
Performance Comparison of Several Folding
Strategies

Jim Newton[0000−0002−1595−8655]

EPITA Research Lab, 94270 Le Kremlin Becêtre, FRANCE jnewton@lrde.epita.fr

Abstract. In this article we examine the computation order and con-
sequent performance of three different conceptual implementations of
the fold function. We explore a set of performance based experiments
on different implementations of this function. In particular, we contrast
the fold-left implementation with two other implements we refer to
as pair-wise-fold and tree-like-fold. We explore two application
areas: ratio arithmetic and Binary Decisions Diagram construction. We
demonstrate several cases where the performance of certain algorithms
is very different depending on the approach taken. In particular iterative
computations where the object size accumulates are good candidates for
the tree-like-fold.

Keywords: fold · binary decision diagram· scala · lisp · rational numbers

1 Introduction

The higher-order function[1, Sec 1.3], fold [14], is present in many modern
programming languages. Because of its higher-order nature, the fold function
was originally conceived for functional-style languages. The earliest mention of
fold that we have found, was in the SASL language [20].1 However, in recent
times, many tools of functional programming languages have made their way
into many other languages which are traditionally thought of as imperative or
object-oriented [19, 10]. As a few examples, in the Common Lisp language [3]
the function is called REDUCE; the Scala language [18, 8] offers several variants
foldLeft, foldRight and others. According to Bird [4, p 42], the Haskell lan-
guage does not provide a general fold function, but he demonstrates how one
could be defined in three lines.

Although it is not a definitive source of information, we note that the
Wikipedia article on Fold2 lists ≈ 44 programming languages which support
this feature, sometimes with different names such as reduce, accumulate,

1 https://www.quora.com/Where-did-the-common-functional-programming-
functions-get-their-names Mark Harrison inlines an email form David Turner
(the author of SASL and Miranda) claiming to be the inventor of the foldr/foldl
functions sometime between 1976 and 1983.

2 https://en.wikipedia.org/wiki/Fold (higher-order function), last edited on 5 Novem-
ber 2019, at 05:48.

2 J. Newton

aggregate, compress, or inject. The count in the Wikipedia article depends
on whether you consider Python 2.x and Python 3.x to be different languages,
and whether you consider JavaScript and ECMAScript the same or different.

Such a function is useful for extending a binary function to multiple ar-
ity, and applying the function to objects in a collection which may be a se-
quence or some sort of recursive data structure. It is generally supposed that
the binary function in question be associative but not necessarily commuta-
tive. For example if we assume f : D × D → D is a binary function; we
suppose that f(x1, f(x2, x3)) = f(f(x1, x2), x3), but we do not suppose that
f(x1, x2) = f(x2, x1).

The notation becomes somewhat cleaner if we denote such a binary func-
tion as an operator, ◦, written as infix, rather than as a function application.
Given that we can compute x1 ◦ x2, we may use the fold function to compute:
x1 ◦ x2 ◦ ... ◦ xn. Because ◦ is assumed to be associative (but not necessarily
commutative) we are free to group the terms however we like, as long as we
respect the order.

x1 ◦ x2 ◦ x3 ◦ ... ◦ xn = (...((x1 ◦ x2) ◦ x3)... ◦ xn)

= (x1 ◦ ...(xn−2 ◦ (xn−1 ◦ xn))...)

= (x1 ◦ x2) ◦ (x2 ◦ x3) ◦ ... ◦ (xn−1 ◦ xn)

= etc.

While all these groupings result in the same result mathematically, they may
have different performance characteristics. In this article we look at three such
groupings which we call fold-left (Section 3.1), pair-wise-fold (Section 3.2),
and tree-fold (Section 3.3).

2 Motivation

In [17], we (Newton et al.) discuss approaches to construct Binary Decision Di-
agrams (BDDs), in particular construction of the BDD representing a randomly
selected Boolean function of n variables. We further noted, in [16], some unex-
pected performance results and suggested they be further investigated.

The principle problem is to construct a BDD given a Boolean formula. In
our case the Boolean formula is given in a sum of products form such as:

x1x2x3 + x1x2x3 + x1x2x3x4 .

In order to represent such a Boolean function programmatically, we suppose
that Γ is a finite set of variables and their complements such as

Γ = {x1, x1, x2, x2, ..., xn, xn} .

Definition 1. A subset, γ, of Γ is called Γ -contradictory (or simply contradic-
tory) if {xi, xi} ⊂ γ for some 1 ≤ i ≤ n. On the contrary, a subset of Γ which
is not Γ -contradictory is called Γ -consistent (or simply consistent).

Performance Comparison of Several Folding Strategies 3

Now suppose for S = {γ1, γ2, ..., γm} is a set of consistent subsets of Γ . With
this notation we wish to consider a Boolean formula such as:

DNF =

m∑
i=1

∏
γi =

m∑
i=1

∏
x∈γi

x . (1)

This sum of products form is sometimes referred to as DNF (disjunctive
normal form).

Programmatically, this sum of products is computed as two concentric fold

operations. In Figure 1, we show two implementations of the sum-of-products

function, first using Scala3 and second using Common Lisp. In each case we
assume the existence of a binary function BddAnd along with its neutral element
BddTrue which performs the Boolean intersection operation between to objects
of type Bdd, and as well, the existence of a binary function BddOr along with its
neutral element BddFalse which performs the Boolean union operation between
two Bdd objects.

3 Strategies for Computing a Fold Operation

In Section 4 we will investigate operations on BDDs as alluded to in Section 2.
But rather doing so directly, instead we have first devised experiments based
on rational number arithmetic. We have chosen this diversion to illustrate the
principles of fold to the reader without being required to understand the subtle
inner-workings of a BDD library. Rational number arithmetic is easy to illustrate
and intuitive to understand. In particular, we explore the task of adding a large
sequence of fractions, where each fraction is expressed as the ratio of two integers
as ratios.

1

23
+

1

29
+

1

31
+

1

37
+

1

41
+

1

43
+

1

47
+

1

53
+

1

57
+

1

67
=

3, 304, 092, 302, 051, 372

12, 831, 131, 327, 329, 923
(2)

Computing the sum in Equation (2) involves representing the numerator
and denominators as a bignum integer type. [15, section 4.5] Integers in Com-
mon Lisp are specified to have unlimited precision, and the built-in ratio

type provides precise fractions whose numerator and denominator never roll-
over. However in Scala, Integers do not have this feature; thus the programmer
must use a non-native type, such as the Rational type provided by import

spire.math.Rational.

3 https://users.scala-lang.org/t/expressing-a-sum-of-products-as-a-fold/5314 Thanks
to Matthew Rooney, @javax-swing, for suggesting the concise implementation shown
here.

4 J. Newton

1 // Scala-like coding style

2 def sumOfProducts[A](seq:Seq[Seq[A]])(plus:(A,A)=>A, zero:A,

times:(A,A)=>A, one:A):A = {

3 seq.foldLeft(zero) {

4 (sum, gamma) => plus(sum, gamma.foldLeft(one)(times))

5 }

6 }

7

8 // example usage, returns integer sum of products 6006006

9 sumOfProducts(Seq(Seq(1, 2, 3), Seq(10, 20, 30), Seq(100, 200, 300)))(

10 plus = _ + _, zero = 0,

11 times = _ * _, one = 1)

12

13 // example usage, returns BDD which is an OR of ANDs of the given BDDs

14 sumOfProducts(Seq(seq1ofBdds, seq2ofBdds, sea3ofBdds))(

15 plus = BddOr, zero = BddFalse,

16 times = BddAnd, one = BddTrue)

1 ;; Lisp-like coding style

2 (defun sum-of-products (seq &key + 0+ * 1*)

3 (reduce (lambda (acc gamma)

4 (funcall + acc

5 (reduce * gamma :initial-value 1*)))

6 seq

7 :initial-value 0+))

8

9 ;; example usage , returns integer sum of products 6006006

10 (sum-of-products (list (list 1 2 3)

11 (list 10 20 30)

12 (list 100 200, 300))

13 :+ #’+ :0+ 0

14 :* #’* :1* 1)

15

16 ;; example usage ,

17 ;; returns BDD which is an OR of ANDS of the given BDDs

18 (sum-of-products (list list-1-of-bdds

19 list-2-of-bdds

20 list-3-of-bdds)

21 :+ #’BddOr :0+ BddFalse

22 :* #’BddAnd :1* BddTrue)

Fig. 1. Scala and Lisp implementations of sum-of-products and usage examples.

Performance Comparison of Several Folding Strategies 5

Regardless of which programming language and which implementation of
ratio is used, each such addition operation must compute some variant of

n1
d1

+
n2
d2

=
n1 · d2 + n2 · d1

d1 · d2
. (3)

=
1

gcd(d1, d2)
·
(

n1
d1

gcd(d1,d2)

+
n2
d2

gcd(d1,d2)

)
. (4)

Each of these operations is a bignum computation, followed either immediately or
eventually by a fraction simplification—dividing the numerator and denominator
by their common factors. Of course there are several strategies to optimize such a
computation. For example if the greatest common divisor, gcd(d1, d2) is known to
be different than 1, then the sum can be computed as in Equation (4). According
to Theorem 1, Equation (4) can be computed by an application of Equation (3),
but involving smaller numbers, in ≈ 40% of the cases.

Theorem 1 (G. Lejeune Dirchlet, 1849). If d1 and d2 are chosen at ran-
dom, then the probability that gcd(d1, d2) = 1 is 6/π2 ≈ 60.793%.

A statement and proof of Dirchlet’s theorem are provided as Theorem D in
Section 4.5.2 of Knuth’s Art of Computer Programming [15, page 342].

If gcd(d1, d2) 6= 1, Knuth [15, page 330] suggests the following to calculate
n3 and d3 such that n3

d3
= n1

d1
+ n2

d2
.

g1 = gcd(d1, d2)

t = n1 · (d2/g1) + n2 · (d1/g1)

g1 = gcd(t, g1)

n3 = t/g3

d3 = (d1/g1) · (d2/g2)

Regardless of the implementation or optimizations a given rational number
library uses, we assume that for sufficiently large denominators, adding fractions
becomes more compute intensive as the denominators grow. E.g.., it is easier to
add 1

2 + 2
3 than to add 105,000

765,049 + 385,544
4,391,633 .

3.1 Default fold-left

The default version of fold-left always first computes the result of
x1 ◦ x2 ◦ ... ◦ xi−1 before combining that result with xi.

The fold-left operation groups these addition operations as follows:

6 J. Newton

Compu. Ratio Result Digits Digits
Addition Computed Retained

1 1
23

+ 1
29

= 52
667

5 5

2 52
667

+ 1
31

= 2279
20,677

+ 9 = 14 9

3 2279
20,677

+ 1
37

= 105,000
765,049

+ 12 = 26 12

4 105,000
765,049

+ 1
41

= 5,070,049
31,367,009

+ 15 = 41 15

5 5,070,049
31,367,009

+ 1
43

= 249,379,116
1,348,781,387

+ 19 = 60 19

6 249,379,116
1,348,781,387

+ 1
47

= 13,069,599,839
63,392,725,189

+ 22 = 82 22

7 13,069,599,839
63,392,725,189

+ 1
53

= 756,081,516,656
3,359,814,435,017

+ 25 = 107 25

8 756,081,516,656
3,359,814,435,017

+ 1
57

= 46,456,460,884,409
191,509,422,795,969

+ 29 = 136 29

9 46,456,460,884,409
191,509,422,795,969

+ 1
67

= 3,304,092,302,051,372
12,831,131,327,329,923

+ 33 = 169 33

Table 1. Intermediate find final values of added 10 ratios using default fold-left

algorithm, computed as shown in Equation (5).

((((((((
1

23
+

1

29︸ ︷︷ ︸
1

) +
1

31

︸ ︷︷ ︸
2

) +
1

37

︸ ︷︷ ︸
3 ...

) +
1

41
) +

1

43
) +

1

47
) +

1

53
) +

1

57
) +

1

67

︸ ︷︷ ︸
... computation # 9

(5)

Such a computation must compute eight intermediate values before arriving
at the final value. Table 3.1 indicates these eight intermediate values as compu-
tations # 1 through # 8 before arriving at the final value as a result of computa-
tion # 9. The table also indicates two columns, labeled Digits Computed and
Digits Retained. The number of digits computed is the total number of digits
(numerator digits plus denominator digits) accumulated from computation # 1
until the row in question. These values are plotted in Figure 5 (top). We compare
the cumulative number of digits also for the analogous experiments which follow
in Sections 3.2 and 3.3. The number of digits retained (the bottom-most column
in the table) indicates the number of digits (again numerator digits plus denom-
inator digits) which must be held in memory pending a future computation.

We present these two columns (Digits Computed and Digits Retained)
because it is conceivable that they might have an effect on the computation time.
I.e., we suppose that the gcd computations which are calculated to perform
the rational number additions is dependent on the number of digits (roughly
dependent on the logarithms of the numbers), and also that computations which

Performance Comparison of Several Folding Strategies 7

retain large amounts of heap-allocated objects might decrease performance of
computation.

When we observe the Digits Computed column of Table 3.1 and the curve
in Figure 5 (top) corresponding to fold-left, we see that this algorithm com-
putes more digits than the others. In terms of number of digits computed, it is
the worst of the three alternatives. However, when we observe the Digits Re-
tained column of Table 3.1 and the corresponding curve in Figure 5 we see that
it retains the least amount of heap storage.

3.2 Pair-wise fold

1 def pairWiseFold[A](z: A)(mList: List[A], f: (A, A) => A): A = {

2 val (pairs: List[(A, A)], leftover: Option[A]) = paired(mList)

3 if (mList.isEmpty)

4 z

5 else {

6 @scala.annotation.tailrec

7 def recur(li: List[(A, A)], maybeB: Option[A]): A = {

8 val reduced: List[A] = li.map { case (b1: A, b2: A) => f(b1, b2) }

9 if (reduced.tail.isEmpty)

10 maybeB match {

11 case None => reduced.head

12 case Some(b) => f(reduced.head, b)

13 }

14 else {

15 val (pairs: List[(A, A)], leftover: Option[A]) = paired(reduced)

16 val last: Option[A] = (leftover, maybeB) match {

17 case (Some(b1), Some(b2)) => Some(f(b1, b2))

18 case (None, Some(_)) => maybeB

19 case (Some(_), None) => leftover

20 case (None, None) => None

21 }

22 recur(pairs, last)

23 }}

24 recur(pairs, leftover)

25 }}

Fig. 2. Scala implementation of pair-wise-fold.

The default fold-left algorithm, discussed in Section 3.1, groups terms to-
ward the left, as shown in Equation (5). As an alternative, we might instead
compute the sum in Equation (2) by first grouping consecutive terms, comput-
ing those intermediate results, and repeating the process. Each such iteration

8 J. Newton

involves roughly half as many applications of the binary function as the pre-
vious iteration. In the case of ratio arithmetic, even though each iteration of
the algorithm performs half as many additions as the previous iteration, these
additions involve larger numbers with each successive iteration.

This type of grouping corresponds to inserting parentheses as shown in Equa-
tion (6).

((1

23
+

1

29︸ ︷︷ ︸
1

)
+
(1

31
+

1

37︸ ︷︷ ︸
2

)
︸ ︷︷ ︸

6

)
+
((1

41
+

1

43︸ ︷︷ ︸
3

)
+
(1

47
+

1

53︸ ︷︷ ︸
4

)
︸ ︷︷ ︸

7

)

︸ ︷︷ ︸
8

+
(1

57
+

1

67︸ ︷︷ ︸
5

)

︸ ︷︷ ︸
computation # 9

(6)

Just as in Section 3.1, this computation again involves eight intermediate
results. However, we notice that these intermediate results tend to be smaller
than those resulting from the default fold-left approach.

Compu. Ratio Result Digits Digits
Addition Computed Retained

1 1
23

+ 1
29

= 52
667

5 5

2 1
31

+ 1
37

= 68
1147

+ 6 = 11 11

3 1
41

+ 1
43

= 84
1763

+ 6 = 17 17

4 1
47

+ 1
53

= 100
2491

+ 7 = 24 24

5 1
57

+ 1
67

= 124
3819

+ 7 = 31 31

6 52
667

+ 68
1147

= 105,000
765,049

+ 12 = 43 32

7 84
1763

+ 100
2491

= 385,544
4,391,633

+ 13 = 56 32

8 105,000
765,049

+ 385,544
4,391,633

= 756,081,516,656
3,359,814,435,017

+ 25 = 81 31

9 756,081,516,656
3,359,814,435,017

+ 124
3819

= 3,304,092,302,051,372
12,831,131,327,329,923

+ 33 = 114 33

Table 2. Intermediate and final values of added 10 ratios using default pair-wise-fold
algorithm, computed as shown in Equation (6).

We observe two additional features of the pair-wise-fold approach. The
first observation, which we consider an advantage, is that the computation is
potentially parallelizable. I.e., computations # 1, # 2, # 3, and # 4 could be
done in parallel. Of course we do not suspect that such parallelization would be
of significant benefit for this small example. There are also problematic cases,
such as the BDD examples which are the prime motivating factors for our re-
search. Even though the binary operations of AND and OR are associative, they

Performance Comparison of Several Folding Strategies 9

are not parallelizable. In the case of BDDs, many implementations [2] prohibit
parallelized construction. Some work has been done to lift this restriction [7, 13,
9].

The second observation, which we consider a disadvantage, is that in a näıve
implementation of this algorithm, intermediate results must be stored in memory
until they are used. I.e., results # 1, # 2, # 3, and # 4, must be stored in memory
until computations # 4 and # 6 are performed. It is generally assumed that such
memory retaining is not an issue, but in the case of huge data structures such
as BDDs, we explicitly do not assume such memory retaining is free.

When we observe the Digits Computed column of Table 3.2 and the curve
in Figure 5 (top) corresponding to pair-wise-fold, we see that this algorithm
computes more digits than fold-left and more than tree-like-fold. When
we observe the Digits Retained column of Table 3.2 and the corresponding
curve in Figure 5 we see similar results—the data and the curve corresponding
to is more positive than the other two thus we conclude that at least for this
example, pair-wise-fold is the most heap-stressing of the alternatives.

1 def paired[A](data: List[A]): (List[(A, A)], Option[A]) = {

2 val none: Option[A] = None

3 val nil: List[(A, A)] = Nil

4 data.foldLeft((nil, none)) {

5 case ((stack: List[(A, A)], Some(b)), a) => (((b, a) :: stack), none)

6 case ((stack: List[(A, A)], None), a) => (stack, Some(a))

7 } match {

8 case (stack, leftover) => (stack.reverse, leftover)

9 }

10 }

Fig. 3. Scala implementation of the paired function

The Scala implementation of pair-wise-fold is shown in Figure 3.2. This
implementation uses a helper function paired whose implementation is shown
in Figure 3. The paired function, takes a List of elements of type A, and returns
a List of pairs of the same type, following by an Option[A]. If the given list
has even length, the Option is empty; otherwise the Option contains the final
(odd) element of the List.

This function is used in the function pairWiseFold whose task it is to apply
the given function on consecutive pairs, but must remember the left-over element
for the next iteration in the case that exact pairing is impossible.

3.3 Tree-like fold

The tree-like-fold described here alleviates one of disadvantages of the
pair-wise-fold as described in Section 3.2—namely rather than retaining in-

10 J. Newton

termediate values, the tree-like-fold consumes the values as soon as pos-
sible while still respecting the same grouping. The parenthesized grouping of
the tree-like-fold shown in Equation (7) is exactly the same as Equation 6.
However, the order which computations are performed is different.(((1

23
+

1

29︸ ︷︷ ︸
1

)
+
(1

31
+

1

37︸ ︷︷ ︸
2

)
︸ ︷︷ ︸

3

)
+
((1

41
+

1

43︸ ︷︷ ︸
4

)
+
(1

47
+

1

53︸ ︷︷ ︸
5

)
︸ ︷︷ ︸

6

)

︸ ︷︷ ︸
7

)
+
(1

57
+

1

67︸ ︷︷ ︸
8

)

︸ ︷︷ ︸
computation# 9

(7)

Both the pair-wise-fold and the tree-like-fold coincide about compu-
tations # 1 and # 2. However, whereas pair-wise-fold retains these two inter-
mediate values while performing computations # 3 and # 4, tree-like-fold
consumes # 1 and # 2, immediately as computation # 3. Admittedly, the value
returned from computation # 3 is held until # 4 and # 5 and combined in
6 at which point both results # 3 and # 6 are combined in computation
7. Whereas pair-wise-fold must retain n

2 intermediate results (n being to-
tal length of the sequence being combined in Equation (2)), tree-like-fold
must retain at most log2 n.

Compu. Ratio Result Digits Digits
Addition Computed Retained

1 1
23

+ 1
29

= 52
667

5 5

2 1
31

+ 1
37

= 68
1147

+ 6 = 11 11

3 52
667

+ 68
1147

= 105,000
765,049

+ 12 = 23 12

4 1
41

+ 1
43

= 84
1763

+ 6 = 29 18

5 1
47

+ 1
53

= 100
2491

+ 7 = 36 25

6 84
1763

+ 100
2491

= 385,544
4,391,633

+ 13 = 49 25

7 105,000
765,049

+ 385,544
4,391,633

= 756,081,516,656
3,359,814,435,017

+ 25 = 74 25

8 1
57

+ 1
67

= 124
3819

+ 7 = 81 32

9 756,081,516,656
3,359,814,435,017

+ 124
3819

= 3,304,092,302,051,372
12,831,131,327,329,923

+ 33 = 114 33

Table 3. Intermediate find final values of added 10 ratios using default tree-like-fold
algorithm, computed as shown in Equation (7).

As in Sections 3.1 and 3.2, once again we look at the number of dig-
its computed and retained by tree-like-fold. When we observe the Dig-

Performance Comparison of Several Folding Strategies 11

its Computed column of Table 3.3 and the curve in Figure 5 (top) corre-
sponding to tree-like-fold, we see at computation # 9, that this algorithm
computes the exact same number of digits as tree-like-fold but fewer than
fold-left. In fact the actual computations performed by tree-like-fold and
pair-wise-fold are exactly the same, but the order is different. In terms of
number of digits retained, tree-like-fold again falls in between the other two
implementations.

A recognizable advantage of tree-like-fold over pair-wise-fold is that
the code in its implementation is much more concise, as shown in the listing in
Figure 3.3.

1 def treeFold[A](m: List[A])(z: A)(f: (A, A) => A): A = {

2 def consumeStack(stack: List[(Int, A)]): List[(Int, A)] = {

3 stack match {

4 case (i, b1) :: (j, b2) :: tail if i == j => consumeStack((i + 1,

f(b2, b1)) :: tail)

5 case _ => stack

6 }}

7 val stack = m.foldLeft((1, z) :: Nil) { (stack: List[(Int, A)], ob: A)

=>

8 consumeStack((1, ob) :: stack)

9 }

10 stack.map(_._2).reduce { (a1: A, a2: A) => f(a2, a1) }

11 }

Fig. 4. Scala implementation of the tree-like-fold algorithm.

3.4 Summarizing the three fold strategies

The tree sequences of computations outlined in Sections 3.1, 3.2, and 3.3 are re-
capped in Figure 5. We see that in the end fold-left computes more digits than
either pair-wise-fold or tree-like-fold, and we see that in the end (at com-
putation # 9) pair-wise-fold and tree-like-fold have computed the exact
same number of digits. This latter fact is not surprising, as the computations are
determined by the parentheses which are the same in Equations (6) and (7). In
the case of adding up these particular ratios, it happens that tree-like-fold

computes the digits more greedily than does pair-wise-fold. The ratios in
question (Equation (2)) have been especially chosen to be a worst case in some
sense. The denominators are all prime numbers, assuring that the gcd = 1 in
every case, and thus the sizes of the ratios, in terms of number of digits will
be monotonically increasing. As was mentioned in Theorem 1, 40% of the time,
the gcd will be different than 1, so we suspect cases exist for which the plots of
tree-like-fold and pair-wise-fold might be oriented differently.

12 J. Newton

Fig. 5. (Top) Cumulative Digits Computed For Each Fold Strategy. (Bottom) Quantity
of Digits Retained at each Computation State

In summary of the bottom plot in Figure 5, all three algorithms retain exactly
the same number of digits at computation # 9. This is obvious because the only
thing the retain is the 33 digits of the final result 3,304,092,302,051,372

12,831,131,327,329,923 . However,
it appears, at least for the single example computation, that tree-like-fold

is a happy medium between fold-left and pair-wise-fold as far as greedy
release of heap allocation is concerned.

Performance Comparison of Several Folding Strategies 13

4 Experimental Results

First in Section 4.1, we examine the computation time results of the three fold

algorithms, first when applied to ratio additions as explained in Sections 3.1, 3.2,
and 3.3. Thereafter, in Sections 4.2, 4.3, and 4.4 we examine the results when
we apply the same techniques to BDD construction.

All timing tests mentioned in the following sections were performed using
Scala version 2019.2.36, running within IntelliJ IDEA 2019.2.4 (Ultimate Edi-
tion), on the same computer (with the hardware overview shown below).

Hardware Overview
Model Name: MacBook Pro
Operating System: macOS Catalina
Version: 10.15.1
Processor Name: Quad-Core Intel Core i7
Processor Speed: 2.7 GHz
Number of Processors: 1
Total Number of Cores: 4
L2 Cache (per Core): 256 KB
L3 Cache: 8 MB
Hyper-Threading Technology: Enabled
Memory: 16 GB

4.1 Results of Ratio Addition

The first experiment we performed entailed summing a sequence of rational
numbers of incrementally increasing length. The plot in Figure 6 shows the com-
putation time, in milliseconds, of computing sums of different length sequences,
using three different folding algorithms. The x-axis indicates the value of n and
the y-axis indicates the time needed to compute the sum∑

−n≤ i ≤−1

1

i
+

∑
1≤ i ≤n

1

i
= 0

whose sum is expected to be zero. I.e., we sum the negative and positive fractions
of the form 1/i, for −n ≤ i ≤ n, excluding 1/0.

For each value of n, the sum was performed in three different ways as
outlined in Sections 3.1, 3.2, and 3.3. It is fairly clear from Figure 6, that
tree-like-fold and pair-wise-fold perform better especially as the value
of n grows, particularly for values of n > 100. Moreover, the benefit gained from
the tree-like-fold and pair-wise-fold algorithms increases as measured by
the gap between the fold-left and the other two curves. This gap widens as
n increases. We also see a strange effect regarding the left-most points of each
curve, which we attribute to the so-called warm-up time which is a well known
consideration when for JVM-base (Java Virtual Machine) benchmarking.4

4
https://stackoverflow.com/questions/36198278/why-does-the-jvm-require-warmup JVM warm-
up-time discussed in stackoverflow with regard to benchmarking.

14 J. Newton

Fig. 6. Performance of Fold Strategy on Rational Addition

These results are promising and lend some credence to our hope that such
techniques might also benefit BDD construction times.

However, it does not appear, at least for now, that the amount of heap usage
has any effect on computation time. Despite our investigation of the effect of
retained digits, we do not conclude any causal connection. This may be do to
the memory management capabilities of the JVM.

4.2 Results of Constructing Random BDDs

The plot in Figure 7 shows the computation time in milliseconds of construct-
ing random BDDs of increasingly many Boolean variables. This construction is
known to have exponential complexity [5, 11]. For a given number of Boolean
variables, n, the truth table has 2n rows. Each row which has true in the func-
tion value column corresponds to a minterm of the underlying Boolean function.
I.e., the set of Boolean functions of n variables is isomorphic to the set of subsets
of the set of all minterms. There are 22

n

such subsets, thus as many Boolean
functions, a thus as many n-variable BDDs.

How do we generate a random BDD? To choose a random BDD, we effec-
tively fill out this truth table by forming subsets containing minterms; i.e., with
balanced distribution include or exclude a given minterm. This selection process
is equivalent to choosing a random integer j between 0 and 22

n − 1 (inclusive),
and then selecting all the minterms, k, for which the kth bit of j (in base-2) is 1.

Performance Comparison of Several Folding Strategies 15

Fig. 7. Performance of Fold Strategy on Construction of Random BDD on n vari-
ables. We observe that starting at about n = 20 the execution of pair-wise-fold and
tree-fold are significantly faster than that of default fold-left.

For performance and memory reasons, it is not necessary to compute j explicitly.
It suffices to iterate through a sequence of 2n random bits, generated lazily.

On the average a randomly selected DNF (disjunctive normal form) contains
2n

2 = 2n−1 minterms, and each such minterm contains 2n−1 true plus 2n−1 false
Boolean variables.

From the plot in Figure 7, we observe that for BDD sizes of 20 Boolean
variables or less, there is no clear winner among the three algorithms. This is
the point in the computation where each DNF has approximately 0.525× 106 or
half a million minterms each containing as many literals. At this point the inner
fold iterates (0.525× 106)2 = 275× 109 times, or 275 trillion.

As we saw before, in Figure 6, there seems to be some initial JVM warm-up
time for the first point in each curve. Starting at about 20 Boolean, we see a trend
in Figure 7, that the two algorithms pair-wise-fold and tree-like-fold are
both orders of magnitude faster than the algorithm based on fold-left. The
gap between the curves is not as striking as was the case in Figure 6. The gap is,
nevertheless, significant if we recall that the plot is using log-scale on the y-axis.
For example to construct a 23-variable BDD, the fold-left algorithm requires
284 seconds while the tree-like-fold algorithm requires only 62 seconds.

16 J. Newton

The gap is difficult to see with the eyes because the curves are drawn very
close together in the plot. We eliminate this difficulty in the Section 4.4 by
normalizing the curves with respect to the timing of fold-left.

4.3 Results of Fixing the Term Length

Fig. 8. Performance of Fold Strategy on Construction of BDDs. Each BDD is con-
structed as an OR of ANDs, where each AND-term is limited to exactly 4 literals.

The next experiment, whose results are shown in Figure 8, is similar to the
experiment in Section 4.2, but we limit our samples in the number of terms
and the size of each term. We fix the number of Boolean variables to n =
30, and randomly select terms having exactly 4 literals. I.e., we consider Γ =
{x1, x1, x2, x2, ..., x30, x30} (See Definition 1) and limit ourselves to Γ -
consistent subsets of size 4, such a subset being {x10, x13, x19, x25}. During this
computation, assuming that m is the number of terms, the inner fold iterates
(m− 1) ∗ (4− 1) = 3m− 3 times, and the outer fold iterates m− 1 times.

The plot in Figure 8 shows BDD construction times (in milliseconds) for a
range of number of terms going from 10 terms to 200 terms. The results are
somewhat surprising. Although we observe a high degree of noise in the curves,
we can observe a tendency between about 50 and 180 terms where the fold-left
algorithm is slower than other others by a factor of 2 to 3.

Performance Comparison of Several Folding Strategies 17

4.4 Results of Varying Term Length

Fig. 9. Performance of Fold Strategy on Construction of BDD as function of Term
Length. Smaller values of the ratio indicate better performance than default foldLeft.
A value of 1 indicates performance equivalent to foldLeft.

In this experiment, whose results are plotted in Figure 9, we hold the number
of Boolean variables constant at n = 30, and test construction of BDDs of varying
number of terms, from 10 to 200, and repeat this process while varying the term
size from 2 to 7. We only tested this using fold-left and tree-like-fold and
plotted the normalized, relative time consumption.

relative time =
time of tree-like-fold

time of fold-left
.

Where a curve lies below y = 1, is a region where tree-like-fold is faster
(fewer milliseconds) than fold-left. We see that this is more often than not
the case for term sizes of 4, 5, and 6. Notably, and curiously, for term size of 7,
tree-like-fold performs much worse than fold-left.

4.5 Reproducing our Results

The code used to construct the experiments discussed in Section 4 are freely
and publicly available on the GitLab server of EPITA: gitlab.lrde.epita.fr. The

18 J. Newton

code is governed by an MIT-style license. To download the code, clone the git
repository5 The project regular-type-expression is a research project whose
scope is much larger than what is discussed in this article. The relevant part can
be found at the relative path cl-robdd/src/cl-robdd-scala, which is a Scala/sbt
project.

The plots in the figures in Sections 4.1, 4.2, 4.3, and 4.4 may be reproduced
using the Scala functions indicated in Table 4. Each function is provided in two
forms: a 0-ary form which uses default arguments, and an n-ary form for which
you may specify custom values.

Figure No. Package.Object path Scala Function

Figure 6 treereduce.RationalFoldTest rationalFoldTest

Figure 7 bdd.ReducePerf testRandomBddConstruction

Figure 8 bdd.ReducePerf testLimitedBddConstruction

Figure 9 bdd.ReducePerf testNumBitsConstruction

Table 4. Scala functions to reproduce the plots in Section 4. The functions may be
called with various arguments limiting the bounds of the timing tests.

Each of the functions produces a file with a .gnu extension. This file is
intended as input to the gnuplot program. To produce a graphical plot in PNG

format, for example, execute

gnuplot -e "set terminal png" file.gnu > file.png

In addition to the Scala code for reproducing the results, sample data is
available in several formats including .gnu, .png, and .csv. These data files
can be found relative to the top of the git repository in cl-robdd/data/fold-
performance.

5 Conclusions

In this article we have looked at three implementations of the fold function
which agree on their semantics but differ as far as how they group expressions
and which order evaluation occurs. We have looked at several experiments which
measure execution time of the various approaches. We found that in some cases
the approach makes a big difference and in other cases it does not.

We were able to demonstrate computations of rational numbers (ratios of
integers) where a tree-like-fold or pair-wise-fold unambiguously outper-
forms the linear fold-left. However, as far as the motivating example, BDD
construction, is concerned, we have not demonstrated consistent results. There
are some situations where a linear fold out-performs a tree-fold, and vise versa.

5 git clone https://gitlab.lrde.epita.fr/jnewton/regular-type-expression.git -b fold-
strategy. Commit SHA id 4f68cd7e5 marks time this article was submitted.

Performance Comparison of Several Folding Strategies 19

There is some evidence that for DNF formulations of certain range of term
lengths, a tree-fold is superior, but our findings are not conclusive. More work
is needed to characterize definitive predictions or even rule-of-thumb advise for
potential users.

1 // Example usage, returns integer product of sums 216000

2 sumOfProducts(Seq(Seq(1, 2, 3), Seq(10, 20, 30), Seq(100, 200, 300)))(

3 plus = _ * _, zero = 1,

4 times = _ + _, one = 0)

5

6 // Example usage, returns BDD which is an AND of ORs of the given BDDs

7 sumOfProducts(Seq(seq1ofBdds, seq2ofBdds, sea3ofBdds))(

8 plus = BddAnd, zero = BddTrue,

9 times = BddOr, one = BddFalse)

1 ;; example usage , returns integer product of sums 216000

2 (sum-of-products (list (list 1 2 3)

3 (list 10 20 30)

4 (list 100 200, 300))

5 :+ #’* :0+ 1

6 :* #’+ :1* 0)

7

8 ;; example usage , calling the sum-of-products to compute the

9 ;; product of sums , returning an AND of ORs

10 (sum-of-products (list list-1-of-bdds

11 list-2-of-bdds

12 list-3-of-bdds)

13 :+ #’BddAnd :0+ BddTrue

14 :* #’BddOr :1* BddFalse)

Fig. 10. Scala and Lisp examples of using the sum-of-products function to compute
the product of sums, simply by swapping the arguments at the call site.

6 Perspectives

Our experiments on BDDs have been based on randomly generated samples,
albeit with certain constraints which effect the distribution. There is reason to
doubt whether real-world problems can be well modeled by random sampling.
For example, in real-world problems, the Boolean variables have correlations
which we have not attempted to mimic. We plan to test our process on some
large examples of BDD construction which are more consistent with reality.

In this article we have addressed constructing BDDs only as a sum of products
(Equation (1)), which we referred to earlier as DNF (disjunctive normal form).

20 J. Newton

BDDs used in model checking [6] and SAT solving [12] are most often constructed
based on a product of sums, referred to as CNF (conjunctive normal form). Such
as:

CNF =

m∏
i=1

∑
γi =

m∏
i=1

∑
x∈γi

x . (8)

The computation necessary to construct a BDD from a CNF form can be
done using the code in Figure 1, simply by swapping the keyed arguments, as
in Figure 10. We would hope to get the same performance characteristics using
CNF rather than DNF, but admittedly we have not tested this hypothesis.

References

1. Abelson, H., Sussman, G.J.: Structure and Interpretation of Computer Programs.
MIT Press, Cambridge, MA, USA, 2nd edn. (1996)

2. Andersen, H.R.: An introduction to binary decision diagrams. Tech. rep., Course
Notes on the WWW (1999)

3. Ansi: American National Standard: Programming Language – Common Lisp. ANSI
X3.226:1994 (R1999) (1994)

4. Bird, R.: Pearls of Functional Algorithm Design. Cambridge University Press, New
York, NY, USA, 1st edn. (2010)

5. Bryant, R.E.: Symbolic Boolean Manipulation with Or-
dered Binary-decision Diagrams. ACM Comput. Surv. 24(3),
293–318 (Sep 1992). https://doi.org/10.1145/136035.136043,
http://doi.acm.org/10.1145/136035.136043

6. Burch, J.R., Clarke, E.M., McMillan, K.L., Dill, D.L., Hwang, L.J.: Symbolic
Model Checking: 1020 States and Beyond. Inf. Comput. 98(2), 142–170 (Jun 1992).
https://doi.org/10.1016/0890-5401(92)90017-A

7. Castagna, G.: Covariance and Contravariance: a fresh look at an old issue. Tech.
rep., CNRS (2016), https://arxiv.org/pdf/1809.01427.pdf

8. Chiusano, P., Bjarnason, R.: Functional Programming in Scala. Manning Publica-
tions Co., Greenwich, CT, USA, 1st edn. (2014)

9. van Dijk, T., van de Pol, J.: Sylvan: Multi-core decision diagrams. In: Baier, C.,
Tinelli, C. (eds.) Tools and Algorithms for the Construction and Analysis of Sys-
tems. pp. 677–691. Springer Berlin Heidelberg, Berlin, Heidelberg (2015)

10. Haveraaen, M., Morris, K., Rouson, D., Radhakrishnan, H., Carson, C.: High-
Performance Design Patterns for Modern Fortran. Scientific Programming p. 14
(2015)

11. Heap, M.A., Mercer, M.R.: Least Upper Bounds on OBDD Sizes. IEEE Transac-
tions on Computers 43, 764–767 (June 1994)

12. Hopcroft, J.E., Motwani, R., Ullman, J.D.: Introduction to Automata Theory,
Languages, and Computation (3rd Edition). Addison-Wesley Longman Publishing
Co., Inc., Boston, MA, USA (2006)

13. Hosoya, H., Vouillon, J., Pierce, B.C.: Regular Expression Types for
XML. ACM Trans. Program. Lang. Syst. 27(1), 46–90 (Jan 2005).
https://doi.org/10.1145/1053468.1053470

Performance Comparison of Several Folding Strategies 21

14. Hutton, G.: A tutorial on the universality and expressiveness of fold. J. Funct.
Program. 9(4), 355–372 (Jul 1999). https://doi.org/10.1017/s0956796899003500

15. Knuth, D.E.: The Art of Computer Programming, Volume 2 (3rd Ed.): Seminu-
merical Algorithms. Addison-Wesley Longman Publishing Co., Inc., Boston, MA,
USA (1997)

16. Newton, J.: Representing and Computing with Types in Dynamically Typed Lan-
guages. Ph.D. thesis, Sorbonne University (Nov 2018)

17. Newton, J., Verna, D.: A theoretical and numerical analysis of the worst-case size
of reduced ordered binary decision diagrams. ACM Trans. Comput. Logic 20(1),
6:1–6:36 (Jan 2019). https://doi.org/10.1145/3274279

18. Odersky, M., Altherr, P., Cremet, V., Emir, B., Micheloud, S., Mihaylov, N., Schinz,
M., Stenman, E., Zenger, M.: The scala language specification (2004)

19. Swaine, M.: Functional Programming: a PragPub Anthology: Exploring Clojure,
Elixir, Haskell, Scala, and Swift. Pragmatic programmers, Pragmatic Bookshelf
(2017), https://books.google.fr/books?id=AMoXMQAACAAJ

20. Turner, D.A.: Some history of functional programming languages. In: Proceedings
of the 2012 Conference on Trends in Functional Programming - Volume 7829. pp.
1–20. TFP 2012, Springer-Verlag New York, Inc., New York, NY, USA (2013).
https://doi.org/10.1007/978-3-642-40447-4 1

