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Abstract. Type error messages of compilers of statically typed func-
tional languages are often inaccurate, making type error debugging hard.
Many solutions to the problem have been proposed, but most have been
evaluated only with short programs, that is, of fewer than 30 lines. In this
paper we note that our own tool for delta debugging type errors scales
poorly for large real-world programs. In response we present a new tool
that applies a new algorithm for segmenting a large program before the
delta debugging algorithm is applied. We propose a framework for eval-
uating type error debuggers and apply it to our new tool, demonstrating
substantial improvement.
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1 Introduction

Type errors in statically typed functional languages such as Haskell, ML and
OCaml are difficult to understand and repair. The type error message of a com-
piler gives a location in the ill-typed program, but this location is often far from
the defect that needs to be repaired. In over 30 years numerous solutions have
been proposed, but none has been widely adopted.

In our opinion the major reason for this non-adoption is the effort required for
implementing proposed solutions for full programming languages and maintain-
ing them in the face of evolving languages and compilers. Proposed solutions
usually require new compiler front-ends, including new type inference imple-
mentations, or substantial modifications of existing compilers. We believe that
a small improvement that requires little implementation and maintenance effort
is much better than a big improvement that requires substantial effort. Hence it
has been our goal to develop a type error debugger that uses the compiler as a
true black box, that is, it calls the compiler as an external program. The debug-
ger should not duplicate compiler work such as parsing. The debugger should
use minimal information from the outcome of the compiler call; in particular, it
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should not rely on the details of its type error messages. As a consequence such
a debugger is mostly programming language agnostic.

In an earlier paper we presented and evaluated such a type error debugger
[15]. Our debugger implements the isolating delta debugging algorithm [24] to
locate the defective line in an ill-typed program. Our debugger tests many con-
figurations, that is variants, of the ill-typed program by calling the compiler; the
only information the debugger uses is whether compilation succeeded (passed),
failed with a type error (fail), or failed with some other error (unresolved).

We showed that our debugger yields good locations in reasonable time for
121 ill-typed programs that had been taken from papers on type error debug-
ging [2]. However, all these programs are short; the longest has 23 lines. So for
many type error debugging methods proposed in the literature it is unknown
whether they scale for larger programs. We found that our debugger was unac-
ceptably slow for large programs. The isolating delta debugging algorithm tests
a logarithmic1 number of configurations if no outcome is unresolved. The more
outcomes are unresolved, the less efficient it becomes, up to a quadratic number
of configurations. “When using . . . [isolating delta debugging], it is thus wise to
keep unresolved test outcomes to a minimum, as this keeps down the number
of tests required” [24]. All applications of isolating delta debugging try to min-
imise the number of configurations with unresolved test outcomes. Additionally,
Kalhauge and Palsberg [7] note that delta debugging as a greedy algorithm may
fail to produce the best global solution. When delta debugging Java bytecode
decompilers, they observe how unresolved test outcomes lead to poor debugging
results. Many configurations have unresolved outcomes, because some depen-
dencies of Java bytecode classes are missing. Their solution is to first produce a
dependency graph of Java bytecode classes. That dependency graph then guides
their delta debugging algorithm in choosing configurations of the Java bytecode
classes to test, avoiding any configuration that would miss dependencies.

Most unresolved outcomes in our type error debugger are parse errors. Build-
ing some kind of parser for our debugger would contradict our goals. Hence here
we present an algorithm, we name it Moiety, that calls the compiler as a black
box. Moiety divides an ill-typed program into intervals of lines, we name them
moieties. In delta debugging no configuration should contain only part of a moi-
ety, because in that case compilation will fail with a parse error. The moiety
information guides the isolating delta debugging algorithm. We reduce unre-
solved test outcomes and thus the total runtime of the type error debugger.

To debug real-world programs, we now support multi-module programs and
a standard build tool. We implemented the new type error debugger, Elucidate,
which combines the new Moiety algorithm with an isolating delta debugging
algorithm that uses moiety information. The debugger locates a defective line of
an ill-typed Haskell program, using the Glasgow Haskell compiler2 as black box.

In this paper we make the following contributions:

1 With respect to the number of lines of the original ill-typed program.
2 https://www.haskell.org/ghc/
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– We present the Moiety algorithm, which generates, using the compiler as a
black box, a list of moieties of the ill-typed program. That list determines
the set of configurations searched by the isolating delta debugging algorithm.
(Section 3).

– We show how to extend delta debugging of type errors to multi-module
programs (Section 4).

– We propose a framework for evaluating type error debuggers (Section 5).
– We evaluate Elucidate in our framework, using a corpus of 80 ill-typed vari-

ants of the real-world program Pandoc (Section 6).

2 The Problem

2.1 Delta Debugging Type Errors

Let us briefly review what delta debugging is and how we applied it to type error
debugging [15].

To locate the defect in an ill-typed program, many programmers simply re-
move (or comment out) some parts of the program and compile the smaller
program. If the smaller program is also ill-typed, the procedure is repeated. If
the smaller program is not ill-typed, a different part of the previous program is
removed. This shrinking by trial and error repeats until the program cannot be
shrunk further, that is, no smaller program is ill-typed.

Simplifying delta debugging [23, 24] is a greedy algorithm that automates this
method. Simplifying delta debugging divides the program into two halves and
tests each one. If one half is ill-typed, the algorithm calls itself recursively for
that half. If neither half is ill-typed, it divides the program into four parts and
tests each one. Again the algorithm calls itself recursively for any ill-typed part,
but if none is ill-typed, it tries again by dividing the program into eight parts.
When the program cannot be divided further, the algorithm stops with the last
ill-typed program as result.

Note that testing a program yields one of three outcomes: fail (ill-typed),
pass (well-typed) or unresolved (any other error such as parse error or unbound
identifier). For the simplifying delta debugging algorithm it does not matter
whether an outcome is pass or unresolved, but for the isolating delta debugging
algorithm, which we actually use, the difference is essential.

A program variant that may be tested is called a configuration. For type error
debugging we made the same choice of configurations as many other applications
of delta debugging: we chose to always remove whole lines of the ill-typed pro-
gram3. Hence a configuration is the original ill-typed program with some lines
replaced by empty lines4. A configuration being a subconfiguration of another
configuration is a natural partial order on configurations, with the empty con-
figuration, consisting of many empty lines, being the minimum and the original
ill-typed program being the maximum.

3 Removing single characters is another popular choice.
4 Instead of removing the lines completely we still keep the empty lines to avoid

undesirable changes of program layout.
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A minimal ill-typed program is often still big, because for every function or
type that it uses it has to includes its definition, which is usually well-typed. To
isolate a cause of the type error we want to exclude these well-typed definitions.
Therefore we decided to use the isolating delta debugging algorithm for type
error debugging.

The isolating delta debugging algorithm [5, 24, 25] works with a pair of config-
urations, a passing and a failing configuration, the former being a subconfigura-
tion of the latter. The algorithm starts with the empty configuration as passing
configuration and the ill-typed program as failing configuration. The algorithm
divides the difference between the two configurations into two parts and tests
the passing configuration with each of these parts added and the failing con-
figuration with each of these parts removed. If any tested configuration yields
a passing outcome, it can become the new passing configuration, if any tested
configuration yields a failing outcome, it can become the new failing configura-
tion; then the algorithm calls itself recursively with a new pair of configurations.
If all of the tested configurations yield unresolved outcomes, the difference is
divided instead into four, eight, etc. parts, similar to the simplifying delta de-
bugging algorithm, until eventually a passing or failing configuration is found; if
no further division is possible, the algorithm terminates. The algorithm does not
specify how the difference between two configurations is divided into parts and
there may be several passing and failing outcomes; thus the algorithm is non-
deterministic; however, like any other implementation, ours makes a choice and
thus is deterministic. In every recursive call the passing configuration is a sub-
configuration of the failing configuration (and both are subconfigurations of the
original ill-typed program). Every recursive call reduces the difference between
the two configurations, until the difference cannot be reduced any further.

The final result of isolating delta debugging is a pair of configurations, where
the first configuration is a passing subconfiguration of the second failing configu-
ration, such that there exists no passing or failing configuration between the two
configurations. The algorithm is greedy to limit runtime and it is not guaranteed
to return a pair of configurations with minimal difference.

The final pair of configurations is the result of the isolating delta debugging
algorithm. The difference between the two configurations, which may be neither
a passing nor a failing configuration, isolates a failure cause. The result returned
by our type error debugger is this difference, that is, one or more lines of the
original ill-typed program.

2.2 Small and Real-World Programs

We noted in the introduction that ill-typed programs that have been used to eval-
uate type error debuggers are short. The longest program in a recent benchmark
suite [2] of 121 programs has just 23 lines. Such programs are good for studying
how a type error debugger works and many of these programs are representa-
tive for the first programs written by novices learning a functional programming
language. However, not just novices need help with type error debugging, but
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also more experienced functional programmers who build useful, real-world pro-
grams. So we measured in October 2019 the top 100 Haskell programs on the
popular public repository GitHub5. On average each program has 31872 lines of
code, 138 modules, and 229 lines of code per module. Our aim in this paper is
to ensure that type error debugging works well for such real-world programs.

2.3 The Effect of Unresolved Outcomes on Delta Debugging

Because our definition of configuration is based on program lines, all complexity
measures of type error debugging are with respect to the number of lines of
the ill-typed program. For a given ill-typed program there exists an exponential
number of configurations. Already finding a failing configuration of minimal size
is known to be NP-complete [10].

In type error debugging nearly all runtime is spent in the tests made by
the compiler. In general, the runtime of delta debugging is proportional to the
number of tests made.6

We see from the description of delta debugging that if no test outcome is
unresolved, it is basically a binary search. In contrast, frequent unresolved out-
comes cause the algorithm to repeatedly divide (differences of) configurations
into four, eight, etc. parts and make more tests. So as we already stated in the
introduction, the isolating delta debugging algorithm has logarithmic time com-
plexity if no outcome is unresolved. The more outcomes are unresolved, the less
efficient it becomes, up to a quadratic time complexity [24].

Therefore any successful application of delta debugging makes some effort
to avoid unresolved outcomes. Like other applications we decided to base our
definition of configurations on removing complete lines instead, for example, of
dividing on the character level, because lines often contain complete definitions
of types or functions, and thus a configuration has a reasonable chance to be a
syntactically correct program.

2.4 Unresolved Outcomes in Type Error Debugging

Our type error debugger processes small programs in a few seconds [15], but when
we applied it to a program of a few hundred lines, it took an hour. That time
is unacceptable. We just established that real-world Haskell programs consist
of hundreds of modules, each of which can have a few hundred lines of code.
Although for the moment we still consider only single module programs, these
may have hundreds of lines of code.

Let us look again at our earlier results [15] for 900 programs that we had
generated by concatenating pairs of some of our original benchmark programs.
We order the 900 programs by number of lines and put them into 4 groups: the
shortest 125 in the first group, the next 125 in the second group, etc. Table 1
shows the outcomes. These indicate that the number of unresolved outcomes
grows substantially with program size.

5 https://github.com/search?l=Haskell&q=Haskell&s=stars&type=Repositories
6 This assumes similar runtime for every test, which may not be the case.
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# lines # unresolveds

10 2
17 4
22 7
25 14

Table 1. Average number of unresolved outcomes compared to number of lines of code.

error message #

The last statement in a ’do’ block must be an expression 4
Variable not in scope 4
Not in scope: 5
Empty ’do’ block 5
Parse error (incorrect indentation or mismatched brackets) 7
Empty list of alternatives in case expression 8
The type signature...lacks an accompanying binding 16
Parse error on input 77

Total 126

Table 2. Number of error messages giving unresolved outcome.

There is an obvious suspect for the high number of unresolved outcomes in
larger programs: although splitting multiple equations of a single function def-
inition yields well-formed definitions in Haskell, splitting a multi-line equation
into half usually yields ill-formed programs; the same holds for multi-line type
declarations, which often appear in larger programs, and case expressions with
a branch per line. Many configurations are simply unparsable! To test our sus-
picion, we introduced a single type error in a module of the real-word program
Pandoc from GitHub. The ill-typed module has 87 lines and our debugger had
126 unresolved outcomes, which we categorise by error message of the Glasgow
Haskell compiler in Table 2. Most error messages are related to parsing and
“parse error on input” is by far the most frequent one. “parse error on input”
indicates that parsing failed somewhere inside the configuration, whereas “parse
error (incorrect indentation or mismatched brackets)” indicates that parsing fails
at the end of the configuration.

3 The Moiety Algorithm and Delta Debugging

We always obtain a configuration that does not parse, if we split the original
ill-typed program at certain consecutive lines. So we first determine these lines
that should never be separated and then apply the delta debugging algorithm
such that it never splits in these places. Given its dominance, we solely focus on
the “parse error on input” error message.

We name our pre-processing algorithm Moiety ; according to the Merriam-
Webster dictionary a moiety is “one of the portions into which something is
divided”.7 Moiety divides the ill-typed program into moieties, that is, intervals
of lines. Instead of actually dividing the ill-typed program, it proves to be easier

7 https://www.merriam-webster.com/dictionary/moiety
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to keep the moiety information separately from the ill-typed program, as an
ordered list of line intervals.

3.1 Example Application of the Algorithm

To see how Moiety works, we consider the following ill-typed program:

1 f x = case x of

2 0 -> [0]

3 1 -> 1

4 plus :: Int -> Int -> Int

5 plus = (+)

6 fib x = case x of

7 0 -> f x

8 1 -> f x

9 n -> fib (n-1) `plus` fib (n-2)

To limit runtime, the algorithm may only traverse the program once from
beginning to end to produce its list of moieties. Moiety calls the compiler to
test a program for whether it yields “parse error on input” or not. We show the
tested program on the left and the test outcome and resulting moiety list on the
right. We begin with the program consisting only of the first line of our original
program:

1 f x = case x of

2

3

4

5

6

7

8

9

not “parse error on input”

[[1]]

Because parsing does not fail inside the program, the line starts our first
moiety. We now look at line 2 and want to check whether it can start another
new moiety:

1

2 0 -> [0]

3

4

5

6

7

8

9

“parse error on input”

[[1,2]]
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The parse error states clearly that line 2 cannot start a new moiety; so we
add the line to the preceding moiety. We continue with considering line 3:

1

2

3 1 -> 1

4

5

6

7

8

9

“parse error on input”

[[1,2,3]]

Like line 2, line 3 also cannot start a new moiety; we add line 3 to the
preceeding moiety. We continue with line 4:

1

2

3

4 plus :: Int -> Int -> Int

5

6

7

8

9

not “parse error on input”

[[1,2,3],[4]]

So line 4 can start a new moiety and we update our moiety list accordingly.
Next line 5:

1

2

3

4

5 plus = (+)

6

7

8

9

not “parse error on input”

[[1,2,3],[4],[5]]

Likewise, line 5 starts a new moiety. We move on to line 6:
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1

2

3

4

5

6 fib x = case x of

7

8

9

not “parse error on input”

[[1,2,3],[4],[5],[6]]

So line 6 starts a new moiety too. We continue with line 7:

1

2

3

4

5

6

7 0 -> f x

8

9

“parse error on input”

[[1,2,3],[4],[5],[6,7]]

At this point it is hopefully obvious that lines 8 and 9 each also gives the
outcome “parse error on input” and so the algorithm finishes with the moieties
[[1,2,3],[4],[5],[6,7,8,9]].

3.2 The Algorithm

Working through the example shows how simple the Moiety algorithm is: The
algorithm tests every single line of the original ill-typed program whether it
yields “parse error on input” or not. In case of the former, the line cannot be the
start of a moiety and becomes part of the moiety of the preceding line. Otherwise
it does start a new moiety. The result is an ordered list of moieties.

We note that line 1 never yields “parse error on input” and hence testing it
is actually unnecessary.

3.3 Isolating Delta Debugging with Segmentation Information

In the subsequent isolating delta debugging algorithm moieties are never split,
simply by redefining a configuration as a subset of moieties.

So in our example we have the moiety list [[1,2,3],[4],[5],[6,7,8,9]].
We start isolating delta debugging with the passing configuration {} and

the failing configuration {[1,2,3],[4],[5],[6,7,8,9]}. We divide the differ-
ence between the two configurations by two and hence test the configurations
{[1,2,3],[4]} and {[5],[6,7,8,9]}. Both configurations give the outcome
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unresolved. Hence we have to divide the difference between our passing and fail-
ing configuration by four and test the configurations {[1,2,3]}, {[4]}, {[5]},
{[6,7,8,9]} and the configurations {[4],[5],[6,7,8,9]}, {[1,2,3],[5],[6,
7,8,9]}, {[1,2,3],[4],[6,7,8,9]}, {[1,2,3],[4],[5]}. Our implementation
happens to test {[5]} first and the test gives outcome pass.

Next, isolating delta debugging calls itself recursively with the new passing
configuration {[5]} and the failing configuration {[1,2,3],[4],[5],[6,7,8,9]}.
We divide the difference, which is 3 moieties, by two and hence test the con-
figurations {[1,2,3],[4],[5]} and {[5],[6,7,8,9]}. The first configuration
gives outcome fail.

Next, isolating delta debugging calls itself recursively with the old passing
configuration {[5]} and the new failing configuration {[1,2,3],[4],[5]}. We
divide the difference by two and hence test the configurations {[1,2,3],[5]}
and {[4],[5]}. The first configuration gives outcome fail.

Finally, isolating delta debugging calls itself recursively with the old passing
configuration {[5]} and the new failing configuration {[1,2,3],[5]}. Because
the difference between the two configurations is only one moiety, the algorithm
terminates with the these two configurations as result. Our type debugger returns
the difference between these two configurations as the location of the defect:
{1, 2, 3}. The actual type error is in line 2, but our type debugger can return at
best a single moiety.

3.4 Time Complexity

We designed the Moiety algorithm to return a list of moieties in the shortest
time possible, that is linear in the number of lines of the ill-typed program. We
know that isolating delta debugging takes between logarithmic and quadratic
time, now in the number of moieties. Because moieties avoid the most common
type of unresolved outcome, we hope that overall the time complexity of type
error debugging is close to linear.

4 Debugging Real-World Programs

Real-world programs do not just have many lines, but they nearly always consist
of many modules and are compiled using a build tool.

4.1 Modular Programs

The type error location of a compiler is unreliable, but our type error debugger
assumes that the first module identified by the compiler as ill-typed does contain
the type error location; our type error debugger works solely on that module.

If a module causes the first compiler type error, then all modules directly or
indirectly imported are well-typed. An identifier defined in an imported module
may have a type that contradicts with how the identifier is used in the ill-typed
module. However, even when both definition and use are in the same module
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and the definition is typable, delta debugging will always identify the use of the
identifier as the cause of the error, not the definition. So our treatment of mod-
ules is consistent with our general treatment of definition vs. use. Furthermore,
identifiers exported by a module rarely have a wrong type, because their type is
additionally stated by a type declaration.

4.2 Import Declarations

Because all imported modules are well-typed, an import declaration is never the
location of a type error. However, removing an import declaration from a mod-
ule usually leads to an unresolved outcome, because numerous identifiers lack
definitions. Hence our type error debugger leaves all import declarations in all
configurations tested by the delta debugging algorithm. Unfortunately, recog-
nising lines with import declarations is specific to the programming language
Haskell.

4.3 The Build Tool

When measuring the top 100 Haskell programs on GitHub, we found that they
all use Cabal8 for packaging and building. Therefore our type error debugger has
a flag to call the build tool cabal instead of the Glasgow Haskell compiler for
testing. When cabal is used, the user has to state the target program instead of
the ill-typed module.

5 A Framework for Type Error Debugging

In data science using model metrics such as Accuracy, Precision, and Recall are
an accepted standard [22, 16]. Yet within type error debugging evaluations only
Recall is deemed important. We propose the following as a framework for future
type error debugging evaluations.

5.1 The Metrics

Recall, aka sensitivity, is the measure of the quantity of elements correctly re-
turned.

Recall =
TP

TP + FN
=

RE

E
(1)

For us it measures the number of errors that are reported correctly compared
to the number of errors within the source code. This metric is most used in type
error debugging evaluations as it shows if a debugger can successfully discover
the correct number of type errors within an ill-typed program.

8 https://www.haskell.org/cabal/
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Shorthand Longhand Equivalents

Standard Data Science

TP True Positive
TN True Negative
FP False Positive
FN False Negative

Our Terminology

RL Reported Lines (number of lines returned) TP + FP
RE Reported Errors(number of correct errors) TP
L Lines of code (Total Source Code) TN+TP+FN+FP
E Errors (number of Errors in the code) TP+FN

Table 3. Terminology

Precision, also known as positive predictive value, is the number of elements
within the entire returned set of results.

Precision =
TP

TP + FP
=

RE

RL
(2)

Equal to the number of correct lines of code reported by the debugger com-
pared to the total number of lines returned. The return of a correct location as
one single line versus returning a correct location within several lines.

Accuracy tells us how close a measure is to another measure. Applied within
our domain it unfortunately means we receive a high number of True Negatives,
number of lines correctly excluded, and thus gives us an unfair balance.

Accuracy =
TN + TP

TN + TP + FN + FP
=

RE

L
(3)

Though problematic in our area, the metric does show us how much of the
source code contains type errors which in turn can be useful when combined
with other data. However for the type error debugging domain we employ an
alternative to accuracy, the F1 score.

F1 Score is the total accuracy of our tests; applied solely to have a balance
between precision and recall. As there is an imbalance of data with type error
debugging, F1 is crucial in showing the true results of evaluations.

F1 = 2
Precision ·Recall

Precision + Recall
= 2

RE

E + RL
(4)

With this framework we can now generate easily comparable evaluations for
future work in the type error debugging domain.
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Errors LoC Errors LoC Errors LoC Errors LoC

{1,2} 32 {21,22} 73 {41,42} 156 {61,62} 238
{3,4} 37 {23,24} 77 {43,44} 167 {63,64} 240
{5,6} 45 {25,26} 79 {45,46} 187 {65,66} 258
{7,8} 48 {27,28} 83 {47,48} 192 {67,68} 261
{9,10} 48 {29,30} 86 {49,50} 204 {69,70} 266
{11,12} 52 {31,32} 86 {51,52} 205 {71,72} 271
{13,14} 58 {33,34} 91 {53,54} 212 {73,74} 275
{15,16} 58 {35,36} 94 {55,56} 213 {75,76} 278
{17,18} 65 {37,38} 140 {57,58} 214 {77,78} 287
{19,20} 68 {39,40} 155 {59,60} 227 {79,80} 2305

Table 4. Lines of Code per Module with Associated Errors

6 Evaluating our Method

We now apply our method on a real-world program; Pandoc is a Haskell library
for markup conversion, it has a total of 64,467 lines of code with an average
of 430 lines of code per modules in 150 modules. We place within Pandoc 80
individual type errors into 40 of its modules (using each module twice) of which
each contain between 32 and 2305 lines of code (Table 4).

We compare our presented debugger, Elucidate, with Gramarye2019(G19)
using our framework from Section 5. Gramarye2019 is a modified version of our
previous debugger Gramarye; As the latter did not support modular programs
we added the functionality whilst keeping Delta Debugging free of the Moiety
pre-processing [15].

For this evaluation we answer the following questions:

1. Does our debugger, Elucidate (E20), show positive results compared to Gra-
marye2019 (G19) in the categories of Recall, Precision, and Accuracy?

2. Does E20 reduce the number of Unresolved results compared to G19?
3. Does our pre-processing effect the time of Delta Debugging and that of which

is felt by the user?

6.1 Applying the Framework

In Figure 1 we present the data from the evaluation. The x axis represents each
individual error as in Table 4 with the y axis showing the results from the metrics
in percentages. Recall shows if a type error has been correctly located (100%)
or not (0%). Precision favours a higher percentage; 100% would represent a
singular correct location being returned whereas a lower percentage would show
a correct result within a set of incorrect locations. Accuracy in our graph shows
what percentage of code contains an error; this metric for our evaluation is useful
only to show that as our ill-typed program gets larger our chances of reporting
a correct location diminishes and so instead we shall use the F1 score. As an
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Fig. 1. Recall, Precision, Accuracy, and F1
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alternative to Accuracy the F1 score fits our domain well as a balance between
our two important metrics Recall and Precision; with F1 we prefer a higher
percentage being returned.

Question: Does our debugger, Elucidate (E20), show positive results compared
to Gramarye2019 (G19) in the categories of Recall, Precision, and Accuracy?

Recall shows us if the debugger has returned the correct type error specified. As
we only have a single type error per benchmark our result is binary. Elucidate
(E20) correctly locates 59% of the type errors compared to Gramarye2019 (G19)
who returns fewer correct type errors at 38%. This rise in correct results from
Elucidate is directly linked to the pre-processing of the source code. Firstly, as
we are passing a new configuration to Delta Debugging, setting out how to split
our lines, we have the chance to generate an alternative pathway of modifica-
tions leading to different results from our Blackbox compiler; as the path that
the debugger takes relies on these outcomes an alternative result can happen.
Secondly as our method does not allow the splitting of lines with reliances we
inheritable gain the bias of returning a greater set of locations and so increasing
our chances of success. This bias is countered with the the precision metric.

If we return 100 results as suggested locations and the ill-typed program
only has 100 lines we can say that this would not make a suitable solution.
The recall metric lets us do this without any hindrance so we need to combine
it with another, precision. In the second graph of Figure 1 we see that indeed
Gramarye2019 is more precise than Elucidate; however overall this only accounts
for a difference of 1.78 percentage points meaning we need to invoke the F1 score
for an accurate reading.

F1 blends our two graphs, recall and precision, to form a true overview of
the results. With this set of benchmarks we receive a 1% difference between
the presented debugger Elucidate and the previous Gramarye, with the latter
providing a higher F1 score. This outcome is not surprising; the precision of
Elucidate is hampered by the Moiety algorithm. However, we do not see this as
a negative; it was our aim to avoid causing Unresolveds and as such these are the
most precise result we can currently return for the specific benchmarks utilised
in this evaluation.

6.2 Reduction of the Unresolved Outcomes

Question : Does E20 reduce the number of Unresolved outcomes compared to
G19?

In Figure 6.2 we can see the number of unresolved outcomes for each benchmark.
For ease of reading we have capped Figure 6.2 at a maximum of 280, however
it is worth noting that Gramarye2019 returned four results higher than this at
{60,395}, {80,504}, {63,1436}, and {64,1436} respectively.

On average there are 16 unresolveds per module from Elucidate20 compared
to Gramarye19 at 88; meaning a reduction of 72 calls to the blackbox compiler.
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Fig. 2. Unresolved outcomes

The importance of reducing calls is seen in benchmark 64; here Gramarye19
has 1436 Unresolveds and takes over 70 minutes to return a type error location
whereas Elucidate receives only 7 Unresolveds and the time taken drops to just
over 9 minutes, a difference of around 61 minutes.

Elucidate20 has an significant impact on the reduction of unresolveds however
as with recall and precision in Section 6.1 this outcome needs to combined with
other metrics in our case the Delta Debugging Run-Time and the User Time.

6.3 The Run-Time Speeds

Question : Does our pre-processing effect the time of Delta Debugging and that
of which is felt by the user?

With the unresolveds minimised we hypothesis that the time taken by Delta
Debugging should reduce. However, as our pre-processing is linear, based on lines
of code in the program, an overall run-time increase is also expect. This meant
we split our evaluation into two measurements; time taken for Delta Debugging
(precluding pre-processing) and overall run-time (including pre-processing).

In Figure 6.3 we show the outcome of just the run-time of Delta Debugging
in seconds. As in Section 6.2 we have again modified the figure so that we can
see the data more clearly dropping off the most extreme results of Gramarye19
at {60,1295}, {80,1482}, {64,4201},and {63,4299} .

On average Gramarye19 took 285 seconds to run the Delta Debugging al-
gorithm, 219 seconds more than Elucidate20 at 66 seconds showing a clear link
between total unresolveds received and the time taken to locate a type error.
However, when running a debugger the user experiences the entire process not
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Fig. 3. Delta Debugging Run-time

just the algorithm doing the locating and so we also need to take into consider-
ation the total run-time cost of which we can see in Figure 6.3.

Between the two solutions, Gramarye19 with its lack of Moiety algorithm
takes on average 303 seconds compared to Elucidate at 419 seconds, however
in some cases, namely benchmarks 63 and 64, we can see that pre-processing
does improve overall debugging time. These fluctuations are due to the chances
of receiving unresolveds, the higher the chance the more beneficial it is to run
Elucidate20 over Gramarye19. Unfortunately, we currently do not have a way of
knowing this information prior to running Delta Debugging and so it would be
the case of running one version at least once to decide the optimum debugger.

7 Related Work

Type Error Debugging research has a long and fruitful history starting in the
eighties[21]. It spans many solutions in a variety of categories each specialising
on their own core ideas [13, 6, 4, 20, 17, 14, 3, 9, 1, 11, 26, 18]. However, these solu-
tions do not attempt to directly aim at Real-World programs with type errors
instead evaluating success on small programs typically of the size that first-time
programmers would produce. One general method of debugging that has been
applied to a large 178,000 lines Real-World program is Delta Debugging. De-
fined by Zeller in 1999 it comes in two forms Simplifying and Isolating of which
he applied to a general debugging domain avoiding specifying in certain areas
of errors[5, 23–25]. In our previous paper we applied Zellers work specifically to
type errors in functional languages employing the compiler as a blackbox [15]. A
Blackbox Compiler is different to other Blackbox solutions mentioned in prior
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Fig. 4. User Time

literature(Blackbox Type Checkers, Blackbox Type Inference) as it treats the en-
tire compiler as an external entity rather than a component of it [13, 19, 8]. This
method of only taking external cues, such as whether a program is ill or well-
typed, avoids users having to patch or download a specific compiler to explicitly
improve type error discovery. Though combining a Blackbox Compiler and Iso-
lating Delta Debugging to the domain of type errors returned positive results
reducing Unresolveds was seen to be beneficial future work and one option for
doing so was the modification of the Delta Debugging configuration. Generating
Configurations to avoid invalid inputs for Delta Debugging is not new [10, 12].
The closest to our work observes that modifying lines of source code can and will
generate broken code that will still need to be sent to the test function causing
debugging times to increase [7]. In Binary Reduction of Dependency Graphs the
authors aim to reduce these invalid inputs by using dependency graphs to map
the smallest set of elements that are invalid without each other, reference’s to
other classes, in Java bytecode. Their method is solely based on the simplifying
delta debugging in contrast to isolating of which we feel along with the blackbox
compiler gives us a unique aspect in type error debugging.

8 Conclusion and Future Work

We presented a method of combining Isolating Delta Debugging and a blackbox
compiler to locate type errors in real-world programs. Real-world programs when
applying Delta Debugging to locate type errors are susceptible to parse errors,
particularly in functional programming languages ’parse errors on input’. We
introduce an algorithm that pre-processes an ill-typed program to eliminate these
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parse errors. Our pre-processing algorithm, Moiety, groups lines of source code
that cannot be separated without causing a parse error. These moieties are then
used as a configuration for Delta Debugging to reduce the unresolveds caused
by parse errors which in turn is linked to the time taken in debugging real-world
programs.

To test the success of our solution on locating type errors in real-world pro-
grams we introduced a new set of 80 benchmarks and a framework based on Data
Science standards. One metric within the framework, recall, is the most com-
monly used in our domain and showed a positive result for Elucidate20 with a
21 percentage points increase in locating a type error compared to Gramarye19.
However, when the entire framework is applied it shows that the difference be-
tween Elucidate20 and Gramarye19 drops to just 1 percentage point. This signif-
icant difference in results shows that just applying the traditional recall metric is
not satisfactory for evaluations in this field and the application of the framework
on future type error debugging solutions is needed to be able to report clearer
results, and comparisons between solutions. To measure our methods effect on
the reduction of unresolveds we record the amount returned by each debugger.
Elucidate20 on average returned 72 fewer unresolveds per benchmark reducing
the time taken for Delta Debugging to run by an average of 216 seconds, how-
ever, the overall time the user experiences did increase by 100 seconds compared
to Gramarye19.

For future work an increase of the categories of parse errors we treat with
the pre-processing along with adding other errors such as Variables not in Scope
is a concrete direction; as the Moeity algorithm already works though individual
lines adding these will not increase the overheads and has the possibly of reduc-
ing the time Delta Debugging takes further down. It is also clear that though
pre-processing speeds up Delta Debugging it also slows the overall run-time of
the debugger. Reducing the time it takes to generate a list of moieties would be
extremely beneficial. Lastly, though we applied our method to Haskell programs,
our debugger is nearly language agnostic. Delta Debugging and the Moiety algo-
rithm are not specific for the programming language, allowing for a reasonable
modification towards an agnostic debugger in the future.
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