
Implementation of Digital Synthesis in Functional Programming?

Evan Sitt, Xiaotian Su, Beka Grdzelishvili, Zurab Tsinadze, Zongpu Xie
Hossameldin Abdin, Giorgi Botkoveli, Nikola Cenikj, Tringa Sylaj, and Viktória Zsók

Eötvös Loránd University, Faculty of Informatics
Department of Programming Languages and Compilers
H-1117 Budapest, Pázmány Péter sétány 1/C., Hungary

{sitt.evan, suxiaotian31, bekagrdzelishvili0, zukatsinadze, szumixie,
hossamabdeen17, botko.gio, nicola.cenic, tringasylaj}@gmail.com,

zsv@inf.elte.hu
– Project Paper –

Abstract. Digital synthesis is a cross discipline application used in fields such as music, telecommu-
nication, and others. The nature of digital synthesis involving multiple tracks as well as parallel post-
processes lends itself naturally to the functional programming paradigm. The paper demonstrates this by
creating a fully functional, cross platform, standalone synthesizer application framework implemented
in a pure lazy functional language. The application handles MIDI input and produces wav output played
by any multimedia player. Therefore, it can serve as a preprocessor for users who intend to create digital
signals before transcribing them into a digital or physical media.

Keywords: Functional Programming · Digital Synthesis · Waveforms · MIDI · wav

1 Introduction

Digital synthesis is a Digital Signal Processing (DSP) technique for creating musical sounds. In contrast
to analog synthesizers, digital synthesis processes discrete bit data to replicate and recreate a continuous
waveform. The digital signal processing techniques used are relevant in many disciplines and fields includ-
ing telecommunications, biomedical engineering, seismology and others. Digital synthesis is an application
typically implemented in C++ with many frameworks provided [5]; however, their algorithms and methods
are less intuitive.

Our project proposes to explore the applications of functional programming and to demonstrate its fea-
tures in a framework implementation that can be used in multiple disciplines.

Due to the parallel nature of processing multiple tracks of audio, the project is designed to replicate
synthesis techniques by utilizing all of the features and advantages of a purely lazy functional paradigm.
While some algorithms were referenced, we implemented it from scratch.

In this paper, after briefly presenting a general background of digital synthesis (section 2), the details of
each project components are provided (section 3), which is followed by the summary of the results (section
4), by the conclusions (section 5), and by the future plans (section 6).

? This work was supported by the European Union, co-financed by the European Social Fund, grant. no EFOP-3.6.3-
VEKOP-16-2017-00002.

2 E. Sitt et al.

2 Background

Digital synthesis is a field that was pioneered in the 1970s and it is still continuously innovated by the music
industry. Digital synthesizers use the power of microprocessors to replicate analog synthesis. Among the
techniques used are additive synthesis, wavetable lookup synthesis, and physical modeling.

Additive synthesis is a technique for creating waveforms via the summation of sine waves. A sine wave
is a waveform of pure single-frequency value. By summing multiple sine waves at various frequencies,
amplitudes, and phase shifts, it is theoretically possible to generate all types of sound waves.

Our application utilizes harmonic additive synthesis to create the basic waveforms commonly used to
generate more complex synths. Harmonic additive synthesis involves using the Fourier series of a waveform
to determine the weighted summation of sine waves in order to generate the target waveform. These sine
waves are called harmonics, so-called because their frequencies are integer multiples of a standard funda-
mental frequency.

For example, in order to generate a sawtooth waveform, we use the Fourier series to determine the
harmonics and their amplitudes for summation. In the case of the sawtooth wave, the k-th harmonic of the
fundamental frequency f is 2 ∗ k ∗ f with amplitude (−1k)/k.

After generating the sawtooth waveform, this waveform is used with subtractive synthesis, essentially
additive synthesis with negative polarity, to subtract a phase-shifted sawtooth waveform to generate a pulse
wave.

In order to generate the waveforms efficiently, digital waveform synthesis is typically implemented using
wavetable lookup synthesis. In contrast to calculating a specific value of a waveform at a specific point of
time, a waveform table is used to store one duty cycle of a waveform. The value of the waveform can be
accessed by using the frequency to modify the access point of the waveform table, and then multiplying
by the appropriate amplitude. With this method, it is far more efficient to generate a waveform by use of
constant time array access instead of repeated calculations. In the following the details of each waveforms
are given.

3 Project details

3.1 Wavetable Lookup Synthesis

In implementing the digital synthesis, we utilize a technique called Wavetable Lookup Synthesis, in which a
certain waveform is stored in a wavetable, and it exploits the relation between frequency and sampling rate
to quickly build new waveforms. Based on the methods for designing wavetables of [6], our implementation
chooses to set the size of the table as 2205, i.e., we store a table of 2205 real numbers, representing consecu-
tive amplitudes within one single vibration of the sound wave. Thus, achieving the minimum sound intensity
that humans can hear, 20 Hz.

The single cycle sine wavetable, shown in figure 1, is the basis for our additive and subtractive synthesis,
as the sine wave is the simplest of all waveforms and it contains only a single frequency and no harmonics.
All the other waveforms can be efficiently generated from sine by utilizing Fourier series of sine functions
[11].

An example of sawtooth can be seen in figure 2. The sawtooth waveform is then further used with
subtractive synthesis to generate the pulse waveform shown in figure 5. For each wave form we generate
list of indexes, which we need to sample from the wavetable, using the function getIndexes. This indexes
depend on frequency and harmonic, they and are not necessarily integers.

3. PROJECT DETAILS 3

The getValues function (listing 1.1) takes wavetable, frequency, harmonic and duration as parameters
and it uses generated indexes, while linear interpolation solves the complication caused by real indexes.

getValues :: {Real} Frequency Int Samples → [Real]
getValues waveTable frequency harmonic dur = [(getValue i waveTable) \ \ i ← indexes]
where

indexes = getIndexes frequency harmonic dur

Listing 1.1: getValues

The wavetable is implemented as an array. Despite the fact that lists offer much more functionality, they
are actually linked-lists, and they not give us access to the elements in constant time.

Fig. 1: Sine wavetable

Wave Forms
Four type of waveforms are the basis of any sound: sine wave, square wave, triangle wave, and sawtooth

wave. Besides these four, the project also includes parameters to generate pulse, silence, and noise waves.
In the implementation, a waveform type is represented as an algebraic data structure:

:: Wave = Sine | Square | Triangle | Noise | Pulse | Sawtooth | Silence

which is a parameter of our interface function, that generates wave as a list of Real numbers. Each
waveform has a list of harmonics and a list of amplitudes. In case of square, triangle, sawtooth and silence
these lists are easily defined, while for pulse and noise, there is a need for more sophisticated techniques.

Sawtooth
Frequency components are all harmonics, relative amplitudes are inverses of harmonic numbers and all

harmonics are in phase (see Figure 2).
Square
Frequency components are odd numbered harmonics, relative amplitudes are inverses of squares of har-

monic numbers and all harmonics are in phase. (see Figure 3).
Triangle
Frequency components are odd numbered harmonics, relative amplitudes are inverse harmonic numbers

and every second harmonic is 180 degrees out of phase. (see Figure 4).

4 E. Sitt et al.

Fig. 2: Sawtooth waveform Fig. 3: Square waveform

Fig. 4: Triangle waveform Fig. 5: Pulse waveform

Pulse
For the Pulse wave generation, Figure 5, Sawtooth wave and phase shifted version of itself are subtracted.

For this, efficient helper function, shiftLeft, is defined. It moves every element of a list by given number to
the left. (see Figure 5.)

Noise
For generating Noise wave, Figure 6, all amplitudes are 1 and harmonics are random numbers. Again

usingshiftLeft function, lists are shifted by random number of places before summing them up. Clean pro-
vides functions to generate pseudo random numbers using Mersenne Twister Algorithm [12] in the module
Math.Random.

3.2 Envelope

In music, an envelope describes the varying level of a sound wave over time. It is the envelope of a wave
which establishes the sound’s uniqueness and has a significant influence on how we interpret music. Classic
envelopes consist of 4 main parts: Attack, Decay, Sustain, and Release, where sustain refers to a level, while
others represent time interval. Attack is the period of time for which sound needs to reach its peak from zero,
after the key is pressed. After the attack, the decaying period starts, when sound level decreases to sustain
level, and stays unchanged, during sustain phase, until the key is released. Final phase of the envelope is

3. PROJECT DETAILS 5

Fig. 6: Noise waveform

the release, which continues until sound fades to silence. Almost every musical instrument has it’s own
individual envelope. For example, a quick attack with little decay makes sound similar to an organ, while a
longer decay is characteristic of a guitar. This application includes an envelope generator, which is a common
feature of synthesizers and electronic musical instruments, used to control the different stages of sound.

Implementation of Envelopes using lists The purpose of the envelope generator function is to calculate
values for the envelope according to the given parameters. These functions take note data and corresponding
values for each step of the envelope as arguments and generate a list of Real numbers, which take values
from -1.0 to 1.0.

This implementation makes use of list comprehensions and lazy evaluation in calculations, Clean’s two
main advantages.

For each type of envelope a corresponding Record structure was implemented for easily manipulating
envelope data. Each record contains information about the duration, level, and/or rate of each step according
to which final list is created.

ADSR Envelope The getADSR function is used to generate an ADSR Envelope, figure 7. It has only basic
4 steps: Attack, Decay, Sustain, and Release. This function gets a beat, time signature, tempo, and ADSR
record as parameters. At first the beat, time signature and tempo are used to calculate the duration of the note,
time interval between pressing and releasing the key. noteToSamples, one of the utility functions, is used to
convert these parameters to the number of samples in this time interval. After that, the number of samples
for each step of the envelope is calculated. As the release is independent from the note duration it is enough
to directly convert given release duration to samples, but the other 3 steps need different approach. Instead of
directly using given duration of each step independently, the number of samples is calculated based on time
offset from the starting time and subtracting sum of samples of the previous steps (As sustain does not have
a fixed time interval, the total note duration can be used as offset). This is important to avoid losing samples
during flooring of real numbers and to make sure that the number of total samples is equal to sum of each

6 E. Sitt et al.

step’s samples. After calculating the list of samples, each step of the envelope is calculated independently
using list comprehension. For the linear attack and decay, the value of sample is instantly calculated with
index, number of samples and final value. Concatenating these lists produces the entire envelope excluding
the release tail, however as the key may be released any time during the first 3 steps, including attack or
decay, it might be necessary to shorten it. The clean built in function take is used for extracting the exact
amount of samples needed. Finally the release tail list is generated in the same way as attack and decay and
is concatenated to the others to get complete envelope.

DAHDSR Envelope ThegetDAHDSR function generates another type of envelope, which has two more steps
than ADSR envelope: delay and hold. Delay is the time interval before attack, when sound stays silent, while
hold phase comes after attack and indicates duration while sound maintains its peak. Functions implementa-
tion is similar to getADSR function and data is stored as a ::DAHDSR record, shown bellow (listing 1.2). Each
step is generated using list comprehensions and concatenated. Whole envelope is generated and only after
that its prefix is taken to make sure that key can be released at any time.

:: DAHDSR = { delay :: Real
, attack :: Real
, hold :: Real
, decay :: Real
, sustain :: Real
, release :: Real
}

Listing 1.2: DAHDSR envelope record

Casio, 8 step Envelope Casio, figure 8, is a more modern type of envelope which allows more flexibility
and vast variety. It is different from above mentioned types, like ADSR envelope (Figure 7), For each step,
instead of providing duration and level, it has 8 steps, described by rate and level values, where level is the
desired percentage to be reached at the end of the current phase, while rate denotes the percentage with which
samples change per second. Rate and level pair make possible for same phase to be ascending or descending
depending on the needs of users. Implementation of Casio envelope differs for other two envelopes, as the
structure is different. CasioCZ record provides data, necessary for creating Casio envelope, it has rate and
level values for each 8 step, first 5 step represent front part of the envelope, while last 3 steps are used to
generate release tail after sustain. generateLine function is used to generate point values for line between
two level using current rate. This function returns not list of points, but tuple of list and real value. Second
return value plays important role in interpolation. Last value of line, may not have integer index, hence it can
not be included in the list. Due to the above mentioned reason, instead of directly using previous endpoint
as the beginning for the current line we need to recalculate it based on the second value of generateLine
function using the formula: casio.level1− rt2 ∗ (snd line1). At the end, similarly to other envelopes, we
need to take exact amount of samples according to note duration.

Generalized Envelope Last type of envelope data structure is Generalized Envelope, which is similar to
Casio, but provides even more flexibility during sound synthesizing. Both of them use rate and level values to
describe each step, but generalized envelopes do not have fixed number of steps like other previous structures.

3. PROJECT DETAILS 7

Fig. 7: ADSR envelope Fig. 8: 8-Step Casio envelope

GenEnv record uses list to store data, where each element is EnvLevel record type, containing rate and level
values. Also, as generalized envelopes do not have fixed number of steps before release tail, GenEnv record
contains value for index indicating sustain level. Generating data for each step is done similarly to Casio
envelope, but rate and starting value can not be recalculated manually, so preprocessing data is needed
before using it, therefore implementation, which is shown bellow (listing 1.3), is a bit different. parseData
recursievely traverses inital list and generates new one, which can be directly used to generate lines for each
step using similar way as in Casio envelope.

getEnvelope :: Real GenEnv → [Real]
getEnvelope duration envelope = envShortened ++ envRelease
where

noteSamples = secondsToSamples duration
sustL = toReal (hd [x.level \ \ x ← envelope.levels &

d ← [1 ,2..(length envelope.levels)] | ind == envelope.sustainLevel])
envIntroData = parseData (take envelope.sustainLevel envelope.levels) 0.0 0.0
envIntro = [0.0] ++ (flatten [generateLine data \ \ data ← envIntroData])
envSustain = [sustL \ \ x ← [1 ,2..(noteSamples-(length envIntro))]]
envShortened = take noteSamples (envIntro ++ envSustain)
envReleaseData = parseData (drop envelope.sustainLevel envelope.levels)

(last envShortened) 0.0
envRelease = flatten [generateLine data \ \ data ← envReleaseData]

Listing 1.3: Generalized envelope generating function

Efficiency improvements Unlike other steps release does not have fixed starting value and it needs to be
calculated based on the time of releasing key. First implementation of envelope generator function usedlast,
built in functions for list, to calculate base value of release. As mentioned before, lists are implemented as
linked lists and do not have direct access to the element,last function uses recursive approach which results
in O(N) time complexity and excessive use of memory. To avoid overfilling heap, release base value is
calculated directly using constant time and memory. At first it is determined on which step generation was
terminated and then value can be calculated directly according to it.

8 E. Sitt et al.

Implementation of Envelopes with Arrays Direct access to the elements might be essential to avoid linear
time complexity and provide better memory management, therefore envelope generator functions were also
implemented with arrays instead of lists. These implementations provide direct access to data and support
array implementations of waves, which can be handful, for example, during summing up different waves,
while this can not be done with lists, at first they need to be converted into arrays, then processed and
reconverted to the lists again.

Rendering waves and applying envelope Rendering process consists of several steps. First step is to cal-
culate whole length of the sound, as each wave can start at different moment of time and can have distinct
lengths. This value will be used later, to generate silent track, which will act as the base during summing
up all wave samples. Next step is to process data stored in each chunk to generate sound waves and sum up
all of them. Each chunk stores wave type, time signature, tempo, envelope and other data, extracted from
MIDI files, which are needed to generate wave and apply envelope to it, Figure 9. Values for each wave can
be calculated using already developed functions for envelopes and sound synthesizing. After generating all
waves we need to sum up them in the single list. If we use arrays we can use each wave’s starting time as an
index offset, but same approach is not useful with list implementation. To easily sum up lists they need to
be same size, therefore appropriate amount of silence samples should be appended on the both sides of the
list. Last step is normalization: converting values to [−1.0, 1.0] range. After summing up lists some samples
might go out of those bounds, that’s why final list needs to be normalized at the end of the process. After
normalization sound rendering is finished and it can be used for later processing.

Fig. 9: Sine wave modified by different envelopes

Four data structures were created to support different types of envelopes: ADSR, DAHDSR, Casio and
Generalized envelopes. A demonstration of DAHDSR followed by ADSR being applied to a sine wave are
shown in fig 9. Several implementations and types of envelopes provide flexible environment during music
generator development and sound synthesizing. Giving possibility to implement more efficient approaches
during rendering process and creating envelopes to generate more complex and better sounds.

3.3 MIDI Input

MIDI is short for Musical Instrument Digital Interface which related audio devices for playing, editing and
recording music. The MIDI file is just a stream of numbers, each of which is in the range from 0 to 255. The

3. PROJECT DETAILS 9

bytes order is big-endian. MIDI files consist of chunks. There are two types of chunks. [7]

type

structure type
(4 bytes)

length
(4 bytes)

data
(variable length of bytes)

Header Chunk MThd 6 <format><tracks><division>

Track Chunk MTrk <length> <delta_time><events>...

Table 1: Three types of MIDI Events
length : length in bytes of the chunk data part

Information in MIDI file (as in [9])
<format> :

– format 0 : a header chunk + a single track chunk.
The single track chunk contains all the note and tempo information.

– format 1 : a header chunk + one or more track chunks.
All tracks being played simultaneously.

– format 2 : a header chunk + one or more track chunks.
Each track represents an independent sequence.

<tracks> : The number of track chunks contained in MIDI file.
<delta_time> :

– a time value which specifies the duration between two events
– not optional
– 0 is a valid delta time

<events> : The default unit of delta-time for this MIDI file.

– midi events : any MIDI Channel message.
– Channel Voice messages
– Channel Mode messages

– sysex(system exclusive) events : include messages other than MIDI Channel.
– meta events : used for things like track-names, lyrics and cue-points, etc.

Challenges Unlike regular audio files like MP3 or WAV files, MIDI files don’t contain actual audio data
and are therefore much smaller in size. Due to this, they are more compact but this makes it more difficult to
parse it since there are a lot of information to extract and store.

Delta time is represented by a time value which is a measurement of the time to wait before playing
the next message in the stream of MIDI file data. Time values are stored as Variable Length Values (VLV:a
number with a variable width) [8]. Each byte of delta time is consist of two parts: 1 continuation bit and 7
data bits. The highest-order bit is set to 1 if it needs to read the next byte, set to 0 if this byte is the last one
in VLV.

10 E. Sitt et al.

Steps: To get an integer number represented by a VLV

1. convert the first byte in VLV to integer

– if it is greater than 128, put it into a list and read next byte recursively
– if not, just put this byte into a list and end the recursion

2. convert the list of bytes into one integer number
3. return not only an integer of delta time but also the length of byte of it

There are three main different kinds of events that can occur in track chunk, each type has different
number of bytes to store the information. We are not able to know the length of each specific event until we
reach its status byte which stores the information indicating what type it is.

event type

structure
status byte byte2 byte3 byte4

midi events 0x8n - 0xEn data (data) −

sysex events 0xF0 and 0xF7 length data −

meta events 0xFF type length data

Table 2: Three types of MIDI Events

Running Status: Different types of events already make it hard to parse information, in addition to that, the
midi events use a data-thinning technique which is running status. If the first (status) byte is less than 128
(hex 80) which implies that running status is in effect, and that this byte is actually the first data byte (the
status carrying over from the previous MIDI event). This can only be the case if the immediately previous
event is also a MIDI event, because system exclusive events and meta events interrupt (clear) running status.

Solutions The length of track chunk is useful since it is not only help for processing normal chunks but
also make it easier to deal with unexpected chunk types – just by skipping that amount of byte then we can
continue to process next chunk.

event type status byte byte2 byte3

Note On 0x8 Channel Note Number(frequency) velocity

Note Off 0x9 Channel Note Number(frequency) velocity

Table 3: Events we handle so far

3. PROJECT DETAILS 11

Fig. 10: functions

Function process, (listing 1.4), parses a MIDI file from scratch, accepting a list of Char (i.e. bytes) and
returning an Info record which contains information about header and track chunks. isHeader takes the first
four elements of a list of bytes and sees if it is type of header chunk which is MThd.
The first six bytes of the list give information about format, number of track chunks in the file, and division.
procesHeader, (listing 1.5), stores the first and third value in the HeadInfo record.
processTrack, (listing 1.6), uses isTrack function to see if currently beginning of a track chunk is being
processed, and if yes, it drops first four elements which contain the information of chunk type and continues
processing.

process :: [Char] → Info
process l
|length l > 14 && isHeader (take 4 l) =

{
headerInfo = processHeader (drop 8 l) ,
trackInfo = processTrack (drop 14 l)

}
= abort "not enough information"

Listing 1.4: process function

processHeader :: [Char] → HeaderInfo
processHeader l =

{
format = calcFormat (take 2 l) ,
division = calcDivision (take 2(drop 4 l))

}

Listing 1.5: processHeader function

12 E. Sitt et al.

processTrack :: [Char] → [TrackInfo]
processTrack [] = []
processTrack l

/ / 4bytes:type of chunk(mtrk)
|isTrack l = processTrackBody (drop 4 l)
= processTrackBody l

Listing 1.6: processTrack function

3.4 Transcoding

After the synthesis part, the signal needs to be converted into a form that can be recorded onto physical or
digital media. This process is also known as transcoding. In days of analogous signal synthesis, recording
equipment transcoded the electrical signals using various mechanical or electromagnetic methods. With
digital synthesis, the applications have to transcode the digital waveforms into bits in order to store them
into the appropriate file.

Similarly, in this implementation, once the program obtains the wavetable examined in Section 3.1,the
next step is to write this sound data to a WAV file. As discussed in Section 3.5, three main components
separate the WAV file: the RIFF chunk, the fmt sub-chunk and the data sub-chunk. The data sub-chunk
contains the sound information, which is stored in bits. In consequence to that, it was necessary to find
a way to convert the result of the wavetable into appropriate data for the file, hence there are transform
functions implemented.

Initially only thetransform8 function was created which takes the wavetable and its maximum value and
converts the values to fit the 8 bits range. In other words,the wavetable values are converted into an interval
from 0 to 255. Later on, as a precondition for increasing the quality of the generated sounds, the function
transform16was added, which alters the values to 16 bits samples stored into the interval 0 to 216 − 1 , and
the function transform32, which alters the values to 32 bits samples stored into the interval 0 to 232 − 1.

In order to make the project more flexible with the number of channels received input, two versions were
made for the transform functions. In the default case the sound data obtained as the input will represent
only one channel, meaning that the wavetable could be correctly represented as a list of Reals. On the other
hand, in case the data has two or more channels then a better representation would be a list of lists of
Real. For that reason, in addition to transform8, transform16 and transform32, three more functions, called
transform8_multiChannel, transform16_multiChannel and
transform32_multiChannel respectively, were created to work with lists of lists where the new functions map
their previous respective functions to each sub-list.

After doing some research regarding the opportunities CLEAN offers and discussing about the best
approach possible the group made a decision to use the concept of vertical graph shifting and multiplying.
The simplest vertical graph transformation involves adding a positive or negative constant to a function. In
other words, adding the same constant k to the output value of the function regardless of the input shifts the
graph of the function vertically by k units. In order to give a more detailed explanation of the implementation,
it is a good idea to handle the 8, 16, and 32 bits cases separately.

Regarding the 8 bit case, the first step is dividing each number from the list with the maximal possible
value the input values can reach. In the case of real numbers from [−0.5, 0.5] this value is 0.5. The next step
is adding the max(0.5) and then multiplying each element by 255 (28 − 1) in order to get real numbers in
[0, 255] interval. After that the function toInt (build in function in Clean) handles the conversion of the data
from real to integer. As a last step toChar (build in function in Clean) converts the list of integers into list

3. PROJECT DETAILS 13

of characters which are represented in 8 bits. If the input is list of lists, mapping the same transformation to
each and every sub list of the input does the proper conversion.

Moving on,in the 16 bit case the first thing done is applying a function which converts the input from list
of real numbers to integers.

transform16 :: [Real] Real → [Char]
transform16 list max=flatten (map (λx = intToBytesLE 2 x) (map (λx = aux16 x max) list))

Listing 1.7: transform16

In this case (Listing 1.7) instead of usingtoInt it was more appropriate to created a function which takes
two real numbers (the number that to convert (lets name it x) and the maximal possible value the numbers
in the list can reach (lets name it max)) and returns 215 − 1 if the number equals to max or otherwise the
lower integer part of x multiplied by 215 and divided with max. After getting the list of integers mapping a
function which converts each integer into a list of bits (1’s and 0’s) and then concatenating all of sub lists
concludes the transformation. If the input is list of lists, mapping the same transformation to each and every
sub list of the input gives the expected output.

Similarly, on the 32 bit,the first step is mapping a function which converts the input from list of real
numbers to integers but now instead of working with 215 the function mapped works with 231 but the
concept is exactly the same. The following step is converting each integers into a list of bits (1’s and 0’s) of
length 32 and in the end just concatenating all of the 32-length lists into one. If the input given is a list of
lists, handling it is done correspondingly to the 16 bit conversion.

3.5 .wav Output

Description of WAV File

The WAV file is an instance of a Resource Interchange File Format (RIFF) defined by IBM and Mi-
crosoft. The RIFF format acts as a wrapper for various audio coding formats.

Though a WAV file can contain compressed audio, the most common WAV audio format is uncompressed
audio in the linear pulse code modulation (LPCM) format. LPCM is also the standard audio coding format
for audio CDs, which store two-channel LPCM audio sampled at 44,100 Hz with 16 bits per sample. Since
LPCM is uncompressed and retains all of the samples of an audio track, professional users or audio experts
may use the WAV format with LPCM audio for maximum audio quality. WAV files can also be edited and
manipulated with relative ease.

The WAV format supports compressed audio using, on Microsoft Windows, the Audio Compression
Manager. Any ACM codec can be used to compress a WAV file.

Beginning with Windows 2000, a WAVE FORMAT EXTENSIBLE header was defined which specifies
multiple audio channel data along with speaker positions, eliminates ambiguity regarding sample types and
container sizes in the standard WAV format and supports defining custom extensions to the format chunk.

There are some inconsistencies in the WAV format: for example, 8-bit data is unsigned while 16-bit data
is signed, and many chunks have duplicate information found in other chunks.

Specification of File Structure

A RIFF file is a tagged file format. It has a specific container format (a chunk) that includes a four
character tag (FourCC) and the size (number of bytes) of the chunk. The tag specifies how the data within

14 E. Sitt et al.

the chunk should be interpreted, and there are several standard FourCC tags. Tags consisting of all capital
letters are reserved tags. The outermost chunk of a RIFF file has a RIFF form tag; the first four bytes of
chunk data are a FourCC that specify the form type and are followed by a sequence of subchunks. In the
case of a WAV file, those four bytes are the FourCC WAVE. The remainder of the RIFF data is a sequence
of chunks describing the audio information.

The advantage of a tagged file format is that the format can be extended later without confusing existing
file readers. The rule for a RIFF (or WAV) reader is that it should ignore any irrelevant tagged chunk. The
reader won’t be able to use the new information, but the reader should treat it as valid input and ignore it.

The specification for RIFF files includes the definition of an INFO chunk. The chunk may include infor-
mation such as the title of the work, the author, the creation date, and copyright information. Although the
INFO chunk was defined in version 1.0, the chunk was missing from the formal specification of a WAV file.
If the chunk were present in the file, then a reader should know how to interpret it, but many readers had
trouble. Some readers would abort when they encountered the chunk, some readers would process the chunk
if it were the first chunk in the RIFF form, and other readers would process it if it followed all of the ex-
pected waveform data. Consequently, from an interchange standpoint, it was safest to omit the INFO chunk
and other extensions and send a lowest-common-denominator file. There are other INFO chunk placement
problems.

RIFF files were expected to be used in international environments, so there is CSET chunk to specify
the country code, language, dialect, and code page for the strings in a RIFF file. For example, specifying an
appropriate CSET chunk should allow the strings in an INFO chunk (and other chunks throughout the RIFF
file) to be interpreted as Cyrillic or Japanese characters.

RIFF also defines a JUNK chunk whose contents are uninteresting. The chunk allows a chunk to be
deleted by just changing its FourCC. The chunk could also be used to reserve some space for future edits
so the file could be modified without being rewritten. A later definition of RIFF introduced a similar PAD
chunk

The top-level definition of a WAV file is:

<WAVE-form> → RIFF('WAVE'
<fmt-ck> / / Format
[<fact-ck>] / / Fact chunk
[<cue-ck>] / / Cue points
[<playlist-ck>] / / Playlist
[<assoc-data-list>] / / Associated data list
<wave-data>) / / Wave data

Listing 1.8: RIFF Header

The definition shows a top-level RIFF form with the WAVE tag. It is followed by a mandatory <fmt-ck>
format chunk that describes the format of the sample data that follows. The format chunk includes informa-
tion such as the sample encoding, number of bits per channel, the number of channels, the sample rate. The
WAV specification includes some optional features. The optional fact chunk reports the number of samples
for some compressed coding schemes. The cue point (cue) chunk identifies some significant sample numbers
in the wave file. The playlist chunk allows the samples to be played out of order or repeated rather than just
from beginning to end. The associated data list allows labels and notes (lii and note) to be attached to cue
points; text annotation (ltxt) may be given for a group of samples (e.g. caption information). Finally, the
mandatory wave data chunk contains the actual samples (in the specified format).

3. PROJECT DETAILS 15

The WAV file definition does not show where an INFO chunk should be placed. It is also silent about
the placement of a CSET chunk (which specifies the character set used). In the application, the PCM format
generated omits this chunk because the omission has no effect on the functionality.

The RIFF specification lacks the formality in the specification, but its formalism lacks the precision seen
in other tagged formats. For example, the RIFF specification does not clearly distinguish between a set of
subchunks and an ordered sequence of subchunks. The RIFF form chunk suggests it should be a sequence
container. The specification suggests a LIST chunk is also a sequence: A LIST chunk contains a
list, or ordered sequence, of subchunks. However, the specification does not give a for-
mal specification of the INFO chunk; an example INFO LIST chunk ignores the chunk sequence implied in
the INFO description. The LIST chunk definition for <wave-data> does use the LIST chunk as a sequence
container with good formal semantics.

The WAV specification allows for not only a single, contiguous, array of audio samples, but also discrete
blocks of samples and silence that are played in order. Most WAV files use a single array of data. The
specification for the sample data is confusing:

The <wave-data> contains the waveform data. It is defined as follows:

<wave-data> → { <data-ck> | <data-list> }
<data-ck> → data(<wave-data>)
<wave-list> → LIST('wavl' { <data-ck> | / / Wave samples

<silence-ck> }...) / / Silence
<silence-ck> → slnt(<dwSamples:DWORD>) / / Count of silent samples

Listing 1.9: Wave data

In the wave data chuck (Listing 1.9) produced by the application, the implementation changes<data-list>
to <wave-list> in line 1 and <wave-data> to <bSampleData:BYTE> in line 2. These changes are done in order
to avoid any possible recursion of <wave-data> contained in a <data-ck>.

WAV files can contain embedded IFF lists, which can contain several sub-chunks.

File Format Limitation

The WAV format is limited to files that are less than 4 GB, because of its use of a 32-bit unsigned integer
to record the file size header. Although this is equivalent to about 6.8 hours of CD-quality audio (44.1 kHz,
16-bit stereo), it is sometimes necessary to exceed this limit, especially when greater sampling rates, bit
resolutions or channel count are required. The W64 format was therefore created for use in Sound Forge.

Its 64-bit header allows for much longer recording times. The RF64 format specified by the European
Broadcasting Union has also been created to solve this problem.

Based on the file specification of the WAV file format, a set of functions were implemented to create a
framework for writing the data into a file. These functions have been enumerated in detail below 3.5.

File manipulation in Clean

Due to Clean being a purely functional language, side effects such as I/O operations are performed
through uniqueness typing to preserve referential transparency [1]. Types which are marked as unique with
* cannot be used multiple times for any path of a function execution. It guarantees that at the time a function
with unique arguments is executed, the arguments have no more than one reference each pointed to them.

World is an abstract type representing the environment, or the state of the world [2]. A program doing
I/O is given an environment and produces a new environment containing the changes. A more complicated

16 E. Sitt et al.

I/O program thus need chains the subprograms together by passing the environment from one function to
another.

echo :: *World → *World
echo world0
| c == '\n' = world2

= echo world2
where
(c, world1) = getChar world0
world2 = putChar c world1

Listing 1.10: An example of passing the environment explicitly

The Clean StdEnv supports basic file manipulation in the StdFilemodule. It provides operations for the
File type, which can also be a unique type. Opening a file requires an argument for a mode, which distin-
guishes read, write, and append, and between text files and binary data files. We will be using FWriteData
mode for writing binary data.

There are several operations for writing data, though most of them are not easy to work with for binary
data. The smallest unit we can write is a byte, however the byte is represented as a Clean Char. We will
assume a Char in Clean is a byte, we can denote it with a type synonym as in Listing 1.11.

:: Byte :== Char

Listing 1.11: Type synonym in Clean

There is a function for writing a string (which are unboxed Char arrays in Clean) to a file, however lists
are easier to work with most of the time, so we will define a function to write a list of Chars to a file as in
Listing 1.12.

writeBytes :: ![Byte] !*File → *File
writeBytes [] f = f
writeBytes [b:bs] f
]! f = fwritec b f
= writeBytes bs f

Listing 1.12: Writing a list of bytes into a file

! in the type specifies that the arguments of the function are strict, this can improve program efficiency
in places where laziness is not needed.]! is a strict let notation, assigning the output of fwritec b f to f.
This f is not the same variable as the f in the line before. In fact, it introduces a new scope and shadows the
previous variable. This is encouraged in Clean with unique types, it makes the program somewhat resemble
imperative programs besides the explicit passing of the unique file.

We will also define a function to convert a nonnegative integer to a list of bytes in little-endian order
for later use (Listing 1.13). It will take and argument to specify in how many bytes the number should be
represented, e.g. if the argument is 2, then the output will represent a 16-bit word, the rest of the number is
truncated. The function uses simple recursion and basic operators from StdEnv.

3. PROJECT DETAILS 17

/ / The first parameter is the number of bytes
/ / The second parameter is the integer to be converted
uintToBytesLE :: !Int !Int → [Byte]
uintToBytesLE i n
| i ≤ 0 = []

= [toChar (n bitand 255) : uintToBytesLE (i - 1) (n >> 8)]

Listing 1.13: Converting an integer to a list of bytes

Interface

We will implement writing to a Wave file in (L)PCM format due to its simplicity.
The type of the function for writing a Wave file is given in a dcl file (definition module). It takes some

parameters that specifies the structure of the file, and a list of bytes as the binary data in the data chunk.

:: PcmWavParams =
{ numChannels :: !Int / / Number of channels
, numBlocks :: !Int / / Number of samples (for each channel)
, samplingRate :: !Int / / Sampling rate in Hz (samples per second)
, bytesPerSample :: !Int / / Number of bytes in each sample
}

writePcmWav :: !PcmWavParams ![Byte] !*File → *File

Listing 1.14: Interface of writing a Wave file in PCM format

All data that the Wave file needs can be calculated from these parameters. numBlocks represents the total
number of blocks in the data chunk, where each block containsnumChannels samples.bytesPerSample is how
many bytes each sample contains.

Implementation

The main function is composed of three smaller functions. The first one writes the RIFF header into the
file as in Listing 1.15.

writeHeader :: !Int !*File → *File
writeHeader l f
]! f = fwrites "RIFF" f
]! f = writeUint 4 l f
]! f = fwrites "WAVE" f
= f

Listing 1.15: Writing RIFF header into a file

The first argument is the length of the whole file minus the first eight bytes. It will be calculated in
the main function with 4 (the bytes WAVE) + 24 (size of the format chuk) + 8 (header of the data chunk) +
bytesPerSample× numChannels× numBlocks (size of the binary data) + (1 or 0 depending on whether the
size of the bynary data is odd or even).

writeUint is a utility function that combines writeBytes and uintToBytesLE.
The second function writes the format chunk, which contains writing in the following data [10], using

the same method as the previous function:

18 E. Sitt et al.

– The bytes fmt
– 16 as a 32-bit number: the size of the format chunk after the first eight bytes
– 1 as a 16-bit number: this specifies the audio format to be PCM
– numChannels as a 16-bit number
– samplingRate as a 32-bit number
– samplingRate× bytesPerSample× numChannels as a 32-bit number: the amount of bytes processed per

second
– bytesPerSample× numChannels as a 16-bit number: the amount of bytes each block contains
– 8 × bytesPerSample as a 16-bit number: bits per sample

The last function takes in the length and the list of the binary data, and writes it into the file using
writeBytes after writing in the chunk header. It also takes care of adding a padding byte if the size of the
data in bytes is odd.

The main function composes the smaller functions and evaluates the size of the binary data so that it
does not need to be calculated more than once in the sub-functions (Listing 1.16).

writePcmWav :: !PcmWavParams ![Byte] !*File → *File
writePcmWav p d f
]! l = p.bytesPerSample * p.numChannels * p.numBlocks
]! f = writeHeader (l + i f (isEven l) 36 37) f
]! f = writeFormat p f
]! f = writeData l d f
= f

Listing 1.16: The main function for writing Wave files

4 Results

In the initial test runs of the application, a notation file of Beethoven’s Für Elise is used as input. Für Elise
was chosen as an initial test input as the notation involved only a single instrument and the melodic and
harmonic lines contained only monophonic lines. The initial test render of Für Elise took a total amount
of time ranging between 900 - 1000 seconds to complete. Further iteration on the application, in which the
wavetable implementation was changed from lists to arrays, resulted in a subsequent rendering time of 4-6
seconds.

5 Conclusion

The digital synthesizer application successfully demonstrated another possible application of functional pro-
gramming. There were some challenges in the process. These included creating the framework for writing
to wav, the conversion of data to bit format, and accomodating the variety of specifications and conventions
within the MIDI and WAV file formats.

The team was successful in implementing full featured frameworks for importing MIDI files, writing to
WAV files, and creating synths via additive synthesis, subtractive synthesis, and envelopes.

6. FURTHER WORK 19

6 Further Work

The application can be easily extended in the future with further functionality to become more competitive
with current offerings within the digital synthesis ecosystem. Support can added for more import file types
such as MusicXML and export file types such as .mp3, .flac, and .ogg.
Additionaly functionality can be added with filters based on frequency such as passes, shelves, and EQ, ef-
fects based on amplitude such as compression, gate, and distortion, and effects based on time such as delay,
reverb, and chorus.
Lastly, adding support for live MIDI input, sample banks, VST3 support, and a graphical user interface will
further bring the application in line with other digital synthesizers.

References

1. Clean Language Report, https://clean.cs.ru.nl/download/doc/CleanLangRep.2.2.pdf.
2. Achten, P., Plasmeijer, R.: The Ins and Outs of Clean I/O. Journal of Functional Programming, 5(1), 81-110, 1995.
3. Hudak, P., Quick, D.: Haskell School of Music – From Signals to Symphonies, Cambridge University Press, 2018.
4. Thompson, S.: The Haskell: The Craft of Functional Programming, Addison-Wesley Professional, 3rd edition, 2011.
5. Szanto, G.: C++ Audio Library Options Superpowered.com, 2018. https://superpowered.com/audio-library-list
6. Zuurbier, E.: Organ Music in Just Intonation, https://www.ji5.nl/.
7. MIDI Files Specification http://somascape.org/midi/tech/mfile.htm
8. Variable Length Value http://www.ccarh.org/courses/253/handout/vlv/
9. Guide to the MIDI Software Specification http://somascape.org/midi/tech/spec.html

10. Kabal, P.: Wave file specifications, http://www-mmsp.ece.mcgill.ca/Documents/AudioFormats/WAVE/WAVE.html
11. J.-C. Risset, Computer music experiments, 1964—. . ., Computer Music Journal, vol. 9, no. 1, pp. 11–18, 1985.
12. Mersenne Twister Algorithm http://www.math.sci.hiroshima-u.ac.jp/ m-mat/eindex.html

