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Abstract. Asynchronous concurrent programing is a widely spread tech-
nique offering some simple concurrent primitives that are restricted in
such a way that the resulting concurrent programs are dead-lock free.
In this paper, we develop and study a formal model of the underly-
ing application programmer interface. For such a purpose, we formally
define the extension of a monad by some notion of monad references
uniquely bound to running monad actions together with the associated
asynchronous primitives fork and read. The expected semantics is spec-
ified via two series of equations relating the behavior of these extension
primitives with the underlying monad primitives. Thanks to these equa-
tions, we recover a fairly general notion of promises and prove that they
induce a monad isomorphic to the underlying monad. We also show how
synchronous and asynchronous reactive data flow programming eventu-
ally derive from such a formalization of asynchronous concurrency, uni-
formly lifting fork and read primitives from monadic actions to monadic
streams of actions. Our proposal is illustrated throughout by concrete
extensions of Haskell IO monad that allows for assessing the validity
of the proposed equations and for showing how closely our proposal is
related with existing libraries.

1 Introduction

Asynchronous programming with promises. Asynchronous programming
is quite a popular approach for programming lightly concurrent applications such
as, for instance, web services. Based on promises, a notion introduced in the late
70s and eventually integrated into concurrent extension of functional programing
languages such as Lisp [3] or ML [10], asynchronous concurrent programming
is nowadays available in most modern programing languages, including typed
languages such as OCaml [8] and Haskell [7].

One of the reason of such a success is that asynchronous programing is both
comfortable and safe. Comfort comes from asynchronism, safety comes from
deadlock freeness. Indeed, most asynchronous libraries allow for forking pro-
grams while keeping promises of their returned values. Provided no other com-
munication mechanisms are used, the dependency graph resulting from creating
and reading promises is acyclic therefore deadlock free.



The monadic nature of promises. Quite interestingly, in most libraries,
promises are defined with some flavor of a monad and discussions about the
true monadic nature of promises are numerous on the web, with various and
contradictory conclusions depending on the considered host language and li-
brary. Indeed, each asynchronous concurrent programming library offers its own
interface, mostly incompatible with the others. This does not help having a clear
picture of what promises truly are.

In Haskell for instance, asynchronous programing is provided by the async
library. In this library, there is the type Async a, which elements may sound like
promises of values. They are created by async :: IO a → IO (Async a), that acts
as a fork, and used by wait :: Async a → IO a, that acts as a read. However,
while Async indeed has a functor instance, it does not have any monad instance.
Instead, observing the above types, one may try to define promises as elements
of type IO (Async a). A priori, such an idea makes a lot of sense since there is
the return function definable by:

returnAsync :: a → IO (Async a)
returnAsync a = async (return a)

and at least four distinct candidates for an associated bind function:

bindAsync :: IO (Async a)→ (a → IO (Async b))→ IO (Async b)
(a) bindAsync m f = async (m >>= wait >>= f >>= wait)
(b) bindAsync m f = m >>= λr → async (wait r >>= f >>= wait)
(c) bindAsync m f = m >>= wait >>= λa → async (f a >>= wait)
(d) bindAsync m f = m >>= wait >>= f

for every m :: IO (Async a) and f :: a → IO (Async b). However, none of them
induces a valid monad instance. In Haskell, the possibility of a specific monad
of promises seems essentially lost in the surrounding IO monad.

On the contrary, in a language like OCaml where there is no IO monad but
an implicit one, the monadic flavor of promises is made explicit. In both lwt and
async OCaml libraries, binding the fullfillement of a promise with some callback
function is allowed by a bind function, and simple promises are created by a
return function [8]. In other words, OCaml promises are presented as if they
form a monad. Moreover, as OCaml is a strict language, this monadic point of
view is somehow crucial for dynamically creating and combining simple programs
into more complex ones that can later on be forked.

Main goal. Whether or not these libraries actually define valid monad instances
seems, at best, to be left unproved. If so, one may also wonder how such valid
monads of promises may exist in OCaml while there does not seem to be one in
Haskell.

Our goal in this paper is to investigate such an apparent contradiction. For
such a purpose, we shall formally investigate the monadic nature of promises
when embedded within an explicit monad as in Haskell, some equational laws
specifying the expected interplay between the primitives used for creating and
using promises and the primitives of the embedding monad.



Doing so, we shall not only understand to which extent promises indeed form
a monad but also what properties of promises enforces asynchronism and con-
currency. As a by-product, we shall see how the resulting formalized notion of
promises, combined with monads, suffice for defining a rather well-featured in-
terface for concurrent data flow programing which efficiency have already been
demonstrated in the context of asynchronous control of synchronous sound pro-
cessing.

In other words, we do not propose yet another asynchronous concurrent li-
brary. Instead, generalizing Haskell async library, we define, quite in the abstract,
some generic notion of an asynchronous concurrent extension of a monad, its ex-
pected semantics being defined by means of equational laws relating the behavior
of the new primitives with the underlying monad primitives.

The properties of these extensions, some concrete instance examples, and
various uniformly derived function examples, illustrate throughout the meaning
and relevance of such a equational axiomatization of asynchronous concurrent
programing interface.

Overview of paper content. Our presentation is organized as follows.
We first review some basic notions around functors and monads in Section 2.

Generalizing and abstracting the async library approach, we define in Section 3
a generic type class MonadRef m composed of an abstract type Refm a which
elements are called monad references, built over the given monad m, together
with two asynchronous primitives fork :: m a → m (Refm a) for creating monad
references bound to forked monad actions, and read :: Refm a → m a for ac-
cessing, through these monad references, the values returned by the referenced
forked actions.

The expected semantics of monad references is formalized by means of two
series of equational laws describing the expected interplay between the monad
primitives return :: a → m a and bind :: m a → (a → m b) → m b and the
asynchronous primitives fork and read .

Described in Section 3, the first series of laws aim at capturing the basic se-
mantics of monad references: how monad references are indeed bound to forked
actions. Thanks to these laws, the monadic nature of promises can be inves-
tigated in the depth. Among other properties, the type function m ◦ Refm is
proved to be a functor and, under some adequate restrictions, it is also a monad
as shown in Section 4.

Described in Section 5, the second series of laws is more concerned with the
asynchronous and concurrent nature of monad references. More precisely, some
idempotency or commutation rules are stated for ensuring that fork actions are
non blocking and read actions have no side effects but waiting for the associated
forked actions to terminate.

As an illustration of is second series of laws, a number of instances of the
MonadRef class, visibly not asynchronous nor concurrent but satisfying the first
series of laws, are shown to be eventually ruled out by that second series.

Last, in Section 6, we show how the notion of monad references can be lifted
to more complex data types such as monadic streams: a fact especially useful



for sharing monadic stream contents without duplicating their underlying side
effects. This eventually proves in the abstract that even though asynchronous
concurrent primitives are fairly limited compared to general concurrent primi-
tives, they nevertheless suffice, when combined with monad primitives and in-
ductive type definitions, for defining a fairly generic interface for reactive and
concurrent, synchronous or asynchronous, stream programing.

The general coherence and relevance of our proposal is is illustrated through-
out by defining a simple valid extension of Haskell IO monad, a self-contained
simplified version of the existing Haskell async library. Up to some technicalities,
its is argued that even the existing Haskell async library itself also yields a valid
instance of the monad reference class type.

A Haskell based presentation. Most concepts are presented, throughout this
paper, by means of Haskell type classes which instances are requested to satisfy
some number of equational laws. Compared to a purely theoretical approach,
such a presentation comes with some overhead, but also an immediate benefit:
it is directly applicable as demonstrated by two associated libraries developed
both in Haskell and OCaml.

Throughout the paper, we shall also consider that two elements a1 a2 :: a of
a given type a are equal when there are indistinguishable in any context of use
in the sense that for any function f :: a → IO () there is no observable difference
between running f a1 and f a2 in some idealized IO monad. This means that
either equality in a type a is (inductively and explicitly) defined in an instance
EQ a of the equality type class, or it is (co-inductively and implicitly) defined
by contextual indistinguishability.

2 Preliminaries on monadic functors and monad actions

We review below the definition and some properties of functors and monads, fol-
lowing the programmer’s point of view offered by the pioneer works of Moggi [9]
and Wadler [11].

2.1. Functors. A (type) functor is a type function m :: ∗ → ∗ equipped with
an fmap function as specified by the following class type:

class Functor m where
fmap :: (a → b)→ m a → m b

such that the following laws are satisfied:

m ≡ fmap id m (1)

fmap g (fmap f m) ≡ fmap (g ◦ f ) m (2)

for every m :: m a every f : a → b and g : b → c.
In other words, the function fmap extends to typed functions the function m

over type. The first equation states that the image of the identity function by a
functor shall be the identity. The second equation states that the image of the
composition shall be the composition of the image.



2.2. Monads. A monad is a (type) functor m :: ∗ → ∗ equipped with two
additional primitives return and bind as specified by the class type:

class Functor m ⇒ Monad m where
return :: a → m a
(>>=) :: m a → (a → m b)→ m b

such that the following equation are satisfied:

return a >>= f ≡ f a (3)

m >>= return ≡ m (4)

(m >>= f )>>= g ≡ m >>= (λx → f x >>= g) (5)

for every m :: m a, f :: a → m b and g :: b → m c, the infix operator (>>=) named
bind when used as a function. Elements of type (m a) called monad actions.

The first and second equations state that, in some sense, return act as a
neutral element for the bind, both on the left (3) and on the right (4). The third
equation states that the bind operator is associative (5) in some sense. Later in
the text, we may also denote by m1 >>m2 the composition m1 >>= λ → m2.

2.3. Coherence property. Under such a presentation of monads, every monad
instance shall also satisfy the following coherence property :

fmap f m ≡ m >>= (return ◦ f ) (6)

for every f ::a → b and m ::m a, that states that the mapping function induced by
the monad primitives equals the mapping function defined in the parent Functor
class instance.

When m is a monad, the function λf m → m >>= (return ◦ f ) indeed satisfies
both functor laws. Equation (1) immediately follows from (4). Equation (2),
which can be rephrased in terms of monad primitives by:

m >>= return (g ◦ f ) ≡ m >>= (return ◦ f )>>= (return ◦ g) (7)

follows from (3) and (5).

2.4. Alternative syntax for binds. Haskell do-notation allows writing simpler
composition of monad actions. Indeed, we may write:

do {x1 ← m1; x2 ← m2; ...;xn−1 ← mn−1;mn}

the variables x1, x2, . . . , xn−1 possibly omitted when not used, in place for the
bind series m1 >>= λx1 → m2 >>= λx2 → ...mn−1 >>= λxn−1 → mn with m1,
m2, . . . , mn some monadic actions possibly depending on variables with strictly
lower indices.

Such a notation has a clear flavor of imperative programing. Moreover, since
action mi possibly depends on the values returned by all actions mj with j < i,
it even seems that such a composition of action is necessarily evaluated from left
to right. However, with Haskell lazy evaluation, this is not true in general unless
the considered monad is strict as the IO Monad reviewed below.



2.5. The IO monad. For the reader not much familiar with monad programing,
we review here some basic features of Haskell IO monad; a monad that allows
pure functions to be used in communication with the real world.

The archetypal functions in the IO monad are getChar :: IO Char and
putChar :: Char → IO () that respectively allows for getting the next char-
acter typed on the keyboard (getChar), or printing on the screen the character
passed as argument (putChar).

As an exemple of a bind, there is the action getChar >>= putChar that gets
the next typed character and prints it out. An important feature of monadic IO
actions, as monad actions, is that they are not executed unless passed to the top
level. This allows the definition of the following function:

echo :: IO ()
echo = getChar >>= putChar >>= echo

presumably infinite, which, only when executed, will repeatedly wait for a char-
acter to be typed on the standard input and will print it out on the standard
output.

This illustrates the fact that, especially in a concurrent setting, monads,
with return and bind functions that create and combine monad actions, are
particularly well suited to define programs that will eventually be run (or forked)
later on.

Another important aspect of the IO monad in Haskell is that it is a strict
monad in the sense that, when executing a bind, the left monadic action is
executed long enough for its argument to be given to the right function argument
before the right argument starts to be evaluated. This contrasts significantly with
Haskell principle of lazy evaluation but clearly allows a better control, or even
any control at all, on IO scheduling.

3 Elementary monad references

We describe here the first half of our formalization of promises, a notion deriving
from the fairly general notion of monad references. As we shall see in Section 4,
this definition suffices for analyzing the monadic nature of promises.

However, nothing enforces these promises to behave neither asynchronously
nor concurrently. Concurrent monad references, from which derive the usual
notion of concurrent promises, shall be defined and studied later in Section 5.

3.1. Monad reference. Intendedly, a monad reference shall be a reference to
a “running” monad action allowing to freely read the value returned by that
action without repeating the side effect of the action. In terms of Haskell type
class, we put:

class Monad m ⇒ MonadRef m where
type Refm ::∗ → ∗
fork :: m a → m (Refm a)
read :: Refm a → m a



where Refm a is the type of references to running actions of type m a, fork m
is the action that shall fork the monadic action m and (immediately) return a
reference to that action, and read r is the action that shall (possibly wait for
and) return the value returned by the action referenced by r .

3.2. Basic semantics laws. Every instance of the MonadRef class shall first
satisfy the following laws:

(fork m)>>= read ≡ m (8)

fork ◦ read ≡ return (9)

(fork m)>>= λr → fork (read r >>= f ) ≡ fork (m >>= f ) (10)

for every m :: m a, f :: a → m b.
These laws describe the expected interplay between forks and read with the

underlying monad primitives. Law (8) states the basic semantics of forks and
reads: reading a just forked action essentially behave like that action, side-effect
included ! Law (9) states that forking a read essentially amount to return an
equivalent reference. Law (10) states that forking a bind can be decomposed
into two successive forks, provided the reference yield by the first fork is passed
through as argument of the second one.

3.3. Default IO monad references. The simplest and truly concurrent in-
stance of IO references one can define, thanks to mutable variables MVar and
the native thread provided by forkIO in concurrent Haskell [6], is described by
the following instance:

newtype MRef a = MRef (MVar a)
instance MonadRef (IO) where

type RefIO = MRef
fork m = do {v ← newEmptyMVar ; forkIO (m >>= putMVar v);

return (MRef v)}
read (MRef v) = readMVar v

With this definition, one can review all expected rules and check to which extent
they are satisfied.

Law (8) is satisfied thanks to the fact that the side effects happening when
executing m are the same as the side effects happening when executing forkIO m.
Law (10) validity essentially follows from the same reason, forkIO being non
blocking and readMVar returning the expected value essentially as soon as it is
available.

Law (9) is less obviously satisfied for there are indeed two distinct mutable
variables created that are required to be equivalent when used under MRef .
However, they both contains the same value, essentially at the same time. Since
they can only be read in a non destructive way (via readMVar), these two en-
capsulated mutable variables can thus be replaced one with the other without
observable difference.



It shall be clear that with Haskell async library, though more complex, we
can define a similar valid MonadRef instance, with Async in place off MVar ,
async in place of forkIO and wait in place of readMVar . Again, for law (9) to
be satisfied, the type Async a must be encapsulated in order to hide/disable its
defined equality predicate.

3.4. A source of counter examples. We have stated some equational prop-
erties that shall be satisfied by instances of monad references, and we shall
even state some more. Still, one may wonder how to check that an equality is
not satisfied. The above instance of IO references shall be our main source of
counter-examples. The reason for this is that the IO monad convey an implicit
but rather strong notion of time based on IO events. More precisely, we have
already mentioned that its bind is strict and some actions in the IO monad are
blocking, such as getChar , while some others are not, such as printChar c. Two
complex actions can thus be distinguished by the visible side-effects they may
performed before being eventually blocked.

For instance, with IO references, one can observe that fork m is non blocking,
regardless of the forked action m. This provides the following provable example of
inequality that we shall use several times in the text. With m0 ::m (RefIO Char)
defined by m0 = getChar >>= (fork ◦ return), we have

fork (m0 >>= read) 6≡ m0

eventhough both actions essentially return equivalent monad references.
Indeed, the action m0 returns a reference towards the next typed character.

But its blocks until that character is typed. The action fork (m0>>=read) returns
a similar reference since, by (8) and (4), it is equivalent to fork (getChar).
However, it is non blocking since fork is non blocking

In other words, it is false that fork (m >>= read) ≡ m in general. However,
in the next section, we shall see and use the fact that when m = fork m ′ with
m ′ :: m a then such an equation does hold.

4 Properties of elementary monad references

In this section, we shall study the properties deriving from our equational defini-
tion of elementary monad references. We thus assume a type function m ::∗ → ∗
with its functor instance Functor m, its monad instance Monad m, and its ex-
tension with monad references as a MonadRef m instance. This means that we
assume there are the function fmap, return, bind , fork and read typed as de-
scribed above and satisfying (1)–(6) for monad primitives, and laws (8)–(10) for
monad references primitives.

4.1. Induced functor. Observe that, although Refm ::∗ → ∗ is a type function,
it cannot be a functor since there is no function that allows to create or read a
monad reference without entering into the monad m. As well known by Haskell
programmers, there is no general no way to go outside a monad.



However, we shall prove here that the composition m ◦Refm, that maps every
type a to the type m (Refm a) of monad actions returning monad references, is
itself a functor. Indeed, there is the function fmapRef defined by

fmapRef :: MonaRef m ⇒ (a → b)→ m (Refm a)→ m (Refm b)
fmapRef f m = m >>= λr → fork (read r >>= (return ◦ f ))

and we have:

Theorem 1 The type function m ◦Refm with fmapRef as mapping function is
a functor.

Proof. (sketch of) The fact that fmapRef satisfies law (1) follows from (9) and
standard monad laws. The fact that fmapRef satisfies law (2) follows from (10)
and standard monad laws.

The reader may find surprising that law (8), though describing the basic seman-
tics of forks and reads, is not mentioned here. It turns out that it has somehow
already been used in order to simplify the definition of function fmapRef given
here as shown in Lemma 3.

Remark. We could have put fmapRef f m = fork (m >>= read >>= return ◦ f )
instead. But then, we would have fmapRef id m = fork (m >>= read) which, as
shown at the end of Section 3, is distinct from m in the IO monad as soon as m
is blocking. In other words, such an alternative definition fails to satisfy law (1).

4.2. Induced natural transformations. Functors m and m ◦Refm are tightly
related. Indeed, slightly abusing Haskell notations, we define the functor trans-
formations

Fork :: m ⇒ m ◦ Refm

Forka = fork :: m a → Refm a

Read :: m ◦ Refm ⇒ m

Reada = λm → m >>= read :: m (Refm a)→ m a

and we have:

Theorem 2 Both Fork and Read are natural transformation. More precisely,
for every function f :: a → b, within monad m, law (10) implies that:

fmapRef f (fork m) ≡ fork (fmap f m) (11)

for every action m :: m a, and law (8) implies that:

fmap f (m >>= read) ≡ fmapRef f m >>= read (12)

for every action m :: m (Refm a).
Moreover, functor m turns out to be a retract of functor m ◦ Refm, that is,

Read ◦ Fork is the identity transformation, as immediately implied by (8).



Remark. The reverse composition Fork ◦ Read is not the identity as observed
in the IO monad taking again a blocking action m with fork (m >>= read) 6≡ m.

Altogether, the fact that m is a (strict) retract of m ◦ Refm says in partic-
ular that whatever one can do in the monad m without monad references, one
can mimicked is in a compositional way under the fork essentially without any
change of behavior. However, since m and m ◦Refm are not isomorphic functors,
there may be behaviors definable with monad references that cannot be defined
without.

4.3. The possibility of a monad. We have shown that m ◦Refm is a functor.
Shall this functor be monadic ? Strictly speaking, this is not true as we shall see
here by enumerating all possible definitions for returns and binds.

First, it shall be clear that, up to equivalent definitions, the unique possibility
of a function return is defined by:

returnRef :: MonadRef a ⇒ a → m (Refm a)
returnRef = fork ◦ return

for it is the unique uniformly defined function inhabiting its type. For the bind,
as already suggested in the introduction, there are the following candidates:

bindRef :: m (Refm a)→ (a → m (Refm b))→ m (Refm b)
(a) bindRef m f = fork (m >>= read >>= f >>= read)
(b) bindRef m f = m >>= λr → fork (read r >>= f >>= read)
(c) bindRef m f = m >>= read >>= λa → fork (f a >>= read)
(d) bindRef m f = m >>= read >>= f

Of course, the fact that such a list shall be, up to equivalence, complete with
respect to uniformly definable bind candidates, necessitates a proof. Let us just
observe that we have at least enumerated all possible insertions of a fork into
the possible series of binds. The IO monad instance somehow forces to respect
functional dependencies in sequence, and adding additional forks and reads es-
sentially yield equivalent candidates thanks to rules (8)–(10).

Lemma 3 Bind candidates (a), (c) and (d) fail to satisfy the right unit monad
law (4) in the IO monad instance.

In any instance, the bind candidate (b) satisfies the right monad unit law (4),
the monad associativity law (5), as well as the coherence law (6) with respect to
fmapRef , that is, with (b), we have:

fmapRef f m ≡ bindRef m (returnRef ◦ f ) (13)

for every m :: m (Refm a) and f :: a → b.
Moreover, while the bind candidate (b) fails to satisfy the left unit monad

law (3) in the IO monad instance, if we restrict to to functions of the form
fork ◦ f some f :: a → m b, then the bind candidate (b) also satisfies law (3) in
arbitrary instances.

In other words, the bind candidate (b) is a good candidate for us to prove that
m ◦ Refm is our expected monad of promises provided we restrict ourselves to
elements of m (Refm a) of the form fork ◦m for some monad action m :: m a.



4.4. The expected monad of promises. In Haskell, promises can thus be
defined as an encapsulation of the subtype of m (Refm a) of elements (equivalent
with those) generated by forks. This can be encoded by defining the type:

newtype Promise m a = Promise {thePromise :: m (Refm a)}

controlling the way action are lifted into promises, and the way promises can
eventuality be turned back into regular monad actions by:

forkP :: MonadRef m ⇒ m a → Promise m a
forkP = Promise ◦ fork

readP :: MonadRef m ⇒ Promise m a → m a
readP p = (thePromise p)>>= read

Then, by Theorem 1 we have the valid functor instance:

instance MonadRef m ⇒ Functor (Promise m) where
fmap f (Promise m) = Promise (fmapRef f m)

as well as, as we shall soon see, the valid the monad instance:

instance MonadRef m ⇒ Monad (Promise m) where
return = Promise ◦ returnRef
(>>=) (Promise m) f

= Promise (bindRef m (thePromise ◦ f ))

with bind candidate (b).

Indeed, a first lemma, easily proved by induction on the syntactic complexity
of promises, gives:

Lemma 4 Every promise built with the fonctions above is equivalent with a
promise of the form Promise (fork m) for some m :: m a.

from which we deduce:

Theorem 5 The above Monad instance is valid.

Proof. By Lemma 3, we just have to prove that the monad left unit law (3) is
satisfied which follows from Lemma 4.

Doing so, we eventually recover the monad promises defined in OCaml [8]. We
even have:

Theorem 6 Functor m and Promise m are isomorphic.

Proof. Follows from Theorem 2 and Lemma 4 since, restricted to monad action
of the form fork m with m ::m a we indeed have fork (fork m>>=read) ≡ fork m
by law (8) therefore Promise ◦ Fork is the inverse of Read ◦ thePromise.



5 Concurrent monad references

We aim at capturing asynchronous concurrent behaviors by means of the no-
tion of monad references. However, as already mentioned, laws (8)–(10) fails
to achieve such a goal. In this section, we shall add three additional laws that
eventually complete our proposed axiomatization.

5.1. Pathological instances. Each of the following instances violates (at least)
one specific property that asynchronous concurrent primitives shall satisfy.

Read effect-freeness (A). As a first example, the following instance, violates
the intention that a monad reference should be freely readable, essentially with
no side effects but waiting for the termination of the forked action.

instance MonadRef IO where
type RefIO = IO
fork = return
read = id

Such an instance, that could be generalized to an arbitrary monad, is valid.
Indeed, law (8) follows from (3), law (9) is immediate, and law (10) follows
from (5). However, reading such a kind of reference just amounts to performing
the referenced action therefore it has arbitrary side effects.

Non-blocking fork (B). As another example, despite the fact we said fork
should be instantaneous, or at least non blocking, the following valid instance
provide a counter example to that claim. Indeed, with newMVar ::a → m (MVar a)
that creates a new mutable variable filled with its argument, we can put:

instance MonadRef IO where
type RefIO = MRef
fork m = m >>= (MRef ◦ newMVar)
read (MRef v) = readMVar v

that is, just changing the definition of fork compared to the instance of IO
references given in the previous section. Clearly, with m = getChar then fork m
is blocking in the above instance.

Read independence (C). With a bit more of coding, the following instance is
a more subtle counter-example to the intention that forking an action amounts
to execute it. Indeed, with:

instance MonadRef IO where
type RefIO a = MRef (Either (IO a) a)
fork m = MRef (newMVar (Left m))
read (MRef v) = do {c ← takeMVar v ;

a ← case c of {Left m → m; Right a → return a };
putMVar v (Right a); return a }

a forked action is executed only when its associated reference is red for the first
time.



5.2. Concurrency laws. The following second series of laws, that shall also be
satisfied by instance of MonadRef , rules out the above pathological instances as
invalid:

read r ≡ read r >> read r (14)

fork m1 >>= λr1 → (fork m2 >>= λr2 → return (r1, r2))

≡ fork m2 >>= λr2 → (fork m1 >>= λr1 → return (r1, r2)) (15)

read r1 >>= λx1 → (read r2 >>= λx2 → return (x1, x2))

≡ read r2 >>= λx2 → (read r1 >>= λx1 → return (x1, x2)) (16)

for every monad reference r r1 r2 :: Refm a and monad action m1 m2 :: m a.
Law (14) states that reference reads are idempotent therefore with side-effects

occurring at most with the execution of their first occurrence. Our pathological
instance (A) is ruled out by such a rule for there are, in this instance, plenty of
non idempotent read actions. However, both pathological instances (B) and (C)
satisfy such a law.

By stating that fork actions commute, law (15) stresses on the instantane-
ity of fork actions. This law rules out the pathological instance (B). Indeed, a
blocking action such as getChar visibly does not commute with a non blocking
but observable action such as printChar c. However, the pathological instance
(C) still satisfy such a law.

Last, by stating that read actions commute, law (16) aims at capturing the
independency of the execution of a forked actions with respect to the associated
reads. Read action shall truly have no other side-effect but waiting for the forked
action to be completed. Our last pathological instance (C) is eventually ruled out
by such a rule as shown by forking both a blocking IO action and an observable
non blocking one, and observing the non commutation of their resulting reads.

In other words, these additional rules have ruled out all pathological instances
we could think of. This increase our confidence in the fact that they eventually
form a complete axiomatization of asynchronous concurrent behaviors. Of course,
there is no guarantee there are no other pathological instances. Even more, in
which sense both series of laws (8)–(10) and (14)–(16) should be complete for
defining asynchronous concurrency is not clear at all.

5.3. Validity in the IO monad. In the IO instance of monad references
defined in Section 3, law (14) follows from the fact that the action readMVar is
non destructive.

Law (15) is perhaps the most debatable for it may wrongly suggest that the
side effect of action m1 and m2 commute. This is not true. In the concurrent
framework of Haskell, these side effect are executed in parallel therefore, up
to the possible non determinism induced by that parallelism, forking m1 right
before m2 or m2 right before m2 essentially produces the same side-effect.

Law (16) shall make no difficulty to be accepted as valid since reads essentially
wait for termination of (parallel) forked actions. Waiting for the termination of
one action and then another just amount to waiting for the termination of both.



Remark. Of course, concurrency yields non determinism as made explicit by
the commutations of forks. An example of non determinism on outputs is given
by any of the following equivalent programs:

fork (putChar ’a’)>> fork (putChar ’b’)

fork (putChar ’b’)>> fork (putChar ’a’)

that print non deterministically either ab or ba. An exemple of non determinism
on inputs is given by any of the following equivalent programs:

fork (getChar)>>= λr1 → fork (getChar)>>= λr2 → read r1 >>= printChar

fork (getChar)>>= λr2 → fork (getChar)>>= λr1 → read r1 >>= printChar

that, ab on the input, print non deterministically either a or b.

5.4. More concurrent primitives. In a concurrent setting, a running monad
action may not be terminated, so we may just try to read its returned value.
Also, between two running monad actions, one may terminate before the other
hence we may wait for the earliest terminated one.

These two aspects, that cannot derive from the primitives defined so far, can
be depicted by the following type class:

class MonadRef m ⇒ MonadRefPlus m where
tryRead :: Refm a → m (Maybe a)
parRead :: Refm a → Refm b → m (Either a b)

where tryReadRef r is the action that shall immediately return nothing if the
referenced action is not terminated or just its returned value otherwise and
parReadRef r1 r2 is the action that shall return the value of the soonest termi-
nated referenced action or, in the case both actions are already terminated or
are terminating at the same time, any of the returned value.

In the IO monad, such a (more) concurrent extension of monad references
can be defined by:

instance MonadRefPlus IO where
tryRead (MRef v) = tryReadMVar v
parRead r1 r2 = do
{v ← newEmptyMVar ;

forkIO (read r1 >>= (tryPutMVar v) ◦ Left >> return ());
forkIO (read r2 >>= (tryPutMVar v) ◦ Right >> return ());
readMVar v }

It might be worth aiming at axiomatizing the behavior of these newly introduced
primitives. For instance, one may expect to have:

. fork m >>= tryRead ≡ m >>= return when m is instantaneous,

. fork m >>= tryRead ≡ return Nothing when m is not instantaneous.

However, these laws seem to be difficult to be enforced at runtime and, at compile
time, they require some typing of action duration typing that is not available.



More generally, the possibility of defining an equational theory for these new
primitives bumped into the lack of a denotional semantics for modeling time.
For instance, we cannot describe the property that between to monadic actions,
one is finishing before the other unless they both block endlessly.

6 Concurrent structures and references

So far, we have only defined references to running monad actions. We aim now at
extending monad references to generalized monad actions, that is, structures of
nested monad actions. Eventhough this can easily be generalized to more com-
plex structure, we shall simply review here the following case of monadic streams,
a structure that nevertheless suffices for eventually extending asynchronous con-
current programming to concurrent data-flow programming.

6.1. Monad streams. Monad streams are defined by the following inductive
data type:

data Stream m a = Stream {next :: m (Maybe (a,Stream m a))}

In other words, a monad stream is essentially defined as a monad action that
either return nothing when the stream terminates, or just a value and the action
defining the continuation of that stream.

Discussing in the depth about such a type constructor goes out of the scope
of the present paper. Let us just mentioned that it is somehow fairly popular
among Haskell programmers. One of its generalization constitutes the core of
the Conduit library developed by Michael Snoyman. It has also recently been
used in this simple form for realtime audio processing and control [5].

6.2. Derived functor instance. As a typical example of monad stream pro-
graming, there is the following functor instance.

instance Monad m ⇒ Functor (Stream m) where
fmap f (Stream m) = Stream $ do {c ← m;

case c of {Nothing → return Nothing ;
Just (a, sc)→ return $ Just (f a, fmap f sc)}}

Every function fmap f ::Monad m ⇒ Stream m a → Stream m b is an archetypal
example of a synchronous function over monadic streams.

6.3. Horizontal monoid structure. There is the following monoid instance
that essentially lifts to monadic stream the (free) monoid encoded by the list
data type.

instance Monad m ⇒ Monoid (Stream m a) where
mempty = Stream (return Nothing)
(♦) (Stream m) s = Stream $ do
{c ← m; case c of {Nothing → next s;

Just (a, sc)→ return $ Just (a, sc ♦ s)}}



where the neutral element mempty is the (immediately) empty streams and (♦)
is the concatenation function.

In a concurrent and reactive context, the horizontal concatenation is of little
use unless its first argument is a constant and thus acts as a delay/buffering. We
shall see below, in link with monad references, a much more interesting monoid
and related monad instance defined for monad streams.

6.4. Monad stream references. Whenever a monad has references, there is a
generalized notion of references applicable to streams built on that monad that
easily derived from both notions.

Indeed, a reference to a monad stream can just be defined by replacing the
monad type constructor in the definition of streams by the monad reference type
constructor.

type StreamRefm = Stream Refm
forkStream :: MonadRef m ⇒ Stream m a → m (StreamRefm a)
forkStream = fork (evalAndFork s)>>= return ◦ Stream

where
evalAndFork (Stream m) = m >>= mapM

(λ(a, sc)→ do {rc ← fork (evalAndFork sc); return (a,Stream rc)})
readStream :: MonadRef m ⇒ StreamRefm a → m (Stream m a)
readStream (Stream r) = return ◦ Stream $ read r >>=

mapM (λ(a, rc)→ return (a, readStream rc))

A major application of forkStream and readStream is the possibility to share
the content of a stream without duplicating its side effect. Such a possibility is
especially useful in reactive on-the-fly data-flow programming [5].

Back to the study of reference properties, one can prove, that:

Lemma 7 For every s :: Stream m we have:

forkStream s >>= readStream ≡ return s

forkStream ◦ readStream ≡ return

In other words, with monadic stream references defined as above, the first two
laws (8)– (9) lift to the case of monadic stream references.

For the third property (10), we eventually need to equip monadic stream
with an adequate monad structure. This monad goes via the definition of the
following vertical monoid structure on streams.

6.5. Vertical monoid structure. Thanks to parRead one can define the merge
of two monadic streams by:

merge :: MonadRefPlus m ⇒ Stream m a → Stream m a → Stream m a
merge s1 s2 = Stream $ do
{r1 ← forkT s1; r2 ← forkT s2; return (next $ mergeRef r1 r2)}

with



mergeRef :: MonadRefPlus m ⇒
Stream Refm a → Stream Refm a → Stream m a

mergeRef (Stream r1) (Stream r2) = Stream $ do
{c ← parRead r1 r2; case c of {

Left Nothing → next $ readT (Stream r2);
Right Nothing → next $ readT (Stream r1);
Left (Just (a, src1 ))→ return $ Just (a,mergeRef src1 sr2);
Right (Just (a, src2 ))→ return $ Just (a,mergeRef sr1 src2 )}}

Then, up to the possible non determinism yields by parRead , the type stream m a
of monadic streams equipped with merge is essentially a commutative monoid
with the empty stream mempty as neutral element.

6.6. Derived stream monad. Thanks to such a vertical monoid structure, we
have the following valid monad instance:

instance MonadRef m ⇒ Monad (Stream m) where
return a = (Stream ◦ return ◦ Just) (a,mempty)
(>>=) (Stream m) f = Stream $ do
{c ← m; case c of
{Nothing → return Nothing ;

Just (a,mc)→ next $ merge (f a) (mc >>= f )}}

There, the flattening operation essentially amounts to inductively merge (sub)monadic
streams from the moment they appear.

Lemma 8 For every stream s :: Stream m a and function f :: a → Stream m b,
we have:

forkStream (s >>= f ) ≡ forkStream s >>= λr → forkStream (readStream r >>= f )

In other words, the third monad reference law (10) lifts to monad stream refer-
ences.

This monad instance of Stream m is also an extension of the monad m in
the sense that, with:

liftStream :: m a → Stream m a
liftStream m = Stream $ do {a ← m; return $ Just (a, emptyStream)}

we have:

Lemma 9 Function liftStream is a natural embedding of m into Stream m with:

liftStream ◦ return ≡ return

liftStream (m >>= f ) ≡ liftStream m >>= liftStream ◦ f

for every action m :: m a and function f :: a → m b.



6.7. Generalization to monadic structure. The above treatment of monadic
streams seems to fit the fairly general notion of monadic structure oine can define
with the class type by:

class (ConcurrentRef m,Monad (t m))⇒ MonadDataRef t m where
forkT :: t m a → m (t Refm a)
readT :: t Refm a → m (t m a)

where, in any instance, primitives forkT and readT are required to satisfy the
following laws:

(forkT s)>>= readT ≡ return s (17)

forkT ◦ readT ≡ return (18)

forkT (s >>= f ) ≡ (forkT s)>>= λr → forkT (readT r >>= f ) (19)

for every s :: RefTm a, f :: a → RefTm b for the basic semantics. Indeed, thanks
to Lemmas 7 and 8 the is the following valid instance:

instance ConcurrentRef m ⇒ Stream m a where
forkT = forkStream
readT = readStream

It is probably the case that such a construction can be generalized to arbitrary
monadic version of inductive types, defined as least fixpoints of positive type
functions of the form m ◦ F : ∗ → ∗ built out positive type functions F : ∗ → ∗
used to define inductive types. However, such a study goes out of the scope of
the present paper.

6.8. More parallelism. So far, we can fork one monad action, or a stream of
nested monad actions. One may wonder if such a fork can be generalized to other
structures such as lists, or, more generally, traversable structures. Actually, this
can easily be done by:

forkAll :: (Traversable t ,MonadRef m)⇒ t (m a)→ m (t (Refm a))
forkAll = mapM fork

The question then becomes, how to handle the resulting structure of monad
references. One possibility is to uniformly define:

sortRefs :: (Traversable t ,ConcurrentRef m)⇒ t (Refm a)→
Stream m a sortRefs = foldMap (liftStream ◦ read)

that turns a traversable structure of monad references into the monad stream
of values returned by the referenced actions ordered by termination time. In
other words, sortRefs generalizes parRead to arbitrary traversable structures.
Moreover, functions forkAll and sortRefs share with monad reference primitives
fork and read their safety with no possible deadlock.

Of course, such a generic instance suffers from a rather severe drawback: its
complexity in terms of call to parRead therefore in number of fork is likely to
be quadratic in the size of the traversable structure.



With concurrent Haskell, this is not a necessity as shown by the following
direct implementation of sortRefs in the IO monad:

sortRefsIO ::Traversable t ⇒ t (RefIO a)→ IO (Stream IO a)
sortRefsIO t = do {v ← newEmptyMVar ;

mapM (λr → forkIO (read r >>= putMVar v)) t ;
return $ mvarToStream v (length t)}

where
mvarToStream 0 = mempty
mvarToStream v n = Stream $ do
{a ← takeMVar v ; return $ Just (a,mvarToStream v (n − 1))}

with a linear number of forks.

In other words, despite the many and somewhat unexpected programming
possibilities offered by asynchronous concurrency, illustrated among other things
by monad stream references, asynchronous concurrency does not offer as much
programming possibilities as a more general concurrent programming framework.
The robustness and safety offered by asynchronous concurrency comes with a
price.

7 Related works and conclusion

The study proposed here started as an attempt to clarify the underlying prop-
erties of an existing and somewhat adhoc but rather succesfull experiment of
audio processing and control programming in Haskell [5]. As such, it is a bit of
a stand alone approach that is a priori not much related with former theoretical
investigations. Our proposal can nevertheless be seen as a equational formaliza-
tion of the semantics of existing async libraries. To the best of our knowledge,
neither in OCaml nor in Haskell such an axiomatization has yet been attempted.

Such a formalization relies on a fairly generic notion of a monad extension,
the first series of laws describing how to go back and forth between the under-
lying monad m and its extension m ◦ Refm via the retraction pair of natural
transformation it induces (Theorem 2). It is only the second series of laws that
deals with concurrent semantics aspects.

Quite strikingly, such a kind of relationship reappears again between monadic
structure and monadic structure references and, to some extent, between traversable
structures of monad actions or monad references. The underlying general cate-
gory theoretic schema is probably worth being studied more in the depth.

Compared to existing techniques, that generally amounts to combining two
existing monads [9, 2], our monad extension proposal does not seem to be of
that kind. Indeed, the type function Refm enriching the available types is even
not a functor. The type function m ◦Refm is a functor, but a monad only when
restricted to forked monad actions. Moreover, as opposed monad combination
techniques, the resulting extended monad is not a new monad but the original
monad merely extended by new primitives. Instead, one might think that our



notion of monad extension is connected with the notion algebraic effects [1]. How-
ever, we offer yet no operational semantic modeling and some typical features of
algebraic effects are not yet made explicit in our proposal.

As already mentioned in the text, the lack of a model of passing time prevents
us from formally defining the semantics of the parRead function. The absence
of a formal operational semantics also prevents us from even stating any kind of
completeness results for our proposed axiomatization. However, a pure denota-
tional approach might still be possible following the recent proposal of a timed
extension of Scott domains [4].
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A Omitted proofs

1.1. Proof of Theorem 1.

Proof. Let m :: m (Ref a) be an arbitrary monad action returning a monad
reference and let f :: a → b and g :: b → c. For (1), we have:

fmap id m

= m >>= (λr → fork (read r)>>= return)

≡ m >>= (fork ◦ read) by (4)

≡ m >>= return by (9)

≡ m by (4)

For (2), we have:

fmapRef (g ◦ f ) m

= m >>= λr → fork (read r >>= (return ◦ g ◦ f ))

≡ m >>= λr → fork (read r >>= (return ◦ f )

>>= (return ◦ g)) by (6), (2)

≡ m >>= λr → (fork (read r >>= (return ◦ f ))

>>= λr1 → fork (read r1 >>= (return ◦ g))) by (10)

≡ m >>= λr → fork (read r >>= (return ◦ f ))

>>= λr1 → fork (read r1 >>= (return ◦ g)) by (5)

= fmapRef m f

>>= λr1 → fork (read r1 >>= (return ◦ g))

= fmapRef g (fmap f m)
ut

1.2. Proof of Theorem 2.

Proof. Let f : a → b and let m :: m a. We first prove (11). We have:

fmapRef f (fork m)

= fork m >>= λr → fork (read r >>= (return ◦ f ))

= fork (m >>= return ◦ f ) by (10)

= fork (fmap f m) by (6)

Let instead m :: m (Ref m a). We prove (12). We have:

fmapRef f m >>= read

= m >>= λr → fork (read r >>= (return ◦ f ))>>= read

≡ m >>= λr → (fork (read r >>= (return ◦ f ))>>= read) by (5)

≡ m >>= λr → (read r >>= (return ◦ f )) by (8)

≡ m >>= read >>= (return ◦ f ) by (5)

= fmap f (m >>= read) by (6)



Now, let us prove that Read ◦ Fork = Id . Let again m :: m a. We have:

(Reada ◦Forka) m)

= fork m >>= read

≡ m by (8)

ut

1.3. Proof of Lemma 3.

Proof. Law (4) says that bindRef m returnRef shall be equivalent to m.

With m0 = getChar >>= fork ◦ return in the IO monad, law (4) can’t be
satisfied by (a) since m0 is blocking while bindRef m0 returnRef is not.

Taking instead m1 = fork m0 law (4) can’t be satisfied by (c) or (d) since
now m1 is non blocking while m1>>=read is blocking since, by (8), it is equivalent
to m0.

Let us consider now candidate (b). For the fact that law (3) fails, let us
consider f = const m0 with m0 as defined above in the IO monad. Then we have

bindRef (return r) f = return r >>= λr ′ → fork (read r ′ >>= f >>= read)

which is non blocking while

f r = m0

which is blocking. This proves the negative claim.

For (4), let m :: m a. We have

bindRef m returnRef

= m >>= λr →
fork (read r >>= fork ◦ return >>= read)

≡ m >>= λr → fork (read r >>= return) by (8)

≡ m >>= fork ◦ read) by (4)

≡ m >>= return by (9)

≡ m by (4)



For (5), let m :: m (Ref m a), f :: a → m (Ref m b) and g :: b → m (Ref m c).
We have

bindRef (bindRef m f ) g

= (m >>= λr → fork (read r >>= f >>= read))

>>= λr ′ → fork (read r ′ >>= g >>= read)

≡ m >>= λr → (fork (read r >>= f >>= read)

>>= λr ′ → fork (read r ′ >>= g >>= read)) by (5)

≡ m >>= λr → fork (read r >>= f >>= read >>= g >>= read) by (10)

≡ m >>= λr → fork (read r >>= f >>= λr → (read r >>= g >>= read)) by (5)

≡ m >>= λr → fork (read r >>= f

>>= λr → (fork (read r >>= g >>= read)>>= read)) by (8)

≡ m >>= λr → fork (read r >>= f

>>= λr → fork (read r >>= g >>= read)>>= read) by (5)

≡ m >>= λr → fork (read r >>= (λa → f a

>>= λr → fork (read r >>= g >>= read))>>= read) by (5)

= m >>= λr → fork (read r >>= (λa → bindRef (f a) g)>>= read)

= bindRef m (λa → bindRef (f a) g)

Last, we prove the coherence law (6). Let m :: m (Refm a) and let f : a → b. We
have:

bindRef m (returnRef ◦ f )

= m >>= λr → fork (read r >>= (fork ◦ return ◦ f )>>= read)

≡ m >>= λr → fork (read r >>= (λa → fork (return (f a))>>= read)) by (5)

≡ m >>= λr → fork (read r >>= (return ◦ f )) by (8)

= fmapRef f m

Finally, assume a :: m a and f :: a → m (Refm b) with f of the form f = fork ◦ g
with g :: a → m b. Then we have:

bindRef (returnRef a) f

= (fork ◦ return) a >>= λr ′ → fork (read r ′ >>= fork ◦ g >>= read)

≡ fork (return a >>= fork ◦ g >>= read) by (10)

≡ fork (fork (g a)>>= read) by (3)

≡ fork (g a) by (8)

= f a

which prove that, indeed, law (3) is satisfied when restricting to forked monad
actions in type m (Refm b).



1.4. Proof of Lemma 4.

Proof. Clearly, function forkP as well as Promise ◦ returnRef creates promises
of the desired form. It remains to show that, up to equivalence, such a form is
preserved by the bind we have defined over promises. This is done by induction
on the syntactic complexity of its arguments.

Let p :: Promise m a and let f :: a → Promise m a. By induction hypothesis,
we have p ≡ Promise (fork m) for some m :: m a and f ≡ Promise ◦ fork ◦ g for
some g :: a → m b. It follows that

p >>= f

= Promise (bindRef (fork m) (fork ◦ g))

= Promise (fork m >>= λr → fork (read r > fork ◦ g >>= read)

≡ Promise (fork (m >>= fork ◦ g >>= read)) by (10)

≡ Promise (fork (m >>= g)) by (8)

which concludes the proof.


