
A Proof Assistant Based Formalisation of Core
Erlang

Péter Bereczky1[0000−0003−3183−0712], Dániel Horpácsi1[0000−0003−0261−0091],
and Simon Thompson2[0000−0002−2350−301X]

1 Eötvös Loránd University, HU
berpeti@inf.elte.hu and daniel-h@elte.hu

2 University of Kent, UK
S.J.Thompson@kent.ac.uk

Abstract. Our research is part of a wider project that aims to inves-
tigate and reason about the correctness of scheme-based source code
transformations on Erlang programs. In order to formally reason about
the definition of a programming language and the software that has been
built with it, we need a mathematically rigorous description of that lan-
guage. In this paper, we present our proof-assistant-based formalisation
of a subset of Erlang, intended to serve as a base for proving refac-
torings correct. After discussing how we reused concepts from related
work, we show the syntax and semantics of our formal description, in-
cluding the abstractions involved (e.g. closures). We also present essen-
tial properties of the formalisation (e.g. determinism) along with their
machine-checked proofs. Finally, we prove the correctness of some simple
refactoring strategies.

Keywords: Erlang formalisation · Formal semantics · Machine-checked
formalisation · Operational semantics · Term rewrite system · Coq

1 Introduction

There are a number of language processors, development and refactoring tools
for mainstream languages, but most of these tools are not theoretically well-
founded: they lack a mathematically precise description of what they do to the
source code. In particular, refactoring tools are expected to change programs
without affecting their behaviour, but in practice, this property is verified by
regression testing only. Higher assurance can be achieved by making a formal
argument (i.e. a proof) about this property, but neither programming languages
nor program transformations are easily formalised.

When arguing about behaviour-preservation of program refactoring, we argue
about program semantics. To be able to do this in a precise manner, we need
a formal, mathematical definition of the programming language semantics in
question, which enables formal verification. Unfortunately, most programming
languages lack fully formal definitions, which makes it challenging to deal with
them in formal ways. Since we are dedicated to improve trustworthiness of Erlang

2 P. Bereczky et al.

refactorings via formal verification, we put effort in formalising Erlang and its
functional core called Core Erlang. Core Erlang is not merely a subset of Erlang;
in fact, Erlang (along with other functional languages) translates to Core Erlang
as part of the compilation process.

This paper presents work on the Coq-formalisation of a big-step semantics
for Core Erlang. In general, if formal semantics is not available for a particular
language, one can take the language specification and the reference implementa-
tion to build a formalisation thereon; in our case, we could rely not only on these
artifacts, but also on some previously published semantics definitions. Thus, we
reviewed the existing papers on the Core Erlang language and its semantics,
distilled, merged and extended them, to obtain a definition that can be properly
embedded in Coq. Not only did we build a mechanically verifiable definition, but
we also proved some basic properties of the semantics as well as proved simple
program equivalences.

In particular, the main contributions of this paper are:

1. A formal semantics definition for a sequential subset of Erlang (Core Erlang),
partly based on existing formalisations.

2. An implementation for this semantics in the Coq proof assistant.
3. Theorems that formalise the properties of this formalisation (e.g. determin-

ism) with their machine-checked proofs.
4. Results on program evaluation and equivalence verification using the seman-

tics definition, all formalised in the Coq proof assistant.

The rest of the paper is structured as follows. In Section 2 we review the
existing Core Erlang and Erlang formalisations, and we compare them in order
to help understand the construction of our formal semantics. In Section 3 we
describe the proposed formal description (abstractions, syntax, semantics) while
in Section 4 a number of applications of the semantics are described. Section 5
discusses future work, then concludes.

2 Related work

Although there have already been a number of attempts to build a full-featured
formal definition of the Erlang programming language, most are not complete,
and none is implemented in a machine-checked proof system. Since we intend
to formalise refactoring-related theorems in the Coq proof assistant, we decided
to write an executable formal semantics for Erlang in Coq, and as a stepping
stone, we built the formalisation of Core Erlang. We were intended to reuse
existing results, so we have reviewed the related work on existing paper-based
formalisations of both Erlang and Core Erlang. In this section, we present a
survey of these and point out how we managed to reuse elements of the existing
resources.

A Proof Assistant Based Formalisation of Core Erlang 3

As a matter of fact, most of the papers addressing the formal definition
of Erlang focus on the parallel part (process management and communication
primitives) of the language, which is not relevant to our current formalisation
goals. Nevertheless, there are some sources that deal with the sequential part
as well. Although they tend to present different approaches as to defining the
semantics, the captured elements of the language and their syntax appears to be
very similar in each paper. There are slight differences in the level of detail: some
definitions model the core language very closely, whilst some are more abstract.
For example, unlike [10], [4] does not differentiate function applications and
calls, nor does describe let statements. From the syntax richness point of view,
the cited resources can be organized into two groups: [4, 5, 11] presenting fewer
abstractions and [6–10] discussing a richer language syntax.

There was another notable difference in the existing formalisations from the
syntax point of view: some define values as a subset of expressions distinguished
by defining them in a different syntactic category [4, 5, 9, 11], and some define
values as “ground patterns” [6–8, 10], i.e. subset of patterns. Both approaches
have their advantages and disadvantages, we will discuss this question in more
detail in Section 3.

We principally used the work by Lanese et al. on defining reversible semantics
for Erlang [6–8, 10], who define a language “basically equivalent to a subset of
Core Erlang” [10]; their work proved to be a good starting point for defining a big-
step operational semantics. Besides, we took the Core Erlang Documentation [3]
and the reference compiler for Core Erlang as compasses for understanding the
basic abstractions of the language in more detail.

It is worth mentioning that the vast majority of the abovementioned related
work present small-step operational semantics, therefore rather than reusing the
existing formalisations, we only adapted the main ideas thereof. Moreover, the
work by Lanese et al. does not take Erlang functions and their closures into
consideration (except for top-level functions), thus we needed to define these
from scratch. There is also a denotational semantics for sequential Core Erlang
defined in [4], but the Erlang formal semantics section discusses parallel parts
mainly.

We have found that there are some abstractions missing in [6–8, 10] (e.g.
let binding with multiple variables, the letrec statement), for which we had
to rely on the informal definitions described in [3] and in the case of letrec,
the formalisation in [9]. Also, in the former papers, the global environment is
modified in every single step of the execution; in contrast, our semantics works
less fine-grained as side-effects have been not implemented yet. Unfortunately,
the official language specification document was written in 2004, and there were
some new features (e.g. the map data type) introduced to Core Erlang since
then. These features do not have an informal description either, however, we
took the reference implementation and build the formalisation thereon.

4 P. Bereczky et al.

3 Formal semantics of Core Erlang

After reviewing related work, we present our formal definition of Core Erlang
formalised in Coq. Throughout this section, we will frequently quote the Coq
definition; in some cases, we use the Coq syntax and quote literally, but in case
of the semantic rules, we turned the consecutive implications into inference rule
notation for better readability. The entire formalisation is available on Github [2].

3.1 Syntax

This section gives a brief overview on the syntax in our formalisation.

Inductive Literal : Type :=
| Atom (s: string)
| Integer (x : Z)
| EmptyList
| EmptyTuple
| EmptyMap.

Fig. 1. Syntax of literals

Inductive Pattern : Type :=
| PVar (v : Var)
| PLiteral (l : Literal)
| PList (hd tl : Pattern)
| PTuple (t : Tuple)
with Tuple : Type :=
| TNil
| TCons (hd : Pattern) (tl : Tuple).

Fig. 2. Syntax of patterns

The syntax of literals and patterns (Figures 1 and 2) was basically borrowed
from the papers mentioned in the previous section. The only addition is the
map construction (EmptyMap literal); float literals are left out, because in our
applications, they can be handled as they were integers. The tuple pattern is
represented with a list, which is constructed inductively. For technical reasons,
Coq’s built-in lists cannot be used here: Coq cannot ensure fixpoints’ decreasing
arguments for implicit mutual induction (e.g rose tree types).

For the definition of the syntax of expressions, we need the following auxiliary
type:

Definition FunctionSignature : Type := string × nat.

With the help of this type alias and the previous definitions, we can describe
the syntax of the expressions (Figure 3). As mentioned in Section 2, our expres-
sion syntax is very similar to the existing definitions found in the related work.
The main abstractions are based on [4,5,11] and the additional expressions (e.g.
let, letrec, apply, call) on [3, 6–10]. However, in our formalisation, we in-
cluded the map type, primitive operations and function calls are handled alike,
and in addition, the ELet and ELetrec statements handle multiple bindings at
the same time.

Values In Core Erlang, literals, lists, tuples, maps, and closures can be values,
i.e. results of the evaluation of other expressions. As pointed out in Section 2,

A Proof Assistant Based Formalisation of Core Erlang 5

Inductive Expression : Type :=
| ELiteral (l : Literal)
| EVar (v : Var)
| EFunSig (f : FunctionSignature)
| EFun (vl : list Var) (e : Expression)
| EList (hd tl : Expression)
| ETuple (l : list Expression)
| ECall (f : string) (l : list Expression)
| EApply (exp: Expression) (l : list Expression)
| ECase (e : Expression) (l : list Clause)
| ELet (s : list Var) (el : list Expression) (e : Expression)
| ELetrec (fnames : list FunctionSignature) (fsa : list ((list Var) × Expression)) (e :
Expression)
| EMap (kl vl : list Expression)
with Clause : Type :=
| CCons (p : Pattern) (guard e : Expression).

a This is the list of the defined functions (list of variable lists and body expressions)

Fig. 3. Syntax of expressions

there were two approaches discussed in the related work: either values are related
to patterns [6–8, 10] or values are related to expressions [4, 5, 9, 11]. We have
decided to relate values to expressions, because semantically values are derived
from expressions and not patterns. Moreover, there are three methods to define
the aforementioned relation of values and expressions:

– Values are not a distinct syntactic category, so they are defined with an
explicit subset relation;

– Values are syntactically distinct and used in the definition of expressions [4,
4, 11];

– Values are syntactically distinct, but there is no explicit subset relation be-
tween values and expressions or patterns [9].

When values are not defined as a distinct syntactic set (or as a semantic
domain), a subset relation has to be defined that tells whether an expression
represents a value. In Coq, this subset relation is practically defined with a
judgment on expressions, but this would require a proof every time an expression
is handled as a value: the elements of a subset are defined by a pair, i.e. the
expression itself and a proof that the expression is a value. This is a feasible
approach, but generates lots of unnecessary otherwise trivial statements to prove
in the dynamic semantics: instead of using a list of values, a list of expressions
has to be used where proofs must be given about the head and tail being values;
see the example in Section 3.2 about the list evaluation. In addition, the main
issue with these approaches is that values do not always form a proper subset
of patterns or expressions [3]: when lambda functions and function signatures
are considered, values must include closures, which, on the other hand, are not
present in the syntax.

6 P. Bereczky et al.

For the above reasons, we define values separately from syntax, but unlike [9],
we rather include function closures in the definition than the functions them-
selves. In fact, we define values as a semantic domain, to which expressions are
evaluated (see Figure 4). This distinction of values allows the semantics to be
defined in a big-step way with domain changing (from expressions to values).
Naturally, this approach causes duplication in the syntax definition (i.e. value
syntax is not reused, unlike in [4,5,11]), but it saves a lot when proving theorems
about values.

Inductive Value : Type :=
| VLiteral (l : Literal)
| VClosurea (ref : (Var + FunctionSignature)) (vl : list Var) (e : Expression)
| VList (vhd vtl : Value)
| VTuple (vl : list Value)
| VMap (kl vl : list Value).

a The closure means a function and an application environment, where ref will be a
reference to the environment, vl will be the function parameter list and e will be the
body expression.

Fig. 4. Syntax of values

In the upcoming sections, we will use the following syntax shortcuts:

tt := VLiteral (Atom ”true”)
ff := VLiteral (Atom ”false”)

3.2 Semantics

We define a big-step operational semantics for the Core Erlang syntax described
in the previous section. In order to do so, we need to define environment types to
be included in the evaluation configuration. In particular, we define environments
which hold values of variable symbols and signatures, and separately we define
closure environments to store closure-local context.

Environment The variable environment stores the bindings made with pattern
matching in parameter passing as well as in let, letrec, case (and try) state-
ments. Note that the bindings may include both variable names and functions
signatures, with the latter being associated with function expressions (closures).
In addition, there are top-level functions in the language, they too are stored in
this environment, similarly to those defined with the letrec statement. In the
rest of the paper, we will call these “signature” functions.

Top-level, global definitions could be stored in a separate environment in a
separate configuration cell, but we decided to handle all bindings in one environ-
ment, because this separation would cause a lot of duplication in the semantic

A Proof Assistant Based Formalisation of Core Erlang 7

rules and in the actual Coq implementation. Therefore, there is one union type
to construct a single environment for function names and variables, both local
and global. It is worth mentioning that in our case the environment always stores
values since Core Erlang evaluation is strict. This means that before binding a
variable to an expression, the expression is guaranteed to be evaluated to a value.

We define the environment in the following way:

Definition Environment : Type := list ((Var + FunctionSignature) × Value).

In the next sections, we denote this mapping with Γ , whilst ∅ denotes the
empty environment. We also define a number of helper functions to manage
environments, which will be used in formal proofs in the following sections. For
the sake of simplicity, we omit the actual Coq definitions of these operations and
rather provide a short summary of their effect.

– get value Γ key : Returns the value associated with key in Γ .
– insert value Γ key value: Inserts the (key, value) pair into Γ . If this key has

already been present, it will overwrite its existing value.
– add bindings bindings Γ : Appends to Γ the variable-value bindings given in

bindings.
– append vars to env varlist valuelist Γ : It is used for let statements, and

modifies the closure values in valuelist (rewrites their environment reference
to the variable specified in the let), and adds the bindings (varlist elements
to modified valuelist elements) to Γ .

– append funs to env funsiglist param-bodylist Γ : Appends to Γ function sig-
nature-closure pairs. The closures are constructed from param-bodylist which
contains parameter lists and body expressions.

Closure Environment In Core Erlang, function expressions evaluate to clo-
sures. Closures have to be modelled in the semantics carefully in order to capture
the bindings (the closure context) properly. The following Core Erlang program
shows an example where we need to explicitly store a binding context to closures:

l et X = 5 in
let Y = fun () −> X in

let X = 10 in
apply Y()

The semantics needs to make sure that we apply static binding here: the
function Y has to return 5 rather than 10. This requires the Y ’s context stored
along with its body, which is done by coupling them into a function closure.

When binding a name or signature to a function (either with let or letrec
statement), a closure is created. This is a copy of the current environment,
an expression (the function body), and a variable list (the parameters of the
function) associated with the name of the function; in fact, we get a mapping
from the function’s name or signature to its definition environment.

This information could be encoded with the VClosure constructor in the
Value inductive type using the environment instead of the ref reference to it

8 P. Bereczky et al.

(see Figure 4), however, this cannot be used when the function is recursive. Here
is an example:

l e t r e c ’ f1 ’ /0 = fun () −> apply ’ f1 ’ / 0 ()

In Core Erlang, letrec allows definition of recursive functions, so the body of
the ’f1’/0 must be evaluated in an environment which stores ’f1’/0 mapped to
a closure. But this closure contains the environment in which the body expression
must be evaluated which is the same environment mentioned before. So the this
is a recursion in embedded closures in the environment. Here is the problem
visualized:

{’f1’/0 : VClosure {’f1’/0 : VClosure {’f1’/0 : ...}} [] (apply ’f1’/0()) }

We do not apply any syntactical changes to the function body, but we solve
this issue by introducing the concept of closure environments. The idea is that
the name of the function (variable name or function signature) is mapped to the
application environment (this way, it can be used as a reference). It is enough
to encode the function’s name with the VClosure constructor. This closure en-
vironment can only be used together with the use of the environment and items
cannot be deleted from it.

Definition Closures : Type := list ((Var + FunctionSignature) × Environ-
ment).

When a function application happens, the evaluation environment should use
this closure. Let us see the original example with this idea.

In that case, we want to return 5, and not 10. So when applying the Y
function, it must not be evaluated in the actual environment {X : 10}, but in
the one where Y was defined {X : 5}. The environment associated with Y in the
closure mapping is exactly this environment, so the evaluation can continue in
this one (extended with the parameter variable binding, if there are parameters).
All in all, closures will ensure that the functions will be evaluated in the right
environments (a similar fully formal example is described in Section 4.2).

In the next sections, we denote this mapping with ∆, and ∅ denotes the
empty closure environment. Similarly to ordinary environments, closure envi-
ronments are managed with a number of simple helper functions; like before, we
omit the formal definition of these and provide an informative summary instead.

– get env key ∆ Γ : Returns the environment associated with key in ∆. Results
default parameter Γ , if key is the empty string (””). Implemented with the
get env from closure function.

– get env from closure key ∆: Returns the environment associated with key.
If the key is not present in the ∆, it returns ∅.

– set closure key Γ : Adds (key, Γ) pair to ∆. If key exists in ∆, its value will
be overwritten. Used in the append functions.

A Proof Assistant Based Formalisation of Core Erlang 9

– check closure ∆ key : Removes from∆. key (and its associated environment).
Used in the implementation of append vars to closure3.

– append vars to closure vars vals ∆ Γ : Inserts variable bindings to Γ into
∆. Only those variables will be considered, which are bound to a closure
value (this is the reason, why exps is needed).

– append funs to closure fnames ∆ Γ : Inserts function signature to Γ bind-
ings into ∆

Dynamic Semantics With the language syntax and the execution environment
defined, we are ready to define the big-step semantics for Core Erlang. Prior to
presenting the rules of the operational semantics, we define a helper for pointwise
evaluation of multiple independent expressions: eval all states that a list of
expressions evaluates to a list of values. With the help of this proposition, we
will be able to define the semantics of function calls, tuples, and expressions of
other kinds in a more readable way. In this definition, we reuse length, combine
and In from Coq’s built-ins [1].

eval all Γ ∆ exps vals :=
length exps = length vals →
(∀ exp : Expression, ∀ val : Value,
In (exp, val) (combine exps vals) →
(Γ , ∆, exp) e−→ val)

There is another auxiliary definition we will simplify the definition with:
(match clause v cs i) tries to match the ith pattern given in the list of clauses
(cs) with the value v. The result is optional, on successful matching it returns the
ith clause guard and body expressions with the pattern variable-value bindings,
otherwise it returns None.

The formal definition of the proposed operational semantics for Core Erlang
is presented in Figure 5. We remind the reader that the figure presents the actual
Coq definition, but the inductive cases are formatted as inference rules. We also
note that this big-step definition is partly based on the small-step definition
discussed in [7–10]. In addition, for most of the language elements defined an
informal definition is available in [3]. In the next paragraphs, we provide short
explanations of less trivial rules.

– Rule 3.7: At first, the case expression e must be evaluated to some v value.
Then this v must match to the specified ith clause (match clause function).
This match provides the guard, the body expressions of the clause and also
the pattern variable binding list. The guard must evaluate to true in the
extended environment with the binding list. The no previous match states,
that for every j which is smaller than i the match cannot happen or the
guard expression evaluates in the extended environment to false. Thereafter
the evaluation of the body expression can continue in this environment.

3 This is needed when a variable was bound to a non-closure value and before this
binding the variable had been bound to a closure

10 P. Bereczky et al.

Inductive eval expr : Environment × Closures × Expression → Value → Prop :=

(Γ,∆,ELiteral l) e−→ VLiteral l (3.1)
(Γ,∆,EVar s) e−→ get value Γ (inl s) (3.2)

(Γ,∆,EFunSig fsig) e−→ get value Γ (inr fsig) (3.3)

(Γ,∆,EFun vl e) e−→ VClosure "" vl e (3.4)

eval all Γ ∆ exps vals

(Γ,∆,ETuple exps) e−→ VTuple vals
(3.5)

(Γ,∆, hd) e−→ hdv (Γ,∆, tl) e−→ tlv

(Γ,∆,EList hd tl) e−→ VList hdv tlv
(3.6)

For the next rule we introduce no previous match i ∆ Γ cs v := (∀j : nat, j <

i → match clause v cs j = None ∨ (∀ (gg, ee : Expression), (bb : list (Var ×
Value), match clause v cs j = Some (gg, ee, bb)→ ((add bindings bb Γ,∆, gg) e−→ ff))).

match clause v cs i = Some (guard, exp, bindings)

(add bindings bindings Γ,∆, guard) e−→ tt

(add bindings bindings Γ,∆, exp) e−→ v’

(Γ,∆, e) e−→ v
no previous match i ∆ Γ cs v

(Γ,∆,ECase e cs) e−→ v’

(3.7)

eval all Γ ∆ params vals eval fname vals = v

(Γ,∆,ECall fname params) e−→ v
(3.8)

eval all Γ ∆ params vals (Γ,∆, exp) e−→ VClosure ref var list body

(append vars to env var list vals (get env ref ∆ Γ),∆, body)
e−→ v

(Γ,∆,EApply exp params) e−→ v

(3.9)

eval all Γ ∆ exps vals

(append vars to env vars vals Γ, append vars to closure vars vals ∆ Γ, e)
e−→ v

(Γ,∆,ELet vars exps e) e−→ v

(3.10)

For the following rule we introduce Γ ′ ::= append funs to env fnames funs Γ

length funs = length fnames

(Γ ′, append funs to closure fnames ∆ Γ ′, e) e−→ v

(Γ,∆,ELetrec fnames funs e) e−→ v

(3.11)

eval all Γ ∆ kl kvals eval all Γ ∆ vl vvals length kl = length vl

(Γ,∆,EMap kl vl) e−→ VMap kvals vvals
(3.12)

Fig. 5. The big-step operational semantics of Core Erlang

– Rule 3.8: At first, the parameters must be evaluated to values. Then these
values are passed to the auxiliary eval function which simulates the be-

A Proof Assistant Based Formalisation of Core Erlang 11

haviour of inter-module function calls. This results in a value which will be
the result of the ECall evaluation.

– Rule 3.9: To use this rule, first exp has to be evaluated to a closure. More-
over, every parameter must be evaluated to a value. Finally, the closure’s
body expression evaluates to the result in an extended environment which is
constructed from the parameter variable-value bindings and the referenced
environment of the closure. This referenced environment can be acquired
from the closure environment.

– Rule 3.10: At first, every expression given must evaluate to values. Then
the body of the let expression must be evaluated in the original environ-
ment extended with the variable-value bindings. The closure environment
has to be extended also in order to define functions in let, so for every value
here the append vars to closure function decides, if it is a closure, and adds
the variable-closure binding to the environment (also modifies the closure’s
environment reference, as mentioned before).

– Rule 3.11: This rule is very similar to the rule 3.10, except no expressions
must be evaluated here at first. From the described functions (list of variable
list and body expressions), closures will be created and appended to the
environment and closure environment. In these ones the evaluation continues.

– Rule 3.12 Introduces the evaluation for maps. This rule states that every key
in the key list and value list must be evaluated to values resulting in two
value lists (for keys and values) from which the value map is constructed.

After discussing these rules, we show an example why the other approach
(where values are defined as a subset of expressions) is more difficult to use. Let
us consider a unary operator (val) on expressions which marks the values of the
expressions. With the help of this operator, the type of values can be defined:
V alue ::= {e : Expression | e val}. Let see how does this would modify our
semantics in a few key points:

– The type of the eval expr would be Environment× Closures× Expression
→ Expression → Prop. This implies, that a theorem is needed that states
about the expression evaluation to values.

– Because of the strictness of Core Erlang, the derivation rules change, for
example:
• The expression literals could not be rewritten (because those are values)
• Function definitions must be handled as values
• Additional checks needed in the preconditions, e.g. the rule 3.6:

tlv val
hdv val

(Γ,∆, hd) e−→ hdv ∨ hd = hdv

(Γ,∆, tl) e−→ tlv ∨ tl = tlv

(Γ,∆,EList hd tl) e−→ VList hdv tlv
– Additional theorems are needed, e.g. from values there is no possible rewrit-

ing

This approach has the same expressive power as the presented one, but it
has more preconditions to prove while using it. This is the reason, we can state
that our formalisation is easier to use.

12 P. Bereczky et al.

Proof about properties of the semantics When proving statements about
inductive types, induction principles are needed. These principles describe, how
a P property can be proved for every element of an inductive type. For example
the induction principle for natural numbers is the following.

To prove ∀n : nat, P (n) it is enough to prove:

1. P (0)
2. ∀n : nat, P (n)→ P (S n)

At this point, we encountered a difficulty. Coq uses a mechanism, that can
guess these principles based on the construction of the inductive type. Unfor-
tunately this mechanism does not work always, like in the case of rose trees
(trees can be constructed with the Empty and the Node (l : list RoseTree)
constructors) it can not guess the second part of the principle.

To prove ∀t : RoseTree, P (t) it is enough to prove:

1. P (Empty)
2. ∀l : list RoseTree, P (Node l) which should be ∀l : list RoseTree, (∀e :
RoseTree, In e l→ P (e))→ P (Node l)

Nevertheless, Coq also allows to define these principles by hand (e.g. as hy-
potheses), and this approach was needed for expressions and the operational
semantics by far. After this solution, we managed to formalise and prove theo-
rems. In this paper we present two of these.

Theorem 1 (Determinism). ∀ (Γ : Environment), (∆ : Closures), (e : Ex-
pression), (v1 : Value), (Γ , ∆, e) e−→ v1 ⇒ (∀v2 : Value, (Γ , ∆, e) e−→ v2 ⇒ v1
= v2).

Proof. Induction by the construction of the semantics.

– 3.1, 3.2, 3.3 and 3.4 are trivial. E.g. a value literal can only be derivated
from its expression counterpart.

– 3.5 and 3.12 are similar, 3.12 is basically a double tuple. According to the
induction hypothesis each element in the expression tuple can be evaluated
to a single value, so the tuple itself evaluates to the tuple which contains
these values. The proofs for maps is similar.

– 3.6 The head and the tail of the list can be evaluated to a single head and
tail value, so the result list constructed from these ones only one way.

– 3.7 The induction hypothesis states that the base and the clause body and
guard expressions evaluate deterministically. The clause selector functions
are also deterministic, so there is only one possible way to select a body
expression to evaluate.

– The other proofs can be constructed based on parts of the previous ones.
ut

Theorem 2 (Commutativity). ∀ (e, e’ : Expression), (∆ : Closures), (Γ :
Environment), (t : Value),
(Γ , ∆, ECall “plus”%string [e ; e’]) e−→ t ⇔
(Γ , ∆, ECall “plus”%string [e’ ; e]) e−→ t.

A Proof Assistant Based Formalisation of Core Erlang 13

Proof. The proof is the same to both directions of the equivalence, so only the
⇒ direction is described here.

First the information is needed about the construction of the main hypothesis
(in this case: (Γ , ∆, ECall “plus”%string [e ; e’]) e−→ t). This information is two
values to which e and e’ evaluates.

With the help of these values (in a swapped order), 3.8 can be applied to the
goal. There three statements has to be proven:

– The length of the parameter list is the same as the variable list: both are
two.

– The parameters evaluate to the given values: the information from the main
hypothesis includes these statements.

– The auxiliary eval function with the “plus” parameter is commutative: this
function is represented with the mathematical addition, that is why it is
commutative (if one of the parameters is not a number, then it will result
an error value).

ut

The complete proofs of these theorems (along with examples) are available
in Coq on the project’s Github repository [2].

4 Application and testing of the semantics

In the previous section we have defined a big-step operational semantics for the
sequential part of the Core Erlang language, which we also formalised in the Coq
proof assistant.

In this section we present some use cases. First, we elaborate on the verifica-
tion of the semantics definition by testing it against the reference implementation
of the language, then we show some examples on how we used the formalisation
for deriving program behaviour and for proving program equivalence.

4.1 Testing of the semantics

Due to a lack of an up-to-date language specification, we validated the correct-
ness of our semantics definition by comparing it to the behaviour of the code
emitted by the official compiler.

To test our formal semantics, we used equivalence partitioning. We have writ-
ten tests both in Coq and in Core Erlang (OTP version 22.0) for every expression
defined in our formalisation. Moreover, there have also been special complex ex-
pressions that have needed separate test cases (e.g. using bound variables in let
expressions, application of recursive functions, etc.). All test cases are available
in our Github repository [2].

4.2 Formal program evaluation

Now let us demonstrate how Core Erlang programs are evaluated in the formal
semantics. For the sake of readability, we use concrete Core Erlang syntax in the

14 P. Bereczky et al.

proofs, and trivial statements are omitted from the proof tree. All examples are
formalised in Coq, available in our Github repository [2].

The first example shows how to evaluate a simple expression with binding:

{X : 5}(X) = 5
3.2

({X : 5},∅, X)
e−→ 5

3.10
(∅,∅, let X = 5 in X)

e−→ 5

The second example is intended to demonstrate the purpose of the closure
environment. Here at the application of 3.9 it is shown that the body of the
application is evaluated in the environment given by the closure environment.

{X : 42}(X) = 42
3.2

({X : 42}, {Y : {X : 42}}, X)
e−→ 42

3.9
({X : 5, Y : VClosure Y [] X}, {Y : {X : 42}}, apply Y ())

e−→ 42
3.10

({X : 42, Y : VClosure Y [] X}, {Y : {X : 42}}, let X = 5 in apply Y ())
e−→ 42

3.10
({X : 42},∅, let Y = fun()→ X in let X = 5 in apply Y ())

e−→ 42
3.10

(∅,∅, let X = 42 in let Y = fun()→ X in let X = 5 in apply Y ())
e−→ 42

The third example cannot be evaluated in our formalisation, because of infi-
nite recursion. Let Γ := {′x′/0 : VClosure ′x′/0 [] apply′x′/0()} (the environment
after the binding is added).

... 3.9
(Γ, {′x′/0 : Γ}, apply ′x′/0())

e−→??
3.9

(Γ, {′x′/0 : Γ}, apply ′x′/0())
e−→??

3.11
(∅,∅, letrec ′x′/0 = fun()→ apply ′x′/0() in apply ′x′/0())

e−→??

4.3 Program equivalence proofs

Last but not least, let us expose some program equivalence proofs demonstrating
the usability of this semantics definition implemented in Coq. This is a significant
result of the paper since our ultimate goal with the formalisation is to prove
refactorings correct. Like before, the machine-checked proofs of these theorems
are available in the project’s Github repository [2].

First, we present a rather simple example of program equivalence.

Example 1 (Swapping variable values).

let X = 5 in let Y = 6 in X + Y

is equivalent to

let X = 6 in let Y = 5 in X + Y

A Proof Assistant Based Formalisation of Core Erlang 15

Proof. The formal description of the example looks like the following (using
abstract syntax for this one step):

∀t : V alue,
(∅,∅,ELet [“X ′′] [ELiteral (Integer 5)](ELet [“Y ′′] [ELiteral (Integer 6)]

(ECall “plus” [EVar “X ′′;EVar “Y ′′])))
e−→ t⇐⇒

(∅,∅,ELet [“X ′′] [ELiteral (Integer 6)](ELet [“Y ′′] [ELiteral (Integer 5)]

(ECall “plus” [EVar “X ′′;EVar “Y ′′])))
e−→ t

Both directions of this equivalence are proven exactly the same way, so only
the =⇒ direction is presented here. This way, the hypothesis is the left side of
the equivalence.

First, this hypothesis should be decomposed. From the two let statements,
it is known that the 5 and 6 expression literals can be evaluated only to their
value counterparts (because of the determinism). These ones will be associated
with X and Y in the evaluation environment for the addition operator (ECall
“plus”). When this statement is evaluated, then it yields the following hypothesis:

t = eval “plus” [VLiteral (Integer 5);VLiteral (Integer 6)]

Furthermore, our goal can be proven with the derivation tree presented below.
In this tree the trivial parts of the proofs are not described for readability (these
are e.g. that the 5 and 6 expression literals evaluate to their value counterparts,
the length of the expression or variable lists are the same as the evaluated value
lists, etc.).

eval “plus” [6; 5] = t
3.8

({X : 6, Y : 5},∅, X + Y)
e−→ t

3.10
({X : 6},∅, let Y = 5 in X + Y)

e−→ t
3.10

(∅,∅, let X = 6 in let Y = 5 in X + Y)
e−→ t

The only remaining goal is to prove that eval “plus” [6; 5] = t. We have
already stated, that t = eval ”plus” [5; 6], so it is sufficient to prove:

eval “plus” [6; 5] = eval “plus” [5; 6]

The commutativity of the mathematical addition can be used here (because
of the representation of eval), so we can swap the 5 and 6 values in the parameter
list. After this modification, we get reflexivity. ut

With the help of the same chain of thoughts, a more abstract refactoring also
can be proven in our system.

16 P. Bereczky et al.

Example 2 (Swapping variable expressions). If e1 and e2 does not contain the
variables X and Y, then

let X = e1 in let Y = e2 in X + Y

is equivalent to

let X = e2 in let Y = e1 in X + Y

Proof. Similar to the Example 1, at first, this one should also be described in
our formalisation. We prove this example with initial empty environment, but
this environment could be generalized.

∀t : V alue,
(∅,∅,ELet [“X ′′] [e1] (ELet [“Y ′′] [e2]

(ECall “plus′′ [EVar “X ′′;EVar “Y ′′])))
e−→ t⇐⇒

(∅,∅,ELet [“X ′′] [e2] (ELet [“Y ′′] [e1]

(ECall “plus′′ [EVar “X ′′;EVar “Y ′′])))
e−→ t

The directions of this equivalence are proven exactly the same way, so only
the =⇒ direction is presented here.

Now the main hypothesis has two let statements in itself. Similarly to the
Example 1, these statements could only be derivated with rule 3.10, i.e. there
are two values (v1 and v2) to which e1 and e2 evaluates. It is important to
mention, that these evaluations can happen in every environment which contains
only X and Y (same goes for the closure environment)4, because neither e1 nor
e2 contains X and Y. Moreover there appeared also a hypothesis: ({X : v′1,
Y : v′2}5, ∆, ECall “plus” [EVar “X” ; EVar “Y”]) e−→ t (for some ∆ which is
not giving us any useful additional information). This hypothesis implies that
t = eval “plus” [v′1, v

′
2].

Furthermore, the goal can be solved with the construction of a derivation
tree.

eval ”plus” [v′′2 , v
′′
1] = t

3.8
({X : v′′2 , Y : v′′1 },∆′, X + Y)

e−→ t
3.10

({X : v′′2 },∆, let Y = e1 in X + Y)
e−→ t

3.10
(∅,∅, let X = e2 in let Y = e1 in X + Y)

e−→ t

4 If we are trying to prove for an initial environment which is not empty, then here
these environments can be the initial environment, or its extension with X or Y or
both.

5 v′1 = v1 if v1 is not a closure, in that case v1 can be written like this: VClosure
“” varlist body. Then let v′1 be VClosure “X” varlist body. Same goes for v′2. This
behaviour is present because of the append vars to env function.

A Proof Assistant Based Formalisation of Core Erlang 17

As mentioned before, e1 and e2 evaluates to v1 and v2 in the initial envi-
ronment (in this case it is ∅, but this could be generalized) and the extended
environments (X or Y or both appended to the initial environment) too. So
when the rule 3.10 applies, we can give a proof that e2 and e1 evaluates to v2
and v1. Because of the definition of append vars to env, the lets can modify
these values to v′′2 and v′′1 just like before (v′1 = v′′1 is not always true, if they are
closures, then their referenced environment differs), so these values are inserted
in the environment associated with X and Y.

After making this statement, we can use the rule 3.8 to evaluate the “plus”.
The parameter variables will evaluate to v′′2 and v′′1 . With this knowledge, we
get: eval ”plus” [v′′2 , v

′′
1] = t. As mentioned before t = eval “plus” [v′1, v

′
2]. So it is

sufficient to prove, that:

eval “plus” [v′′2 , v
′′
1] = eval “plus” [v′1, v

′
2]

Moreover, v′1 = v′′1 , if they are not closures (same is true for v′2 and v′′2), so
for them, the commutativity of eval can be used to solve this equality. If either
of v′1 or v′2 is a closure, then its v′′1 or v′′2 pair is a closure too, so in both side the
eval function will result the same error value, and these ones are equal. ut

To prove these examples in Coq, a significant number of lemmas were needed
(like the exposition of lists, the commutativity of the eval, etc.), however the
proof mostly consists of the combination of hypotheses similar to the proofs in
this paper. Although sometimes additional case separations were needed which
resulted in lots of subgoals, these ones were solved very similarly producing
code duplication. In the future, these proofs should become simpler with the
introduction of smart tactics and additional lemmas.

Moreover, in the concrete implementation for Example 2 we used another
thought as the first hypothesis: If e1 does not contain the variables X and Y,
then it will evaluate to the same value in the environments combined from these
variables. This statements also stands for e2.

4.4 Evaluation

We showed that our formal semantics is a powerful tool. We managed to formalise
and prove theorems, programs, program equivalence examples. This proves that
the semantics is usable indeed. With this one we have a powerful tool to argue
about sequential Core Erlang programs. In the previous sections we also men-
tioned some other approaches to formalise this semantics, and showed why our
way is more usable for our purpose.

On the other hand, it also can be seen that this formalisation is not simple to
use either in practice, partly because the Coq Proof Assistant makes its users to
write down every triviality too. Of course this is a necessity of the correctness,
however, this property results in complex proofs. As a possibility for future
work, it would be very useful to create smart tactics, to simplify out proofs and
examples. In addition, this semantics is not complete yet, so it cannot be used
for any Core Erlang expression.

18 P. Bereczky et al.

5 Summary

5.1 Future work

There are several ways to enhance our formalisation, we are going to focus mainly
on these short term goals:

– Extend semantics with additional expressions (e.g. try);
– Handle errors (try statement);
– Handle and log side effects;
– Create new lemmas, theorems and tactics to shorten the Coq implementation

of the proofs;
– Formalise and prove more refactoring strategy.

Our long term goals include:

– Advance to Erlang (semantics and syntax);
– Distinct primitive operations and inter-module calls;
– Formalize the parallel semantics too.

The final goal of our project is to change the core of a scheme-based refac-
toring system to a formally proven core.

5.2 Conclusion

In this study, we discussed why a language formalisation is needed, then briefly
the goal of our project (to prove refactoring correctness). To reach this objec-
tive, Erlang was chosen as the prototype language, then several existing Erlang
formalisations were compared. Based on these ones, a new natural semantics
was introduced for a subset of Erlang. This one was also formalised in Coq
Proof Assistant along with essential theorems, proofs (like determinism) and for-
mal expression evaluation examples. We also showed proofs about the meaning-
preservation of simple refactoring strategies with our formal semantics. In the
future, we are intended to extend this formalisation with additional Erlang state-
ments, error handling and more equivalence examples.

Acknowledgements

The project has been supported by the European Union, co-financed by the Euro-
pean Social Fund (EFOP-3.6.2-16-2017-00013, “Thematic Fundamental Research
Collaborations Grounding Innovation in Informatics and Infocommunications
(3IN)”).

Project no. ED 18-1-2019-0030 (Application domain specific highly reliable
IT solutions subprogramme) has been implemented with the support provided
from the National Research, Development and Innovation Fund of Hungary,
financed under the Thematic Excellence Programme funding scheme.

A Proof Assistant Based Formalisation of Core Erlang 19

References

1. The Coq Proof Assistant Documentation. https://coq.inria.fr/documentation,
accessed: 2020-01-08

2. Core Erlang Formalization. https://github.com/harp-project/
Core-Erlang-Formalization/tree/syntacitcal-values, accessed: 2020.01.10

3. Carlsson, R., Gustavsson, B., Johansson, E., Lindgren, T., Nyström, S.O., Petters-
son, M., Virding, R.: Core Erlang 1.0 language specification (2004)

4. Fredlund, L.Å.: A framework for reasoning about Erlang code. Ph.D. thesis,
Mikroelektronik och informationsteknik (2001)

5. Fredlund, L.Å., Gurov, D., Noll, T., Dam, M., Arts, T., Chugunov, G.: A veri-
fication tool for Erlang. International Journal on Software Tools for Technology
Transfer 4(4), 405–420 (2003)

6. Lanese, I., Nishida, N., Palacios, A., Vidal, G.: Cauder: a causal-consistent re-
versible debugger for Erlang. In: International Symposium on Functional and Logic
Programming. pp. 247–263. Springer (2018)

7. Lanese, I., Nishida, N., Palacios, A., Vidal, G.: A theory of reversibility for Erlang.
Journal of Logical and Algebraic Methods in Programming 100, 71–97 (2018)

8. Lanese, I., Sangiorgi, D., Zavattaro, G.: Playing with Bisimulation in Erlang. In:
Models, Languages, and Tools for Concurrent and Distributed Programming, pp.
71–91. Springer (2019)

9. Neuhäußer, M., Noll, T.: Abstraction and model checking of Core Erlang pro-
grams in Maude. Electronic Notes in Theoretical Computer Science 176(4), 147–
163 (2007)

10. Nishida, N., Palacios, A., Vidal, G.: A reversible semantics for Erlang. In: Inter-
national Symposium on Logic-Based Program Synthesis and Transformation. pp.
259–274. Springer (2016)

11. Vidal, G.: Towards symbolic execution in Erlang. In: International Andrei Ershov
Memorial Conference on Perspectives of System Informatics. pp. 351–360. Springer
(2014)

https://coq.inria.fr/documentation
https://github.com/harp-project/Core-Erlang-Formalization/tree/syntacitcal-values
https://github.com/harp-project/Core-Erlang-Formalization/tree/syntacitcal-values

	A Proof Assistant Based Formalisation of Core Erlang

