
Efficient Translation of Certain Irregular
Data-Parallel Array Comprehensions?

(Extended Abstract)

Martin Elsman
[0000−0002−6061−5993]

Ken Friis Larsen �
[0000−0002−0990−5127]

Department of Computer Science, University of Copenhagen, Denmark
{mael,kflarsen}@diku.dk

Abstract. We present an array comprehension language that features
execution on single-instruction multiple-data (SIMD) architectures even
in cases where a comprehension leads to certain kinds of non-regular
nested parallelism. The comprehension language naturally supports fea-
tures such as nesting, zipping, and filtering, and it also supports more
advanced features such as sorting. We demonstrate how the language
is compiled into efficient Futhark code featuring calls to the Futhark
segmented library. Moreover, we give a number of examples showing that
the array comprehension language provides the programmer with effec-
tive abstractions for expressing queries and computations to be executed
on SIMD architectures, such as GPUs.

Keywords: List comprehensions · Irregular nested parallelism · Data-
parallelism.

1 Introduction

SIMD architectures, such as GPUs, have been known to be notoriously difficult
to program as they are exposed to programmers through low-level APIs such as
OpenCL [30] and CUDA [27]. Recently, however, a number of research groups
have made progress in the development of high-level data-parallel functional lan-
guage technology with particular focus on targeting SIMD architectures through
compiler technology such as fusion [6,8,13,17,26,32], vectorisation and flattening
[1,7,21,23,24], and multi-versioning [15,19,29].

Functional languages, on the other hand, are recognised for their state-of-the-
art abstraction features, including support for higher-order programming, type
polymorphism, advanced module systems, and constructs for controlling and
reasoning about computational effects. Whereas some of these techniques carry
over to data-parallel functional languages, some techniques are closely tight to

? This research has been partially supported by an Independent Research Fund Den-
mark grant under the research project FUTHARK: Functional Technology for High-
performance Architectures.

2 M. Elsman & K. F. Larsen

the concept of computations on lists, a simple inductive data structure embraced
by the functional language community for its simplicity and associated straight-
forward reasoning principles. One such abstraction technique is the notion of
list comprehensions, a syntactic notation that elegantly allows for expressing
complex computations on lists [22,34].

In this paper, we show how comprehensions carry over to data-parallel pro-
gramming on arrays and how a high-level flattening technique can be used to
turn certain kinds of non-regular nested parallelism, which is often introduced
by the compilation of array comprehensions, into flat data-parallel code.

The contributions of this paper are the following.

1. We demonstrate how a class of array comprehensions can be compiled into
data-parallel computations and, in particular, how a technique for flattening,
called flattening-by-expansion, leads to flat data-parallel code.

2. We give a number of examples demonstrating processing and computations
on data and examples demonstrating pure computations.

3. We provide evidence that the proposed compilation scheme leads to efficient
code through the use of Futhark, a data-parallel functional array language
that targets GPUs.

The remainder of this paper is organised as follows. In Sect. 2, we introduce
the concept of array comprehensions and give examples of comprehensions with
particular emphasis on the motivation for executing non-regular nested com-
prehensions on parallel architectures. In Sect. 3, we briefly present the Futhark
language and describe the flattening-by-expansion technique, which is exposed
to the Futhark programmer in the Futhark segmented library [11]. In Sect. 4, we
present the translation from array comprehensions to Futhark expressions and in
Sect. 5, we present a larger example, demonstrating that array comprehensions
can be used for writing certain irregular data-parallel algorithms. In Sect. 6, we
describe related work and in Sect. 7, we conclude and suggest future work.

2 Motivating Examples

Simple array comprehensions, consisting of an expression e followed by a binding
qualifier x ← e′, where x is a variable and e is an array expression, take the
form [e | x ← e′], which is semantically equivalent to a map expression of
the form map (λx → e) e′. Array comprehensions may include multiple binding
qualifiers and filtering qualifiers, each of which are separated by commas. To give
an example, to compute the first 50 Pythagorean triples,1 we can use the array
comprehension:

[(x,y,z) | x ← [1.. <100] , y ← [x..<100], z ← [y..<(x+y)],
z < 100, x*x + y*y == z*z]

1 A Pythagorean triple is a triple of natural numbers x, y, and z that satisfy the
properties x2 + y2 = z2 and x ≤ y ≤ z.

Translation of Irregular Data-Parallel Array Comprehensions 3

An expression [e..<e′], where e and e′ are integer expressions, is a Futhark
range expression, which denotes an array containing the integer values between
e (inclusive) and e′ (non-inclusive). Notice that binding qualifiers allow the pro-
grammer to refer to bound variables in subsequent binding and filter qualifiers.

Traditionally, list comprehensions on the above form [22,34] are translated
into nested map expressions, but because the nested iteration space is non-regular
(i.e., inner map expressions are applied to arrays of different sizes), we cannot use
this approach for translating into a data-parallel functional language such as
Futhark, as Futhark does not support such irregular nested computations.

There are a number of possibilities for solving this issue. First, if we were
targeting a data-parallel language supporting full flattening, such as NESL [4,2],
non-regular map nests would be translated into fully flattened code in which
arrays would be represented as a flattened structure with additional flag arrays
specifying row splitting. Unfortunately, the overhead of such an approach can
be significant and it is the topic of current research to have a language like
NESL provide acceptable performance also in cases that make only limited use
of irregular nested parallelism [28]. As a second possibility, we could choose to
split non-regular map nests, keep the inner parallelism, and sequentialise the
outer parallelism. Such an approach, however, will work well only in cases where
there is sufficient inner regular nested parallelism. Yet a possibility would be to
use a padding scheme, which, unfortunately could lead to work inefficient code,
for which the sequential work complexity is superior to the work complexity for
the padded parallel code version.

In this paper, we will instead follow a flattening-by-expansion approach [12],
which can be implemented as a library functionality and which Futhark exposes
through the Futhark segmented library. Before presenting this approach, we first
introduce the Futhark language.

3 The Futhark Language and Compiler

Futhark is a data-parallel functional array language and compiler aimed at tar-
geting GPUs. It features a number of parallel second-order array combinators
(SOACs), including map, reduce, filter, and scan, and supports regular nested
parallelism and regular multi-dimensional arrays [18]. Futhark provides the pro-
grammer with type polymorphism, a restricted notion of higher-order functions
[20], and a higher-order module system [10]. These abstraction features are all
eliminated at compile time using specialisation techniques, which together with
fusion, regular flattening, code versioning, and tiling techniques leave the pro-
grammer with efficient executables to be executed on GPUs.2

3.1 Flattening by Expansion

The Futhark segmented library exposes the following library function:

2 Futhark also generates fairly efficient code for execution on CPUs.

4 M. Elsman & K. F. Larsen

val expand ’a ’b : (a → i32) → (a → i32 → b) → []a → []b

The function expands a source array into a target array given (1) a function that
determines, for each source element, how many target elements it expands to and
(2) a function that computes a particular target element based on a source ele-
ment and the target element number associated with the source. As an example,
the expression expand (λx → x) (*) [2,3,1] returns the array [0,2,0,3,6,0].
Other examples of use include a work-efficient data-parallel flattened version of
Eratosthenes’ sieve, a flattened version of sparse matrix-vector multiplication, a
way of computing the set of points that make up a line segment and a way of
computing the set of line segments making up filled 2D geometric objects, such
as circles or triangles [12].

4 Array Comprehension Syntax and Translation

We use z, y, and z to range over program variables. Fig. 1 shows the syntax
for expressions and comprehensions, including a construct for zipping (also else-
where called parallel comprehensions) following [22].

e, f, g ::= d | x | (e1, · · · , en) | e.i Expressions
| let w = e in e′ | λw → e | e1 e2 | . . .
| iota e | map f e | filter f e | zip e e′

| expand f g e
| [e | q] Comprehensions

w ::= x | (w1, · · · , wn) Patterns
p, q, r ::= Qualifiers

w ← e Binding
| e Filtering
| p , q Sequence
| p | q Zip

Fig. 1. Syntax of expressions and comprehensions.

The syntax for expressions is a subset of the syntax for Futhark expressions
but extended with a syntactic construct for array comprehensions. An expression
of the form iota e results in an integer array containing the integers from 0 to the
integer resulting from computing e (not inclusive). We assume that the syntax
for array range expressions, as used in the introduction, have been compiled into
expressions using map and iota.

A zipping comprehension on the form [e | q1 | q2] is translated into the
expression map (λ(w1,w2) → e) (zip e1 e2), where e1 and e2 are the results of
translating [w1 | q1] and [w2 | q2], respectively, and w1 and w2 are the
patterns containing the variables bound by q1 and q2, respectively.

Translation of Irregular Data-Parallel Array Comprehensions 5

Before we show how comprehensions are translated into data-parallel Futhark
expressions, we first define a few helper functions. When w and w′ are patterns,
the result of appending w and w′, written w ⊕ w′, is defined by the following
equations:

() ⊕ w = w
w ⊕ () = w

(w1, · · · , wn) ⊕ (w′1, · · · , w′m) = (w1, · · · , wn, w
′
1, · · · , w′m)

x ⊕ (w1, · · · , wn) = (x,w1, · · · , wn)
(w1, · · · , wn) ⊕ x = (w1, · · · , wn, x)

x ⊕ y = (x, y)

We use Exp to denote the set of expressions and Pat to denote the set of patterns.
For convenience, we sometimes treat a pattern as an expression, which is always
possible as Pat ⊂ Exp.

Qualifiers [[q]] : Pat× Exp→ Pat× Exp

[[w ← e]] ((), _) = (w, e)
[[w ← e]] (w0, v) = (w0 ⊕ w

, expand (λw0 → Size e)
(λw0 → λx→ let y = Fetch e x

in w0 ⊕ y)
v

)
[[p , q]] (w, v) = [[q]] ([[p]] (w, v))
[[p | q]] (w, v) = let (wp, ep) = [[p]] (w, v)

(wq, eq) = [[q]] (w, v)
in ((wp , wq), zip ep eq)

[[e]] ((), _) = Failure "expecting non-filtering"
[[e]] (w, v) = (w, filter (λw → e) v)

Comprehensions [[[e | p]]]c : Exp

[[[e | p]]]c = let (w, v) = [[p]] ((), ())
in map (λw → e) v

Fig. 2. Translating comprehensions.

The translation of comprehensions and qualifiers are given in Fig. 2. Trans-
lating a qualifier q takes as arguments, besides q, a pair of a pattern w, defining
variables that are in scope in q, and an array expression that defines an array of
elements that each matches the pattern w. The translation then returns a pair of
a pattern and an array expression that together define the context for possibly
further qualifiers.

The translation functions make use of two compile-time functions, Size :
Exp → Exp and Fetch : Exp → Exp → Exp, which we have not yet defined.

6 M. Elsman & K. F. Larsen

These functions analyse Futhark expression syntax trees. The functions are par-
tial in the sense that they depend on their first argument to have a certain
form. In particular, the Size function takes an array-computing expression and
returns, if possible, an expression representing the size of the given array without
constructing the actual array. For instance, if the expression is an expression of
the form iota e, the Size function will return the expression e as this expression
represents the size of the array. Definitions of the Size and Fetch functions are
given in Fig. 3.

Size : Exp→ Exp
Size (iota e) = e
Size (map f e) = f(Size e)
Size _ = undefined

Fetch : Exp→ Exp→ Exp
Fetch (iota e) e′ = e′

Fetch (map f e) e′ = f(Fetch e e′)
Fetch _ _ = undefined

Fig. 3. Simple versions of the Size and Fetch functions.

The feature that the Size and Fetch functions rely on is that it should be
possible to determine the size of the array and the i’th element of the array
without actually materialising the array, as such a materialisation would result
in irregular structures. Notice, however, that we can extend the definitions of
Size and Fetch to query (and index into) arrays that are invariant to the guarding
pattern (i.e., w0 in the translation.)

4.1 The Regular Case and the Very Irregular Case

When the Size function returns an expression that is independent of the variables
defined in the guarding pattern, the translation can instead generate a simple
regular map-nest. Futhark is not particularly clever regarding the generated code
for the expand library function, thus, it does not itself recognise that it sometimes
will be possible to replace a call to the expand function with a simpler map-nest.

As mentioned in the introduction, we could apply a fall-back implementation
in the case that Size and Fetch are undefined on the given input. In these cases, we
could choose to sequentialise the outer parallelism and thereby still allow Futhark
to compute correct results. We have not yet implemented such a possibility.

5 More Examples

As a more involved example we define an array comprehension that defines the
set of points that make up a set of lines. We first give the type definitions for
points and lines and a few utility functions for computing the number of points
that make up a line, the slope of a line, and a function that computes the i’th
point in a line:3

3 A thorough discussion of these definitions are given in [12].

Translation of Irregular Data-Parallel Array Comprehensions 7

type point = (i32 ,i32)
type line = (point ,point)
let points_in_line ((x1,y1),(x2,y2)) =

i32 .(1 + max(abs(x2 -x1)) (abs(y2 -y1)))
let compare (v1:i32) (v2:i32) : i32 =

if v2 > v1 then 1 else if v1 > v2 then -1 else 0

let slope (x1 ,y1) (x2,y2) : f32 =
if x2 == x1 then if y2 > y1 then 1 else -1
else r32 (y2 -y1) / f32.abs (r32(x2-x1))

let get_point_in_line ((p1,p2):line) (i:i32) : point =
if i32.abs (p1.1-p2.1) > i32.abs (p1.2-p2.2)
then let dir = compare p1.1 p2.1

let sl = slope p1 p2
in (p1.1 + dir*i,

p1.2 + t32 (f32.round (sl*r32 i)))
else let dir = compare p1.2 p2.2

let sl = slope (p1.2, p1.1) (p2.2, p2.1)
in (p1.1 + t32 (f32.round (sl*r32 i)),

p1.2 + i*dir)

The code utilises a number of library functions available in the modules i32
and f32 and general utility functions for converting between values of basic types
(e.g., the function t32 has type f32→i32). Another feature is the module local
opening syntax; in the expression i32.(e), identifiers defined by the module i32
can be accessed unqualified within the expression e.

We can now define an array comprehension that computes the array of points
that make up a set of lines:

let points_of_lines (lines: []line) : []point =
[p | line ← lines , i ← [0..< get_points_in_line line],

p ← get_point_in_line line i]

Notice that the reason the technique works is that the array range computation
is a shorthand for an iota expression, which can be dealt with by the Size and
Fetch functions, defined in the previous section. The result is a work-efficient
data-parallel definition of line drawing.

The other flattening-by-expansion examples defined in [12], in particular,
drawing of filled 2D geometric objects, sparse matrix-vector multiplication, and
the Sieve of Eratosthenes, can also be expressed as array comprehensions.

6 Related work

Most related to this work is previous work on supporting nested parallelism,
including the work on flattening of nested parallelism in NESL [4,3], which was
extended to operate on a richer set of values in Data-parallel Haskell [5,7], and

8 M. Elsman & K. F. Larsen

the work on data-only flattening [36]. These approaches focus on maximising
expressed parallelism, but has proven challenging to implement efficiently in
practice, particularly on GPUs [2]. Other promising attempts at compiling NESL
to GPUs include Nessie [28], which is still under development, and CuNesl [36],
which aims at mapping different levels of nested parallelism to different levels of
parallelism on the GPU, but lacks critical optimisations such as fusion.

Other data-parallel languages include Obsidian [32,8,31] and Accelerate [6],
which are both embedded in Haskell, and do not feature arbitrary nested paral-
lelism. In Accelerate, programmers may easily write manually flattened programs
in the expand style, as segmented scans and scatter operations are readily avail-
able. We can therefore conjecture that support for array comprehensions in the
style suggested here could also be made available in a language such as Accel-
erate. Accelerate also supports certain forms of irregular arrays by supporting a
notion of irregular stream scheduling [9].

Also related to this work is the work on the array language SaC [14], which
also supports a kind of comprehension syntax, in particularly, in the context of
SaC’s with-loop construct.

Other attempts at supporting nested irregular parallelism on GPUs are the
more dynamic approaches, such as dynamic thread block launching [35] and dy-
namic parallelism, which are extensions to the GPU execution model involving
runtime and micro architecture changes. These approaches to supporting irregu-
lar parallelism does, however, often come with a significant overhead [33]. Other
dynamic approaches include a partial flattening approach, implemented using
thread stealing, which also introduce a significant overhead [21].

7 Conclusion and Future Work

We have shown how the notion of array comprehensions can be used for spec-
ifying certain kinds of irregular data-parallel algorithms and that such array
comprehensions can be translated into flat data-parallel code using a library
approach to flattening.

There are a number of possibilities for future work. First, it would be inter-
esting to investigate the possibility of extending the approach to cover a larger
class of irregular nested data-parallel problems. Second, we are currently inves-
tigating the possibility of extending the approach to support sorting, which is
straightforward using one of Futhark’s parallel sorting routines, and group-by
constructs [22] using segmented reductions [25]. Moreover, it would be interest-
ing to investigate various optimisations. In particular, one can apply identities
involving expand to obtain regular map nests when possible. Similarly, for group-
by constructs, it should be possible to turn generated segmented reductions into
more efficient regular reductions [16].

References

1. Bergstrom, L., Fluet, M., Rainey, M., Reppy, J., Rosen, S., Shaw, A.: Data-only
Flattening for Nested Data Parallelism. In: Procs. of the 18th ACM SIGPLAN

Translation of Irregular Data-Parallel Array Comprehensions 9

Symp. on Principles and Practice of Parallel Programming. pp. 81–92. PPoPP ’13,
ACM, New York, NY, USA (2013)

2. Bergstrom, L., Reppy, J.: Nested data-parallelism on the GPU. In: Proceedings of
the 17th ACM SIGPLAN International Conference on Functional Programming.
pp. 247–258. ICFP ’12, ACM, New York, NY, USA (2012)

3. Blelloch, G.E.: Vector models for data-parallel computing, vol. 75. MIT press Cam-
bridge (1990)

4. Blelloch, G.E., Greiner, J.: A provable time and space efficient implementation
of NESL. In: Proceedings of the First ACM SIGPLAN Int. Conf. on Functional
Programming. pp. 213–225. ICFP ’96, ACM, New York, NY, USA (1996)

5. Chakravarty, M., Leshchinskiy, R., Jones, S.P., Keller, G., Marlow, S.: Data Par-
allel Haskell: A Status Report. In: Int. Work. on Decl. Aspects of Multicore Prog.
(DAMP). pp. 10–18 (2007)

6. Chakravarty, M.M., Keller, G., Lee, S., McDonell, T.L., Grover, V.: Accelerating
Haskell array codes with multicore GPUs. In: Proc. of the sixth workshop on
Declarative aspects of multicore programming. pp. 3–14. ACM (2011)

7. Chakravarty, M.M., Leshchinskiy, R., Jones, S.P., Keller, G.: Partial vectorisation
of haskell programs. In: Proc ACM Workshop on Declarative Aspects of Multicore
Programming, San Francisco (2008)

8. Claessen, K., Sheeran, M., Svensson, B.J.: Expressive Array Constructs in an Em-
bedded GPU Kernel Programming Language. In: Work. on Decl. Aspects of Mul-
ticore Prog DAMP. pp. 21–30 (2012)

9. Clifton-Everest, R., McDonell, T.L., Chakravarty, M.M.T., Keller, G.: Streaming
irregular arrays. In: Proceedings of the 10th ACM SIGPLAN International Sym-
posium on Haskell. pp. 174–185. Haskell 2017, ACM, New York, NY, USA (2017)

10. Elsman, M., Henriksen, T., Annenkov, D., Oancea, C.E.: Static interpretation of
higher-order modules in Futhark: Functional GPU programming in the large. Pro-
ceedings of the ACM on Programming Languages 2(ICFP), 97:1–97:30 (Jul 2018)

11. Elsman, M., Henriksen, T., Oancea, C.E.: Parallel Programming in Futhark. DIKU
(November 2018), https://futhark-book.readthedocs.io

12. Elsman, M., Henriksen, T., Serup, N.G.W.: Data-parallel flattening by expansion.
In: Proceedings of the 6th ACM SIGPLAN Int. Work. on Libraries, Lang. and
Comp. for Array Prog. pp. 14–24. ARRAY ’19, ACM, New York, NY, USA (2019)

13. Grelck, C., Hinckfuss, K., Scholz, S.B.: With-loop fusion for data locality and
parallelism. In: Proc. of the 17th Int. Conf. on Impl. and Appl. of Functional
Languages. pp. 178–195. IFL ’05, Springer-Verlag, Berlin, Heidelberg (2006)

14. Grelck, C., Scholz, S.B.: SAC: A functional array language for efficient multi-
threaded execution. Int. Journal of Parallel Programming 34(4), 383–427 (2006)

15. Hagedorn, B., Stoltzfus, L., Steuwer, M., Gorlatch, S., Dubach, C.: High perfor-
mance stencil code generation with Lift. In: Procs. of Int. Symp. on Code Gen.
and Opt. pp. 100–112. CGO 2018, ACM, New York, NY, USA (2018)

16. Henriksen, T., Larsen, K.F., Oancea, C.E.: Design and GPGPU performance of
futhark’s redomap construct. In: Proceedings of the 3rd ACM SIGPLAN Int. Work.
on Libraries, Languages, and Comp. for Array Prog. pp. 17–24. ARRAY 2016,
ACM, New York, NY, USA (2016)

17. Henriksen, T., Oancea, C.E.: A T2 graph-reduction approach to fusion. In: Pro-
ceedings of the 2Nd ACM SIGPLAN Workshop on Functional High-performance
Computing. pp. 47–58. FHPC ’13, ACM, New York, NY, USA (2013)

18. Henriksen, T., Serup, N.G.W., Elsman, M., Henglein, F., Oancea, C.E.: Futhark:
Purely functional gpu-programming with nested parallelism and in-place array

https://futhark-book.readthedocs.io

10 M. Elsman & K. F. Larsen

updates. In: Proceedings of the 38th ACM SIGPLAN Conf. on Prog. Language
Design and Impl. pp. 556–571. PLDI 2017, ACM, New York, NY, USA (2017)

19. Henriksen, T., Thorøe, F., Elsman, M., Oancea, C.: Incremental flattening for
nested data parallelism. In: Proc. of the 24th Symposium on Principles and Practice
of Parallel Prog. pp. 53–67. PPoPP ’19, ACM, New York, NY, USA (2019)

20. Hovgaard, A.K., Henriksen, T., Elsman, M.: High-performance defunctionaliza-
tion in Futhark. In: Symposium on Trends in Functional Programming (TFP’18)
(September 2018)

21. Huang, M.H., Yang, W.: Partial flattening: A compilation technique for irregu-
lar nested parallelism on GPGPUs. In: Procs. of the 45th Int. Conf. on Parallel
Processing. pp. 552–561. ICPP ’16 (08 2016)

22. Jones, S.P., Wadler, P.: Comprehensive Comprehensions: Comprehensions with
"order by" and "group by". In: Proceedings of the ACM SIGPLAN Workshop on
Haskell Workshop. pp. 61–72. Haskell ’07, ACM, New York, NY, USA (2007)

23. Keller, G., Chakravarty, M.M., Leshchinskiy, R., Lippmeier, B., Peyton Jones, S.:
Vectorisation avoidance. In: Proceedings of the 2012 Haskell Symposium. pp. 37–
48. Haskell ’12, ACM, New York, NY, USA (2012)

24. Keller, G., Simons, M.: A calculational approach to flattening nested data par-
allelism in functional languages. In: Proceedings of the Second Asian Computing
Science Conference on Concurrency and Parallelism, Programming, Networking,
and Security. pp. 234–243. ASIAN ’96, Springer-Verlag, Berlin, Heidelberg (1996)

25. Larsen, R.W., Henriksen, T.: Strategies for regular segmented reductions on GPU.
In: Proceedings of the 6th ACM SIGPLAN Int. Work. on Functional High-
Performance Comp. pp. 42–52. FHPC 2017, ACM, New York, NY, USA (2017)

26. McDonell, T.L., Chakravarty, M.M., Keller, G., Lippmeier, B.: Optimising Purely
Functional GPU Programs. In: Procs. of Int. Conf. Funct. Prog. (ICFP) (2013)

27. NVIDIA: CUDA API Reference Manual, 8.0 edn. (Oct 2017), http://docs.nvidia.
com/cuda

28. Reppy, J., Sandler, N.: Nessie: A NESL to CUDA compiler. Compilers for Parallel
Comp. Work. (CPC ’15) (Jan 2015), imperial College, London, UK

29. Steuwer, M., Remmelg, T., Dubach, C.: Lift: A Functional Data-parallel IR for
High-performance GPU Code Generation. In: Procs. of Int. Symp. on Code Gen.
and Opt. pp. 74–85. CGO’17, IEEE Press, Piscataway, NJ, USA (2017)

30. Stone, J.E., Gohara, D., Shi, G.: Opencl: A parallel programming standard for
heterogeneous computing systems. IEEE Des. Test 12(3), 66–73 (May 2010)

31. Svensson, J.: Obsidian: GPU Kernel Programming in Haskell. Ph.D. thesis,
Chalmers University of Technology (2011)

32. Svensson, J., Sheeran, M., Claessen, K.: Obsidian: A domain specific embedded
language for parallel programming of graphics processors. In: Proc. of the 20th
Int. Conf. on Impl. and Appl. of Func. Lang. IFL’08, Springer-Verlag (2011)

33. Tang, X., Pattnaik, A., Jiang, H., Kayiran, O., Jog, A., Pai, S., Ibrahim, M.,
Kandemir, M., Das, C.: Controlled kernel launch for dynamic parallelism in gpus.
In: Proc. of the 23rd Symp. on High Perf. Comp. Arch. HPCA ’17, IEEE (5 2017)

34. Wadler, P.: List comprehensions. In: Peyton Jones, S. (ed.) The Implementation
of Functional Programming Languages. pp. 127–138. Prentice Hall (January 1987)

35. Wang, J., Rubin, N., Sidelnik, A., Yalamanchili, S.: Dynamic thread block launch:
A lightweight execution mechanism to support irregular applications on GPUs. In:
Procs. of the 42nd Int. Symp. on Comp. Arch. ISCA ’15, ACM (2015)

36. Zhang, Y., Mueller, F.: CuNesl: Compiling nested data-parallel languages for SIMT
architectures. In: Proc. of the 41st Int. Conf. on Parallel Processing. pp. 340–349.
ICPP’12, IEEE, Washington, DC, USA (2012)

http://docs.nvidia.com/cuda
http://docs.nvidia.com/cuda

	Efficient Translation of Certain Irregular Data-Parallel Array Comprehensions (Extended Abstract)

