
Generating next step hints for task oriented
programs using symbolic execution

Nico Naus
1
and Tim Steenvoorden

2

1
Open University, �e Netherlands nico.naus@ou.nl

ORCiD: 0000-0003-3442-1543

2
Radboud University, Nijmegen, �e Netherlands tim@cs.ru.nl

ORCiD: 0000-0002-8436-2054

Abstract. So�ware that models business work�ows is omnipresent in today’s

society. �ese systems coordinate collaboration in hospitals, companies, and

military institutions. Unfortunately, work�ow systems may obfuscate the in-

�uence of current user actions on the desired end result. In order to make the

right decision, users need to oversee the full process and all information avail-

able, both of which are usually buried in the system. We have developed a way

to automatically generate next step hints for task oriented programs. Task ori-

ented programming provides programmers with an abstraction over work�ow

so�ware, while still being expressive enough to describe real world collabora-

tion. By leveraging symbolic execution, we can calculate these hints without

modi�cation of the original program. To our knowledge, this is the �rst time

that symbolic execution is used to automatically generate next step hints for

end users. We prove the generated hints to be sound and complete, and also

demonstrate that the symbolic execution semantics we employ is correct for se-

quential input. In addition, we have developed a Haskell implementation of our

automatic next step hint generation system. By providing next step hints, the

chance of human error is reduced, while still allowing end users to intervene if

required. �e overall performance is raised, since the quality of decisions will

improve.

Keywords: Task-oriented programming · Next step hint generation · Symbolic

execution.

1 Introduction

So�ware that supports people working together is used inmost workplaces nowadays.

Its aim is to automate business work�ows, in order to simplify processes, to improve

service, or to contain cost. In se�ings like hospitals, �rst responders and military op-

erations, these systems could even prevent the loss of lives.

Automation and digitalisation ofwork�ows and business processes comes at a cost.

For end users it can be hard to see how an action in�uences their desired goal.�ey are

unable to oversee the complete �ow of the process and there might be an abundance of

data that they are not fully aware of. End users might wonder if checking a box may

prevent them, or someone else, from reaching their goal, or ask themselves if they

have taken all information into consideration before making a decision.

2 Naus and Steenvoorden

To overcome these di�culties, we propose to integrate a next step hint system

into work�ow so�ware. By combining previous research on symbolic execution for

Task-Oriented Programming [16] and end-user feedback systems for rule based prob-

lems [15], we develop a next step hint end-user feedback system for the Task-Oriented

Programming language TopHat (t̂op) [20]. Our solution, which we call Assistive t̂op

, generates next step hints from existing code, and does not require extra work by the

programmer. To our knowledge, this is the �rst work employing symbolic execution

to automatically generate next-step hints for end users.

Providing next step hints to end users will provide them with a quick insight in to

their situation. It reduces the chance of human error, while still allowing the user to

intervene if required. �e quality of decisions will improve, raising the overall perfor-

mance.

In this paper we will introduce Task-Oriented Programming and the t̂op language

for readers unfamiliar with either of them, followed by some illustrative examples.

Building further on this foundation we show how we use symbolic execution to auto-

matically generate next step hints for end users. It is crucial that these hints are valid,

meaning they allow users to reach the desired goal. �erefore we prove correctness of

the automatic hint generation system. Our hint generation system relies on symbolic

execution as presented in earlier work [16]. �ere, we proved correctness for the sym-

bolic semantics for single user inputs. Here, we prove the entire symbolic system to

be correct, for any sequence of user inputs.

1.1 Contributions

�is paper makes the following contributions.

– We describe an automatic end user next step feedback system for t̂op, called As-

sistive t̂op , based on a previously presented symbolic semantics.

– We prove the symbolic execution semantics of t̂op to be correct for sequential

inputs.

– We change the de�nition of simulation of t̂op programs to accommodate above

proof.

– Weprove soundness and completeness of next step hints generated by this system.

– We present an implementation of the end user feedback system in Haskell.

1.2 Structure

Section 2 �rst introduces the Task-Oriented Programming (top) paradigm and the

Task-Oriented Programming language t̂op. Section 3 lists three example programs to

illustrate how t̂op works and to show what we like to achieve with Assistive t̂op . In

Section 4 we brie�y introduce the symbolic execution semantics for t̂op, followed by a

description of Assistive t̂op . In Section 5 soundness and completeness of the assistive

system are shown. Section 6 gives an overview of related work, and �nally Section 7

concludes.

Generating next step hints for task oriented programs using symbolic execution 3

2 �e TopHat language

�e Task-Oriented Programming (top) paradigm was �rst introduced by Plasmeijer

et al. [19]. It is created to improve the development and quality of so�ware that coor-

dinates collaboration between users. top provides programmers with a high level of

programming abstraction, while still being expressive enough to describe real world

collaborations. It does so by using features from higher-order functional programming

languages, combined with the notion of tasks. Tasks model units of work, which can

be performed by a human or by a computer. From a task speci�cation, a top imple-

mentation generates a distributive multi-user (web) application.

Tasks have a couple of properties, listed below.

– Tasks model collaboration.
Programmers describe what work needs to be done, by who and in what way.

– Tasks are interactive.
Users can enter or update information into the system by using editors. �ey can

progress to the next task, or choose between tasks.

– Tasks can be observed.
�erefore, other users or the system itself can make decisions based on the ob-

served progress of the task.

– Tasks are modular.
�ey can be combined into bigger tasks by using combinators. �e basic combina-

tors are chosen in such a way, that they represent basic collaboration pa�erns.

New combinators can be created by making use of basic combinators and the

(higher order) facilities of the host language.

– Tasks share information.
Information is passed along control �ow, or, in order for tasks to exchange in-

formation, across control �ow via references. In particular to share data between

parallel tasks.

– Tasks are typed.
�is is not just to ensure safety at runtime, but also to automatically derive com-

mon program elements. top systems automatically generate user interfaces and

manage persistent storage of information.

Currently, there are three systems implementing the top paradigm. �e reference

implementation is the iTasks framework [19], which is an embedded domain speci�c

language in the non-strict functional programming language Clean [18]. mTasks [13]

is a top implementation speci�cally designed for embedded systems. A formalisation

of top, called t̂op (TopHat), has been created by Steenvoorden, Naus, and Klinik [20].

Assistive t̂op builds on t̂op and its symbolic counterpart Symbolic t̂op [16].

t̂op implements top by embedding a task language in the simply typed lambda

calculus with references, conditionals, and pairs. Note the omission of any �xed point

language constructs, which make t̂op a total language. Symbolic t̂op extends this

with built in operators, lists, and most importantly symbols. References are used to

model the shared data component of top. �e complete syntax and semantics can be

found in previous work [20]. An overview can be found in the appendix
3
. In the next

3
h�ps://github.com/timjs/assistive-tophat/raw/master/appendix.pdf

4 Naus and Steenvoorden

subsections we describe the basic constructs of the t̂op language. Section 4.1 details

Symbolic t̂op .

2.1 Editors

Editors form the entry points for interaction and communication with the outside

world. �ey are the most basic tasks and can be seen as an abstraction over widgets

in a gui library or forms on a webpage. Users can change the value held by an editor,

in the same way they can manipulate widgets in a gui.

When a top implementation generates an application from a task speci�cation, it

derives user interfaces for the editors.�e appearance of an editor depends on its type.

For example, editors of type string can be represented by simple input �elds, dates by

calendars, and locations by pins on a map.

�ere are three di�erent editors in t̂op.

�v Valued editor.

�is editor holds a valuev of a certain type. �e user can replace the value by new

values of the same type.

�τ Unvalued editor.

�is editor holds no value, and can receive a value of type τ . When that happens,

it turns into a valued editor.

� l Shared editor.

�is editor refers to a store location l . Its observable value is the value stored at

that location. When it receives a new value, this value will be stored at location l .

2.2 Combinators

Editors can be combined into larger tasks using combinators. �e order in which ed-

itors and tasks are executed is speci�ed with combinators. Tasks can be performed

in sequence, in parallel or a choice can be made between tasks. �ese combinators

originate from basic collaboration pa�erns.

�e following combinators are available in t̂op. Here, t stands for tasks and e for
expressions.

t I e Step.

Users can work on task t . As soon as t has an observable value, as de�ned in the

next section, that value is passed on to the right hand side e . �e expression e is a
function, taking the value as an argument, resulting in a new task.

t B e User Step.

Users can work on task t . When t has an observable value, the step becomes en-

abled. �en, users can send a continue event to the combinator. When that hap-

pens, the value of t is applied to the right hand side function e , with which it

continues in the same way as normal steps do.

t1 Z t2 Pair.

Users can work on tasks t1 and t2 in at the same time.

Generating next step hints for task oriented programs using symbolic execution 5

t1 � t2 Choice.

�e system chooses between t1 or t2, based on which task �rst has an observable

value. If both tasks have a value, the system chooses the le� one. When neither of

the two tasks has an observable value, users can continue to work on both tasks

until one of them does.

e1 ♦ e2 User choice.

A user has to make a choice between either the le� or the right hand side. A�er

picking a side, the user can work on that task.

In addition to editors and combinators, t̂op also contains the fail task (). Program-

mers can use this task to indicate that a task is not reachable or viable. When the right

hand side of a step combinator evaluates to , the step will not proceed to that task.

2.3 Observations

Several observations can be made on tasks. �ese observations are used by the system

to determine the progress of combinators, and to draw the user interface. �ey will

also be used by Assistive t̂op to provide next step hints.

Using the value function V , the current value of a task can be determined. �e

value function is a partial function, since not all tasks have a value. For example empty

editors do not have a value.�e value of tasks composed of parallel and internal choice

combinators, depends on the value of the subtasks. Parallel only has a value if both

tasks have an observable value. Internal choice has a value if either of the two tasks

has an observable value.

One can also observe whether or not a task is failing, by means of the failing func-

tion F . A task is considered to be failing if, a�er normalisation, a user cannot interact

with it. For example, the valued editor is not failing, since the user can update it with a

new value.�e task is failing, as is a parallel combination of failing tasks Z , since
both the le� and the right task cannot be interacted with. Both observation de�nitions

can be found in Fig. 1

�e step combinators make use of both functions in order to determine if they can

step to the right hand side. First,V determines if the le� hand side produces a value.

If that is the case, F checks if stepping to the right hand side is successful.

2.4 Input

Input events drive the evaluation of tasks. Because tasks are typed, input is typed as

well. Editors only accept input of the correct type. For example, an editor can only be

updated with a new value, if it has the same type as the old value. When the system

receives a valid event, it applies this event to the current task, which evaluates to a

new task. Everything in between two events is evaluated atomically with respect to

inputs. �is means that tasks are normalised up to the point where they await new

user interactions.

Input events are synchronous, which means that the order of execution is com-

pletely determined by the order of the events. In particular, the order of input events

determine the progression of parallel branches.

6 Naus and Steenvoorden

V : Tasks × States⇀ Values

V (�v,σ) = v
V (�τ ,σ) = ⊥

V (� l ,σ) = σ (l)
V (,σ) = ⊥

V (t1 I e2,σ) = ⊥
V (t1 B e2,σ) = ⊥
V (t1 Z t2,σ)

=

{
〈v1,v2〉 when V (t1,σ) = v1 ∧V (t2,σ) = v2
⊥ otherwise

V (t1 � t2,σ)

=




v1 when V (t1,σ) = v1
v2 when V (t1,σ) = ⊥ ∧V (t2,σ) = v2
⊥ otherwise

V (t1 ♦ t2,σ) = ⊥

F : Tasks × States→ Booleans

F (�v,σ) = False

F (�τ ,σ) = False

F (� l ,σ) = False

F (,σ) = True

F (t1 I e2,σ) = F (t1,σ)
F (t1 B e2,σ) = F (t1,σ)
F (t1 Z t2,σ) = F (t1,σ) ∧ F (t2,σ)
F (t1 � t2,σ) = F (t1,σ) ∧ F (t2,σ)
F (e1 ♦ e2,σ) = F (t1,σ

′
1
) ∧ F (t2,σ

′
2
)

where e1,σ ⇓ t1,σ
′
1

and e2,σ ⇓ t2,σ
′
2

Fig. 1: Observations on task t .V gets the value of t , F observes if it is unsafe to step to t . Note
thatV is a partial function.

Interact (=⇒)

Handle (−→)

Normalise (⇓)

Stride (7→)

Evaluate (↓)

uses

uses

uses

uses

uses

uses

Fig. 2: Semantic functions de�ned in this report and their relation.

2.5 Semantics

�e semantics of t̂op are de�ned in three layers. Figure 2 contains an overview of these

semantics and their relations.�e �rst layer consists of the standard big step semantics

for the simply typed λ-calculus.We call this semantics evaluation (↓). All task speci�c

language constructs, as described previously in Sections 2.1 and 2.2, are normalised

using a dedicated big step semantics (⇓) in the second layer. Normalisation can be

regarded as preparing tasks for user input. It makes use of a helper small step semantics

called striding (7→).

�e above semantics are internal to the system and do not take any user interaction

into account. On the third level, the small step interaction semantics (=⇒) �rst handles

any user input i using the handle semantics (−→) and then normalises the resulting

task so it is ready to handle the next user input.

�e semantic rules can be found in the appendix
4
. For a thorough explanation of

all rules, we refer to previous work [20].

3 Examples

�is section introduces three example t̂op programs. Each example illustrate di�er-

ent functionality of the t̂op language. Section 3.1 demonstrates the step combinator,

4
h�ps://github.com/timjs/assistive-tophat/raw/master/appendix.pdf

Generating next step hints for task oriented programs using symbolic execution 7

Section 3.2 includes the parallel and choice combinators, and �nally Section 3.3 demon-

strates the use of shares in order for tasks to communicate with each other. �e ex-

amples will be used in Section 4 to demonstrate how Assistive t̂op works, and are

included in the implementation.

3.1 Vending Machine

Using the editors and combinators described in Section 2, we can create a vending

machine that dispenses a biscuit for one coin and a chocolate bar for two coins as

follows:

1let vend : Task Snack = �0 B λn.
2if n ≡ 1 then �Biscuit
3else if n ≡ 2 then �ChocolateBar
4else

Listing 1.1: Vending machine dispensing biscuits or chocolate.

�is example demonstrates the usage of a user step guarded by a branching ex-

pression (Line 2) using the failure task (Line 4). �e editor � 0 asks the user to enter

an amount of money. It simulates a coin slot in a real machine that freely accepts and

returns coins. �ere is a continue bu�on, generated by the user step combinator B.
Only when the user has inserted exactly 1 or 2 coins will the continue bu�on become

enabled. Other cases will result in the failure task , and stepping to it is prohibited by
de�nition. When the user presses the continue bu�on, the machine dispenses either

a biscuit or a chocolate bar, depending on the amount of money. Snacks are modelled

using a custom type.

3.2 Tax subsidy request

�e example program listed in this section is taken from our previous work on sym-

bolic execution for t̂op [20]. It models a simpli�ed tax subsidy application process for

citizenswho have installed solar panels.�iswas �rst described by Stu�erheim et al.[21],

who worked on modelling a �ctional but realistic law about solar panel subsidies.

A subsidy is only given under the following conditions.

– �e roo�ng company has con�rmed that they installed solar panels for the citizen.

– �e tax o�cer has approved the request.

– �e tax o�cer can only approve the request if the roo�ng company has con�rmed,

and the request is �led within one year of the invoice date.

– �e amount of the granted subsidy is at most €600.

Listing 1.2 gives the t̂op code for this example. To enhance readability of the ex-

ample, we omit type annotations and make use of pa�ern matching on tuples. �e

program works as follows.

In parallel, the citizen has to provide the invoice documents of the installed solar

panels, while the roo�ng company has to con�rm that they have actually installed

solar panels at the citizen’s address (Line 6). Once the invoice and the con�rmation are

8 Naus and Steenvoorden

1let today = 13 Feb 2020 in
2let provideDocuments = �Amount Z �Date in
3let companyConfirm = �True ♦ �False in
4let o�icerApprove = λinvoiceDate. λtoday. λconfirmed.
5�False ♦ if (today − invoiceDate < 365 days ∧ confirmed) then �True else in
6provideDocuments Z companyConfirm I λ〈〈invoiceAmount, invoiceDate〉 , confirmed〉 .
7o�icerApprove invoiceDate today confirmed I λapproved.
8let subsidyAmount = if approved then min 600 (invoiceAmount / 10) else 0 in
9�〈subsidyAmount, approved, confirmed, invoiceDate, today〉

Listing 1.2: Subsidy request and approval work�ow at the Dutch tax o�ce.

there, the tax o�cer has to approve the request (Line 7). �e o�cer can always decline

the request, but they can only approve it if the roo�ng company has con�rmed and

the application date is within one year of the invoice date (Line 5). �e result of the

program is the amount of the subsidy, together with all information needed to prove

the required properties (Line 9).

In previouswork, we have shown that this code indeed adheres to the requirements

listed above. �ere we focussed on assisting the developer by proving the program

correct. In this work we focus on supporting the end user that is requesting a subsidy.

�e end user wants the outcome of this program to be a subsidy amount larger than

zero. In Section 4.4 we will show how to generate hints for the end user to reach this

goal.

3.3 Dining Computer Scientists Problem

�edining philosophers problem is a classic concurrency problem in computer science.

A number of philosophers sit at a round table with a meal in front of them. In between

the plates lies a fork. In order to eat their meal, each philosopher has to acquire two

forks. Only a�er eating his or her meal, is a philosopher allowed to place the two forks

back on the table. �is, of course, means that the philosophers cannot eat at the same

time, since there are not enough forks. Deadlock can occur when all philosophers pick

up the fork to their right (or le�). �en, everybody has one fork. �is means that each

philosopher cannot start his or her meal. Next to that, is also not allowed to put his

fork back on the table.

We look at dining computer scientists instead. Listing 1.3 lists an implementation

in t̂op for this problem, with three computer scientists. �e forks are represented by

references containing Booleans (Lines 1 to 3). Using references allows tasks to com-

municate with each other across control �ow. �e value True indicates that the fork is

available, False indicates that the fork is being used.

Picking up a fork is only possible when the fork is available, i.e. reading the refer-

ence results in True (Line 5). �is fork is then marked as being used (Line 6). Reading a

reference l is denoted as !l , assigning a new valuev to a reference l is wri�en as l := v .
�e use of references ensures that the neighbouring scientist cannot pick up this

fork: this choice will be disabled. A�er that, one can press continue if the second fork

is also available (Line 7). For the sake of simplicity, one returns the �rst fork, rather

than se�ing the second fork to False, and then se�ing both to True again.

Generating next step hints for task oriented programs using symbolic execution 9

1let fork0 = ref True in
2let fork1 = ref True in
3let fork2 = ref True in
4let pickup = λthis. λthat.
5if !this
6then �(this := False) B λ .

7if !that then �(this := True) else
8else in
9let scientist = λname. λle�. λright.
10pickup le� right ♦ pickup right le� in
11scientist ”Alan Turing” fork0 fork1 Z
12scientist ”Grace Hopper” fork1 fork2 Z
13scientist ”Ada Lovelace” fork2 fork0 I λ .

14�”Full bellies”

Listing 1.3: Dining philosophers problem with

three computer scientists.

Alan

Grace

Ada

Fig. 3: Rendering with three philoso-

phers.

Each computer scientist takes as arguments a name and references to the two forks

that he or she can reach (Line 9). �ey have a choice to take either the le� or the right

fork.�is is represented with an user choice (♦, Line 10).�e last lines instantiate three

computer scientists si�ing next to each other (Lines 11 to 13). In top terms, this means

they collaborate in parallel (Z) while eating their dinner, sharing some resources, in

this case fork0, fork1, and fork2.

By design of t̂op, the events of picking up a fork are performed sequentially. �at

is, when one computer scientist decides to pick up his right fork, we will handle that

event �rst. A�er that, wewill handle the choices from the other scientists. So, the order

of the events is explicitly determined by the scientists themselves.

In Section 4.5 we will analyse this example. Our goal is to provide each scientist

with a hint on which choice to make, in order to reach the common goal of full bellies.

When the scientists follow these hints, no deadlock will occur.

4 Generating next step hints

�is section introduces our Assistive t̂op system. �e aim of Assistive t̂op is to auto-

matically provide next step hints. When users follow these hints, they can be sure that

they will reach the goal they described beforehand. Users can, however, still decide to

deviate from the given hints.

During the execution of t̂op programs, users are presentedwith input �elds, choices

and continue bu�ons. �e way in which tasks progress and the resulting task value

depend on these inputs. At any point during execution, we would like to present users

with all possible inputs that leads users to the goal they have selected. �ese inputs

are either concrete actions, like continue, pick the le� task, pick the right task; or a

restricted set of values to be entered into an editor. �is set is restricted, since concrete

values potentially in�uence the �ow of the program. To give a concrete example, the

user should enter an integer, but this integer must be larger than zero to reach the end

goal.

10 Naus and Steenvoorden

To come to these concrete actions and restricted values, we make use of symbolic

execution. In the next two sections, we brie�y describe how symbolic execution for

t̂op works and recap its symbolic semantics presented in earlier work [16]. �erea�er,

we show how to turn symbolic execution results into next step hints. In Sections 4.4

and 4.5, we study what these automatically generated hints look like for the examples

from Section 3.

All examples have been tested in our implementation. We added Assistive t̂op to

our existing implementation of Symbolic t̂op , which is wri�en in Haskell.
5
It uses the

z3 smt solver under the hood. By de�ning the formal hints function directly on top

of the symbolic execution semantics, we can leverage the already existing symbolic

execution for Symbolic t̂op in the practical implementation.

4.1 Symbolic execution

A symbolic execution semantics [4, 12] aims to execute a program without knowing

its input. Instead, symbols are fed into the program. During evaluation, the in�uence

of values is recorded in the path condition. �e resulting symbolic value together with

the path conditions can be used to prove properties of the program.

�Int Z �Int I λ〈x,y〉 . if x > y then �〈y, x〉 else �〈x, y〉
Listing 1.4: Ordering of tuple elements.

Consider the tiny example in Listing 1.4. �is program asks for two integer val-

ues. A�er the user has entered this information, the function to the right of the step

combinator makes sure the result will be an editor containing a pair, where the second

element is larger then the �rst. When we run this program symbolically, we have to

create fresh symbols to be entered in either of the two editors, say s0 and s1. A�er
entering both symbolic values and then normalising the task, there are two possible

outcomes, namely

– 〈s1, s0〉, provided that the path condition φ1 = s0 > s1 holds; or
– 〈s0, s1〉, with path condition φ2 = ¬(s0 > s1).

Now, the property that we want to prove for this program is that no ma�er what

the input is, the second element should always be larger than the �rst. We write this

property asψ (〈a,b〉) = a ≤ b. Looking at the two symbolic runs, we �rst need to verify

that the symbolic runs are indeed viable. �is is done by checking that both φ1 and φ2
are satis�able, wri�en S (φ1) and S (φ2). Symbolic runs with a path condition that is

not satis�able are discarded. Finally, we check that both path conditions conform to

the goal property ψ , which is the case. �erefore, we can conclude that the property

holds. When applying this technique to larger programs, it is a powerful tool to show

that a program behaves as expected.

5
h�ps://github.com/timjs/symbolic-tophat-haskell

Generating next step hints for task oriented programs using symbolic execution 11

4.2 Symbolic semantics

To support symbolic execution in t̂op, we extend our host language with symbols. In

addition, we also need to modify the semantics described in Section 2.5, to accommo-

date symbolic execution. �e observation functions from Section 2.3 are extended in

a similar way. �ese new semantic relations operate on expressions which may con-

tain symbols. Instead of stepping to one result, they lead to a set of possible symbolic

results, accompanied with a path condition φ.

Table 1: Overview of meta variables and semantic relations for concrete and symbolic evalua-

tions.

Concrete Symbolic

Expressions e ẽ
Tasks t t̃
States σ σ̃
Inputs i ı̃

Evaluation e,σ ↓ v,σ ′ ẽ, σ̃

{

ṽ, σ̃ ′,φ

Normalisation e,σ ⇓ t ,σ ′ ẽ, σ̃

{ {

t̃ , σ̃ ′,φ

Striding t ,σ 7→ t ′,σ ′ t̃ , σ̃ 7{ t̃ ′, σ̃ ′,φ

Handling t ,σ
i
−→ t ′,σ ′ t̃ , σ̃ { t̃ ′, σ̃ ′, ı̃,φ

Interacting t ,σ
i
=⇒ t ′,σ ′ t̃ , σ̃ {{ t̃ ′, σ̃ ′, ı̃,φ

We denote entities containing symbols with an additional tilde, and symbolic se-

mantic relations with squiggly arrows instead of straight ones. So t̃ , σ̃ , and ı̃ are re-

spectively tasks, states, and inputs containing symbols. Table 1 gives an overview of

the entities in the concrete world, and their symbolic counterparts. Concrete expres-

sions are a subset of symbolic expressions. �erefore, symbolic semantic relations can

be applied on concrete expressions, as well as symbolic expressions.

�e symbolic interaction semantics ({{) results in a set of symbolic runs, each

of them just containing one symbolic input. In other words, the symbolic interaction

semantics just looks ahead one symbolic interaction. To be able to reason about an

end state a�er multiple symbolic interactions, we introduce the notion of simulation.
Informally, simulation performs multiple symbolic interactions a�er each other, until

the rewri�en task has an observable value. I.e. ifn is the number of interactions needed

to be done,V (t ′i ,σ
′
i) has a result for i = n but is unde�ned for all i < n. Apart from this

restriction, wewant to permit only viable executions.�is is enforced by validating the

satis�ability (S) of the conjunction of all sequential path conditions. More formally,

simulating a task for multiple user inputs is de�ned as follows.

De�nition 1 (Simulation ({{∗)). Let t and σ be a concrete task and concrete state.
We de�ne the simulation relation

t ,σ {{
∗ ṽ, Ĩ ,Φ

to be the set of results a�er performing symbolic interaction n times:

t ,σ {{ t̃1, σ̃1, ı̃1,φ1 {{ · · · {{ t̃n , σ̃n , ı̃n ,φn

12 Naus and Steenvoorden

where:

– the nth task has a value:V (t̃n , σ̃n) = ṽ ;
– all tasks before do not have a value:V (t̃i<n , σ̃i<n) = ⊥;
– Ĩ = ı̃1 · · · ı̃n is the concatenation of all symbolic inputs generated along the way;
– Φ = φ1 ∧ · · · ∧ φn , is the conjunction of all path conditions encountered.

Furthermore we require that:

– the resulting predicate is satis�able: S (Φ).

�esimulation de�nition used in this paper di�ers from the one in previouswork [16].

Previously, in�nite symbolic executions were �ltered out by allowing two steps look-

ahead in case of idempotent executions. �e de�nition above only allows �nite exe-

cutions by de�nition.

4.3 Next step hints observation

As we have seen in De�nition 1, a symbolic task t̃ is considered done as soon as it has

an observable value ṽ . In order to calculate next step hints, one needs to formulate

a goal over this resulting value. Only then, we can calculate next step hints for end

users.

H : Tasks × States × (Values→ Booleans) → P (Inputs × Predicates)

H (t ,σ ,д) = {〈ı̃,Φ ∧ д(ṽ)〉 |
(
t ,σ {{∗ ṽ, ı̃ · Ĩ ,Φ

)
, S

(
Φ ∧ д(ṽ)

)
}

Fig. 4: De�nition of next step hint function.

Hints are calculated by means of the H function listed in Fig. 4. As input, it re-

ceives a concrete task t and concrete state σ together with a goal predicate д. �e

hints observation simulates t starting in σ . �is results in a set of symbolic values ṽ ,
together with a list of symbolic inputs ĩ · Ĩ and a condition Φ to reach this path. We

only want to use the symbolic executions that satisfy the goal д when applied to ṽ .
Since ṽ could contain symbols, it might be the case that д(ṽ) is symbolic and would

clash with the path condition Φ. �erefore, we require that the conjunction of the path

condition with the goal is satis�able (S (Φ∧д(ṽ))). From the executions that ful�ll this

requirement, we return the �rst symbolic input ı̃ from the complete list of inputs ı̃ · Ĩ ,
together with the full condition that must hold (Φ ∧ д(ṽ)). �e resulting set contains

pairs of symbolic inputs guarded by this condition.

To get a be�er understanding how H works, we study it more concretely in the

next subsections. Section 4.4 demonstrates on the basis of the tax example listed in

Section 3.2, how the results of the symbolic execution are used to construct automatic

next step hints. Section 4.5 shows how hints can be generated during the execution of

the example t̂op program listed in Section 3.3.

4.4 Tax subsidy request

Recall the Tax example program in t̂op from Section 3.2, which models the application

for a solar panel tax refund. �e user enters the invoice date and invoice amount, the

Generating next step hints for task oriented programs using symbolic execution 13

Table 2: �e results of simulating the program from Listing 1.2.

Symbolic value (ṽ) Symbolic input (Ĩ) Path condition (Φ)

〈min(600, sa/10), True, True, si, 13 Feb 2020〉 F F sa · F S si · S L · S (13 Feb 2020 − si) < 365 days

〈min(600, sa/10), True, True, si, 13 Feb 2020〉 F S si · F F sa · S L · S (13 Feb 2020 − si) < 365 days

〈min(600, sa/10), True, True, si, 13 Feb 2020〉 S L · F F sa · F S si · S (13 Feb 2020 − si) < 365 days

〈min(600, sa/10), True, True, si, 13 Feb 2020〉 S L · F S si · F F sa · S (13 Feb 2020 − si) < 365 days

〈min(600, sa/10), True, True, si, 13 Feb 2020〉 F S si · S L · F F sa · S (13 Feb 2020 − si) < 365 days

〈min(600, sa/10), True, True, si, 13 Feb 2020〉 F F sa · S L · F S si · S (13 Feb 2020 − si) < 365 days

〈0, False, True, si, 13 Feb 2020〉 F F sa · F S si · S L · F True

〈0, False, True, si, 13 Feb 2020〉 F S si · F F sa · S L · F True

〈0, False, True, si, 13 Feb 2020〉 S L · F F sa · F S si · F True

〈0, False, True, si, 13 Feb 2020〉 S L · F S si · F F sa · F True

〈0, False, True, si, 13 Feb 2020〉 F S si · S L · F F sa · F True

〈0, False, True, si, 13 Feb 2020〉 F F sa · S L · F S si · F True

〈0, False, False, si, 13 Feb 2020〉 F F sa · F S si · S · F True

〈0, False, False, si, 13 Feb 2020〉 F S si · F F sa · S · F True

〈0, False, False, si, 13 Feb 2020〉 S S · F F sa · F S si · F True

〈0, False, False, si, 13 Feb 2020〉 S · F S si · F F sa · F True

〈0, False, False, si, 13 Feb 2020〉 F S si · S · F F sa · F True

〈0, False, False, si, 13 Feb 2020〉 F F sa · S · F S si · F True

installation company con�rms, and �nally the tax o�cer either approves or denies the

request.

In this section, we will demonstrate what symbolic execution looks like for this

example, and how we generate next step hints from the symbolic execution results.

First, we call the simulate function {{∗ on the program, with an empty state. �e

resulting set of symbolic executions is listed in Table 2. Each line represents one sym-

bolic execution. In the �rst column, the resulting symbolic value ṽ is listed.�e second

column lists the symbolic input Ĩ that was produced to arrive at that value, followed

by the path condition Φ in the third column. �e symbolic values that are produced

are si for the invoice date and sa for the invoice amount.

�e de�nition ofH describes how these results should be used in order to calculate

next step hints. First of all, we need a goal д to select the symbolic runs that we are

interested in. �e most straight forward goal would be that we want to end up in a

situation where we get a subsidy amount larger than zero.�is goal can be formulated

as д(〈v, , , , 〉) = v > 0.

�e �rst six symbolic runs listed in Table 2 ful�ll this goal condition. From those

runs, we then take the �rst symbolic input, together with the path condition conju-

gated with the goal. A�er removing duplicates and redundant information, the result

ofH is as follows.

〈F F sa , min(600, sa/10) > 0〉

〈F S si , (13 Feb 2020 − si) < 365 days〉

〈S L , True〉

�is means that, at this stage, users have three possible options.
6

1. �e applicant may enter an amount sa for which min(600, sa/10) > 0 should hold.

6
Note that the �rst branch, entering an amount, is denoted by F F; the second branch, entering

the invoice date, is denoted by F S; and the third branch, making a le�/right choice, is denoted

by S.

14 Naus and Steenvoorden

2. �e applicant may enter an invoice date si for which (13 Feb 2020−si) < 365 days

should hold.

3. �e company should take the le� choice (L) to con�rm they installed the solar

panels.

4.5 Dining Computer Scientists

Recall the example program Dining Computer Scientists from Section 3.3. �ree com-

puter scientist sit at a table and have to coordinate how to their meals. We want to

calculate all possible next steps that lead to the goal. �e goal in this example is for

all computer scientists to �nish their meal. In terms of the resulting task value, this

means that we want to reach the value ”Full bellies”. Wi�en as a predicate, we get

д(v) = v ≡ ”Full bellies”.

Let us assume that both Grace Hopper and Ada Lovelace have already picked up

the forks to their le� (fork1 and fork2 respectively). We then �nd ourselves in the

situation shown in Fig. 5.

Let us assume that both Grace Hopper and Ada Lovelace have already picked up

the forks to their le� (fork1 and fork2 respectively). We then �nd ourselves in the

following situation.

t = scientist ”Alan Turing” fork0 fork1Z

〈〉B λ〈〉.

if!fork2 then fork1 := True else Z
〈〉B λ〈〉.

if!fork0 then fork2 := True else I λ .

� ”Full bellies”

σ = {fork0 7→ True, fork1 7→ False, fork2 7→ False}
Alan

Grace

Ada

Fig. 5: Task, state and visual representation of dining computer scientists a�er two moves.

CallingH (t ,σ ,д) will result in just one hint, namely

〈S SC, True〉

�is means that the only step towards goal д is for the third scientist,
7
which is Ada

Lovelace, to pick up the right fork. Although it is also possible for Alan Turing to pick

up the fork to his le�, this step is not a valid hint and performing this action will result

in deadlock.

5 Properties

In this section, we want to validate our approach by proving correctness. For the hints

function, which forms the heart of Assistive t̂op , we want to prove that its results are

7
�e third branch is denoted by S S. �e action C means pushing the continue bu�on.

Generating next step hints for task oriented programs using symbolic execution 15

both sound and complete. Since the hints function relies on Symbolic t̂op , and more

speci�cally, the updated de�nition of the simulate relation, we �rst prove correctness

of simulate.

5.1 Correctness of simulate

�esymbolic execution semantics is correct when all symbolic runs relate to a concrete

run, and the other way around, when all concrete runs are contained in the set of all

symbolic executions. �ese properties are, respectively, soundness and completeness.

�e simulation applies symbolic interaction multiple times. In order to prove cer-

tain properties with respect to the concrete semantics, we need a concrete analog of

simulation.�erefore, we de�ne execution, which applies concrete interactionmultiple

times.

De�nition 2 (Execution (=⇒∗)). Let t be a concrete task, σ a concrete state, and I =
i1 · · · in a list of n concrete inputs. We de�ne the execution relation

t ,σ
I
=⇒∗ v

to be the value of task t a�er performing concrete interaction for each input i in I :

t ,σ
i1
=⇒ t1,σ1

i2
=⇒ · · ·

in
=⇒ tn ,σn

where

– v is the value of tn :V (tn ,σn) = v ; and
– all tasks before tn do not have a value:V (ti<n ,σi<n) = ⊥.

Using execution, we can state soundness and completeness for simulation as fol-

lows.

Lemma 1 (Soundness of simulate). For all tasks t and states σ such that t ,σ {{∗

ṽ, Ĩ ,Φ where Ĩ = ı̃0 · · · ı̃n , for each triple of results 〈ṽ, Ĩ ,Φ〉 there exists a concrete input I

with the same length as the symbolic input Ĩ such that t ,σ
I
=⇒∗ v with [si 7→ ci]ṽ = v

and [si 7→ ci]Φ where SymOf (ı̃i) = si and ValOf (ii) = ci .

Lemma 2 (Completeness of simulate). For all tasks t , states σ , and lists of input I

such that t ,σ
I
=⇒∗ v , there exists a symbolic value ṽ and a symbolic input Ĩ with the same

length as I , such that (ṽ, Ĩ ,Φ) ∈ t ,σ {{∗ , with ĩi ∼ ii , [si 7→ ci]ṽ = v and [si 7→ ci]Φ,
where SymOf (ı̃i) = si and ValOf (ii) = ci .

Where ı̃ ∼ i is de�ned as follows.

De�nition 3 (Input simulation). A symbolic input ı̃ simulates a concrete input i de-
noted as ı̃ ∼ i in the following cases.
s ∼ a, where s is a symbol and a a concrete action.
ı̃ ∼ i ⊃ F ı̃ ∼ F i
ı̃ ∼ i ⊃ S ı̃ ∼ S i

16 Naus and Steenvoorden

t ,σ t ,σ �
[]

t ,σ , True

t1,σ1 t̃1, σ̃1, ĩ1,φ1

t1,σ1 �[s1 7→c1] t̃1, σ̃1,φ1
S (φ1)
V (t1,σ1) = ⊥

...
...

tk ,σk t̃k , σ̃k , ĩkφk

tk ,σk �[s1 7→c1, · · · ,sk 7→ck] ˜tk , σ̃k ,φ1 ∧ · · · ∧ φk
S (φ1 ∧ · · · ∧ φk)
V (tk ,σk) = ⊥

...
...

tn ,σn t̃n , σ̃n , ĩn ,φn

tn ,σn �[s1 7→c1, · · · ,sn 7→cn] ˜tn , σ̃n ,φ1 ∧ · · · ∧ φn
S (φ1 ∧ · · · ∧ φn)
V (tn ,σn) = v V (t̃n , σ̃n) = ṽ

I = [i1, · · · , in] Ĩ = [ĩ1, · · · , ĩn]

i1

ik

in

Lemma 4

Lemma 3

Lemma 4

Lemma 3

Lemma 2

Lemma 1

Fig. 6: Proof structure

And SymOf (ı̃) = s and ValOf (i) = c are de�ned as follows.

De�nition 4 (Value from input).
ValOf : Inputs→ Values

ValOf (F i) = ValOf (i)
ValOf (S i) = ValOf (i)
ValOf (c) = c
ValOf () = ⊥

De�nition 5 (Symbol from input).
SymOf : Symbolic Inputs→ Symbolic Values

SymOf (F i) = SymOf (i)
SymOf (S i) = SymOf (i)
SymOf (s) = s
SymOf () = ⊥

Our strategy to prove these two lemma’s is outlined in Fig. 6. At the top, we start

out with any task t and state σ . �e le� side of the diagram is an overview of the evalu-

ate function. Inputs i1 until in are sequentially applied, until the task has an observable
value.

On the right side, symbolic execution is performed. One step of the symbolic in-

teraction semantics is taken, which results in a symbolic task, state, input and a path

condition. Provided that the path condition holds, interaction is executed sequentially

until the symbolic task has an observable symbolic value.

Proving soundness and completeness of simulation now comes down to relating

the le� and right side of the diagram. From symbolic to concrete (right to le�) is sound-

ness, as stated in Lemma 1. From concrete to symbolic (le� to right) is completeness,

as stated in Lemma 2.

Generating next step hints for task oriented programs using symbolic execution 17

Since simulation and execution rely on the (symbolic) handling semantics, we

prove soundness and completeness of those semantics �rst. Looking at Fig. 6, there

are two di�erent se�ings in which the (symbolic) handling semantics are applied. At

the top, both symbolic and concrete execution start out with the same task and state.

But further down, the task and state di�er for both semantics. �e task and state are

related to each other however. �e symbolic semantics introduces symbols, the con-

crete semantics handles concrete values. �is relation is expressed by the consistence

relation listed in De�nition 6.

De�nition 6 (Consistence relation �). A concrete task t and concrete state σ are
considered to be consistent with a symbolic task t̃ , symbolic state σ̃ and path condition
Φ under a certain mapping M = [s1 7→ c1, · · · , sn , 7→ cn], denoted as t ,σ �M t̃ , σ̃ ,Φ if
and only ifMt̃ = t ,Mσ̃ = σ andMΦ

Now Lemma 3 and Lemma 4 express soundness and completeness of interacting

respectively.

Lemma 3 (Soundness of interacting). For all concrete tasks t , concrete states σ , sym-
bolic tasks t̃ , symbolic states σ̃ path conditions Φ and mappingsM , we have that t ,σ �M

t̃ , σ̃ ,Φ implies that for all pairs (t̃ ′, σ̃ ′, ı̃,φ) in t̃ , σ̃ {{ t̃ ′, σ̃ ′, ı̃,φ, S (Φ ∧ φ) implies that

there exists an input i such that ı̃ ∼ i , t ,σ
i
=⇒ t ′,σ ′ and t ′,σ ′ �M .[s 7→c] t̃

′, σ̃ ′,Φ ∧ φ
where where SymOf (ı̃) = s and ValOf (i) = c .

Lemma 4 (Completeness of interacting). For all concrete tasks t , concrete states σ ,
symbolic tasks t̃ , symbolic states σ̃ path conditions Φ and mappings M , we have that

t ,σ �M t̃ , σ̃ ,Φ implies that for all inputs i such that t ,σ
i
=⇒ t ′,σ ′, there exists a symbolic

input ı̃, ı̃ ∼ i such that t̃ , σ̃ {{ t̃ ′, σ̃ ′, ı̃,φ, S (Φ ∧ φ) and t ′,σ ′ �M .[s 7→c] t̃
′, σ̃ ′,Φ ∧ φ

where where SymOf (ı̃) = s and ValOf (i) = c .

In other words, if a symbolic and concrete task and state are related, they will

still be related a�er (symbolic) handling. �e top case, where both the symbolic and

concrete semantics start out with the same task and state, can be seen as a special case

of the consistence relation. Obviously a task and state are consistent with themselves,

using the empty mapping and the path condition True.

�e full proof of all four lemma’s is listed in the appendix online
8
.

5.2 Correctness of hints

Now that soundness and completeness of simulate have been proven, we can prove

that our hints function produces correct hints. Intuitively, for a next step hint to be

correct, it should adhere to the following requirements:

– it leads to concrete input users can actually insert; and

– when users follow the hint, the end goal is still reachable.

8
h�ps://github.com/timjs/assistive-tophat/raw/master/appendix.pdf

18 Naus and Steenvoorden

Moreover, a set of next step hints is correct when:

– each hint it contains is correct; and

– it covers all possible inputs that lead to the end goal.

We separate these requirements into two lemma’s, namely soundness and com-

pleteness.

�eorem 1 (Soundness of hints). For all tasks t , states σ , and goals д, for every next
step hint 〈ı̃,Φ〉 in H (t ,σ ,д), there exists a sequence of concrete inputs I and a concrete

input i such that ı̃ ∼ i , S ([s 7→ c]Φ), t ,σ
i
=⇒ t ′,σ ′

I
=⇒∗ v and д(v).

�eorem 2 (Completeness of hints). For all tasks t , states σ , lists of input i · I , and
goals д, if t ,σ ,

i ·I
==⇒∗ v and д(v), then there exists a symbolic input ı̃ and path condition

Φ such that 〈ı̃,Φ〉 ∈ H (t ,σ ,д) with ı̃ ∼ i and S
(
[s 7→ c]Φ

)
with ValOf (i) = c and

SymOf (ı̃) = s .

�e proofs of these two threorems are quite straight forward.

Proof (�eorem 1).�eorem 1 follows from the de�nition ofH and Lemma 1 as follows.

�e de�nition ofH gives us that for every pair 〈ı̃,Φ〉 produced byH , there exists

a triple 〈ṽ, ı̃ : ˜is,Φ〉 with S
(
Φ ∧ д(ṽ)

)
. �en by Lemma 1 we have that there exists a

sequence of concrete inputs I such that t ,σ
I
=⇒∗ v and д(v).

Proof (�eorem 2). In order to prove that i is contained inH (t ,σ ,д), we need to show

that t ,σ {{∗ 〈ṽ, ı̃ · Ĩ ,Φ〉, with ı̃ ∼ i and S
(
[s0 7→ c0, · · · , sn 7→ cn] ∧ д(ṽ)

)
, where

ValOf (i0) = c0, · · · ,ValOf (in) = cn and [c0, · · · , cn] ∈ i ·I and SymOf (ı̃0) = s0, · · · , SymOf (ı̃n) =
sn .

By Lemma 2, we directly obtain that this indeed exists. �erefore we know that ı̃
and Φ exist.

6 Related work

In previous work, we have a�empted to provide end users with next step hints by

viewing work�ows as rule based problems [15]. By abstracting over work�ows, rea-

soning about them becomes simpler. A standard search algorithm can be run to �nd a

path to the desired goal state. Two drawbacks of this approach however are that only

very general hints can be given, that range over multiple steps, and that a programmer

needs to augment existing work�ows with extra information in order to convert it to

a rule-based problem.

Stu�erheim et al. [22] have developed Tonic, a task visualiser for iTasks with lim-

ited path prediction capabilities. �e main goal is not to provide hints to end users,

but the system is able to handle the complete task language, and visualise the e�ects

of user input on the progression of tasks.

In order to overcome the problems of our own previous research and the limited

use of Tonic for end user hints, we have combined symbolic execution, together with

Generating next step hints for task oriented programs using symbolic execution 19

work�ow modelling and next step hint generation. To our knowledge, this is the �rst

work describing the combination of these techniques in this way. �e di�erent com-

ponents coming together in this paper have been studied extensively. �e following

sections give an overview of the work done in those areas.

6.1 Symbolic execution

Symbolic execution [4, 12] is typically being applied to imperative programming lan-

guages, but in recent years it has been used for functional programming languages as

well. Ongoing work by Hallahan et al. [8, 9] aims to implement a symbolic execution

engine for Haskell. Giantios et al. [7] use symbolic execution for a mix of concrete

and symbolic testing of programs wri�en in a subset of Core Erlang. �eir goal is

to �nd executions that lead to a runtime error, either due to an assertion violation

or an unhandled exception. Chang et al. [5] present a symbolic execution engine for a

typed lambda calculus withmutable state where only some language constructs recog-

nise symbolic values. �ey claim that their approach is easier to implement than full

symbolic execution and simpli�es the burden on the solver, while still considering all

execution paths.

6.2 Work�ow modelling

Work�ow modelling has been studied extensively from di�erent viewpoints. Since

many so�ware exists that automates work�ows, it is a research topic that potentially

has a huge impact on society.

Work�ow pa�erns are regarded as special design pa�erns in so�ware engineer-

ing. Similar to the combinators in top, they describe recurring pa�erns in work�ow

systems. Van der Aalst et al. [3] identi�es common pa�erns, and examines their avail-

ability in industry work�ow frameworks.

Work�ow nets allow for the modelling an analysis of business processes [2]. Wor-

�ow Nets are a subclass of Petri nets, and are therefore graphical in nature. Research

on work�ow nets includes veri�cation of models [1] and complexity analysis [14], just

to name a few.

iTasks [19] is an implementation of top in the programming language Clean. It

di�ers from the above mentioned modelling techniques, since it is not graphical in

nature. iTasks supports higher order work�ows, and leverages techniques from func-

tional and generic programming.

6.3 Automatic hint generation in intelligent tutoring systems

�e intelligent tutoring systems (its) research community is very elaborate. Work that

is most relevant to our own is the research into automatic hint generation. More tradi-

tional itss rely heavily on experts to write dedicated hints for every speci�c case of an

exercise. Automatic hint generation a�empts to overcome this burden by calculating

a hint rather than having every case speci�ed.

Heeren et al. [10] develop a framework for so called domain reasoners that allow

for automatic hint generation. Feedback is calculated automatically from a high-level

20 Naus and Steenvoorden

description of an exercise class. �eir approach is applicable to domains like logic,

mathematics and linear algebra. Paque�e et al. [17] present a di�erent automatic next

step hint its, that is used to provide hints to students in a programming exercise.

Based on the work mentioned above by Heeren et al., an its for Haskell exercises

has been developed by Gerdes et al. [6]. It tuns out that programming exercises is a

popular area for automatic hint generation. Keuning et al. [11] have wri�en an excel-

lent literature study of this research area.

7 Conclusion

In this paper, we have demonstrated how to apply symbolic execution to automatically

generate next step hints for t̂op programs. We have proven the symbolic execution to

be sound and complete with regards to sequential inputs. Based on this property, we

have also shown that the generated next step hints are correct. Furthermore, we have

presented an implementation of the end user feedback system in Haskell.

7.1 Future work

As future work, we are very interested in bringing the theory presented in this paper

into practice. We feel that there are three possible angles to pursue this interest.

Presenting hint information �e information calculated by the current hints func-

tion cannot directly be presented to the end user. �e set of calculated hints contains

duplicates.�is is due to the fact that there might be several di�erent paths to the goal,

that start out with the same symbolic input. Another source of redundant information

is the path conditions. �e path conditions contained in the hint tuple contains in-

formation about the complete execution, while the symbolic input is only concerned

with the immediate next step. �erefore, the path condition may contain references

to future inputs and constraints, which o�er no information for the end user. In a

future implementation of Assistive t̂op , we would like to �lter out both sources of

redundancy, in order to present the user with more concise information.

Hint generation in iTasks Since iTasks is currently the biggest top framework, it

would be the next logical step to integrate automatic hint generation into the frame-

work. �is would allow a wide range of applications to immediately bene�t from au-

tomatic next step hint generation. �e iTasks framework is shallowly embedded in

the purely functional programming language Clean, which means that programmers

can leverage the full power of the host language. �is makes implementing symbolic

execution non-trivial.

Measuring impact of hints Finally, we would like to test the impact of next step

hints in work�ow systems in an empirical study. top research has been applied and

studied in the �eld at the Royal Netherlands Sea Rescue Institution and the Royal

Netherlands Navy, which would be ideal testing grounds for Assistive t̂op .

Generating next step hints for task oriented programs using symbolic execution 21

Acknowledgements

�is research is supported by the Dutch Technology Foundation STW, which is part

of the Netherlands Organisation for Scienti�c Research (NWO), and which is partly

funded by the Ministry of Economic A�airs.

Bibliography

[1] van der Aalst, W.M.P.: Veri�cation of work�ow nets. In: Application and �eory

of Petri Nets 1997, 18th International Conference, ICATPN ’97, Toulouse, France,

June 23-27, 1997, Proceedings. pp. 407–426 (1997)

[2] van der Aalst, W.M.P.: �e application of petri nets to work�ow management.

Journal of Circuits, Systems, and Computers 8(1), 21–66 (1998)
[3] van der Aalst,W.M.P., ter Hofstede, A.H.M., Kiepuszewski, B., Barros, A.P.:Work-

�ow pa�erns. Distributed and Parallel Databases 14(1), 5–51 (2003)
[4] Boyer, R.S., Elspas, B., Levi�, K.N.: Select - a formal system for testing and de-

bugging programs by symbolic execution. In: Proceedings of the International

Conference on Reliable So�ware. pp. 234–245. ACM, New York, NY, USA (1975)

[5] Chang, S., Knauth, A., Torlak, E.: Symbolic types for lenient symbolic execution.

PACMPL 2(POPL), 40:1–40:29 (2018)
[6] Gerdes, A., Heeren, B., Jeuring, J., van Binsbergen, L.T.: Ask-elle: an adaptable

programming tutor for haskell giving automated feedback. I. J. Arti�cial Intelli-

gence in Education 27(1), 65–100 (2017)
[7] Giantsios, A., Papaspyrou, N., Sagonas, K.: Concolic testing for functional lan-

guages. Science of Computer Programming 147, 109–134 (2017)
[8] Hallahan,W.T., Xue, A., Bland,M.T., Jhala, R., Piskac, R.: Lazy counterfactual sym-

bolic execution. In: McKinley, K.S., Fisher, K. (eds.) Proceedings of the 40th ACM

SIGPLAN Conference on Programming Language Design and Implementation,

PLDI 2019, Phoenix, AZ, USA, June 22-26, 2019. pp. 411–424. ACM (2019)

[9] Hallahan, W.T., Xue, A., Piskac., R.: Building a symbolic execution engine for

haskell. In: Proceedings of TAPAS 17 (2017)

[10] Heeren, B., Jeuring, J.: Feedback services for stepwise exercises. Sci. Comput. Pro-

gram. 88, 110–129 (2014)
[11] Keuning, H., Jeuring, J., Heeren, B.: A systematic literature review of automated

feedback generation for programming exercises. TOCE 19(1), 3:1–3:43 (2019)
[12] King, J.C.: A new approach to program testing. SIGPLAN Notices 10(6), 228–233

(Apr 1975)

[13] Koopman, P., Lubbers, M., Plasmeijer, R.: A task-based DSL for microcomput-

ers. In: Proceedings of the Real World Domain Speci�c Languages Workshop,

RWDSL@CGO 2018, Vienna, Austria, February 24-24, 2018. pp. 4:1–4:11. ACM

(2018)

[14] Lassen, K.B., van der Aalst, W.M.P.: Complexity metrics for work�ow nets. Infor-

mation & So�ware Technology 51(3), 610–626 (2009)
[15] Naus, N., Jeuring, J.: Building a generic feedback system for rule-based problems.

In: Trends in Functional Programming - 17th International Conference, TFP 2016,

College Park, MD, USA, June 8-10, 2016, Revised Selected Papers. pp. 172–191

(2016)

[16] Naus, N., Steenvoorden, T., Klinik,M.: A symbolic execution semantics for tophat.

In: IFL’19 (accepted for publication) (2019)

Generating next step hints for task oriented programs using symbolic execution 23

[17] Paque�e, L., Lebeau, J., Beaulieu, G., Mayers, A.: Automating next-step hints gen-

eration using ASTUS. In: Cerri, S.A., Clancey, W.J., Papadourakis, G., Panourgia,

K. (eds.) Intelligent Tutoring Systems - 11th International Conference, ITS 2012,

Chania, Crete, Greece, June 14-18, 2012. Proceedings. Lecture Notes in Computer

Science, vol. 7315, pp. 201–211. Springer (2012)

[18] Plasmeijer, R., van Eekelen, M., van Groningen, J.: Clean language report version

2.1 (2002)

[19] Plasmeijer, R., Lijnse, B., Michels, S., Achten, P., Koopman, P.W.M.: Task-oriented

programming in a pure functional language. In: Principles and Practice of Declar-

ative Programming, PPDP’12, Leuven, Belgium - September 19 - 21, 2012. pp.

195–206 (2012)

[20] Steenvoorden, T., Naus, N., Klinik, M.: Tophat: A formal foundation for task-

oriented programming. In: Proceedings of the 21st International Symposium on

Principles and Practice of Programming Languages, PPDP 2019, Porto, Portugal,

October 7-9, 2019. pp. 17:1–17:13 (2019)

[21] Stu�erheim, J., Achten, P., Plasmeijer, R.: Maintaining separation of concerns

through task oriented so�ware development. In: Trends in Functional Program-

ming - 18th International Symposium, TFP 2017, Canterbury, UK (2017)

[22] Stu�erheim, J., Plasmeijer, R., Achten, P.: Tonic: An infrastructure to graphically

represent the de�nition and behaviour of tasks. In: Trends in Functional Pro-

gramming - 15th International Symposium, TFP 2014, Soesterberg, �e Nether-

lands, May 26-28, 2014. Revised Selected Papers. pp. 122–141 (2014)

