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Abstract. This paper presents PaSe, an extensible and inspectable DSL
embedded in Haskell for expressing micro-animations. The philosophy of
PaSe is to compose animations based on sequential and parallel compo-
sition of smaller animations. This differs from other animation libraries
that focus more on sequential composition and have only limited forms
of parallel composition. To provide similar flexibility as other animation
libraries, PaSe features extensibility of operations and inspectability of
animations. We present the features of PaSe with a to-do list applica-
tion, discuss the PaSe implementation, and argue that the callback style
of extensibility is detrimental for correctly combining PaSe features. We
contrast with the GreenSock Animation Platform, a professional-grade
and widely used JavaScript animation library, to illustrate this point.

1 Introduction

Monads quickly became ubiquitous in functional programming because of their
ability to structure effectful code in a pure functional codebase [22]. However,
monads have two major drawbacks. First, monads are not trivially extensible. A
variety of techniques were developed to resolve this, including monad transform-
ers [14], free monads, and algebraic effects and handlers [21]. Second, monadic
computations can only be inspected up to the next action. Techniques such as
applicative functors [16], arrows [9], or selective applicative functors [18] increase
the inspection capabilities by reducing the expressivity compared to monads.

This paper develops a domain specific language (DSL) embedded in Haskell
for defining micro-animations, called PaSe1. PaSe employs the aforementioned
techniques to support its key features: extensibility of operations and inspectabil-
ity of animations while providing the freedom to express arbitrary animations.

Micro-animations are short animations displayed when users interact with an
application, for example an animated transition between two screens. When used
appropriately, they aid the user in understanding evolving states of the applica-
tion [1,7,8]. Examples can be found in almost every software application: window
managers shrink minimized windows and move them towards the taskbar, menus

1 Pronounced pace, the name is derived from parallel and sequential.
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in mobile applications pop in gradually, browsers highlight newly selected tabs
with an animation, etc.

This paper develops a DSL which combines various features expected of an-
imation libraries, by building them on top of recent ideas found in functional
programming. More concretely, our contributions are as follows:

– We develop PaSe which supports correct interactions for expressing arbitrary
animations and inspectability. Animation libraries, such as the GreenSock
Animation Platform (GSAP)2, typically use callbacks as a means of ex-
tensibility/expressivity which is detrimental to inspectability. We show an
example where this results in unexpected behaviour, and how to correct it.

– We extend and develop PaSe as an example of an extensible DSL, in the sense
that operations can be freely added. While there is a variety of literature on
approaches to extensibility, there is not much literature devoted to use cases.

– Animations in PaSe can be specified in an inspectable manner, in the sense
that information is obtained from a computation without running it. While
inspectability has been studied for specific types of computations, such as free
applicative functors [2], it is a novel aspect to combine it with extensibility.

– PaSe contains a primitive for parallel animation composition. This composi-
tion form can be arbitrarily nested and embedded anywhere within an ani-
mation and interacts correctly with the other features of PaSe: extensibility
and inspectability. Parallel components in sequentially specified components
is not new, see for example the par element in UML sequence diagrams
[20], or the parallel statement in Ren’Py3 or React Native Animations4.
But, those systems either do not provide a form of parallelism as general or
interaction with other features such as inspectability is not present.

2 Motivation

This section presents a simplified to-do list application to showcase the function-
ality and features of PaSe.

2.1 Running Example

Our application has two screens: a main screen and a menu screen. The main
screen contains a navigation bar and three items. An overview of the application
is given in Figure 1.

In this application, various user actions are accompanied with an animation:

– Each item can be marked as done or by clicking on it. The checkmark
icon changes shape and color to indicate the change in status. These are
the markAsDone/markAsToDo animations, of which markAsDone is shown in
Figure 2a.

2 https://greensock.com
3 https://www.renpy.org/doc/html/atl.html#parallel-statement
4 https://facebook.github.io/react-native/docs/animated#parallel

https://greensock.com
https://www.renpy.org/doc/html/atl.html#parallel-statement
https://facebook.github.io/react-native/docs/animated#parallel
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Fig. 1: Overview of the to-do list application.

– Items can be filtered by their status by using the navigation bar buttons.
The first button shows all items, the second shows all done items, and the
third shows all to-do items. Both the navigation bar underline and the to-do
items itself change shape to indicate the change in selection. These are the
showAll/onlyDone/onlyToDo animations, of which onlyDone is shown in
Figure 2b.

– The menu screen shows/hides itself after clicking the hamburger icon. The
menu expands inward from the left, to indicate the change in application
state. These are the menuIntro/menuOutro animations, of which menuIntro

is shown in Figure 2c.

(a) markAsDone: the checkmark changes shape and color.

(b) onlyDone: the to-do items fade out and the navbar underline changes.

(c) menuIntro: the menu appears while the background fades out.

Fig. 2: Micro-Animations in the to-do list application.
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2.2 Composing Animations

We express animations in PaSe by composing smaller animations into larger
ones. When creating an animation, we need come up with a suitable decompo-
sition. For example, the menuIntro animation both introduces the menu screen
and fades out the background. Thus, it is composed of two basic animations
menuSlideIn and appFadeOut in parallel. The next sections explain how to con-
struct such basic and composed animations.

2.3 Basic Animations

A basic animation changes the property of an element over a period of time.
To specify a basic animation we need three elements: a lens specifying which
property to change, the duration of the animation, and lastly the target value
for this property. Since this operation creates an animation which changes a
property to a target linearly, it is called linearTo. The duration is specified with
the For constructor while the target value is specified with the To constructor.

Note on Lenses We use the lens notation x . y . z to target the property z

inside a nested structure { x: { y: { z: Property } } }. This type of lenses
was conceived by van Laarhoven [13], and later packaged into various Haskell
libraries, such as lens5.

To implement the navigation bar underline animation, we reduce the un-
derline width of the first button for 0.25 seconds and increase the underline
width of the second button for 0.25 seconds. These animations are expressed in
respectively line1Out and line2In below, and shown visually in Figure 3.

line1Out = linearTo (navbar . underline1 . width) (For 0.25) (To 0)

line2In = linearTo (navbar . underline2 . width) (For 0.25) (To 28)

Other examples are the menuSlideIn and appFadeOut animations. For the
former, we increase the width of the menu over a duration of 0.5 seconds, and
for the latter we increase the alpha value of the obscuring box over a duration
of 0.5 seconds. These animations are shown visually in Figure 3.

menuSlideIn = linearTo (menu . width) (For 0.5) (To 75)

appFadeOut = linearTo (obscuringBox . alpha) (For 0.5) (To 0.65)

2.4 Composed Animations

A composed animation combines several other animations into one new anima-
tion. We can do this either in sequence or in parallel.

To obtain the selectBtn2 animation, we combine both the line1Out and
line2In animations with the sequential combinator. This constructs a new
animation which first plays the line1Out animation, and once it is finished
plays the line2In animation.

5 https://hackage.haskell.org/package/lens

https://hackage.haskell.org/package/lens
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(a) The line1Out animation.

(b) The line2In animation.

(c) The menuSlideIn animation.

(d) The appFadeOut animation.

Fig. 3: Basic linearTo animations.

selectBtn2Anim = line1Out `sequential` line2In

To obtain the menuIntro animation, we combine both the menuSlideIn and
appFadeOut animations with the parallel combinator. This constructs a new
animation which plays both the menuSlideIn and appFadeOut animations at
the same time.

menuIntro = menuSlideIn `parallel` appFadeOut

Both of these animations are shown visually in Figure 4.

3 Extensibility, Inspectability and Expressiveness

The features seen in Section 2 form the basis of PaSe. However, animation li-
braries such as GSAP provide a much more extensive list of features.
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(a) The selectBtn2 animation.

(b) The menuIntro animation.

Fig. 4: All of the defined composed animations.

To add support for similar features, we design PaSe with extensibility and
inspectability in mind. This means that PaSe can be extended with custom
operations and information can be derived from inspecting specified animations.
To support arbitrary expressiveness in combination with those features, we also
emphasize the possibility to extend PaSe with custom combinators.

3.1 Extensibility

The linearTo operation and the sequential and parallel combinators form
the basis for expressing a variety of animations. However, there are different
situations which require different primitives to express our desired animation.
For example, GSAP provides a primitive to morph one shape into another.

An example in the to-do list app is the checkIcon animation, part of the
markAsDone animation, where we want to set the color of the checkmark to a new
value. We define a custom set operation and embed it inside a PaSe animation.
In this animation we use Haskell’s do-notation to specify sequential animations.

checkIcon = do ...; set (checkmark . color) green; ...

3.2 Inspectability

PaSe is inspectable, meaning that we can derive properties of expressed compu-
tations by inspecting them rather than running them. For example, if we want to
know the duration of menuIntro without actually running it and keeping track
of the time. We can do this by using a predefined duration function, which cal-
culates the duration by inspecting the animation. This gives a duration of 0.5
seconds, which is indeed the duration of two 0.5 second animations in parallel.

menuIntroDuration = duration menuIntro -- = 0.5
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Of course, it is not possible to inspect every animation. In the following
situation we have a custom operation get, the dual of set in the previous section,
returning a Float. If the result of this value is used as the duration parameter
of an animation, then we cannot know upfront how long this animation will last.
Requesting to calculate the duration of such an animation results in a type error.

complicatedAnim = do v <- get; linearTo lens (For v) (To 10)

complicatedAnimDuration = duration complicatedAnim -- type error

Calculating a duration is mostly a stepping stone towards supporting other
interesting features. One such example is sequentially composing animations
with a relative offset. For example, to compose a first animation anim1 with a
second animation anim2 which starts 0.5 seconds before the end of anim1.

relSeqAnim = relSequential anim1 anim2 (-0.5)

3.3 Expressiveness

Similarly to providing custom operations, PaSe also supports custom combina-
tors. For typical monadic DSLs this is not needed as >>= and return cover all use
cases. However, since PaSe has the additional requirement of being inspectable,
the >>= combinator ends up being a liability because it only provides a very
limited amount of inspectability.

In the onlyDone animation, we show all done items, while hiding all to-do
items. This could be implemented by first showing all items with the showAll

animation, since an item might have been hidden by a previous action, and then
hiding all to-do items with the hideToDo animation. The definition for this is
given below, while the implementation of showAll and hideToDo is omitted.

onlyDoneNaive = do showAll; hideToDo

However, this animation is a bit naive since it executes the showAll animation
regardless of whether there are any hidden done items that actually need to
appear. Instead, the intended animation is to only make done items appear
when any were hidden. This is done by first checking whether there are any
done items and based on that we play the naive version of onlyDone, otherwise
we just hide the not done items.

onlyDone = do

cond <- doneItemsGt0 -- check if more than 0 'done' items

if cond then onlyDoneNaive else hideToDo

However, if we also want to inspect this computation, this formulation is
problematic since it is specified using a construction which is too general; we ex-
plain this in more detail in Section 5. Instead, we can define a custom combinator
ifThenElse to express onlyDone in an inspectable manner.

onlyDone = ifThenElse doneItemsGt0 onlyDoneNaive hideToDo
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For this new combinator, we can define custom ways to inspect it. Since each
branch might have a different duration, we do not choose to extract the duration
but rather the maximum duration of the animation.

onlyDoneMaxDuration = maxDuration onlyDone -- = 1

Sections 2 and 3 gave a look and feel of the features of PaSe. In the following
sections, we delve deeper into the internals of the implementation.

4 Implementation of PaSe

This section implements the earlier introduced operations and redefines the an-
imations to show the resulting type signature. We develop PaSe in the style of
the mtl library6 which implements monadic effects using typeclasses [10]. This
style is also called the finally tagless approach [3]. However, because the PaSe
classes are not subclasses of Monad they leave room for inspectability.

4.1 Specifying Basic Animations

The mtl library uses typeclasses to declare the basic operations of an effect.
Similarly, we specify the linearTo operation using the LinearTo typeclass.

class LinearTo obj f where

linearTo :: Traversal' obj Float -> Duration -> Target -> f ()

The traditional mtl-style would add a Monad f superclass constraint. Yet,
because it hinders inspectability, we do not require it everywhere. Instead, while
we can still choose to add an additional Monad f constraint in selected cases, we
leave the freedom to opt foran alternative like Applicative f in other cases.

The linearTo function of the LinearTo typeclass specifies basic animations
like line1Out, line2In, menuSlideIn, and appFadeOut animations from Sec-
tion 2. As an example, we redefine line1Out with its type signature; the others
are similar.

line1Out :: (LinearTo Application f) => f ()

line1Out = linearTo (navbar . underline1 . width) (For 0.25) (To 0)

4.2 Specifying Composed Animations

Section 2 used the combinators sequential and parallel for composing ani-
mations. Here, we provide these as well as more general combinators.

6 http://hackage.haskell.org/package/mtl

http://hackage.haskell.org/package/mtl
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Sequential Composition We reuse the Functor-Applicative-Monad hierar-
chy for sequencing animations. In particular, the sequential function is a spe-
cialization of the liftA2 function7.

sequential :: (Applicative f) => f () -> f () -> f ()

sequential f1 f2 = liftA2 (\_ _ -> ()) f1 f2

Hence, the type signature for selectBtn2Anim contains an Applicative f

constraint in addition to the LinearTo Application f constraint.

selectBtn2Anim :: (LinearTo Application f, Applicative f) => f ()

selectBtn2Anim = line1Out `sequential` line2In

Parallel Composition The parallel function does not correspond to a mem-
ber function in an existing Haskell typeclass. At first we might consider the <|>

combinator in the Alternative class, but there is no sensible corresponding
empty animation; also the suggested laws8 do not make sense for animations.

Instead, we create our own Parallel typeclass below. Its function liftP2

has the same signature as liftA2, but denotes parallel composition instead of
sequential composition. The parallel function is a specialization of liftP2.

class Parallel f where

liftP2 :: (a -> b -> c) -> f a -> f b -> f c

parallel :: (Parallel f) => f () -> f () -> f ()

parallel f1 f2 = liftP2 (\_ _ -> ()) f1 f2

and Now we can give a type signature for menuIntro.

menuIntro :: (LinearTo Application f, Parallel f) => f ()

menuIntro = menuSlideIn `parallel` appFadeOut

4.3 Running Animations

Now we create a new Animation datatype that instantiates the above typeclasses
to interpret PaSe programs as actual animations. We briefly summarize this im-
plementation here and refer for more details to our prototype implementation.9

The function type obj -> Float -> m (obj, (Either (Animation obj a) a))

models an animation. It takes as inputs the the current application state and the
time elapsed since the previous frame. As output it produces a new application
state for the next frame together with either the remainder of the animation
or, if there is no remainder, the result of the animation. Note that the output

7 https://hackage.haskell.org/package/base-4.12.0.0/docs/Control-Applicative.
html#v:liftA2

8 https://en.wikibooks.org/wiki/Haskell/Alternative and MonadPlus
9 https://github.com/rubenpieters/anim eff dsl/tree/master/code

https://hackage.haskell.org/package/base-4.12.0.0/docs/Control-Applicative.html#v:liftA2
https://hackage.haskell.org/package/base-4.12.0.0/docs/Control-Applicative.html#v:liftA2
https://en.wikibooks.org/wiki/Haskell/Alternative_and_MonadPlus
https://github.com/rubenpieters/anim_eff_dsl/tree/master/code
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is wrapped in a type constructor m to embed custom effects. One more detail
is missing in the output: the remaining unused time. We need this when, for
example, there is more time between frames than the animation uses. Then, the
remaining time can be used to run part of the next animation. All together, we
get the following type definition.

newtype Animation obj m a = Animation { runAnimation ::

obj -> -- previous state

Float -> -- time delta

m ( obj -- next state

, Either (Animation obj m a) a -- remainder / result

, Maybe Float )} -- remaining time delta

LinearTo Instance The linearTo implementation of Animation does three
things: construct the new object state, calculate the remainder of the animation,
and calculate the unused time. The difference between the linearTo duration
and the frame time determines whether there is a remaining linearTo animation
or remaining time.

Examples Let us illustrate the behaviour on a simple application state that is a
tuple, type State = (Float, Float), of an x-value and a y-value. The right

animation transforms the x-value to 50 over a time of 1 second.

right :: (LinearTo State f) => f ()

right = linearTo x (For 1) (To 50)

We run the animation for 0.5 seconds by applying the runAnimation function
on right, together with the initial state (s0 = (0,0)) and the duration 0.5. We
also instantiate the m type constructor m inside the Animation data type with
Identity as no additional effects are needed; this means that the result can be
unwrapped with runIdentity.

(s1, remAn1, remDel1) = runIdentity (runAnimation right s0 0.5)

-- s1 = (25.0, 0.0) | remAn1 = Left anim2 | remDel1 = Nothing

Running right for 0.5 seconds uses all available time and yields the new
state (25, 0). The remainder of the animation is the right animation with its
duration reduced by 0.5, or essentially linearTo x (For 0.5) (To 50). Let
us run this remainder for 1 second.

(s2, remAn2, remDel2) = runIdentity (runAnimation anim2 s1 1)

-- s2 = (50.0, 0.0) | remAn2 = Right () | remDel2 = Just 0.5

Now the animation finishes in state (50, 0) with result () and remaining
time 0.5.
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Monad Instance For sequential animations we provide a Monad instance. Its
return embeds the result a inside the Animation data type. The essence of the
f >>= k case is straightforward: first, run the animation f, then pass its result
to the continuation k and run that animation. Of course, running f does not
necessarily give us a result a. Running an animation gives us either a result
or an animation remainder; we also have to take into account the potential
remaining time. When we have an animation remainder instead of a result, we
need to repackage this remaining animation as remainder >>= k instead of using
k a. Additionally, if there is no remaining time, we do not continue running the
continuation and instead return the current state and animation remainder.

Examples Let us define an additional animation up which transforms the y-
value to 50 over a duration of 1 second. Additionally, we define an animation
rightThenUp which composes the right and up animations in sequence.

up :: (LinearTo State f) => f ()

up = linearTo y (For 1) (To 50)

rightThenUp :: (LinearTo State f, Applicative f) => f ()

rightThenUp = right `sequential` up

Running the rightThenUp animation for 0.5 seconds gives a similar result to
running right for 0.5 seconds. We obtain the new state (25, 0), an animation
remainder anim2 and there is no remaining time. Now the animation remainder
is the rest of the rightThenUp animation, which is half of the right animation
and the full up animation. So, when we run this animation remainder for 1
second, it will run the second half of right and the first half of up. This results
in the state (50, 25), the animation remainder anim3 and no remaining delta
time. This animation remainder is of course the second half of the up animation.
If we continue to run that remainder, for example for 1 second, then we get the
final state (50, 50) and the animation result ().

Parallel Instance For parallel animations the liftP2 implementation runs
the animations f1 and f2 both on the starting state. We distinguish different
cases depending on whether f1 and f2 finish with a result or an animation
remainder, and the remaining time. We check which of the animations have
finished and repackage them either into a result or a new remainder, using the
result combination function where appropriate. When the longest of the two
parallel animations is finished while not fully using the remaining delta time, we
continue running the remainder of the animation.

Examples Let us run the animations right and up in parallel, which means that
both the x and y-value will increase simultaneously.

rightAndUp :: (LinearTo State f, Parallel f) => f ()

rightAndUp = right `parallel` up
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The result of running this animation for 0.5 seconds gives the state (25, 25)

and no remaining time. If we continue the animation remainder we get the state
(50, 50) and 0.5 seconds of remaining time.

4.4 Inspecting Animations

Inspecting an animation is done by interpreting PaSe to a different data type,
which provides instances for the typeclasses with different semantics. In particu-
lar we show how to inspect the duration of an animation by means of the Const

functor.

newtype Const a b = Const { getConst :: a }

Inspecting LinearTo To inspect animations we provide an instance for the op-
erations which interprets them into Const Duration. In the case of the linearTo
operation, we simply embed the duration within a Const wrapper.

instance LinearTo obj (Const Duration) where

linearTo _ duration _ = Const duration

Inspecting Applicative While the Const data type does not provide a Monad

instance, it does provide an Applicative instance. This means that it is not
possible to inspect animations with a Monad constraint, but it is possible for
animations with an Applicative constraint. The Const data type is not the
culprit here, but rather the >>= method of the Monad class which contains a
continuation function a -> m b, which is the limiting factor of inspection.

Inspecting Parallel The duration of two parallel animations is the maximum
of their durations. The Par instance implementation for Const Duration cap-
tures this.

instance Par (Const Duration) where

liftP2 _ (Const x1) (Const x2) = Const (max x1 x2)

Examples The duration function is a specialization of the unwrapper function
of the Const data type, namely getConst. We can feed our previously defined
animations selectBtn2Anim and menuIntro from Section 2 to this function and
obtain the duration of the animations as a result.

duration :: Const Duration a -> Duration

duration = getConst

selectBtn2AnimDuration :: Duration

selectBtn2AnimDuration = duration selectBtn2Anim -- = For 1.0

menuIntroDuration :: Duration

menuIntroDuration = duration menuIntro -- = For 0.5
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When we try to retrieve the duration of an animation with a monad con-
straint, we receive an error from the compiler: it cannot find a Monad instance
for Const Duration.

complicatedAnimDuration :: Duration

complicatedAnimDuration = duration complicatedAnim

-- No instance for (Monad (Const Duration))

4.5 Adding a Custom Operation

Adding a custom operation is done as in any other mtl-style approach: by defining
a new class for this operation. For example, if we want to add a set operation,
then we create a corresponding Set class.

class Set obj f where set :: Lens' obj a -> a -> f ()

Now, an animation that uses the set operation will incur a Set constraint.

checkIcon :: (Set CompleteIcon f, ...) => f ()

checkIcon = do ...; set (checkmark . color) green; ...

To inspect or run such an animation, we also need to provide instances for
the Animation and Const data types. In the Animation instance, we alter the
previous state by setting the value targeted by the lens to a. The duration of a
set animation is 0, which is what is returned in the Duration instance.

instance (Applicative m) => Set obj (Animation obj m) where

set lens a = Animation $ \obj t -> let

newObj = Lens.set lens a obj

in pure (newObj, Right (), Just t)

instance Set obj (Const Duration) where

set _ _ = Const (For 0)

This section gave an overview of the features provided by PaSe, however
combining inspectability while allowing freedom of expressivity is not always
straightforward. Therefore, we look at an example of the interaction of these
two features in the next section.

5 Interaction Between Inspectability and Expressivity

Haskell DSLs are typically monadic because the >>= combinator provides great
expressive power. Yet, this power also hinders inspectability. This section shows
how to balance expressiveness and inspectability with a custom combinator.

Let us revisit the onlyDone animation from Section 3.3. The following defi-
nition imposes a Monad constraint on f, making the animation non-inspectable.
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onlyDone :: (LinearTo Application f, Get Application f,

Set Application f, Monad f, Parallel f) => f ()

onlyDone = do

cond <- doneItemsGt0

if cond then onlyDoneNaive else hideNotDone

However, it does seem like we should be able to extract some duration related
information from it. For example, the maximum duration should be the largest
duration of the two branches.

To express this idea in PaSe we introduce an explicit combinator to replace
the particular use of >>=, namely an if-then-else construction.

class IfThenElse f where

ifThenElse :: f Bool -> f a -> f a -> f a

This is similar to the handle combinator from the DynamicIdiom class [23]
and the ifS combinator from the Selective class [18].

Now we can reformulate onlyDone in terms of this ifThenElse combinator.

onlyDone :: (LinearTo Application f, Get Application f,

Set Application f, Applicative f, Parallel f, IfThenElse f)

=> f ()

onlyDone = ifThenElse doneItemsGt0 onlyDoneNaive hideNotDone

Not much changes for Animation, which implements ifThenElse in terms
of the >>= combinator.

instance (Monad f) => IfThenElse (Animation obj f) where

ifThenElse fBool thenBranch elseBranch = do

bool <- fBool

if bool then thenBranch else elseBranch

What is new is that we can now also retrieve the maximum duration, using
a new type MaxDuration to signify that we are not simply calculating the du-
ration of the animation. The instance for IfThenElse retrieves the durations of
the then and else branches and adds the greater value to the duration of the
preceding animation inside the condition.

instance IfThenElse (Const MaxDuration) where

ifThenElse (Const (MaxDur durCond)) (Const (MaxDur durThen))

(Const (MaxDur durElse)) =

Const (MaxDur (durCond + max durThen durElse))

This allows us to retrieve the maximum duration of the onlyDone animation.

onlyDoneMaxDuration :: MaxDuration

onlyDoneMaxDuration = maxDuration onlyDone -- = MaxDur 1.0
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6 Interaction Between Callbacks and Inspectability

Many JavaScript animation libraries10 exist, most of which allow the user to add
custom behavior (which the library has not foreseen) through callbacks. A good
example is the GreenSock Animation Platform (GSAP), a widely recommended
and mature JavaScript animation library with a variety of features.

6.1 Working with GSAP

GSAP provides primitives similar to the linearTo and sequential operations
in PaSe. While it does not have a primitive for parallel composition, we can
define it in terms of other GSAP features.

TweenMax objects are the GSAP counterpart of the linearTo operation.
Their arguments are similar: the object to change, the duration, and the target
value for the property. For example, animation right moves box1 to the right:

const right = new TweenMax("#box1", 1, { x: 50 });

A sequential animation is created by creating a timeline and adding anima-
tions to it. Below, we create the animation rightThenDown which moves box1

to the right and then moves it down.

const rightThenDown = new TimelineMax({ paused: true })

.add(new TweenMax("#box1", 1, { x: 50 }))

.add(new TweenMax("#box1", 1, { y: 50 }));

The add method takes the position on the timeline as an optional paramter.
Hence, if we position both animations at point 0 on the timeline, they will run
in parallel. For example, the both animation below moves both box1 and box2

in parallel to an x-value of 50.

const both = new TimelineMax({ paused: true })

.add(new TweenMax("#box1", 1, { x: 50 }), 0)

.add(new TweenMax("#box2", 1, { x: 50 }), 0);

Since we have specified the option paused with true, we must call the play

method to run an animation, as in both.play(). Using this behaviour, and the
ability to nest timelines, we can provide the PaSe primitives.

function sequential(tl1, tl2) {

return new TimelineMax({ paused: true })

.add(tl1.play())

.add(tl2.play()); }

function parallel(tl1, tl2) {

return new TimelineMax({ paused: true })

.add(tl1.play(), 0)

.add(tl2.play(), 0); }

10 Examples: https://greensock.com, https://animejs.com, and https://popmotion.io.

https://greensock.com
https://animejs.com
https://popmotion.io
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6.2 Callbacks and Inspectability

GSAP also provides features related to inspectability. For example, we can use
the totalDuration method to return the total duration of an animation. Ani-
mations created with the previously defined sequential and parallel functions
correctly give their total duration when queried. For example, we define an an-
imation which moves both boxes in parallel to x = 50 and then back to x = 0

in parallel. The duration is correctly returned as 2.

const bothTo50 = parallel(

new TweenMax("#box1", 1, { x: 50 }),

new TweenMax("#box2", 1, { x: 50 }));

const bothTo0 = parallel(

new TweenMax("#box1", 1, { x: 0 }),

new TweenMax("#box2", 1, { x: 0 }));

const bothAnimation = sequential(bothTo50, bothTo0);

const bothAnimDuration = bothAnimation.totalDuration(); // = 2

However, if we want to provide animations similar to onlyDone, which con-
tains an if-then-else, then the duration returned is not what we expect.
The add method is overloaded to take a callback as parameter, which we used
in the previous section since tl.play() is shorthand for the callback () =>

tl.play(). Using the callback parameter we can embed arbitrary effects and
control flow. For example, we can create a conditional animation condAnim, for
which a duration of 1 is returned.This is different from the expected total du-
ration of the animation, which is 2. (Of course, in general the duration of the
animations in both branches could differ, which is what makes it difficult to
provide a procedure for calculating the duration of an animation in this form.)

const condAnim = new TimelineMax({ paused: true })

.add(bothTo50.play())

.add(() => { if (cond) { bothTo0.play() }

else { bothTo100.play() } });

const condAnimDuration = condAnim.totalDuration() // = 1

6.3 Relevance of Duration in Other Features

A wrongly calculated duration becomes more problematic when another feature
relies on this calculation. The relative sequencing feature needs the duration
of the first animation, so the second animation can be added with the correct
offset. For example, we can specify the position parameter -=0.5 to specify that
it should start 0.5 seonds before the end of the previous animation.

const bothDelayed = new TimelineMax({ paused: true })

.add(new TweenMax("#box1", 1, { x: 50 }), 0)

.add(new TweenMax("#box2", 1, { x: 50 }), "-=0.5");
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This feature behaves somewhat unexpectedly when combined with a con-
ditional animation. In the relativeCond animation below we add a basic an-
imation followed by a conditional animation. Then we add an animation with
a relative position. The result is that the relative position is calculated with
respect to the duration of the animations before it, which was a duration of 1.

const relativeCond = new TimelineMax({ paused: true })

.add(new TweenMax("#box1", 1, { x: 50 }), 0)

.add(() => { if (cond) { new TweenMax("#box1", 1, { x: 100 });

} else { new TweenMax("#box1", 1, { x: 0 }); } })

.add(new TweenMax("#box2", 1, { x: 50 }), "-=0.5");

Predicting the resulting behavior becomes much more complicated when con-
ditional animations are embedded deep inside complex timelines and cause er-
roneous duration calculations. Clearly, being more explicit about control flow
structures and their impact on inspectability like in PaSe helps providing more
predictable interaction between these features.

6.4 Relative Sequential Composition in PaSe

While not yet ideal from a usability perspective,11 PaSe does enable correctly
specifying relative sequential compositions by means of relSequential.

relSequential :: forall c g.

(c (Const Duration), c g, Applicative g) =>

(forall f. c f => f ()) -> g () -> Float -> g ()

relSequential anim1 anim2 offset = let

dur = getDuration (duration anim1)

in anim1 `sequential` (delay (dur + offset) *> anim2)

Because this definition requires instances instantiated with Const Duration,
it only works for animations whose duration can be analyzed. Now, we can
correctly compose conditional animations sequentially using relative positioning.

class (LinearTo Float f, IfThenElse f) => Combined f where

instance (LinearTo Float f, IfThenElse f) => Combined f where

relCond :: (LinearTo Float f, IfThenElse f, Applicative f) => f ()

relCond = relMaxSequential @Combined anim1 anim2 (-0.5)

7 Future Work

The current status of PaSe is a conceptual design in the space of animation li-
braries. A logical next step is to put it to the test and aim for the implementation
of features provided by a mature animation library such as GSAP.

11 It requires AllowAmbiguousTypes (among other extensions) and explicitly instanti-
ating the constraint c at the call-site.
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Another avenue of future work is to explore trade-offs between the mtl-style,
as used in this paper, or an initial encoding approach, as is typical in approaches
based on algebraic effects and handlers. The mtl-style was chosen since it is
simpler presentation-wise, mainly on the extensibility aspect with regards to
different computation classes. However, we believe that implementation of some
features, such as the relative sequencing, is simpler in the initial approach.

An aspect that was not touched in this paper is conflict management. A con-
flict appears when the same two properties are targeted by different animations
in parallel. For example, if we want to change a certain value both to 0 and 100
in parallel, how should this animation look like? PaSe does no conflict manage-
ment, and the animation might look stuttery. GSAP, for example, resolves this
by only enabling the most recently added animation, however this strategy is
not straightforwardly mapped to the context of PaSe.

8 Related Work

Functional Reactive Programming The origins of functional reactive program-
ming (FRP) lie in the creation of animations [4], and many later developments
use FRP as the basis for purely functional GUIs.

PaSe focuses on easily describing micro-animations, which differ from general
animoations as considered by FRP. The latter can typically be described by
a time-paramterized picture function Time -> Picture. While a subset of all
possible animations, micro-animations are not easily described by such a function
because many small micro-animations can be active at the same time and their
timing depends on user interaction.

We have only supplied an implementation of PaSe on top of a traditional
event-based framework, but it is interesting future work to investigate an imple-
mentation of the linearTo, sequential and parallel operations in terms of
FRP behaviours and events.

Animation Frameworks Typical micro-animation libraries for web applications
(with CSS or JavaScript) and animation constructions in game engines provide a
variety of configurable pre-made operations while composing complex animations
or integrating new types of operations is difficult. PaSe focuses on the creation
of complex sequences of events while still providing the ability to embed new
animation primitives. We have looked at GSAP as an example of such libraries
and some of the limits in combining extensibility with callbacks and inspectabil-
ity. PaSe is an exercise in improving this combination of features forward in a
direction which is more predictable for the user.

Planning-Based Animations PaSe shares similarities with approaches which
specify an animation as a plan which needs to be executed [12,17]. An animation
is specified by a series of steps to be executed, the plan of the animation. The co-
ordinator, which manages and advances the animations, is implemented as part
of the hosting application. PaSe realizes these plan-based animations with only
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a few core principles and features the possibility of adding custom operations
and inspection. A detailed comparison with these approaches is difficult, since
their works are very light on details of the actual implementation aspect.

Inspectable DSLs Some DSLs for parsing [9,2,15], non-determinism [11], remote
execution [5,6] and build systems [19] focus on inspectability aspects, yet none
of them provide extensibility and expressiveness in addition to inspection.

9 Conclusion

We have presented PaSe, an extensible and inspectable DSL for micro-animations.
PaSe focuses heavily on both sequential and parallel composition of animations.
This is in contrast with other animation libraries which are mostly focused on
sequential composition and only provide a limited form of parallel composition.

We explained the features of PaSe with the help of a to-do list application
use case. In this use case we showed the use of the additional features of PaSe:
extensiblity, inspectability and expressivity. We argue that the callback style of
providing extensibility hurts the inspectability aspect of animations, which is
found in for example the GreenSock Animation Platform.
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