data through extraction (EXBYTE) and insertion (IN-
BYTE) operations on word length operands, and by a compare (CPBYTE) operation on byte
length �elds within words.

The processor supports half-word data through extraction (EXHW) and insertion (INHW)
operations on word-length operands. There is also an Extract Half Word Sign Extended instruc-
tion (EXHWS) which acts similar to EXHW.

The Boolean format used by the processor is such that the Boolean values TRUE and FALSE
are represented by 1 or 0 respectivly, in the most signi�cant bit of a word.

The oating point format de�ned for the processor conforms to the IEEE Floating Point
standard P754.

2.3.2 Am29000 instruction format

All instructions for the Am29000 are 32 bits in length, and are divided into four �elds, these
�elds have several alternative de�nitions. In certain instructions , one or more �elds are not
used, and are reserved for future use.

31 22 21 16 15 8 7 0

OP A/M RC RA RB

I17..I10 SA RB or I

I15..I8 I9..I2

VN I7..I10

CE/CNTL UI/RND/FD/FS

� BITS 31-22

OP this �eld contains an operation code de�nig the operation to be performed. In some
insdtructions the least signi�cant bi selects between two possible operands. For this reason
this bit is sometimes labelled "A" or "M" with the following interpretations:

33

A Absolute, the A-bit is to di�erentiate between program- counter relative (A=0) and
absolute (A=1) instruction addresses when these addresses appear within instructions.

M IMmediate, the M-bit selects between a register operand (M=0) and an immediate
operand (M=1) when the alternative is allowed by the instruction

� BITS 21-16

{ RC The RC �eld contains a global or local register number

{ I17..I10 This �eld contains the most signi�cant 8 bits of a 16- bit instruction address.
This is a word address and may be program counter relative or absolute, depending
on the A bit of the operation code.

{ I15..I18 This �eld contains the most signi�cant 8 bits of a 16- bit instruction.

{ VN this �eld contains an 8-bit trap vector number

{ CE/CNTL this �eld controls a load or store access

� BITS 15-8

{ RA the RA-�eld contains a global or local register number

{ SA the SA-�eld contains a special register number

� BITS 7-0

{ RB the RB-�eld contains a global or local register number

{ RB or I this �eld contains either a global or local register number, or an 8-bit in-
struction constant depending on the value of the M-bit of the operation code.

{ I9..I2 this �eld contains the least signi�cant 8 bits of a 16- bit instruction address.
This is a word address, and may be program counter relative or absolute, depending
on the A-bit of the operation code.

{ I7..I0 this �eld contains the least signi�cant 8 bits of a 16 bits instruction constant

{ UI/RND/FD/FS this �eld controls the operation of the CONVERT instruction.

2.3.3 Am29000 register description

The Am29000 has three classes of registers which are accesible by instructions. These are:
general-purpose registers, special- purpose registers and translation-look-aside bu�er (TLB)
registers. Any operation available can be performed on the general-purpose registers, while
the special purpose registers and the TLB registers are accessed only by explicit data movement
to or from a general purpose register.

The Am29000 incorporates 192 general-purpose registers organised as follows:

Absolute

Register GENERAL PURPOSE REGISTER

Number

0 Indirect Pointer Access

1 Stack Pointer

2-63 Not Implemented

64-127 Global Registers 64-127

128 Local Register 125

34

129 Local Register 126

130 Local Register 127

129 Local Register 0

131 Local Register 1

... ...

254 Local Register 123

255 Local Register 124

The following terminology is used to describe the addressing of general-purpose registers:

1. Register Number is a software level number for a general purpose register (0-255).

2. Global Register Number is a software level number for a global register ranging from 0-127.

3. Local Register Number is a software level number for a local register ranging from 0-127.

4. Absolute Register number is a hardware level number used to select a general purpose
register in the Register File. These numbers range from 0-255.

The 192 registers are divided into 64 global and 126 local registers. Global registers are
addressed with absolute register numbers while local registers are addressed relative to
an internal stackpointer. The general purpose registers may be accessed indirectly, with
the register number speci�ed by the content of a special purpose register rather than
the instruction �eld. Three independent indirect register numbers are contained in three
separate special-purpose registers. The number for Global Register 0 speci�es indirect
register-addressing. An instruction can specify an indirect register for any or all of the
source operands or result.

General registers may be partitioned into segments of 16 registers for the purpose of access
protection. A register in a protected segment may be accessed only by a program executing
in the Supervisor mode. An attempted access by a User-mode program causes a trap to
occur.

The Am29000 contains 23 special purpose registers which provide controls and data for
certain processor functions. Special Purpose registers are accessed by data movement
only. Any special purpose register can be written with the contents of any general purpose
register and vice versa. Some special purpose registers are protected and can be accessed
only in the Supervisor mode. This restriction applies to both read and write accsesses.
Any User mode program violation of this restriction causes a trap to occur.

The special-purpose registers are partitioned into protected an unprotected registers. Spe-
cial purpose registers numbered 0-127 and 160-255 are protected and the remaining are
unprotected. Not all of these are implemented. The protected special purpose registers
are de�ned as follows:

The Special Purpose Registers are organised as follows:

Special

Purpose

Register PROTECTED REGISTER

Number

0 Vector Base Address

1 Old Processor Status

2 Current Processor Status

35

3 Configuration

4 Channel Address

5 Channel Data

6 Channel Control

7 Register Bank Protect

8 Timer Counter

9 Timer Reload

10 Program Counter 0

11 Program Counter 1

12 Program Counter 2

13 MMU Configuration

14 LRU Recommendation

UNPROTECTED REGISTERS

128 Indirect Pointer C

129 Indirect Pointer B

130 Indirect Pointer A

131 Q

132 ALU Status

133 Byte Pointer

134 Funnel Shift Count

135 Load/Store Count Remaining

VECTOR AREA BASE ADDRESS - De�nes the beginning of the interrupt/trap Vector
Area.

OLD PROCESSOR STATUS - Stores a copy of the current processor status when an
interrupt or trap is taken. It is later used to restore the current processor status on an
interrupt return.

CURRENT PROCESSOR STATUS - contains control information associated with the
currently executing process such as interrupt disables and the superviseor mode bit.

CONFIGURATION contains control information which normally varies only from system
to system and is usually set only during system initialisation.

CHANNEL ADDRESS - Contains the address associated with an external access and re-
tains the address if the access does not complete successfully. The Channel Address Reg-
ister in conjunction with the Channel Data and Channel Control registers allow restarting
of unsuccessfull external accesses.

CHANNEL DATA - Contains Data associated with a store operation and retains data if
the operation does not complete successfully.

CHANNEL CONTROL - Contains information associated with a channel operation and
retains this information if the operation does not complete successfully.

REGISTER BANK PROTECT - Restricts access of User Mode programs to speci�ed
groups of registers. This facilitates register banking for multi-tasking applications and
protects operating system parameters kept in the global registers from corruption by User
mode programs.

TIMER COUNTER - supports real-time control and other timing related functions.

TIMER RELOAD - maintains synchronisation of the Timer Control. It includes control
bits for the Timer facility.

36

PROGRAM COUNTER 0 - Contains the address of the instruction being decoded when
an interrupt or trap is taken. The processor restarts this instruction upon interrupt return.

PROGRAM COUNTER 1 - Contains the address of the instruction being executed when
an interrupt or trap is taken. The processor restarts this instruction upon interrupt return.

PROGRAM COUNTER 2 - Contains the address of the instruction just completed when
an interrupt or trap is taken. This address is provided for information only and does not
participate in an interrupt return.

MMU CONFIGURATION - Allows selection of various memory management options.

LRU RECOMMENDATION - Simpli�es the reload of entries in the translation look-aside
bu�er by provideing information on the least recently used entry of the TLB when a TLB
miss occurs.

The unprotected special-purpose registers are de�ned as follows:

INDIRECT POINTER C - Allows the indirect access of a general purpose register.

INDIRECT POINTER B - Allows the indirect access of a general purpose register.

INDIRECT POINTER A - Allows the indirect access of a general purpose register.

Q - Provides additional operand bits for multiply and divide operations.

ALU STATUS - Contains information about the outcome of arithmetic and logical oper-
ations and holds residual control for certain instruction operations.

BYTE POINTER - Contains an index of a byte or half-word within a word. This register
is also accessible via the ALU status register.

FUNNEL SHIFT COUNT - Provides a bit o�set for the extraction of word-length �elds
from double word operands. This register is also accessible via the ALU status register.

LOAD/STORE COUNT REMAINING - Maintains a count of the number of loads and
stores remaining for load-multiple and store-multiple operations. The count is initialised
to the total number of loads or stores to be performed before the operation is initiated.
This register is also accessible via the Channel Control Register.

2.3.4 Am29000 instruction set

Assembler syntax in a short form:
ce, determines the coprocessor enable (CE) bit of a load or store instruction.
cntl, determines the 7-bit control �eld in a load or store operation.
const8, speci�es a constant which can be expressed by 8 bits.
const16, speci�es a constant which can be expressed by 16 bits.
ra,rb,rc, represents general purpose registers.
spid, represents a special purpose register
target, is a symbolic label for a jump or call instruction.
vn, speci�es a trap vector number.

Instruction Operands Comments
ADD rc,ra,[rb|const8] add
ADDC rc,ra,[rb|const8] add with carry
ADDCS rc,ra,[rb|const8] signed add with carry

37

ADDCU rc,ra,[rb|const8] unsigned add with carry
AND rc,ra,[rc|const8] and logical
ANDN rc,ra,[rb|const8] and not logical
ASEQ vn,ra,[rb|const8] assert equal to
ASGE vn,ra,[rb|const8] assert greater than or equal to
ASGEU vn,ra,[rb|const8] assert greater than or equal to, unsigned
ASGT vn,ra,[rb|const8] assert greater than
ASGT vn,ra,[rb|const8] assert greater than,unsigned
ASLE vn,ra,[rb|const8] assert less than or equal to
ASLEU vn,ra,[rb|const8] assert less than or equal to,unsigned
ASLT vn,ra,[rb|const8] assert less than
ASLTU vn,ra,[rb|const8] assert less than,unsigned
ASNEQ vn,ra,[rb|const8] assert not equal to
CALL ra,target call subroutine
CALLI ra,rb call subroutine, indirect
CLZ rc,[rb|const8] count leading zeros
CONST ra,const16 constant
CONSTH ra,const16 constant high
CONSTN ra,const16 constant negative
CONVERTrc,ra,[conversion] convert data format
CPBYTE rc,ra,[rb|const8] compare bytes
CPEQ rc,ra,[rb|const8] compare equal to
CPGE rc,ra,[rb|const8] compare greater than or equal to
CPGEU rc,ra,[rb|const8] compare greater than or equal to,unsigned
CPGT rc,ra,[rb|const8] compare greater than
CPGTU rc,ra,[rb|const8] compare greater than, unsigned
CPLE rc,ra,[rb|const8] compare less than or equal to
CPLEU rc,ra,[rb|const8] compare less than or equal to, unsigned
CPLT rc,ra,[rb|const8] compare less than
CPLTU rc,ra,[rb|const8] compare less than, unsigned
CPNEQ rc,ra,[rb|const8] compare not equal to
DADD rc,ra,rb oating point add, double precision
DDIV rc,ra,rb oating point division, double precision
DEQ rc,ra,rb oating point equal to, double precision
DGE rc,ra,rb f.p greater than or equal to, d.p
DGE rc,ra,rb f.p greater than d.p
DIV rc,ra,[rb|const8] divide step
DIV0 rc,[rb|const8] divide initialize
DIVIDE rc,ra,rb integer divide, signed
DIVIDU rc,ra,rb integer divide, unsigned
DIVL rc,ra,rb divide last step
DIVREM rc,ra,[rb|const8] divide remainder
DMUL rc,ra,rb f.p multiply, d.p
DSUB rc,ra,rb f.p subtract, d.p
EMULATEvn,ra,rb trap to software emulation routine
EXBYTE rc,ra,[rb|const8] extract byte
EXHW rc,ra,[rb|const8] extract half-word
EXHWS rc,ra extract half-word, sign extended
EXTRACTrc,ra,[rb|const8] extract word, bit-aligned
FADD rc,ra,rb f.p add, single precision

38

FDIV rc,ra,rb f.p divide, s.p
FEQ rc,ra,rb f.p equal to, s.p
FGE rc,ra,rb f.p greater than or equal to, s.p
FGT rc,ra,rb f.p greater than, s.p
FMUL rc,ra,rb f.p multiply, s.p
FSUB rc,ra,rb f.p subtract, s.p
HALT enter halt mode
INBYTE rc,ra,[rb|const8] insert byte
INHW rc,ra,[rb|const8] insert half word
INV invalidate
IRET interrupt return
IRETINV interrupt return and invalidate
JMP target jump
JMPF ra,target jump false
JMPFDEC ra,target jump false and decrement
JMPFI ra,rb jump false indirect
JMPI rb jump indirect
JMPT ra,target jump true

JMPTI ra,rb jump true indirect
LOAD ce,cntl,ra,[rb|const8] load
LOADL ce,cntl,ra,[rb|const8] load and lock
LOADM ce,cntl,ra,[rb|const8] load multiple
LOADSET ce,cntl,ra,[rb|const8] load and set
MFSR rc,spid move from special register
MFTLB rc,ra move from translation look-aside bu�er register
MTSR spid,rb move to special register
MTSRIM spid,const16 move to special register immediate
MTTLB ra,rb move to translation look aside bu�er register
MUL rc,ra,[rb|const8] multiply step
MULL rc,ra,[rb|const8] multiply last step
MULTIPLUrc,ra,rb integer multiply unsigned
MULTIPLYrc,ra,rb integer multiply signed
MULU rc,ra,[rb|const8] multiply step unsigned
NAND rc,ra,[rb|const8] nand logical
NOR rc,ra,[rb|const8] nor logical
OR rc,ra,[rb|const8] or logical
SETIP rc,ra,rb set indirect pointers
SLL rc,ra,[rb|const8] shift left logical
SRA rc,ra,[rb|const8] shift right arithmetic
SRL rc,ra,[rb|const8] shift right logical
STORE ce,cntl,ra,[rb|const8] store
STOREL ce,cntl,ra,[rb|const8] store and lock
STOREM ce,cntl,ra,[rb|const8] store multiple
SUB rc,ra,[rb|const8] subtract
SUBC rc,ra,[rb|const8] subtract with carry
SUBCS rc,ra,[rb|const8] subtract with carry, signed
SUBCU rc,ra,[rb|const8] subtract with carry, unsigned

39

SUBR rs,ra,[rb|const8] subtract reverse
SUBRC rs,ra,[rb|const8] subtract reverse with carry
SUBRCS rs,ra,[rb|const8] subtract reverse with carry, signed
SUBRCU rs,ra,[rb|const8] subtract reverse with carry, unsigned
SUBRS rs,ra,[rb|const8] subtract reverse signed
SUBRU rs,ra,[rb|const8] subtract reverse unsigned
SUBS rs,ra,[rb|const8] subtract signed
SUBU rs,ra,[rb|const8] subtract unsigned
XNOR rs,ra,[rb|const8] exclusive nor logical
XOR rs,ra,[rb|const8] exclusive or logical

2.3.5 Am29000 Interrupts

Normal program ow may be preempted by an interrupt or trap for which the processor is
enabled. The ee�ect on the processor is identical for interrupts and traps; the distinction
is in the di�erent mechanisms by which the interrupt and traps are enabled. It is intended
that interrupts be used for suspending current program execution and causing another
program to execute, while traps are used to report errors and exception conditions.

An interrupt, or trap is said to occur when all conditions which de�ne the interrupt or
trap are met. An interrupt or trap which occurs is not necessarily recognized by the
processor, either because of various enables or because of the processors operational mode.
An interrupt is taken when the processor recognizes the interrupt and alters its behaviour
accordingly.

Interrupts are caused by signals applied to any of the external inputs INTR0 - INTR3 or
by a timer facility. The processor may be disabled from taking certain interrupts by the
masking capability provided by the "Disable all interrupts and traps" (DA), "Disble In-
terrupts" (DI) bit and "Interrupt Mask"(IM) �eld in the current processor status register.
The INTR0 cannot be disabled by the IM-�eld, thus its a non-maskable interrupt line.

Traps are caused by signals applied to one of the inputs TRAP0-TRAP1 or by exceptional
conditions such as protection violation.

Interrupt and trap processing relies on the existence of a user managed vector area in ex-
ternal instruction/data memory or instruction read only memory (instruction ROM). The
Vector Area begins at an address speci�ed by the Vector Area base Address Register, and
provides for 256 di�ernt exception handling routines. The processor reserves 32 routines
for system operation and 32 routines for FP multiply and divide instructions.

When an exception is taken, the processor determines an 8-bit vector number associated
with the exception. Vector numbers are eeither prede�ned or speci�ed by an instruction
causing the trap.

Exception vectors 0-21 determines the following exceptions:

(a) Illegal Opcode

(b) Unaligned Address

(c) Out of Range

(d) Coprocessor Not Present

(e) Coprocessor Exception

(f) Instruction Access Violation

40

(g) Data Access Violation

(h) User Mode Instruction TLB-miss

(i) User Mode Data TLB-miss

(j) Supervisor Mode Instruction TLB-miss

(k) Supervisor Mode Data TLB-miss

(l) Instruction TLB protection violation

(m) Data TLB protection violation

(n) Timer

(o) Trace

(p) INTR0

(q) INTR1

(r) INTR2

(s) INTR3

(t) TRAP0

(u) TRAP1

Exception vectors 22-63 are either reserved, reserved for instruction emulation or associated
with Floating Point instructions.

Exception vectors 64-255 are user de�ned and thus system dependent.

2.3.6 Am29000 Pipelining

The Am29000 implements a four-stage pipeline for instruction execution. The four stages
are: fetch, decode,execute and write back. During the fetch stage, the Instruction Fetch
Unit IFU determines the location of thenext processor instruction to the decode stage.
The instruction is fetched either from the Instruction Prefetch Bu�er, the Branch Target
Cache, or an external instruction memory. During the Decode stage the Execution Unit
EU decodes the instruction selected during the fetch stage and fetches and/or assembles the
required operands. It also evaluates addresses for branches, loads and stores. During the
execute stage, the Execution Unit EU performs the operation speci�ed by the instruction.
In the case of branches, loads, and stores the Memory Management Unit MMU performs
address translation if required. During the write-back stage, the results of the operation
performed during the execution stage are stored. In the case of branches, loads and stores
the physical address resulting from translation during the execute stage is transmitted
to an external device or memory. Most pipeline dependencies which are internal to the
processor are handled by forwarding logic in the processor. For these dependencies which
result from the external system, the Pipeline Hold mode insures proper operation. In a
few special cases the processor pipeline is exposed to software executing on the Am29000.

References: Am29000 Streamlined Instruction Processor,
Advanced Micro Devices, 1988

41

2.4 The MIPS R2000 processor

The R2000 is based on research work carried out at Stanford in the beginning of the eight-
ies. Especially a base level instruction set was proposed from the experience gained during
work with optimizing compilers. The R2000 processor consists of two tightly coupled
processors implemented on a single chip. The �rst processor is a full 32-bit RISC CPU.
The second processor is a system control coprocessor (CP0), containing a TLB (Transla-
tion Lookaside Bu�er) and control registers to support a virtual memory subsystem and
separate caches for instruction and data.

2.4.1 MIPS data formats

The R2000 de�nes a 32-bit word, a 16-bit halfword and an 8-bit byte. The byte ordering
is con�gurable (con�guration occurs during hardware reset) into either big-endian or
little-endian byte ordering. Bit 0 is always the least signi�cant (rightmost) bit. Thus
bit-designations are always little-endian. The R2000 uses byte-addressing with alignment
constraints, for half word and word accesses; half word accesses must be aligned on an
even byte boundary and word accesses must be aligned on a byte boundary divisible
by four. Special instructions are provided for addressing words that are not aligned on
4-byte (word) boundaries (Load/Store-Word- Left/Right; LWL,LWR,SWL,SWR). These
instructions are used in pairs to provide addressing of misaligned words with one additional
instruction cycle over that required for aligned words.

2.4.2 MIPS instruction format

Every R2000 instruction consists of a single word (32 bits) aligned on a word boundary.
There are three instruction formats:

I-TYPE (Immediate)

31 26 25 21 20 16 15 0

OP RS RT IMMEDIATE

J-TYEPE (Jump)

31 26 25 0

OP TARGET

R-TYPE (Register)

31 26 25 21 20 16 15 11 10 6 5 0

OP RS RT RD SHAMT FUNCT

where:

� OP is a 6-bit operation code

� RS is a 5-bit source register speci�er

� RT is a 5-bit target register (source/destination) or branch condition

42

� IMMEDATE is a 16-bit immediate branch displacement or address displacement

� TARGET is a 26-bit jump target address

� RD is a 5-bit shift amount

� FUNCT is a 6-bit function �eld

2.4.3 MIPS register description

The register set consists of general-purpose registers as well as dedicated registers.

� The R2000 provides 32 general purpose 32-bit registers. r0 .. r31 each consists of a
single word. The registers are treated symmetrically with two exeptions. Register r0
is hardwired to a zero value and r31 is the link register for jump and link instructions.

� The two multiply/divide registers (HI,LO) store the double-word, 64-bits result of
multiply operations and the quotient and remainder of divide operations.

� A 32-bit program counter.

� Exception Handling Registers:

{ the Cause register describe the last exception.

{ the EPC (Exception Program Counter) contains the address where processing
can resume after an exception has been serviced.

{ the Status register contains all major status bits.

{ the BadVAddr(Bad Virtual Address) register saves the entire bad virtual address
for any addressing exception.

{ the Context register provides information useful for a software TLB exception
handler.

{ the PRId(Processor Revision Identi�er) register contains information that iden-
ti�es the implementation a revision level of the Processor and System Control
Coprocessor.

2.4.4 MIPS R2000 instruction set

Instruction Operands Comments
ADD rd,rs,rt signed immediate add,trap on overow
ADDI rt,rs,imm signed immediate add,trap on overow
ADDIU rt,rs,imm unsigned immediate add
ADDU rd,rs,rt unsigned add
AND rd,rs,rt logical and
ANDI rt,rs,imm logical and immediate
BCzF o�set branch if false, coprocessor z condition is tested
BCzT o�set branch if true, coprocessor z condition is tested
BEQ rs,rt,o�set branch if equal
BGEZ rs,o�set branch on greater than/equal to zero
BGEZAL rs,o�set branch on greater than/equal to zero
BGTZ rs,o�set branch on greater than zero
BLEZ rs,o�set branch on less than/ equal to zero
BLTZ rs,o�set branch on less than zero

43

BLTZAL rs,o�set branch on less than/ equal to zero
BNE rs,rt,o�set branch on not equal
BREAK breakpoint trap
CFCz rt,rd move control from coprocessor z
COPz cofun coprocessor operation
CTCz rt,rd move control to coprocessor z
DIV rs,rt signed divide
DIVU rs,rt unsigned divide
J target unconditional jump
JAL target unconditional jump and link
JALR rs jump and link register
JALR rd,rs jump and link register
JR rs jump register
LB rt,o�set(base) load byte o�set addr signed
LBU rt,o�set(base) load byte o�set addr unsigned
LH rt,o�set(base) load halfword o�set addr signed
LHU rt,o�set(base) load halfword o�set addr usigned
LUI rt,immediate load upper word immediate
LW rt,o�set(base) load word o�set addr signed
LWCz rt,o�set(base) load word to coprosessor
LWL rt,o�set(base) load word left
LWR rt,o�set(base) load word right
MFC0 rt,rd move from system control coprocessor
MFCz rt,rd move from coprocessor z
MFHI rd move from register LO
MTC0 rt,rd move to system control coprocessor
MTCz rt,rd move to coprocessor
MTHI rs move to register HI
MTLO rs move from register LO
MULT rs,rt multiply
MULTU rs,rt unsigned multiply
NOR rd,rs,rt logical NOR
OR rd,rs,rt logical OR
ORI rt,rs,immediate logical OR immediate
RFE restore from exeption
SB rt,o�set(base) store byte
SH rt,o�set(base) store halfword
SLL rd,rt,amount shift left logical
SLLV rd,rt,rs shift left logical variable
SLT rd,rs,rt set on less than

SLTI rt,rs,immediate set on less than immediate
SLTIU rt,rs,immediate set on less than immediate unsigned
SLTU rd,rs,rt set on less than unsigned
SRA rd,rt,amount shift right arithmetic
SRAV rd,rt,rs shift right arithmetic variable
SRL rd,rt,amount shift right logical
SRLV rd,rt,rs shift right logical variable

44

SUB rd,rs,rt subtract
SUBU rd,rs,rt subtract unsigned
SW rt,o�set(base) store word
SWCz rt,o�set(base) store word from coprocessor z
SWL rt,o�set(base) store word left
SYSCALL system call
TLBP probe TLB for matching entry
TLBR read indexed TLB entry
TLBWI write indexed TLB entry
TLBWR write random TLB entry
XOR rd,rs,rt logical exclusive or
XORI rt,rs,immediate logical exclusive or immediate

2.4.5 R2000 Exceptions

The normal instruction execution may be preempted by an exception. When the R2000
detects an exception, the normal sequence of instruction execution is suspended; the pro-
cessor is forced into Kernel mode where it can respond to the abnormal or asynchronous
event. When an exception occurs, the R2000 loads the EPC (Exception Program Counter)
with an appropriate restart location where execution may resume after the exception has
been serviced. The restart location in the EPC is the address of the instruction which
caused the exception or, if the instruction was executing in a branch delay slot, the ad-
dress of the branch instruction immediatly preceding the delay slot. The R2000 aborts the
current instruction, which may be an instruction causing the exception, and also aborts
all those following in the instruction pipeline which have already began execution. The
R2000 then performs a direct jump into a designated exception handler routine.

The following exceptions are recognised by the R2000:

� Reset Assertion of the R2000's reset signal causes an exception that transfers control
to the special vector at address 0xBFC00000

� UTLB miss User TLB miss. A reference is made to a page that has no matching
TLB entry.

� TLB miss A referenced TLB entry's valid bit is not set or there is a reference to a
page that has no matching TLB entry.

� TLB modi�ed During a store operation, the valid bit is set but the Dirty bit is not
set.

� Bus Error Assertion of the R2000's BERR* signal due to such external events as bus
timeout, backplane bus parity errors, invalid physical addressesor invalid access type.

� Address Error Attempt to load, fetch or store an unaligned word; that is, a word or
halfword at an address not evenly divisible by 4 or 2 respectively. Also caused by
reference to a virtual address with most signi�cant bit set while in user mode.

� Overow Twos complement overow during add or subtract.

� System Call Execution of the syscall instruction.

� Breakpoint Execution of the break instruction.

� Reserved Instruction Execution of an instruction with an unde�ned or reserved major
operation code, or a special instruction whose minor opcode is unde�ned.

45

� Coprocessor Unusable Execution of a coprocessor instruction when the CU (Copro-
cessor Usable) bit is not set for the target processor.

� Interrupt Assertion of one of the R2000's six hardware interrupt inputs or setting of
one of the two software interrupt bits in the Cause Register.

2.4.6 R2000 Instruction Pipeline

The execution of a single instruction consists of �ve pipe stages:

IF Instruction Fetch. Access the TLB and calculate the instruction address required to
read an instruction from the I-cache. The instruction is not actually read into the processor
until the beginning of the RD pipe-stage.

RD Read any required operands from CPU-registers while decoding the instruction.

ALU Perform the required operation on instruction operands.

MEM Access memory (D-Cache) if required(for Load/Store instructions)

WB Write back ALU results or value loaded from D- cache to register �le.

Each of these steps require approximatly one CPU- cycle.

The R2000 uses di�erent technique internally to enable execution of all instructions in a
single cycle. However, as discussed earlier, there are load and store instruction as well
as jump and branch which could disturb the smooth ow of instructions through the
pipeline. In R2000, the execution continues, despite the delay. Loads,jumps and branches
do not interrupt the normal ow of instructions through the pipeline. The processor always
executes the instruction immediatly following one of these "delayed" instructions. Instead
of having the processor deal with pipeline delays, the R2000 turns over the responibility
for dealing with delayed instructions to software.

References:

MIPS R2000 RISC Architecture,
Kane, Gerry,
Prentice Hall, 1987

46

2.5 SPARC V7

The SPARC (Scalable Processor ARChitecture), designed by Sun Microsystems is an open
computer architecture. It is a development from the Berkeley RISC-II and the SOAR
(Smalltalk On A Risc). The SPARC architecture has been implemented by several vendors.

2.5.1 SPARC V7 data types

The SPARC architecture de�nes nine data types. Integer data types includes byte, un-
signed byte, halfword, unsigned halfword, word and unsigned word. The IEEE oating
point types include single, double and extended. A byte is 8 bit wide, a halfword is 16 bits,
a word is 32 bits, a single is 32 bits, a double is 64 bits and an extended is 128 bits.

2.5.2 SPARC V7 instruction formats and addressing modes

The SPARC instructions are classi�ed into three major formats, simply called format1,

format 2 and format 3. Two of these, includes subformats.

(a) The format 1 is used by the CALL instruction and contains a 30-bit sign-extended
word displacement.

op disp30

31 29 0

(b) The format 2 is used by SETHI and branch-instructions:

op rd op2 imm22

op a cond op2 disp22

31 29 28 24 21 0

� op This �eld places the instruction into one of 3 major formats(format1,format2
and format3).

� op2 This �eld comprises bits 24 through 22 of format 2 instructions and selects
one of the instructions: UNIMP,Bicc,SETHI,FBfcc,CBccc.

� rd For store instructions, this register selects an r register (or an r register pair),
or an f register (or an f register pair) to be the source. For all other instructions,
this �eld selects an r register (or an r register pair), or an f register (or an f

register pair) to be the destination.

� a The "a" bit means "annul" in format 2 instructions. This bit changes the
behaviour of the instruction encountered immediatly after a control transfer.

� cond This �eld selects the condition code for format 2 instructions.

� imm22 This �eld is a 22-bit constant value used by the SETHI instruction.

� disp22 This �eld is a 22-bit sign-extended word displacement for branches.

(c) Remaining instruction uses format 3:

47

op rd op3 rs1 i asi rs2

op rd op3 rs1 i simm13

op rd op3 rs1 opf rs2

31 29 24 18 13 12 4 0

� op3 The op3 �eld selects one of the format 3 opcodes.

� i The i-bit selects the type of the second ALU-operand for non-FPop instructions.
If i=0, the second operand is r[rs2]. If i=1, the second operand is sign-extended
simm13.

� asi This 8-bit �eld is the address space identi�er generated by load/store alternate
instructions. The address space identi�er generated by the processor is made
available to the external system to distinguish up to 256 address spaces.

� rs1 This 5-bit �eld selects the �rst source operand from either the r registers or
the f registers.

� rs2 This 5-bit �eld selects the second source operand from either the r registers
or the f registers.

� simm13 This �eld is a sign-extended 13-bit immediate value used as the second
ALU operand when i = 1.

� opf This 9-bit �eld identi�es a oating point operate(FPop) instruction or a
coprocessor operate (CPop) instruction.

2.5.3 SPARC V7 registers

The integer unit has two types of registers associated with it; working registers r registers
and control/status registers. Working registers are used for normal operations, and con-
trol/status registers keep track of control and the state of the IU. The FPU has 32 working
registers (called f registers, and two control/status registers: the Floating-point State Reg-
ister (FSR), and the Floating-point Queue (FQ). All r registers are 32 bits wide. They
are divided into 8 global registers and 7 blocks called windows. Each window contain 24 r
registers. The windows are addressed by the CWP, a �eld of the Processor State register
(PSR). The CWP is incremented by a RESTORE or RETT instruction and decremented
by a SAVE instruction. The active window is de�ned as the window currently pointed
to by the CWP. The Window Invalid Mask (WIM) is a register which, under software
control, detects the occurence of IU register �le overows and underows.

The registers in each window are divided into ins,outs and locals. The globals may be
sddressed when any window is active. For any active window the registers are addressed
as:

Register numbers Name
r[24] to r[31] ins

r[16] to r[23] locals

r[8] to r[15] outs

48

r[0] to r[7] globals

Each window shares its ins and outs with adjacent windows. The register overlap such
that, given a register with address o where 7 < o < 16, o refers to exactly the same register
as (o + 16) after the CWP is decremented by 1 modulo 7 (points to the next window).
The windows are joined together in a circular stack, where the highest numbered window
is adjacent to the lowest. The outs of window 6 are the ins of window 0.

The global register r[0] is hardwired to zero. Thus reading this register yilds a zero result
while writing to it has no e�ect.

The out register r[15] is used for storing the return address when a CALL instruction is
executed.

Because the processor logically provides new locals and outs after every procedure call,
register local values need not be saved and restored across calls. Figure 2.1 below shows
parameters may be passed to and from subroutines.

The IU's control/status registers are all 32-bit read/write registers unless speci�ed oth-
erwise. They include the program counters (PC and nPC) the Processor State Register
(PSR), the Window Invalid Mask Register (WIM), the Trap Base Register (TBR), and
the Multiply step (Y) register. The PC contains the address of the instruction currently
being executed and nPC hold the address of the next instruction to be executed assuming
no trap occur.

The 32-bit PSR contains various �elds describing the state of the IU.

impl ver icc reserved EC EF PIL S PS ET CWP

31 28 27 24 23 20 19 14 13 12 11 8 7 6 5 4 0

� impl Bits 31 through 28 identify the implementation number of the processor. This
�eld can not be modi�ed by software.

� ver Bits 27 through 24 contains a constant; the meaning of this constant depends on
the value of the impl �eld. Can not be modi�ed by software.

� icc Bits 23 through 20 contains the IU's condition codes. These bits are modi�ed by
dedicated instructions and by the WRPSR (write processor status register) instruc-
tion.

� reserved Bits 19 through 14 are reserved. This �eld should only be written to 0 (for
future compatibility).

� EC This bit determines whether or not the coprocessor is enabled.

� EF This bit determines whether or not the FPU is enabled.

� PIL Bits 11 through 8 identify the processor interrupt level. The processor only
accepts interrupts whose interrupt level is greater than the value in PIL.

� S Bit 7 determines whether the processor is in supervisor mode or not. Supervisor
mode can only be entered by a software or hardware trap.

49

previous window

r[31]

. ins

r[24]

r[23]

. locals

r[16] active window

r[15 r[31]

. outs . ins

r[8] r[24]

r[23]

. locals

r[16] next window

r[15] r[31]

. outs . ins

r[8] r[24]

r[23

. locals

r[16]

r[15]

. outs

r[8]

r[7]

. globals

r[0]

Figure 2.1: Three overlapping windows and globals

50

� PS Bit 6 contains the value of the S bit at the time of the most recent trap.

� ET Bit 5 is the Trap Enable bit. When set, traps are enabled. When ET is disabled,
all asynchronous traps are ignored. A synchronous trap will cause the processor to
halt and enter "error mode", i.e perform a RESET.

� CWP Bits 4 through 0 comprise the Current Window Pointer, which points to the
current active r register window. It is decremented by traps and the SAVE instruction,
and incremented by RESTORE and RETT instructions.

The Window Invalid Mask Register (WIM) is used to determine whether a window overow
or window underow trap should be generated by a SAVE,RESTORE or RETT instruc-
tion. Each bit in the WIM corresponds to a window. Bit 0 corresponds to window 0,
bit 1 corresponds to window 1 etc. The register may be written by WRWIM and read
by RDWIM instructions. Bits corresponding to nonexistent windows read as zeroes and
values written are ignored.

w31 w30 w29 w2 w1 w0

31 30 29 2 1 0

The Trap Base register (TBR) contains three �elds that generate the address of the trap
handler when a trap occur. These are:

TBA tt zero

31 12 11 4 3 0

� TBA Bits 31 through 12 comprise the Trap Base Address(TBA), which is controlled
by software. It contains the most signi�cant 20 bits of the trap table address. The
TBA �eld can be written by the WRTBR instruction.

� tt Bits 11 through 4 comprise the trap type (tt) �eld. This is an 8-bit �eld that is
written by the processor at the time of a trap, and retains its value until the next
trap. It provides an o�set into the trap table. The WRTBR instruction does not
a�ect the tt �eld.

� zero Bits 3 through 0 are zero. The WRTBR instruction does not a�ect this �eld.

In addition to this there is a Floating Point State Register (FPR) that contain FPU mode
and status information.

2.5.4 SPARC V7 instruction set

Instruction Operands Comments
ADD rs1,rs2/imm,rd integer add
ADDcc rs1,rs2/imm,rd integer add, modify icc
ADDX rs1,rs2/imm,rd integer add with carry
ADDXcc rs1,rs2/imm,rd integer add with carry, modify icc
AND rs1,rs2/imm,rd logical and
ANDcc rs1,rs2/imm,rd logical and, modify icc

51

ANDN rs1,rs2/imm,rd logical and not
ANDNcc rs1,rs2/imm,rd logical and not, modify icc

BA label branch always
BN label branch never
BNE label branch on not equal
BE label branch on equal
BG label branch on greater
BLE label branch on less or equal
BGE label branch on greater or equal
BL label branch on less
BGU label branch on greater unsigned
BLEU label branch on less or equal unsigned
BCC label branch on carry clear
BCS label branch on carry set
BPOS label branch on positive
BNEG label branch on negative
BVC label branch on overow clear
BVS label branch on overow set

CBA label branch always (on coprocessor condition)
CBN label branch never (on coprocessor condition)
CBx label branch on coprocessor x condition
CBxy label branch on coprocessor x or y condition
CBxyz label branch on coprocessor x or y or z condition

CALL label call subroutine
CPOP1 coprocessor operate
CPOP2 coprocessor operate

FBA label oating point branch always
FBN label oating point branch never
FBU label oating point branch on unordered
FBG label oating point branch on greater
FBUG label oating point branch on unordered or greater
FBL label oating point branch on less
FBUL label oating point branch on unordered or less
FBLG label oating point branch on less or greater
FBNE label oating point branch on not equal
FBE label oating point branch on equal
FBUE label oating point branch on unordered or equal
FBGE label oating point branch on greater or equal
FBUGE label oating point branch on unordered or greater or equal
FBLE label oating point branch on less or equal
FBULE label oating point branch on unordered or less or equal
FBO label oating point branch on unordered

52

FITOS frs2,frd convert integer to oating point
FITOD frs2,frd convert integer to double
FITOX frs2,frd convert integer to extended
FSTOI frs2,frd convert single to integer
FDTOI frs2,frd convert double to integer
FXTOI frs2,frd convert extended to integer
FSTOD frs2,frd convert single to double
FSTOX frs2,frd convert single to extended
FDTOS frs2,frd convert double to single
FDTOX frs2,frd convert double to extended
FXTOS frs2,frd convert extended to single
FXTOD frs2,frd convert extended to double
FMOVS frs2,frd move between oating point registers
FNEGS frs2,frd negate
FABS frs2,frd absolute value
FSQRTS frs2,frd square root single
FSQRTD frs2,frd square root double
FSQRTX frs2,frd square root extended
FADDS frs1,frs2,frd add single
FADDD frs1,frs2,frd add double
FADDX frs1,frs2,frd add extended
FSUBS frs1,frs2,frd subtract single
FSUBD frs1,frs2,frd subtract double
FSUBX frs1,frs2,frd subtract extended
FMULS frs1,frs2,frd multiply single
FMULD frs1,frs2,frd multiply double
FMULX frs1,frs2,frd multiply extended
FDIVS frs1,frs2,frd divide single
FDIVD frs1,frs2,frd divide double
FDIVX frs1,frs2,frd divide extended
FCMPS frs1,frs2 compare single
FCMPD frs1,frs2 compare double
FCMPX frs1,frs2 compare extended
FCMPES frs1,frs2 compare single and exception if unordered
FCMPED frs1,frs2 compare double and exception if unordered
FCMPEX frs1,frs2 compare extended and exception if unordered

IFLUSH address ush instruction cache
JMPL address,rd jump and link

LDSB [address],rd load signed byte
LDSBA [address]asi,rd load signed byte from alternate space
LDSH [address],rd load signed halfword
LDSHA [address]asi,rd load signed halfword from alternate space
LDUB [address],rd load unsigned byte
LDUBA [address]asi,rd load unsigned byte from alternate space
LDUH [address],rd load unsigned halfword

53

LDUHA [address]asi,rd load unsigned halfword from alternate space
LD [address],rd load word
LDA [address]asi,rd load word from alternate space
LDD [address],rd load doubleword
LDDA [address]asi,rd load doubleword from alternate space
LDF [address],frd load oating-point register
LDDF [address],frd load double oating-point register
LDFSR [address],fsr load oating-point state register
LDC [address],creg load coprocessor register
LDDC [address],creg load double coprocessor register
LDCSR [address],creg load coprocessor state register

LDSTUB [address],rd atomic load-store unsigned byte
LDSTUBA [address]asi,rd atomic load-store unsigned byte from alternate space

MULSCC rs1,rs2/imm,rd multiply step
OR rs1,rs2/imm,rd inclusive or
ORCC rs1,rs2/imm,rd inclusive or, modify icc
ORN rs1,rs2/imm,rd inclusive or not
ORNCC rs1,rs2/imm,rd inclusive or not, modify icc

RDY y,rd read y register
RDPSR psr,rd read processor state register
RDWIM wim,rd read window invalid mask register
RDTBR tbr,rd read trap base register
RESTORE rs1,rs2/imm,rd restore callers window
RETT address return from trap

STB rd,[address] store byte
STBA rd,[address] asi store byte into alternate space
STH rd,[address] store halfword
STHA rd,[address] asi store halfword into alternate space
ST rd,[address] store word
STA rd,[address] asi store word into alternate space
STD rd,[address] store doubleword
STDA rd,[address] asi store doubleword into alternate space
STF frd,[address] store oating-point
STDF frd,[address] store double oating-point
STFSR fsr,[address] store oating-point state register
STDFQ fq,[address] store double oating-point queue
STC creg,[address] store coprocessor
STDC creg,[address] store double coprocessor
STCSR csr,[address] store coprocessor state register
STDCQ cq,[address] store double coprocessor queue

SWAP [source],rd swap register with memory
SWAPA [regsource]asi,rd swap register with alternate space memory

54

SUB rs1,rs2/imm,rd subtract integer
SUBCC rs1,rs2/imm,rd subtract integer, modify icc
SUBX rs1,rs2/imm,rd subtract with carry
SUBXCC rs1,rs2/imm,rd subtract with carry, modify icc
SLL rs1,rs2/imm,rd shift left logical
SRL rs1,rs2/imm,rd shift right logical
SRA rs1,rs2/imm,rd shift right arithmetic
SAVE rs1,rs2/imm,rd save callers window
SETHI const,rd zero least sign 10 bits, replace high order bits

TADDCC rs1,rs2/imm,rd tagged add and modify icc
TADDCCTV rs1,rs2/imm,rd tagged add, modify icc and trap on overow
TSUBCC rs1,rs2/imm,rd tagged subtract and modify icc
TSUBCCTV rs1,rs2/imm,rd tagged subtract, modify icc and trap on overow
TA address trap always
TN address trap never
TNE address trap on not equal
TE address trap on equal
TG address trap on greater
TLE address trap on less or equal
TGE address trap on greater or equal
TL address trap on less
TGU address trap on greater unsigned
TLEU address trap on less or equal unsigned
TCC address trap on carry clear
TCS address trap on carry set
TPOS address trap on positive
TNEG address trap on negative
TVC address trap on overow clear
TVS address trap on overow set

UNIMP const22 unimplemented instruction

WDY rs1,rs2/imm,y write y register
WDPSR rs1,rs2/imm,psr write processor state register
WDWIM rs1,rs2/imm,wim write window invalid mask register
WDTBR rs1,rs2/imm,tbr write trap base register
XOR rs1,rs2/imm,tbr exclusive or
XORCC rs1,rs2/imm,tbr exclusive or and modify icc
XNOR rs1,rs2/imm,tbr exclusive nor
XNORCC rs1,rs2/imm,tbr exclusive nor and modify icc

2.5.5 SPARC V7 traps and exceptions

SPARC V7 supports three types of traps:synchronous, oating-point/coprocessor and asyn-
chronous. Asynchronous traps are also called interrupts. Synchronous traps are caused by
an instruction and occur before the instruction is completed. Floating-point/coprocessor
traps are caused by oating-point/coprocessor instructions and occur before the instruction

55

is completed. Asynchronous traps occur when an external event interrupts the processor.
They are not related to any particular instruction and occur between the execution of
instructions.

An instruction is de�ned to be trapped if any trap occurs during the course of its execution.
If multiple traps occur during one instruction, the highest priority trap is taken. Lower
priority traps are ignored because the traps are arranged under the assumption that the
lower priority traps persist,recur or are meaningless due to the presence of the higher
priority trap. The ET-bit in the PSR must be set for traps to occur normally. If a
synchronous trap occur while traps are disabled the processor halts and enters an error
state.

The Trap Base Register (TBR) generates the exact address of a trap handling routine.
When a trap occurs, the hardware writes a value into the trap type (tt)�eld of the TBR.
This uniquely identi�es the trap and serves as an o�set into the table whose starting address
is given by the TBA �eld of the TBR. The 8-bit wide tt �eld allows for 256 distinct types
of traps:

56

Trap Priority tt

reset 1 -

instruction_access_exception 2 1

illegal_instruction 3 2

privileged_instruction 4 3

fp_disabled 5 4

cp_disabled 5 36

window_overflow 6 5

window_underflow 7 6

mem_address_not_aligned 8 7

fp_exception 9 8

cp_exception 9 40

data_access_exception 10 9

tag_overflow 11 10

trap_instruction 12 128-255

interrupt_level_15 13 31

interrupt_level_14 14 30

interrupt_level_13 15 29

interrupt_level_12 16 28

interrupt_level_11 17 27

interrupt_level_10 18 26

interrupt_level_9 19 25

interrupt_level_8 20 24

interrupt_level_7 21 23

interrupt_level_6 22 22

interrupt_level_5 23 21

interrupt_level_4 24 20

interrupt_level_3 25 19

interrupt_level_2 26 18

interrupt_level_1 27 17

References:

The SPARC Architecture Manual Version 7,
Sun Microsystems,Inc. 1987

57

Function Data

7 4 3 0

Operand Register

Figure 2.2: Instruction format

2.6 The INMOS T800 transputer

Transputer is a family of 16-bit and 32-bit processors. It is a RISC designed for multipro-
cessor applications. The architecture allow multiprocessor network of arbitrary size and
topology to be built. A word-length independent architecture allows the same software to
run on any Transputer. Inmos has developed "occam", a language that provides a model
for concurrency and communication for all Transputers.

The Transputer has a stack oriented instruction set. Most of the instruction operates on
top of an evaluation stack. It has extensive hardware support for concurrency (a detailed
description will be given in chapter 3) and furthermore, special communication links sup-
porting large multiprocessor systems. These, among other things, makes it diÆcult to
treat the Transputer as other microprocessors descirbed in this work. Hence, the following
paragrafs will di�er slightly from previous chapters.

The IMS T800 is a 32-bit microcomputer with a 64-bit oating point unit and graphics
support. It has 4 KBytes on-chip RAM, a con�gurable memory interface and four standard
INMOS communication links.

2.6.1 T800 instruction formats and addressing modes

In the T800 there is only a single instruction format. Each instruction consists of a single
byte divided into two 4-bits parts. The four most signi�cant bits of the byte are the
function code and the four least signi�cant bits are a data value.

Since most of the instructions operates on the evaluation stack there is no need for com-
plicated addressing modes. There are not any either.

2.6.2 The T800 registers

In contrast to other RISC architectures there are only six CPU-registers:

� The Workspace Pointer which points to an area for local variables.

� The Instruction Pointer which points to the next instruction to be executed.

� The Operand Register which is used in the formation of instruction operands.

� Three registers A,B and C which forms an Evaluation stack. The Evaluation stack is
used for expression evaluation, to hold the operands of scheduling and communication
instructions, and to hold parameters of procedure calls.

58

2.6.3 The T800 instruction set

Instruction Operands Comments

J adress jump
LDLP constant load local pointer
PFIX pre�x
LDNL constant load non local
LDC constant load constant
LDNLP constant load non local pointer
NFIX negative pre�x
LDL constant load local
ADC constant add constant
CALL adress call subroutine
CJ adress conditional jump
AJW constant adjust workspace
EQC constant equals constant
STL constant store local
STNL constant store non local
OPR operate

AND logical and
OR logical or
XOR logical xor
NOT bitwise not
SHL shift left
SHR shift right
ADD add
SUB subtract
MUL multiply
FMUL fractional multiply
DIV div
REM remainder
GT greater than
DIFF di�erence
SUM sum
PROD product for positive(negative) register A

LADD long add
LSUB long sub
LSUM long sum
LDIFF long di�
LMUL long multiply
LDIV long divide
LSHL long shift left
LSHR long shift right

59

NORM normalise

REV reverse
XWORD extend to word
XDBLE extend to double
CSNGL check single
MINT minimum integer
DUP duplicate top of stack

MOVE2DINIT initialise data for 2D block move
MOVE2DALL 2D block copy
MOVE2DNONZERO 2D block copy non-zero bytes
MOVE2DZERO 2D block copy zero bytes

CRCWORD calculate crc on word
CRCBYTE calculate crc on byte
BITCNT count bits set in word
BITREVWORD reverse bits in word
BITREVNBITS reverse bottom n bits in word

BSUB byte subscript
WSUB word subscript
WSUBDB word double word subscript
BCNT byte count
WCNT word count
LB load byte
SB store byte
MOVE move message

LDTIMER load timer
TIN timer input
TALT timer alt start
TALTWT timer alt wait
ENBT enable timer
DIST disable timer

IN input message
OUT output message
OUTWORD output word
OUTBYTE output byte
ALT alt start
ALT alt wait
ALTEND alt end
ENBS enable skip
DISS disable skip
RESETCH reset channel

60

ENBC enable channel
DISC disable channel

RET return
LDPI load pointer to instruction
GAJW general adjust workspace
GCALL general call
LEND loop end

STARTP start process
ENDP end process
RUNP run process
LDPRI load current priority

CSUB0 check subscript from 0
CCNT1 check count from 1
TESTERR test error and clear
STOPERR stop on error
SETERR set error
CLRHALTERR clear halt-on-error
SETHALTERR set halt-on-error
TESTHALTERR test halt-on-error

TESTPRANAL test processor analysing
SAVEH save high priority registers
SAVEL save low priority registers
STHF store high priority front pointer
STHB store high priority back pointer
STLF store low priority front pointer
STLB store low priority back pointer
STTIMER store timer

FPLDNLSN fp load non-local single
FPLDNLDB fp load non-local double
FPLDNLSNI fp load non-local indexed single
FPLDNLDBI fp load non-local indexed double
FPLDZEROSN fp load zero single
FPLDZERODB fp load zero double
FPLDNLADDSN fp load non-local and add single
FPLDNLADDDB fp load non-local and add double
FPLDNLMULSN fp load non-local and multiply single
FPLDNLMULDB fp load non-local and multiply double
FPSTNLSN fp store non-local single
FPSTNLDB fp store non-local double
FPSTNLI32 fp store non-local int32

FPENTRY oating point unit entry
FPREV oating point reverse

61

FPDUP oating point duplicate

FPURN set rounding mode to round nearest
FPURZ set rounding mode to round zero
FPURP set rounding mode to round positive
FPURM set rounding mode to round minus

FPCHKERROR check fp error
FPTESTERROR test fp error false and clear
FPUSETERROR set fp error
FPUCLEARERROR clear fp error

FPGT fp greater than
FPEQ fp equality
FPORDERED fp orderability
FPNAN fp not a number
FPNOTFINITE fp not �nite
FPUCHKI32 check in range of type int32
FPUCHKI64 check in range of type int64

FPUR32TOR64 real 32 to real 64
FPUR64TOR32 real 64 to real 32
FPRTOI32 real to int 32
FPI32TOR32 int 32 to real 32
FPI32TOR64 int 32 to real 64
FPB32TOR64 bit 32 to real 64
FPUNOROUND real 64 to real 32, no round
FPINT round to oating integer

FPADD oating-point add
FPSUB oating-point subtract
FPMUL oating-point multiply
FPDIV oating-point divide
FPABS oating-point absolute
FPREMFIRST oating-point remainder �rst step
FPREMSTEP oating-point remainder iteration
FPUSQRTFIRST oating-point square root �rst step
FPUSQRTSTEP oating-point square root step
FPUSQRTLAST oating-point square root end
FPUEXPINC32 multiply by 2 EE 32
FPUEXPDEC32 divide by 2 EE 32
FPUMULBY2 multiply by 2
FPUDIVBY2 divide by 2

References:

62

The Tranputer Databook,
Inmos Limited, 1989

The transputer Applications Notebook,
Architecture and software,
Inmos Limited, 1989

63

2.7 Acorn

The VL86C010 Acorn RISC Machine is a full 32-bit general-purpose microprocessor de-
signed using RISC methodologies. The processor is targeted for the microcomputer, graph-
ics, industrial and controller market for use in stand-alone or embedded systems.

2.7.1 Acorn data types

The processor supports two data types: eight bit bytes and 32-bit words, where words
must be aligned on four byte boundaries. Data operations are only performed as word
quantities.

2.7.2 Acorn instruction formats and addressing modes

There are six instruction formats, each describing the possible addressing modes.

(a) Branch instruction:

31 28 27 25 24 23 0

Cond 101 L offset

� Cond �eld is a condition (described below)

� L �eld: 0 = branch, 1= branch and link

� o�set is the branch target o�set from PC

(b) Data processing Type:

31 28 27 26 25 24 21 20 19 16 15 12 11 0

Cond 0 I Opcode S Rn Rd Operand2

� I �eld determines if the operand2 is an immediate 8-bit value, or if it is a register

� S, if set, the condition codes are set according to the instruction

� Rn is the �rst operand register

� Rd is the destination register

� Operand 2 speci�es the second operand. When this operand is speci�ed to be a
shifted register, the operation of the barrel shifter is controlled by the shift �eld
in the instruction. This �eld indicates the type of shift to be performed.

11 4 3 0

shift Rm

shift applied to Rm, Rm is the second operand register.

11 8 7 0

shift imm

shift applied to immediate value, imm is the unsigned 8-bit immediate value shift
applied to Rm, Rm is the second operand register.

(c) Multiply and Multiply-accumulate:

31 28 27 22 21 20 19 16 15 12 11 8 7 4 3 0

Cond 00.0 A S Rd Rm Rs 1001 Rm

� A, accumulate bit, 0 = multiply, 1 = multiply and accumulate

� S, if set, the condition codes are set according to the instruction

64

� Rd,Rs and Rm is operand registers

(d) Single Data Transfer

31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 0

Cond 0 1 I P U B W L Rn Rd offset

� I , I=0 if o�set is an immediate value

11 0

unsigned 12 bit offset

I = 1

11 4 3 0

shift appl to.. Rm

� P, pre/post, 0= add o�set after transfer, 1 = add o�set before transfer

� U, up/down, 0=subtract o�set from base 1 = add o�set to base

� B, byte/word, 0=word, 1=byte

� W, 0=no write back, 1= write address into base

� L, 0= store to memory, 1= load from memory

� Rn, base register

� Rd, source/destination register

� o�set as described by I-�eld

(e) Block Data Transfer:

31 28 27 25 24 23 22 21 20 19 16 15 0

Cond 100 P U S W L Rn register list

� P, pre/post, 0= add o�set after transfer, 1 = add o�set before transfer

� U, up/down, 0=subtract o�set from base 1 = add o�set to base

� S, PSR and force user bit, 0= do not load PSR, force user mode 1 = load PSR
or force user mode

� W, 0=no write back, 1= write address into base

� L, 0= store to memory, 1= load from memory

� Rn, base register

� register list speci�es registers in the transfer

(f) Software Interrupt

31 28 27 24 23 0

Cond 1111 Comment field ignored by proc.

2.7.3 Acorn registers

The processor provides 27 registers of wwhich 16 are accessible in any mode of operation.
In User Mode, registers R0 to R13 are accessible as general-purpose registers. R14,the
User-mode return- link register is speci�c to the user mode. It's contents are mapped with
those of other return-link registers as the mode is changed. The return-link register is
used by the branch and link instruction in a procedure call sequence but may be used as
a general-purpose register at other times. The least signi�cant two bits of the processor
status word (PSW) de�ne the current mode of operation.

Seven registers are dedicated to the FIRQ mode and overlie user-mode registers R8-R14
when the fast interrupt request is serviced. The registers R8FIRQ to R14FIRQ are local

65

to the fast interrupt service routine and are used instead of the registers R8-R13. Register
R14FIRQ holds the address used to restart the interrupted program instead of pushing it
onto a stack at the expense of another memory cycle.

To registers are dedicated to the IRQ mode and overlie user mode registers R13 and
R14. R14IRQ holds the restart address and R13IRQ is general purpose dedicated to the
IRQ-mode.

To registers are dedicated to the supervisor mode and overlay registers R13 and R14 when
a supervisor mode switch is made using a software interrupt instruction. Operation of
these two registers are similar to the IRQ mode.

One register, R15, contains the processor status word and program counter and is shared
by all modes of operation. The upper six bits are processor status, the next 24 bits are
the program counter (word address) and the last two bits indicate the mode.

2.7.4 Acorn instruction set

The processor supports �ve basic types of instructions. These are: Data processing, data
transfer, block data transfer, branches and software interrupt. All instructions contain a
4-bit conditional execution �eld that can cause an instruction to be skipped if the condition
speci�ed is false. The condition may be one of:

EQ equal

NE not equal

CS unsigned higher or same

CC unsigned lower

MI negative

PL positive or zero

VS overflow

VC no overflow

HI unsigned higher

LS unsigned lower or same

GE greater or equal

LT less than

GT greater than

LE less than or equal to

AL always

NV never

Instruction Operands Comments

BfCondg label branch
BLfCondg label branch and link

66

ANDfCondg Rd,Rn,Operand2 bitwise logical and
EORfCondg Rd,Rn,Operand2 bitwise logical exclusive or
SUBfCondg Rd,Rn,Operand2 subtract operand2 from operand1
RSBfCondg Rd,Rn,Operand2 subtract operand1 from operand2
ADDfCondg Rd,Rn,Operand2 add operands
ADCfCondg Rd,Rn,Operand2 add operands with carry
SBCfCondg Rd,Rn,Operand2 subtract operand2 from operand1 with carry
RSCfCondg Rd,Rn,Operand2 subtract operand1 from operand2 with carry
TSTfCondg Rd,Rn,Operand2 as AND but result not written
TEQfCondg Rd,Rn,Operand2 as EOR but result not written
CMPfCondg Rd,Rn,Operand2 as SUB but result not written
CMNfCondg Rd,Rn,Operand2 as ADD but result not written
ORRfCondg Rd,Rn,Operand2 bitwise logical OR of operands
MOVfCondg Rd,Rn,Operand2 move operand 2 (operand 1 igored)
BICfCondg Rd,Rn,Operand2 bit clear
MVNfCondg Rd,Rn,Operand2 move NOT operand 2 (operand 1 igored)

The operand2 may be shifted before it is used in an operation. This is accomplished by
adding a second mnemonic:

LSL op logical shift left
ASL op arithmetic shift left
LSR op logical shift right
ASR op arithmetic shift right

MULfCondgfSg Rd,Rm,Rs Multiply Rs by Rm store result in Rd
MULAfCondgfSgRd,Rm,Rs,Rn
Multiply Rs by RM �nally add Rn and store result in Rd

LDRfCondgfBgfTgRd,address load register from memory
SDRfCondgfBgfTgRd,address store in memory from register

LDMfaddr modegRn,rlist load multiple registers from memory
STMfaddr modegRn,rlist store multiple registers in memory
SDRfCondgfBgfTgRd,address store in memory from register

2.7.5 Acorn processing states

Normal execution may be preempted by an external device (IRQ or FIRQ), an internally
raised exception or an exception raised by software (SWI). The processor supports a par-
tially overlapping register set so that when interrupts are taken, the contents of the register
array do not have to be saved before new operations can begin.

67

Acorn exception handling

The processor exception map is:

Address Function Priority level

0 Reset 0

4 Undefined Instruction 6

8 Software Interrupt 7

C Abort(prefetch) 5

10 Abort(data) 2

14 Address Exception 1

18 Normal Interrupt(IRQ) 4

1C Fast Interrupt(FIRQ) 3

'0' denotes the highest priority. These vector addresses normally will contain a branch
instruction to the associated service routine except for the FIRQ entry. In order to reduce
latency, the FIRQ service routinee may begin at address 001Ch if software designer so
chooses.

Whenever the processor enters the supervisor mode, whether from an SWI, address ex-
ceptiion, unde�ned instruction trap, prefetch or data abort the IRQ is disabled and FIRQ
unchanged.

References:

VL86C010 Risc Family Data Manual
VLSI Technology Inc, 1987

68

2.8 THOR

The Saab-THOR is a microprocessor primarily intended for embedded real time systems.
Among other things it facilitates Ada-(programming language) hardware support, i.e ded-
icated registers and instructions for implementation of Ada Task Switches , Rendezvous,

Interrupts, Exceptions and Real-Time Clock. Similar to the Inmos T800, THOR performs
operations on an Evaluation Stack. In addition to this, data can be accessed Relative to the

top of stack. This makes THOR an interesting synthesis of a traditional stack-computer ar-
chitecture, and a Reduced Instruction Set Computer. The microprocessor has built-in test
support that allows test and debug of hardware/software. Like the T800, multiprocessor
con�gurations are encouraged by the processor architecture.

2.8.1 THOR data types

Di�erent instruction operates on one (or more) of the following data types: 32-bit integer
(unsigned/signed), 64-bit signed integer, 32-bit IEE-754 single precision oating point and
a special long-precision oating-point format:

Sign and Mantissa (high 32 bits)

Mantissa (low 32 bits)

Exponent, 32-bits two's complement

2.8.2 THOR instruction formats and addressing modes

There are �ve di�erent instruction formats. The format determines the instruction length
(in bytes) an how to interpret any parameter:

A 16-bit encoded instruction designated "2".

16 8 7 0

opcode ext. opcode

The format designated "2a" is still encoded in 16-bits but includes a parameter "P" which
is interpreted as a twos complement value -127 - 128.

16 8 7 0

opcode P

The format "2b" is identical with "2a" except from the interpretation of the parameter
"P". In this format it is interpreted as a binary value 0-255.

The format "4a" is encoded in 32 bits and contains a parameter which is interpreted as a
twos complement number �223to223 � 1.

31 24 23 0

opcode P

69

The format "4b" is identical with "4a" except from the interpretation of the parameter
"P". In this format it is interpreted as a binary value 0 to 224 � 1.

All instructions with operands use the stack top as implicit source and/or destination
operand E�ective Address. The following summarises the available addressing modes:

Stack Relative

The Operand E�ective Address is calculated relative to the TOS, either implicit or by
adding the parameter to TOS.

Program Counter Relative

The Operand E�ective Address is calculated relative to PC by adding the parameter and
PC (shifted right one bit to get word boundary alignment).

Indirect (X)

The Operand E�ective Address is calculated by adding the parameter and the value on
the stack top appearing two instructions previously.

Immediate (I)

The Operand E�ective Address is the TOS, and the source operand is part of the instruc-
tion.

Register (R)

The parameter designates the register to be used either as source or as destination operand.

2.8.3 THOR registers

The processor maintains the following on-chip registers.

Mnemonic Name Size(bits)

CR Configuration Register 32

EAR Error Address Register 31

SIR Signal Input Register 8

SOR Signal Output Register 4

RTL Real Time Clock (MSL) 32

RTM Real Time Clock (MSH) 32

TP Task Pointer 3

IR Identification Register 32

� Con�guration Register is used for hardware speci�c parameters:

70

0 0 0 DC1 WS1 0 0 0 DC0 WS0 0 S RM CC DW CLK

31 29 26 24 21 19 16 15 14 12 10 8 0

{ CLK Clock Frequency is used to set a division factor (1 to 255) of the chip clock
to get frequency, nominally 1 MHz. Clocks are stopped when this �eld is zero.

{ DW Sets the Data bus Width, 8 bits, 16 bits or 32 bits can be used.

{ CC Cache Control controls the use of data and instruction caches.

{ RM Controls the IEE-754 oating point Rounding Mode.

{ S Determines the Scheduling Mode used.

{ WS0 Waitstate 0, sets the number of waitstates in the �rst 512 MBytes of
memory. From 0 up to 6 waitstates can be used. Setting this �eld to 7 indicates
use of the Ready signal.

{ DC0 Data Check 0 sets the data error checking mode in the �rst 512 MBytes of
memory. Mode may be one of: Parity, EDAC or disabled.

{ WS1 Waitstate 1, sets the number of waitstates in the second 512 MBytes of
memory. From 0 up to 6 waitstates can be used. Setting this �eld to 7 indicates
use of the Ready signal.

{ DC1 Data Check 1 sets the data error checking mode in the second 512 MBytes
of memory. Mode may be one of: Parity, EDAC or disabled.

� The Error Address Register (EAR) is set to the �rst external memory address
which caused an error. The register contains a byte address.

� The Signal Registers are used to hold the status of the chip signals used for multi-
processing and interrupts. There is one input register (SIR) and one output register
(SOR). Each bit in the registers corresponds to a signal on the chip. There are 6
inputs and 4 outputs.

� The Real-Time-Clock (RTL,RTM) is a 63 bit value read as two 32-bit registers.
Incrementation of this register is due to contentsin the Con�guration Register.

� The Task Pointer (TP) value de�nes the currently executing task, its value can
renge from 1 to 7.

� The Identi�cation Register (IR) is a read-only register holding the chip manufac-
turer identity, part number and version number.

For each task there is a Task Control Block (TCB) on the processor chip. The TCB's
have identical sets of registers:

Mnemonic Name Size(bits)

PC Program Counter 31

RR Result Register 32

SR Status Register 32

TOP Top Register 32

TOS Top of Stack 29

AR Accept Register 7

DR Delay Register 32

ER Exception Register 31

71

PR Priority Register 6

BOS Beginning of Stack 29

EOS End of Stack 29

� The Program Counter (PC) holds the address of the last instruction read from
memory. This address is a halfword address.

� The Result Register (RR) holds the least signi�cant half of arithmetic instructions
that yuilds 64-bit results.

� The Status Register (SR) holds condition codes, hardware exception numbers and
Ada support information

0 .. 0 RZ UM TSI QE RT EC AW DLY RDY I C N Z E

31 19 18 16 15 14 13 12 11 10 9 8 7 6 5 4 3 0

{ The Exception Number Field (E) is set to the exception number when a
hardware exception occurs.

{ The Negative Flag (N), Zero Flag (Z) Carry Flag (C) is set according to
arithmetic conditions.

{ The Inexact Flag (I) is set when a calculated oating-point result requires
rounding.

{ The Ready Flag (RDY) is set when this task is ready to execute.

{ The Delay Flag (DLY) is set when this task is delayed.

{ The Accept Wait (AW) is set when this task is waiting for an accept statement.

{ The Entry Call Flag (EC) is set when this task is performing an entry call.

{ The Remote Task Flag (RT) is set when this task is doing rendezvous with a
remote task.

{ The Queued Entry Flag (QE) is set when queued calls exist for an entry in
this task.

{ The Task Switch Inhibited Flag (TSI) is set when no task switch should occur
for this task.

{ The User Mode Flag (UM) is set when this task is in user mode.

{ TheRendezvous Field (RZ) is set to the calling task number when a rendezvous
with this task starts. If this �eld is zero there is no rendezvous in progress.

� The TOP register holds the word at the stack top (pointed at by TOS).

� The TOS register points at the word on top of stack.

� Accept Register (AR). When an enrty call has been performed the bit correspond-
ing to the calling task is set.

� The Delay Register (DR) is the delay counter. It holds the delay of the task.
This is a two's complement integer. Normally the register is decremented every
microsecond. When decremented below zero (and this task's Status Register DLY
ag is set) a scheduling is perfomed.

� The Exception Register (ER) points to the exception information block in the
stack. ER is a word pointer.

� The Priority Register (PR) is used to determine th next task to execute when
scheduling occurs. 32 priorities can be de�ned.

72

� BOS and EOS de�nes the region in memory where this task's data stack is located.
The memory protection check is active in user mode. If an access using the stack
addressing mode is not within BOS and EOS, or if TOS would move outside BOS or
EOS an exception is raised.

2.8.4 THOR instruction set

Instruction Operands Comments

ADD expr add integer
ADDC expr add with carry, integer
ADDF expr add oat
ADDI expr add immediate
ADDU expr add unsigned
AND expr logical and

CALL expr call subprogram
CALLP expr call protected
CLL expr compare lower limit
CLRF expr clear ags
CMP expr compare
CMPF expr compare oat
CUL expr compare upper limit
DIVF expr divide oat
DIVS expr divide short

FBC �rst bit changed
FBCL �rst bit changed, long
FLSH ush cache
HLT enter halt mode
JR expr jump relative
JREQ expr jump relative on equal
JRGE expr jump relative on greater than or equal
JRGT expr jump relative on greater than
JRLE expr jump relative on less than or equal
JRLT expr jump relative on less than
JRNE expr jump relative on not equal
MTOS expr move top of stack
MUL expr multiply
MULF expr multiply oat
MULI expr multiply immediatly
MULS expr multiply short
MULU expr multiply unsigned

73

NOP no operation
NOT logical not
OR expr logical or
POP expr pop value from stack
POPR reg[,expr] pop register
POPX expr pop indexed
PSH expr push value onto stack
PSHI expr push immediate
PSHR reg[,expr] push register
PSHX expr push indexed
REMS expr remainder short
RET return
RETU return to user mode
SETF expr set ags

SL expr shift left
SLD expr shift left dynamic
SLDL expr shift left dynamic long
SR expr shift right
SRA expr shift right arithmetic
SRAD expr shift right arithmetic dynamic
SRADL expr shift right arithmetic dynamic long
SRD expr shift right dynamic
SRDL expr shift right dynamic long
SUB expr subtract
SUBB expr subtract with borrow
SUBF expr subtract oat
SUBU expr subtract unsigned

TA task accept
TAE task accept end
TAS task accept start
TCA task conditional accept
TCE expr task conditional entrycall
TDLY task delay
TE expr task entrycall
TEE task entrycall end
TPTR task pointer
TSCH task schedule
XOR expr logical exclusive or

2.8.5 THOR processing states

Normal executing may be preempted by an interrupt condition, by an internal generated
exception or by exceptions raised by software

74

THOR interrupt handling

THOR:s six input pins (reected in SIR) is regarded as di�erant priority interrupt pins.
Anyone turning to an active state forces an interrupt condition. Upon receiving an in-
terrupt, THOR activates a hardware scheduler, the interrupt priority which also may be

regarded as a task number, causes the scheduler to dispatch the corresponding task. This
mechanism may be used to synchronise tasks running under di�erent microprocessors in a

multiprocessor environment. The entire scheme has some similarities with a conventional
vectored interrupt. External events is thus rapidly gaining the microprocessors attention
which ensures a minimal interrupt latency time.

THOR exception handling

THOR exception handling has adapted the Ada language de�nition. To each fragment
of code, or rather, each subprogram, there exists an Exception Information Block,
dynamically allocated and initialised before the subprogram entrance. This provides for
di�erent exception processing in di�erent subprograms of same type of exception. This
strategy obviously decrease the overhead required by a software kernel.

To each exception there is a corresponding Exception number. The �rst 15 numbers are
de�ned by hardware , but they can also be raised by software, remaining exception numbers
are user de�ned.

THOR hardware defined exception numbers

Number Exception Description

1 Bus Error An external memory access failed to

complete within 255 clock cycles.

2 Address Error Attempt to access non physical or

protected memory

3 Data Error Uncorrectable error in data read

4 Instruction Error Attempt to execute privileged instruction

in user mode, or illegal instruction

5 Jump Error Attempt to jump to, call or return to

an invalid address

6 Reserved

7 Reserved

8 Constraint Error A constraint of a CLL or CUL instruction

was not satisfied

9 Access Check Attempt to use a zero indirect address with

the PSHX and POPX instructions, i.e follow

a null pointer

10 Storage Error Attempt to access memory outside the task's

stack in user mode

11 Overflow Check Overflow of signed integer or float

arithmetic operation

12 Underflow Check Underflow or denormalised result of float

arithmetic operation

13 Division Check Attempt to divide by zero

75

14 Illegal Operation Illegal float arithmetic instruction

caused by any denormalised/NaN operand

15 Tasking Error Reserved for future use, currently not

raised by hardware

References:

Stack Risc Microprocessor Instruction Set
Architecture For Prototype Chip,
Saab-Space 1990.

Stack Risc Microprocessor Assembler User's Guide
Saab-Space 1990

76

Chapter 3

RISCs in a real-time environment

The design of reduced instruction set computers is guided by a design philosophy. It really
does not rely upon inclusion of a set of required features. There is no strict de�nition
of what constitutes a RISC-design however some common features may be observed in
several examples of RISC-designs.

In this chapter, di�erences and similarities between the studied architectures will be fo-
cused. Some High Level Language aspects will be discussed and topics as interrupts,
context switch, task switch (from a HLLs point of view), subprogram calls, interlocking
etc will be treated.

3.1 Common RISC features

As a result of RISC design e�orts one may observe some common features:

� Only LOAD/STORE instructions may access memory. This is the key to single cycle
execution of instructions. Operations on register contents are faster than operations
on memory contents. References to cached or bu�ered operands may be as rapid as
register references if the operand is in the cache and the cache is on the CPU-chip.

� Pipelining is used in all RISC designs to provide simultaneous execution of multiple
instructions.

� Simple instructions/addressing modes are used. This results in an instruction decoder
that is small,fast and easy to design. With few addressing modes it is easier to map
instructions onto a pipeline since the pipeline can be designed to avoid computation
related conicts.

� A carefully designed memory hierarchy is required for increased processing speed. A
typical hierarchy includes high speed registers, cache (bu�ers) located on the CPU
chip, complex memory management schemes to support o�-chip cache and memory
devices. The hierarchy must permit fetching of instructions and operands at a rate
that is high enough to prevent pipeline stalls.

� Optimizing Compilers provide a mechanism to prevent or reduce the number of
pipeline faults by reorganizing code.

77

MPU LOAD/ INSTR INSTR REGISTERS
STORE FORMATS

MC 88100 yes 77 14 32(4)
I 80960KB yes 184 4 80(4)
Am 29000 yes 112 1 192
MIPS R2000 yes 119 3 32
SPARC V 7 yes 81 3 122(32)
T800 yes 162 1 0
Acorn yes 44 6 27
THOR yes 70 5 0

Note:
The number of instructions with unique op-codes
as listed in the available documentation.

Table 3.1: RISC features

Table 3.1 shows how the studied processors conform to some typical RISC features.

� Is it a LOAD/STORE architecture? To be, there must not be a single instruction
besides the dedicated LOAD/STOREs that access memory.

� The number of instructions.

� The number of instruction formats.

� The number of general purpose registers. Number of FPU registers within parenthesis

It had been desirable also to include an addressing modes count �gure. However it has
not been possible to distinguish formal (hardware supported) from assembler directed
(synthesisised) addressing modes in the available documentation. Therefore theese �gures
are omitted.

3.2 Deviation from normal execution

By "normal ow of instruction execution" we generally mean the execution of sequential
instructions in memory, JUMP, BRANCH and CALL instructions. In short an easily
predetermined behaviour from the computer system. A break in normal ow of instruction
execution is an event of some kind, it might be:

� An interrupt, normally caused by an external device pulling a dedicated pin on the
processor active. That is: A system activity.

� An exception, caused by the execution of an instruction and prevents �nishing execu-
tion of the instruction. Examples are: Arithmetic faults (divide by zero, attempt to
draw the root from a negative number etc), violation of permissions such as attempt
to access supervisor memory in user mode, attempt to execute privileged instructions
etc. An exception is also raised when a page fault occur in a virtual memory system.

78

An exception condition may leave the registers in a consistent state such that the
elimination of the cause and restarting the instruction will give correct results. Such
exceptions are often called faults. An exception that potentially leaves the registers
and memory in an indeterminate state is often called abort.

� A trap, caused by a special instruction and provides a method of implementing op-
erating system calls etc. A trap may be conditional such as TRAP on OVERFLOW
and used in conjunction with arithmetic operations.

When such an event occur, the processor performs the appropriate handler routine. This
has been shortly described in the previous chapter. These events introduces preemptiom
of normal execution that sometimes may violate time constraints in real time systems.
The ability to respond to these events is essential, and more: the RISC design philosophy
introduces several diÆculties in this procedure.

The typical processor behaviour when it recognizes an event that breaks the normal ow
of instruction execution can be described as:

(a) Finish current instruction (does not apply to exception).

(b) Check interrupt priority level versus current processor level. I.e whether the interrupt
should be serviced or not.

(c) Save enough processor status to be able to continue processing after the interrupt has
been serviced.

(d) Fetch the appropriate interrupt vector.

(e) Execute the interrupt service routine

(f) Restore the interrupted status

(g) Continue normal processing.

If we assume that there is no delay between the time from which the interrupt was asserted
until the time the processor recognizes the interrupt then items a) through d) together
constitutes the "interrupt latency time"

In the following paragraphs each, of the studied processors, is analyzed with respect to
the actions taken while servicing an event.

MC 88100

Upon recognition of an interrupt the MC 88100 acts as follows:

(a) Finish current instruction (synchronize)

(b) Freeze all pipelines except the data unit

(c) Allow data unit to complete (or fault)

(d) Freeze all shadow registers and copy the PSR to the TPSR.

(e) Set new PSR to indicate exception processing

(f) Generate vector

(g) Prefetch vector and vector+4

This is carried out within 6 clock cycles. A typical instruction will require a maximum of
4 clock cycles to complete. We assume no wait for the data unit and thus the MC88100
will start the service routine in 10 clock cycles upon the interrupt.

79

I80960KB

Whenever the processor receives an interrupt signal, it performs the following action;

(a) It temporarily stops work on its current task, whether it is working on a program or
another interrupt procedure.

(b) It reads the interrupt vector.

(c) It compares the priority of the vector with the processors current priority.

(d) If the interrupt priority is higher than that of the processor, the processor continues
as described below.

(e) If the priority is equal to or less than that of the processor the processor sets the
appropriate priority bit and vector bit in pending interrupt record and continues
work on its current task.

When the processor in executing state decides to service the interrupt it:

(a) saves the current state of process controls and arithmetic controls in an interrupt
record on the stack that the processor is currently using.

(b) if the execution of an instruction was suspended the processor includes a resumption
record for the instruction in the current stack and sets the resume ag in the saved
process controls.

(c) switches to the interrupted state.

(d) sets the state ag in the process controls to interrupted, its execution mode to super-
visor, and its priority to the priority of the interrupt.

(e) clears trace-fault-pending and trace-enable ags.

(f) allocates a new frame on the interrupt stack and switches to the interrupt stack.

(g) sets the frame return status �eld.

(h) performs an implicit call-extended operation at the address speci�ed by the interrupt
table for the speci�ed interrupt vector.

Am29000

The following operations are performed by the processor when an interrupt or trap is
taken:

(a) Instruction execution is suspended

(b) Instruction fetching is suspended

(c) Any in-progress load or store operation is completed. Any additional operations are
cancelled in the case of load-multiple and store multiple.

(d) The contents of the Current Processor Status Register are copied into the Old Pro-
cessor Status Register.

(e) The Current Status register is modi�ed to indicate interrupt(trap).

(f) The address of the �rst instruction of the interrupt or trap handler is determined.

(g) The processor determines whether or not the �rst instruction is in instruction ROM.

(h) An instruction fetch is initiated using the instruction address as determined in pre-
vious steps. At this point, normal execution resumes.

80

MIPS R2000

An interrupt exception occur as a result of hardware signal or by execution of special
instructions.

(a) The R2000 branches to the general exception vector for this exception.

(b) the IP �eld in the Cause register show which of six external interrupts are pending,
and the SW �eld in the Cause register shows which of two software interrupts are
pending. More than one interrupt can be pending at a time.

(c) The R2000 saves the KUp,IEp,KUc, and IEc bits of the Status register in the KUo,
IEo,KUp and IEp bits respectivly, and clears the KUc and IEc bits.

SPARC V 7

An interrupt is a special case of trap condition. A trap causes the following action.

(a) It disables traps

(b) It copies the S �eld of the PSR into the PS �eld and then sets the S �eld to 1.

(c) It decrements the CWP by 1 modulo 7.

(d) It saves the PC and nPC into r[17] and r[18], respectively of the new window.

(e) It sets the tt �eld of the TBR to the appropriate value.

(f) If the trap is not a reset, it writes the PC with the contents of TBR, and the nPC
with the contents of TBR+4. If the trap is a RESET, it loads the PC with 0 and the
nPC with 4.

T800

The T800 EventReq and EventAck pins provide an asynchronous handshake interface be-
tween an external event and an internal process. When an external event (interrupt) pulls
EventReq active the external event channel (additional to the external link channels) is
made ready to communicate with a process. When both the event channel and the process
are ready the processor pulls EventAck active and the process, if waiting, is scheduled.

Only one process may use the event channel at any given time. If no process requires an
event to occur EventAck will never be activated.

If the process is a high priority one and no other high priority process is running, the
latency is typically 19 processor cycles. Setting a high priority task to wait for an event
input allows the user to interrupt a transputer program running at low priority. The
following functions take place:

� Sample EventReq at pad and synchronise.

� Edge detect the synchronised EventReq and form the interrupt request.

� Sample interrupt vector for microcode ROM in the CPU.

� Execute the interrupt routine for Event rather than the next instruction.

The time taken activating EventReq to the execution of the microcode interrupt handler
in the CPU is four cycles.

81

Acorn

Upon recognition of a FIRQ the processor:

� Save R15 in R14IRQ

� Force processor mode bits into FIRQ mode

� Force PC to 01Ch

The interrupt latency time is, most of all, due to the interrupted instruction execution
time.

3.3 Context Switch

A processors context is characterised by:

� Accessible register contents

� Unaccessible (internal) register contents

� Processor internal state, i.e pipe-line state, control-unit state, integer-unit state etc.

During a context switch at least the processor internal state and the internal register
contents must be preserved, or the processor must be allowed to proceed until a well (pre-)
de�ned state is reached. For example, when an interrupt occurs, the current instruction is
allowed to complete and a return address is saved in a register or on a stack. However this
describes a minimum context to be preserved. If the accessible register contents are to be
exchanged (entire context switch) then a small register �le obviusly will bene�t compared
to a large one.

Thus, the bene�ts from a large register �le (less memory traÆc) must be related to the
penality when a context swith occurs. Processors with large register �les may provide
optional use of it to accomplish fast context switches.

3.4 Task Switch

In a multi-tasking environment each program under execution constitutes a process. For
each process there must exist:

� A Process Control Block (PCB) used by the operating system to maintain the process.
Entries in the PCB may also be used by the process itself.

� Data Space, where the process data resides.

� Code Space, where the process code resides. May in some cases be shared by several
processes.

In addition to this we must add the procesor context to fully describe a process at any
time. A common method is to let the process stackpointer reside in the upper region of
data space (growing downwards). The stackpointer itself, upon a process switch, is stored
in the process PCB. That is: A minimum of operations performed to freeze a process and
maintain the ability to restart it at any later time the operating system must be:

(a) Save the entire processor context by pushing it onto the stack.

82

Figure 3.1: PCB organisation in memory

(b) Store stackpointer value in the PCB.

The process can be restarted simply by loading the stackpointer (from PCB) and pulling
processor context from the stack. In a real case, however, there is signi�cantly more
"housekeeping" activities that has to be carried out.

For a complete Task Switch the old process must be preserved, a new task must be selected
and started. That is: at least two processor context switches and the selection contributes
to the total time required. In a system with several runnable processes (tasks) the op-
erating system must choose the one with highest priority. There might for example be
processes waiting for IO in the system, or processes waiting for synchronization with other
processes in the system. In other words: Every process PCB has to be checked regarding
the process status(runnable or not) and priority to pick the runnable process with the
highest priority. This type of "housekeeping" can be quit time consuming and may, in
some cases, violate time constraints laid upon the operating system.

In order to gain some knowledge about a processors ability to handle a task switch, let us
construct a hypotethic case. Assume a small system with exactly 10 tasks. The tasks may
be either runnable or waiting and they have dynamic priorities. Figure 3.1 describes the
PCB:s organisation in memory. The time required to perform a simple (and fast) task
switch may be described as:

Context Switch - Time spent searching x 10 PCB:s - Context Switch

The PCB:s search may be accomplished by the following (formal) scheme: (Figures within
curly brackets denotes number of times each instruction are executed for a complete
search).

....

....

; PCB search, exits with task identification number (T.ID) in r4,

; task priority (T.PRI) in r3,

; ptr to highest process tasks PCB in r5

move PCB0PTR,r2 address of first PCB in r2 {1}

move r2,r5 ptr to hi priority task {1}

move 10,r1 number of PCB:s to search {1}

move 0,r3 initial priority (lowest) {1}

move 0,r4 initial PCB ID (undefined) {1}

83

.L1: cmp (r2)T.PRI,r3 check PCB priority {10}

jmple .L2 branch if previous is greater {10}

move r2)T.PRI,r3 substitute new priority {1}

move (r2)T.ID,r4 remember task ID {1}

move r2,r5 remember PCB ptr {1}

.L2: move (r2)N.PCB,r2 get next PCB pointer {10}

sub 1,r1 exit ... {10}

cmp 0,r1 .. when .. {10}

jmpne .L1 .. all PCB:s searched {9}

....

....

In the following paragraphs, this formal code will be translated to assembly code for the
respective processors. The total amount of required machine cycles used to perform the
PCB search will be approximated. Register names are generalised to increase readability,
thus the register naming conventions proposed by each manufacturer is not used. It is
assumed that "r0" is a "hard-wired-zero" register. It is further assumed that only one
substitution of PCB is needed. Figures within curly brackets denotes the assumed number
of processor cycles with respect to possible pipeline penalities. The code is not tested, and
thus not highly reliable...

MC88100 PCB search

....

....

; PCB search, exits with task identification number (T.ID) in r4,

; task priority (T.PRI) in r3,

; ptr to highest process tasks PCB in r5

lda.h r2,r0,PCB0PTR address of first PCB in r2 {1}

add r5,r0,r2 ptr to hi priority task {1}

add r1,r0,10 number of PCB:s to search {1}

add r3,r0,0 initial priority (lowest) {1}

add r4,r0,0 initial PCB ID (undefined) {1}

.L1: ld.b r6,r2,T.PRI r6 temp hold, priority (memory access) {40}

cmp r7,r3,r6 compare priorities, result in r7 {10}

bb1 HS.BIT,r7,.L2 branch if previous is greater {19}

add r3,r0,r6 substitute new priority {1}

lda.h r4,r2,T.ID remember task ID (memory access) {4}

add r5,r0,r5 remember PCB ptr {1}

.L2: lda.h r2,r2,N.PCB get next PCB pointer (memory access) {40}

sub r1,r1,1 exit ... {10}

bcnd gt0,r1,.L1 .. when all PCB:s searched {18}

....

....

I80960KB PCB search

Assuming Normal case execution time. Register "moves" are word sized.

84

....

....

; PCB search, exits with task identification number (T.ID) in r4,

; task priority (T.PRI) in r3,

; ptr to highest process tasks PCB in r5

lda PCB0PTR,r2 address of first PCB in r2 {1}

move r2,r5 ptr to hi priority task {1}

move 10,r1 number of PCB:s to search {1}

move 0,r3 initial priority (lowest) {1}

move 0,r4 initial PCB ID (undefined) {1}

.L1: ldl T.PRI(r2),r6 (memory access) {40}

cmpibge has to wait for r6 ...

cmpibge r3,r6,.L2 branch if previous is greater {30}

move r6,r3 substitute new priority {1}

ldl T.ID(r2),r4 remember task ID (memory access) {2}

move r2,r5 remember PCB ptr {1}

.L2: ldl N.PCB(r2),r2 get next PCB pointer (memory access) {20}

subo r1,1,r1 exit ... {10}

cmpobg r1,r0,.L1 .. when all PCB:s searched {27}

....

....

Am29000 PCB search

Note: Instruction timing not available from the documentation. Figures are estimations
based on related descriptions.

....

....

; PCB search, exits with task identification number (T.ID) in r4,

; task priority (T.PRI) in r3,

; ptr to highest process tasks PCB in r5

const r2,(PCB0PTR & 0xFFFF) {1}

consth r2,((PCB0PTR >> 16) & 0xFFFF) {1}

; load immediate into r2 done

add r5,r2,0 ptr to hi priority task {1}

const r1,10 number of PCB:s to search {1}

const r3,0 initial priority (lowest) {1}

const r4,0 initial PCB ID (undefined) {1}

.L1: add r7,r2,T.PRI compute address of priority in r7 {10}

feedforward, no penality for r7

load 0,CNTL,r8,r7 get priority into r8(memory access) {30}

wait for r8

cplt r9,r3,r8 compute boolean into r9 {10}

jmpf r9,.L2 branch if previous greater {2}

nop always executed .. {10}

add r3,r8,0 remember new priority {1}

add r7,r2,T.ID compute address of new task ID into r7 {1}

85

load 0,CNTL,r4,r7 remember task ID (memory access) {1}

add r5,r2,0 remember PCB ptr {1}

.L2: add r7,r2,N.PCB compute address of next PCB ptr {10}

load 0,CNTL,r2,r7 get next PCB pointer (memory access) {10}

sub r1,r1,1 one more ... {1}

cpeq r9,r1,0 compute boolean into r9 {10}

jmpf r9,.L1 continue until done {20}

nop always executed {10}

....

....

MIPS R2000 PCB search

....

....

; PCB search, exits with task identification number (T.ID) in r4,

; task priority (T.PRI) in r3,

; ptr to highest process tasks PCB in r5

lui r2,(PCB0PTR >> 16) {1}

ori r2,r2,(PCB0PTR & 0x FFFF) {1}

; load immediate into r2 done

or r5,r0,r2 copy into r5 {1}

ori r1,r0,9 number of PCB:s-1 to search {1}

ori r3,r0,0 initial priority (lowest) {1}

ori r4,r0,0 initial PCB ID (undefined) {1}

.L1: lb r8,T.PRI(r2) priority (memory access) {10}

nop delay slot {10}

sltu r9,r3,r8 compare priorities, result in r9 {10}

nop delay slot {10}

blez r9,.L2 branch if previous is greater {10}

nop delay slot {10}

ori r3,r8,0 substitute new priority {1}

lb r4,T.ID(r2) remember task ID (memory access) {1}

ori r5,r2,0 remember PCB ptr {1}

.L2: lhu r6,N.PCB(r2) PCB pointer(high) (memory access) {10}

lh r7,N.PCB+2(r2) PCB pointer(low) (memory access) {10}

addi r1,r1,-1 {10}

or r2,r6,r7 move result into r2 {10}

sltu r9,r1,r0 compute bool into r9 {10}

nop delay slot {10}

blez r9,.L1 exit when all PCB:s searched {9}

nop (delayed branch) {9}

....

....

SPARC V 7 PCB search

....

86

....

; PCB search, exits with task identification number (T.ID) in r4,

; task priority (T.PRI) in r3,

; ptr to highest process tasks PCB in r5

sethi (PCB0PTR >> 10),r2

add r2,(PCBPTR & 0x3FF),r2

; load immediate into r2 done ...

add r2,0,r5 ptr to hi priority task {1}

add r0,10,r1 number of PCB:s to search {1}

add r0,0,r3 initial priority (lowest) {1}

add r0,0,r4 initial PCB ID (undefined) {1}

.L1: ldub r2+T.PRI,r6 r6 temp hold, priority (memory access) {1}

sub r6,r3,r7 compare priorities, result in r7 {1}

ble,a .L2 branch if previous is greater {1}

add r0,r6,r3 substitute new priority {1}

ldub r2+T.ID,r4 remember task ID (memory access) {1}

add r0,r2,r5 remember PCB ptr {1}

.L2: ld r2+N.PCB,r2 get next PCB pointer (memory access) {1}

sub r1,1,r1 exit ... {1}

bne,a .L1 .. when all PCB:s searched {1}

....

....

T800 PCB search

For the T800 there is really no need for a software process scheduler, there is hardware sup-
port for this in the processor. The T800 can run several processes concurrently. Processes
may be assigned either high or low priority and there may be any number of each.

The processor has a microcoded scheduler which enables any number of concurrent pro-
cesses to be executed together, sharing the processor time. At any time, a concurrent
process may be:

� Active

{ Being executed

{ On a list waiting to be executed

� Inactive

{ Ready to input

{ Ready to output

{ Waiting until a speci�ed time

The scheduler operates in such a way that inactive processes do not consume any processor
time. It allocates a portion of the processors time to each process in turn. Active processes
waiting to be executed are held in two linked lists of process workspace, one of high priority
processes and one of low priority processes. Each list is implemented using two registers,
one of which points to the �rst process in the list, the other to the last. In the linked process
list (Figure 3.2) process S is executing and P,Q and R are active awaiting execution. The
�gure shows the low priority process queue. The high priority process queue acts similar.

Each process runs until it has completed its action, but is descheduled whilst waiting for
communication from another process or transputer, or for a time to complete. In order for

87

Registers Locals Program

FPtr1 (Front) P

BPtr (Back)

Q

A

B R

C

Workspace S

Next Inst.

Operand

Figure 3.2: Linked Process List

several processes to operate in parallel, a low priority process is only permitted to run for
a maximum of two time slices before it is forcibly descheduled at the next descheduling
point. The time slice period is approximately 1 ms.

A process can only be descheduled on certain instructions, known as descheduling points.
As a result, en expression evaluation can be guarenteed to execute without the process
being timesliced part way through.

Whenever a process is unable to proceed, its instruction pointer is saved in the process
workspace and the next process taken from the list. Process scheduling pointers are up-
dated by instructions which cause scheduling operations, and should not be altered directly.
Actual process switch times are less than 1 micro second, as little state needs to be saved
and its not necessary to save the evaluation stack on rescheduling.

The T800 supports two levels of priority. Priority 1 (low priority) processes are executed
whenever there are no active priority 0 (high priority) processes. High priority processes
are expected to execute for a short time. If one or more high priority processes are able
to proceed, then one is selected and runs until it has to wait for a communication, a timer
input or it completes processing. If no process at high priority is able to proceed, but one
or more processes at low priority are able to proceed, then one is selected. If there are n
low priority processes, then the maximum latency from the time at which a low priority
process becomes active to the time when it starts processing is 2n-2 timeslice periods. It
is then able to execute for between one and two timeslice periods, less any time taken by
high priority processes. This assumes that no process monopolises the transputer time;
that is: has a distribution of descheduling points.

Despite the fact that the T800 do not support dynamic priorities and that there may be
only high or low priority processes, this is an elegant way of handling a task switch. It do
not need a software kernel to perform process scheduling, its a feature of the architecure.

88

Acorn PCB search

....

....

; PCB search, exits with task identification number (T.ID) in r4,

; task priority (T.PRI) in r3,

; ptr to highest process tasks PCB in r5

mov r2,#PCB0PTR

mov r5,r2 ptr to hi priority task {1}

mov r1,#10 number of PCB:s to search {1}

mov r3,#0 initial priority (lowest) {1}

mov r4,#0 initial PCB ID (undefined) {1}

.L1: ldr r6,(r2,#T.PRI) r6 temp hold, priority (memory access) {30}

cmp r3,r6 compare priorities, result in r7 {10}

bhi .L2 branch if previous is greater {30}

mov r3,r6 substitute new priority {1}

ldr r4+T.ID,r4 remember task ID (memory access) {1}

add r0,r2,r5 remember PCB ptr {1}

.L2: ldr r2,(r2,#N.PCB) get next PCB pointer (memory access) {30}

sub r1,#1 exit ... {10}

bne .L1 .. when all PCB:s searched {27}

....

....

THOR PCB search

THOR , like the T800, facilitates hardware support for task switching. There are 6 di�er-
ent "Signal In" pins (SI0-SI5) which functionality equals ordinary interrupt signal lines.
There are further four di�erent SIGNAL OUT (SO0-SO3). Each SIGNAL IN is corre-
sponding to a speci�c task, so that, when a SIGNAL IN occurs the hardware will ensure
that the corresponding task will be scheduled next. This mechanism provides for a very
rapid response to external events, and indeed supports multiprocessor con�gurations where
di�erent tasks may run in separate processors and the synchronisation between these tasks
is accomplished throug the SIGNAL OUT and SIGNAL IN pins.

Fast software taskscheduling is accomplished by hardware. The chip include registers
aimed to hold task related data i.e PCB. The mechanism insures that the highest priority
process will be scheduled next. Priorities range between 1-32. It further insures that a
delayed task receives immediate attention att the end of the delay. THOR, thus, do not
need a software kernel to perform process scheduling.

Conclusions

The PCB searches may be summarised as:

Processor Processor Cycles (approx)

MC88100 148

I80960KB 136

89

Am29000 133

MIPSR2000 145

SPARC V7 144

T800 hardware implemented

Acorn 144

THOR hardware implemented

Task switches in real-time systems are a time-consuming matter. Moreover, since processes
are created and removed dynamically the time spent for these activities become very
diÆcult to predict. Some general observations are:

� The register �le should be reasonably sized since a task-switch (process-switch) re-
quires the entire processor context to be exchanged.

� Hardware support for task-switches is an essential feature to reduce the time spent
for rescheduling.

3.5 Subprogram Calls

A subprogram call is a result of a HLL function (procedure) call statement. Consider the
following:
callsub(p1,p2 ... ,pn);
The compiler is to generate code for a subprogram call with n parameters. The traditional
way to do this is to push the n parameters on stack and perform a subroutine (subprogram)
call, then modify the stackpointer and continue. But this requires at least n memory
accesses of wich each one may prevent the processor from single cycle execution. Thus,
its preferable to hold and pass the parameters in registers. This may be accomplished by
conventions for register usage, that is directives for the compiler writer of how to dispose
the register set. The register usage conventions is a matter of the processor architecture
and these conventions will be described in the next paragraphs.

MC 88100 register conventions

The outline of the MC88100 general purpose registers is described in paragraph 2.1.3,
page 15 The register usage are as follows:

� Register r0 always contains zero, which is used in instructions requiring the constant
zero as an operand. This is a hardware convention; the software can write to r0 but
this operation has no e�ect.

� Register r1 contains the return pointer generated by bsr or jsr to subroutine instruc-
tions. This is a hardware convention; both of these instructions overwrite the data
in r1 when they execute. However, this register is not protected; software can read
or overwrite the return pointer (or any other data) contained in r1.

� Registers r9 through r2 are used for passing parameters to a called routine. These
registers can be overwritten by the called routine. This is a software convention.

� Registers r13 through r10 are used for temporary storage. They can be overwritten
by a called routine but do not contain parameters for the called routine. This is a
software convention.

90

� Registers r25 through r14 are used as data storage for the current routine. A called
routine must ensure that the data in these registers is returned without modi�cation
when it �nishes execution. These registers must be preserved for the calling routine.
This is a software convention.

� Registers r29 through r26 are reserved for use by the linker, which is a software
convention.

� Register r30 is reserved for use as a software frame pointer, which is a software
convention.

� Register r31 is reserved for use as a software stack pointer, which is a software con-
vention.

Thus, if these conventions are adapted, the architecture supports subprogram calls with
eight (or fewer) parameters well.

I80960KB register conventions

The 80960 provides sets of 16 local register for each subprogram. There are 4 sets of these
registers on chip. If a nesting depth larger than 4 is used, the processor automatically saves
the local register contents on stack, thus freeing local registers for use by the subprogram.

The global register g15 is reserved for use as a Frame Pointer. Local registers r0,r1 and
r2 are reserved for use as: Previous Frame Pointer, Stack Pointer and Return Instruction
Pointer, respectively.

Parameters are passed using global registers, thus 15 parameters could conviently be passed
to (or from) a subprogram.

Am29000 register conventions

The Am29000 utilises a large, on chip register set. The following will concentrate on
"subprogram calls/returns" and does not cover the entire proposed usage of the register
set.

When a subprogram is called, a new activation record, or "stack frame" is allocated on the
run-rime stack. This record includes local variables, arguments to the subprogram and a
return address. Figure 3.5 shows an example of the run-time-stack during a subprogram
call.

A compiler targeted to the Am29000 should use two run-time stacks for activation records:
one for often used scalar data and another for structured data and additional scalar data.
The scalar portion of the activation record can then be mapped into the processor's local
registers, because of the stack-pointer addressing which applies to the local registers.

Allocation and de-allocation of activation records can occur largely within the con�nes of
the local registers. The term "stack-cache" refers to the use of local registers to cache a
portion of the activation record stack.

The principle of locality of reference - which allows any cache to be e�ective also applies
to the stack cache. The entries in the stack cache are likely to remain there for re-use,
because the dynamic nesting depth of activated procedures tends to remain near a given
depth for long periods of time. As a result, the size of the run-time stack does not change
very much over long intervals of program execution.

91

out args X

in args to A higher memory addresses

Activation

Record A locals A

out args A

in args B

Activation

locals B Record B

out args B

Top of Stack

Figure 3.3: Am29000 Run-time stack example

Since activation records are allocated and de-allocated within the local registers, most pro-
cedure linkage can occur without external references. Also, during procedure execution,
most data accesses occur without external references, because the scalar data in an acti-
vation record is most frequently referenced. Activation records are typically small, so the
128 locations in the local register �le can hold many activation records from the run-time
stack.

MIPS R2000 register conventions

Mips R200 assembler denotes the 32 general purpose registers $0,$1 $31. The register
usage are as follows:

� Register $0 always contains zero, which is used in instructions requiring the constant
zero as an operand.

� Register $1 is reserved for the assembler.

� Registers $2 and $3 are used for expression evaluations and to hold integer function
results. Also used to pass the static link when calling nested procedures.

� Registers $4 through $7 are used to pass the �rst 4 words of integer type actual
arguments; their values are not preserved across procedure calls.

� Registers $8 through $15 are used for temporary storage. Their values are not
preserved across procedure calls.

� Registers $16 through $23 are saved registers; their values must be preserved across
procedure calls.

� Registers $24 and $25 are used for expression evaluation; their values are not pre-
served across procedure calls.

� Registers $26 and $27 are reserved for the operating system kernel.

92

� Register $28 contains the global pointer.

� Register $29 contains the stack pointer.

� Register $30 is a saved register (like $16 ...$23).

� Register $31 contins the return address. Used for expression evaluation.

According to software conventions, four (or less) parameters could be passed in registers.

SPARC V 7 register conventions

The organisation of SPARC V7 register windows was described in paragraph 2.5.3, page 48.
Figure 2.1,(page 50) shows how 32 general purpose registers are divided into 4 groups. The
"outs" (8 registers) in the active window are are identical to the ins of the next window.
The out register r[15] is used for saving current address by the CALL instruction. Thus
seven parameters may be passed, using registers, during a subprogram call. By software
convention, less parameters can be assumed thus providing additional local registers.

3.6 Data Interlocking and Delayed Branches

A data interlock occurs as a result from data dependency between operations on registers
which concurrently occupies the pipeline. For example the instruction sequence:

b = 2*a + b;

may generate code, assuming "a" in R2 "b" in R3, such as:

shl R2 ; 2*a

add R2,R3,R3 ; b = 2*a + b

Now, the add-instruction must not execute before the shift instruction is through and have
produced valid data in register R2. This exempli�es pipeline penality associated with data
interlock.

There are di�erent strategies of handling this in hardare. One might be to introduce a
dedicated register (often called "scoreboard register") to keep track of registers while they
are operated on. The hardware may thus detect critical situations and for a case like this
delay execution of the add-instruction until the shift-instruction has completed.

A quite di�erent strategy, is to let the processor execute the next instruction as fast as it
possibly can under the assumption that the compiler has rearranged code in a manner to
prevent all interlock situations.

Another pipeline penality is associated with changes in program ow. For a branch or
jump instruction the pipeline has to be ushed and re�lled with the instructions at the
destination address . To reduce this penality one may incorporate delayed branching, that
is before the branch is performed the next instruction is executed. Thus the compiler has
to rearrange code so that a useful instruction is inserted immediatly after the branch or
jump instruction.

MC88100 handles data dependencies internally by the use of a scoreboard register. I.e
execution pipeline stalls while the preceeding instruction �nish the write-back- stage if
there is a data dependency. Delayed branches are provided as an option. The compiler
may choose to use or not. A facility that probably reduce code size.

93

I80960 provides scoreboarding for global and local registers. If a register used in an
operation is marked in-use the processor can not continue execution of that instruction.
This typical apply to load-operations. Register Bypassing is a mechanism that allows
instructions that would ordinarily require source operandsd to be placed in registers to
be executed without accessing one or both of the source registers. Register bypassing
occurs in either of two circumstances. First, when the IEU executes an instruction with
two source operands, register bypassing occurs if one or both of the operands are literals.
Second, register bypassing will also occur when the second of two source operands is the
result of the previous instruction. The net result of register bypassing is the saving of one
clock cycle. On conditional branch instructions, the ID uses a condition code scoreboard
to streamline the branching process.

Am29000 detect data dependencies and provides a mechanism that detects:

(a) If one of the source registers matches the destiation register of the immediatly previous
instruction.

(b) If one of the source registers matches a register destinated for an outstanding load-
operation.

In the �rst case, the result of the execute stage is selected as an operand, thus bypassing
the write-back stage, (data forwarding). In the second case the processor may enter the
Pipeline Hold mode if the load has not completed.i The e�ect of jump and call instructions
is delayed by one cycle. Jump and call instructions are collectively referred to as delayed
branches.

The R2000 always perform delayed branches, assuming the compiler to arrange for proper
operation. Data dependencies are treated in a similar manner, i.e no hardware mechanism
detects data dependencies.

SPARC V7 behaves similar to MC88100 in the case of delayed branches. An "annual-
bit" is used in the branch op-codes from which the processor determines whether it is to
execute the next instruction or not.

In order to decrease pipeline penalities THOR provides hardware detection and actions
for some situations. In general though, the responsibility for handling this is laid upon the
compiler.

3.7 Real Time System Support

Am29000

The processor has a built in Timer Facility which can be con�gured to cause periodic
interrupts. The Timer Facility consists of 2 special purpose registers , the Timer Counter
and the Timer Reload registers, which are accessible only to supervisor mode programs.
The Timer Facility may be used to perform precise timing of system events.

T800

The T800 incorporate a timer. The implementation directly supports the occam model
of time. each process can have its own independent timer which can be used for internal
management or real time scheduling.

94

THOR

THOR has a built in real time clock to keep track of system time. Furthermore, each task
has a Delay register, causing interrupt after a speci�ed delay. This provides for an eÆcient
implementation of a high level language (real-time) delay function since kernel software is
released from polling a "delay queue" each time a scheduling is to be performed.

3.8 Conclusions

The goal of a reduced instruction set is to make a simple hard-wired processor and to
carry out as many functions as possible in software. This demands for eÆcient compiling

techniques. The RISC approach has had a major inuence on development of compilers
during the last years. Studies made within RISC projects often concentrates around a pre-
determined well de�ned environment. I.e medium size, multitasking, multiuser operating
systems. A commonly goal seems to be to acheive a general purpose processor. Bench-
mark studies have shown that RISC processors outperform conventional CISC processors.
RISC processor performance is often measured relative to a VAX 11 (1978) or a Motorola
MC68020 (1984). RISC designs employs:

� a large register �le

� a reduced intruction set

� pipelined execution

� few addressing modes

� �xed instruction format

These features is essential to single cycle execution. This ability is certainly favouring the
RISC designs. The best performance, from this ability is acheived in an environment with
"patiant" I/O requests. Running a benchmark is a good example of such environments.
However, this is not true in an embedded real time environment. On the contrary, theese
systems includes functions that require extremely rapid responses on external events. These
events may occur frequently.

References:

Reduced Instruction Set Computers, Stallings W,
Computer Organisation and Architecture, 1986, pp 431-435

Reduced Instruction Set Computers, Patterson, D A
Communications of the ACM, January 1985, pp 8-21

VLSI Processor Architecture, Hennessy J L,
IEEE transactions on Computers, December 1984, pp 1221-1246

RISC: Back to the Future?, Bell, C
Datamation, June 1986, pp 96-108

95

