Dynamic Creation of Well-Typed DSL Expressions

Pieter Koopman', Steffen Michels?, and Rinus Plasmeijer!-?
pieter@cs.ru.nl, steffen@top-software.nl, rinus@cs.ru.nl

1 Radboud University, Nijmegen, The Netherlands www.ru.nl/icis
2 TOP Software Solutions, The Netherlands www . top-software.nl

Extended Abstract — Research Paper

Abstract. For interactive systems it is often desirable that users can create tasks
for the system dynamically. Often these tasks are internally specified by con-
strained types like Generalized DataTypes, GADTs, or function applications us-
ing typeclasses. For plain datatypes, or the corresponding functions, this is rela-
tive easy: the input can be captured by a structured editor or a simple parser from
a textual input. However, in many situations such simple types are not enough.
We either need GADTSs or more constraints than can be checked by a parser.

To guarantee correct inputs we either need the invoke the compiler of the host
language and add the compiled input dynamically to the program, or we need
implement a rather complicated type-checker for the input. Both solutions are
complicated and require a significant of work. Fortunately, Clean provides an
advanced type-system for its dynamics. The existing type-system for these dy-
namic values can check all required type constraints. In this paper we show how
we can make dynamic editors for complex user inputs in iTask programs using
these dynamic types.

Keywords: Dynamics - Web-editors - DSL.

1 Introduction

In the Task Oriented Programming, TOP, system iTask we can derive structured editors
for ordinary datatypes by generic programming [?]. As usual in generic programming
these data types should neither contain functions nor existentially quantified variables.
This is wonderful to create programs in a simple deep embedded Domain Specific Lan-
guage, DSL, dynamically. We define a datatype representing the DSL, derive a struc-
tured web-based editor for this datatype and we have the type-safe dynamic editor for
our DSL.

It is well-known that ordinary datatypes are not powerful enough to capture all con-
straints for more complex DSLs. This was one of the main reasons to develop more
complex datatypes like GADTs and introduce additional language features like quan-
tified type variables in the datatypes and the associated class constraints. These exten-
sions of the datatypes cannot be handled by the generic system for good reasons: such
a datatype cannot be represented in the usual generic way. Nevertheless, such datatypes
(or even better the corresponding functions) are required when we have DSL containing
features like overloading without dynamic type-problems.



2 P. Koopman et al.

Typical systems requiring such a complex input are iTask systems where the user
can create tasks for the problem domain dynamically. Another example is the mTask
system that extends the iTask system with tasks that can be executed on tiny Internet
of Things, IoT, devices [?]. These IoT devices are typically too small and too slow
to execute full blown iTask programs. Nevertheless, we are able to execute heavily
restricted tasks on such IoT devices and even to ship those tasks dynamically to the
10T devices [?]. The mTask system is a tagless DSL: the system consists of a set of
type classes and instances for each interpretation of mTask programs [?]. It is often
desirable to compose such mTask programs dynamically. Since the mTask DSL cannot
be represented in a type safe way by a plain algebraic datatype, this is not possible
without risking runtime type-errors.

In this paper we show how we can make typesafe DSL programs using a special
variant of iTask editors. The basic idea is to provide a selection box in the web-editor
where the user can select one of the elements of the DSL. The arguments of this DSL-
construct are added later. The iTask editor produces aDynamic function corresponding to
the DSL construct that still requires the appropriate arguments. Next we use iTask edi-
tors to add the arguments of the desired type. Using the type of the arguments required
by the generated Dynamic can select the basic type of the elements that should be enabled
in the iTask editor. Type errors in the arguments are indicated in the web-interface as
soon as the arguments are provided in the iTask editor. This approach requires more
programmer effort that just deriving a web-editors for a plain datatype, but it solves the
problem of dynamically generating DSL expressions with the required type constraints.

In Section 2 we briefly review the web-editors for plain ADTSs in the iTask system.
Section 3 shows how we can make a variant of GADTs suited to make type-safe DSLs
and how to make a type-safe web-editor for such a type. In Section 4 we show how we
make a web-editor for a simple version of iTask expressions in an iTask editor. Section
5 reveals some of the internals of the dynamic editors. Finally, we discus the results of
this paper in Section 6.

2 Basic iTask web-editors

Web-based editors for arbitrary algebraic datatypes are one of the basic components
of the iTask system. Such an editor is a basic task that enables the user to construct
an instance of such a datatype. Using a combinator other tasks can decide to use the
current value of the web-editor as the final result. Examples of such combinators are a
continue-button to be pressed by the user and a step combinator with a continuation that
steps based on the actual value in the web-editor.

To illustrate the use of web-editors we introduce a datatype to represent a small DSL
with integer and Boolean values and a tiny set of operations.

:: EExpr
= Int Int
| Bool Bool
| EVar String
| EAJd EExpr EExpr // integer addition
| EAnd EExpr EExpr // Boolean And



Dynamic Creation of Well-Typed DSL Expressions 3

| EEq EExpr EExpr // overloaded equality
| EIf EExpr EExpr EExpr // conditional

In the iTask system we can create a web-editor for values of type EEsxpr by:
derive class iTask EExpr // generate all needed generic manipulations of the type
editFExpr :: Task EExpr

editEExpr = Title "Make an EExpr" @ enterInformation []

Start world = doTasks editEExpr world

Some screenshots of resulting editors in an arbitrary browser look like:

Make an EExpr Make an EExpr

EIf ~ EBf

EEg w EEq w

Int hd Int e

42 Gl 5
EVar o Bool w

x | O

Int e Int i

1 cal [ E

EVar ~ Bool v

X |

Fig. 1. Some screenshots of the editor for expression in use.

Obviously, the datatype EExpr and hence the web-editor for this type allows many
expressions that should be rejected in strongly typed DSL. For instance, the expression
EAdd (Int 5) (Bool True) is happily accepted.

3 Generalized Algebraic DataTypes

To enable the type system of the host language, here Clean, to check the types in our
DSL we need a more advanced type to represent our DSL. Various versions of GADTs
are proposed to solve this problem. Here we use a representation that does not require
an extension of the type system.



4 P. Koopman et al.

:: Expr a
=Lit a // overloaded literal
| Var (BM a Int) String // integer variable
| Add BM a Int) (Expr Int) Expr Int) // integer addition
| And (BM a Bool) (Expr Bool) (Expr Bool) // Boolean conjunction
| db: Eq (BM a Bool) (Expr b) (Expr b) & == // overloaded equality

:: BMa b= {db::a=b, ba::b=a} // BiMap to express the equality of the types a and b

bm::BMaa // the only instance of BM that is ever used
bm = {ab =1d, ba =1id}

The erroneous expression from above in this representation isAdd bm (Lit 5) (Lit True).
The Clean type-checker rejects this expression with the message Type error in
argument 3 of Add: cannot unify Expr Int with Expr Bool.This
is exactly the effect we want for our DSL. Moreover, the error message indicates the
type problem rather well.

A typesafe evaluator for this DSL reads:

eval :: (Expr a) — a

eval expr = case expr of
Int bmi =Dhmbai
Boolbmb =hmbab
Var bms =bmba 0
Add bm x v =bm.ba (
And bm x y =bm.ba (eval x && eval y)
Eg bmxy=bmba (eval x ==eval y)

eval x + eval y)

Problems start when we want to use a web-editor for the type Expr a. There are
actually various problems:

1. The system cannot decide the type of the type argument a and hence cannot make
an editor for it. This is very similar to making an editor for type [a], the iTask
system cannot make an editor for it since it is unclear what editor must be used for
a. We can cope with this problem by choosing an specific argument like make on
editor for [Int] or Expr Bool.

2. The type Expr uses the type Int, Bool and BM a b. In order to derive the class iTask for
Expr we need instances for all those types. For the basic types Int and Bool this is not
a problem, the iTask library provides appropriate instances. Our type BM contains
functions and hence it is impossible to derive a web-editor for it. Since we only
need the instance bm for this type, we can try to define some appropriate instance by
hand.

3. The hardest problem is that we need an existentially quantified type variable b to
express the overloading of the equality, Eq, in our DSL. The iTask system has no
clue what type is required here and hence cannot make editors for the arguments of
the conditional.

Note that this is not a problem for the addition, Add, and logical conjunction, And.
The type Expr a indicates the required types of the arguments here; Int and Bool
respectively.



Dynamic Creation of Well-Typed DSL Expressions 5

In order to make an editor for this type we use a lower abstraction level of the iTask
system. We manually code a drop-down menu containing relevant typed constructs in
the DSL. When the user selects such a construct the system generate a dynamic function
that will produce the corresponding DSL construct when it has received the correct type
arguments. The system uses the dynamic types to select the applicable elements in the
drop-down menu.

For instance the basic case and the relevant integer expressions are made by:

exprEditor :: DynamicEditor (Expr a) | type a
exprEditor = DynamicEditor
[ // This cons is used to provide untyped ‘TaskExpr‘ values.
DynamicCons $ functionConsDyn "Expr" " (enter expr)"
(dynamic \ (Typed expr) — expr :: (Typed Expr a”) a”) — (Expr a”))
<@ HideIfOnlyChoice
, DynamicConsGroup "Int"
[ functionConsDyn "Int" "an integer value"
dynamic \i — Typed (Int bm i) :: Int — Typed (Expr Int) Int)
<@ HideIfOnlyChoice
, functionConsDyn "Add" "add"
(dynamic \ (Typed x) (Typed y) — Typed Addbm x y) ::
(Typed Expr Int) Int) (Typed Expr Int) Int) — Typed Expr Int) Int)
<@ applyHorizontalBoxedlayout <@ HideIfOnlyChoice
, functionConsDyn "Var" "variable"
(dynamic A (Typed s) — Typed (Var bm s) ::
(Typed String String) — (Typed (Expr Int) Int)) <@ HideIfOnlyChoice

]

Some screenshots of the dynamic editor depicts the generated user interface are depicted
in Figure 2.

Contruct an expression Contruct an expression

Create the expression of your choice. Create the expression of your choice.

and v and v

a boolean value  ~ eq v

an integer value |

eq w 3 H|

Select... add v

mt e 2l

) an integer value |

an integer value > = |
add a boolean value  «
variable

Fig. 2. Screenshots of the editor for typesafe expressions.



6 P. Koopman et al.

4 Function Editors

For functions, like iTask or mTask expressions, instead of datatypes we have a very
similar problem as for our DSL type Expr a. It is impossible to make generic editors
for functions and hence editors for iTask and mTask expressions. Fortunately, we can
use a very similar solutions as in the previous section: we define a list of editors by
hand to produce relevant dynamics representing the relevant functions. The very same
dynamic machinery is used to select relevant editors and to check the type constraints
dynamically.

An example works, but has to be added to this paper. Some screenshots to illustrate
the possibilities to enter a simple task and to execute it are given in Figure 3.

Contruct a task

Select the editors and combinators you'd like to use. When you're ready, push the 'Run’ button below to run your program.

Meme: yourinput  DYnamic editor demo
Contine

Fig. 3. Some screenshots of an editor for iTasks and the execution of the created iTask.

S Dynamic Editors

In the final version of this paper this section reveals the internal details of the dynamic
editor extension of the iTask system.

6 Discussion

To represent strongly typed deep or shallow embedded DSL plain algebraic datatypes
are insufficient. We need some form of generalized ADTs or function applications guar-
antee type safe DSL expression by type system of the host language. It is often conve-
nient to create DSL programs dynamically instead of as a part of a program in the host
language. Unfortunately, the web-editors are not able to handle GADTSs and function
composition. In this paper we introduced a powerful workaround. We showed how we
can make handcrafted editors that produce dynamic values and how the native type sup-
port for these dynamics can be used to check the types in our DSL dynamically. This
allows us to compose typesafe programs in DSLs dynamically.

References

To be added.



