# On Communication Requirements for Control-by-Wire Applications

Roger Johansson, Per Johannessen, Kristina Forsberg, Håkan Sivencrona, Jan Torin



• Future distributed control systems for safety critical applications











Presentation Overview

- Distributed By-Wire Control, background and motivation
- Dependable Real -Time Control
- Bandwith requirement, case studies
- Summary and conclusions



## Background

Ongoing efforts aim to develop a common standard for communication protocols within the fly- and drive-by-wire industry.

- Four major standards
  - FlexRay Currently under development by BMW, Daimler-Chrysler, Motorola, Philips, et.al.
  - SAFEbus Developed by Honeywell and in operation in Boeing 777
  - TTCAN Developed by Bosch and extends the existing CAN protocol. Sample chips are available.
  - TTP/C Developed by the Technical University of Vienna and TTTech. Commercial chips are available.
- Instead of starting with the protocol specification we investigated the requirements derived from the application.





# **Real-Time Control Strategies**

### Local control

- Local information processing
- No data dependencies between control objects

Centralized global control

- Local and global information processing
- Data dependencies between control objects

Distributed global control

- Local and distributed information processing
- Data dependencies between control objects







Strategy combine local control performance (closed loops >500 Hz) with global control features e.g. stability system





Increases bus bandwith requirements



#### Case: Fly-by-Wire



JAS 39 Gripen, a multi-role, combat aircraft

Research project:

Future Flight Control System (FCS)





Chalmers University of Technology

## Fly-by-Wire communication bandwidth

| Advanced Air Data sensor: 15 Hz: Pressure<br>static, Mach number, Altitude, 60 Hz: Angle of<br>attack, Angle of sideslip (duplicated) | 3 x 32 bits x 15 Hz<br>2 x 32 bits x 60 Hz<br>x 2                                  | 10560                 |
|---------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|-----------------------|
| Angular Rate Gyro sensor. 60 Hz: Pitch, Roll and Yaw (duplicated)                                                                     | 3 x 32 bits x 60 Hz<br>x 2                                                         | 11520                 |
| <b>Accelerator Sensor</b> : 60 Hz: Acceleration in z-<br>and y-axle (duplicated)                                                      | Ierator Sensor : 60 Hz: Acceleration in z-2 x 32 bits x 60 Hz-axle (duplicated)x 2 |                       |
| <b>Cockpit node</b> 60 Hz: Pilot command for Pitch,<br>Roll and Pedal. Assume 16 bits for discrete<br>signals (duplicated)            | 3 x 32+16 bits x 60 Hz<br>x 2                                                      | 13440                 |
| <i>Interconnection node:</i> 60 Hz: Acceleration x-axle, Pitch, Roll and Aircraft weight                                              | 4 x 32 bit x 60 Hz                                                                 | 7680                  |
| <b>Actuator nodes</b> 60 Hz: Seven command words (16 bits) and one status word (16 bits) from all seven nodes                         | (7 x 16 bits + 16 bits) x<br>7 x 60 Hz                                             | 53760                 |
| <b>Secondary control surfaces and Engine</b> 60<br>Hz: Assumed 32 bits from these four nodes                                          | 4 x 32 bits x 60 Hz                                                                | 7680                  |
|                                                                                                                                       | Resulting bandwidth                                                                | <b>112.320</b> bits/s |

#### Case: Steer-by-Wire

FAR – Scale 1:5 experimental drive-by-wire



SIRIUS – Scale 1:1 experimental drive-by-wire







| 2003-08-07 |
|------------|
| ISSC 21    |

### **Steer-by-Wire communication bandwidth**

#### Central node (C1 and C2)

| 100 Hz: steering wheel angle (14 bits) | 14 bits x 100 Hz | 2840 |
|----------------------------------------|------------------|------|
| 10 Hz: steering mode (2 bits)          | 2 bits x 10 Hz   |      |
| Sensor redundantly allocated to C1     | X 2              |      |
| and C2.                                |                  |      |
|                                        |                  |      |

#### Wheel node (FL,FR,RL and RR)

| 100 Hz: wheel speed and steer angle        | $3 \times 12$ bits x 100 Hz<br>((4 x 14 bits) + 16 bits) | 32400 |
|--------------------------------------------|----------------------------------------------------------|-------|
| (12 Dits)<br>steer angle sensor duplicated | $((4 \times 14 \text{ Dits}) + 10 \text{ Dits})$         |       |
| 100 Hz: Four command words (14 bits)       | x 100 Hz                                                 |       |
| and one status word (16 bits) from all     |                                                          |       |
| four nodes                                 |                                                          |       |
|                                            | <b>—</b>                                                 |       |

Resulting bandwidth

35.240 bits/s





#### Case: Brake-by-Wire

Inherent redundancy:

- It is always possible to brake the vehicle (possibly with reduced performance) assuming that at least one control (actuator) is working properly.
- Fail safe mode is due to operating environment e.g.
  - □ In open air : brake
  - □ In tunnel : free wheels



#### **Brake-by-Wire communication bandwidth**

| Wheel node (four identical)                                |                            |               |
|------------------------------------------------------------|----------------------------|---------------|
| 50 Hz: Required disc pressure actuator                     | 4 x 10 bits x 50 Hz        | 2000          |
| 50 Hz: applied pressure sensor<br>The sensor is duplicated | 4 x 10 bits x 50 Hz<br>x 2 | 4000          |
| 50 Hz: rotational speed sensor<br>The sensor is duplicated | 4 x 10 bits x 50 Hz<br>x 2 | 4000          |
|                                                            | Resulting bandwidth        | 10.000 bits/s |



#### **Bandwith consumption**

| Application       | Effective | TTCAN   | FlexRay | SAFEbus | TTP/C   |
|-------------------|-----------|---------|---------|---------|---------|
| Fly-by-wire       | 112 320   | 235 680 | 187 680 | 148 320 | 156 000 |
| Steer-by-<br>wire | 35 240    | 139 040 | 113 440 | 80 800  | 93 600  |
| Brake-by-<br>wire | 10 000    | 19 200  | 19 200  | 12 800  | 19 200  |

Actual bandwith requirements are small

Protocol overhead is application dependent



#### Conclusions

- The communication subsystem is vital to assure system safety.
- The control-by-wire system should not host any other functionality than vehicle dynamics control.
- Inherent redundancy should be used by the application for cost effective fault-tolerance.
- The communication system must guarantee a sufficient data rate, as well as constant and limited time delays.
- The communication system should be a COTS with basic required functionality and limited autonomous behavior.
- The communication protocol should not guarantee application consensus, it is best accomplished at the application level.



2003-08-07 **Acknowledgments ISSC 21 CHARMEC** Chalmers Railway Mechanics, Centre of Excellence PFF The Program Board for the Swedish Automotive **Research Program** NFFP The Program Board for the National Aerospace **Research Program** All within VINNOVA, the Swedish Agency for Innovation Systems ERS Volvo Car Corporation