
White-Box Path Generation in Recursive
Programs

Ricardo Peña and Jaime Sánchez-Hernández

Complutense University of Madrid, Computer Science School, Spain
{ricardo,jaime}@sip.ucm.es??

Abstract. We present an algorithm for generating paths through a set
of mutually recursive functions. The algorithm is part of a tool for white-
box test-case generation. While in imperative programs there is a well es-
tablished notion of path depth, this is not the case in recursive programs.
We define what we mean by path and path depth in these programs and
propose an algorithm which generates all the static paths up to a given
depth. When the algorithm is applied to iterative programs, the defined
depth corresponds to the maximum number of iterations through any
loop. When applied to non-tail recursive functions, the meaning is closely
related to the maximum number of their unfoldings along the path. It
can also be applied to hybrid programs where iteration and recursion are
both present.

Keywords: white-box testing, static path, recursion depth

1 Introduction

Testing is very important for increasing program reliability. Thorough testing
ideally exercises all the different situations described in the specification, and
all the instructions and conditions of the program under test, so that it would
have a high probability of finding bugs, if they are present in the code. There
is a general agreement that automatic tools can alleviate most of the tedious
and error prone activities related to testing. One of them is test-case generation
(TCG). Traditionally (see, for instance [1]), there are two TCG variants: black-
box TCG and white-box TCG. In the first one, test-cases are based on the
program specification, and in the second one, they are based on a particular
reference implementation. Each one complements each other, so both are needed
if we aim at performing thorough testing.

White-box TCG is concerned with first defining a coverage criterion for the
Unit Under Test (UUT), and then generating a set of test-cases which, when
executed, will implement this criterion. A usual criterion is to require the test
suite to exercise all the execution paths through the UUT. When there exist
loops in the code, the number of paths is potentially infinite, so a limit on the
number of allowed iterations executed in each loop must be established. This

?? Research paper



2 R. Peña, J. Sánchez

limit is usually referred to as the path depth. For instance, depth-0 paths will be
those that never execute the loop bodies; depth-1 paths will execute each loop
body at most once; and so on. Once the paths are generated, each one is defined
by the sequence of decisions that the UUT takes when executing that path. By
collecting the conditions involved, and the expected outcome of evaluating each
one, a test-case for the path can be synthesised by using for instance symbolic
execution.

Functional programs do no contain loops, but use recursion instead. There is
no established criterion on what a path and its path depth mean in a recursive
program. Intuitively, a path should imply a complete execution of the recursive
UUT and it would involve a sequence of decisions taken by the UUT along the
execution. In a path, the UUT may be recursively invoked a number of times,
either directly or indirectly. So, multiple and mutual recursion should be taken
into account when defining the meaning of a path. The path depth should be
related to the number of invocations the UUT, or any of its auxiliary functions,
undergo in the path.

In this work, we define an UUT to be a collection of mutually recursive
functions called from a visible top one. Then, we define a notion of path and of
path depth for that UUT, and present an algorithm for generating an exhaustive
set of paths up to a given depth.

This work has been developed in the context of our computer assisted valida-
tion platform CAVI-ART [5, 4]. The platform supports a functional language as
its Intermediate Representation (IR) to which both imperative programs written
in Java and functional programs written in Haskell are translated. Imperative
loops are translated into a set of mutually recursive and tail recursive functions
and, if recursion is present in the input program, it is preserved by the transla-
tion. In the end, only recursion remains in the IR. Given an UUT, the platform
automatically generates white-box paths, and synthesises a test-case for each
path, by using an SMT solver which checks the satisfiability of the conditions
involved in the path and assigns appropriate values to the involved variables.

2 Functional Intermediate Representation

Our implementation language is a sort of core functional language which sup-
ports mutually recursive function definitions. In Fig. 1 we show its abstract
syntax. Notice that all expressions are flattened in the sense that all the argu-
ments in function and constructor applications, and also the case discriminants,
are atoms. An additional feature is that IR programs are in let A-normal form
[3], and also in SSA1 form, i.e. all let bound variables in a nested sequence of
let expressions are distinct, and also different to the function arguments.

In Fig. 2 we partially show the IR code for function insertAVL, inserting a key
into an AVL tree. In the letfun main expression, the code for functions height,
compose, leftBalance and rightBalance is not shown. The first one computes the

1 Static Single Assignment.



White-Box Paths in Recursive Programs 3

a ::= c { constant }
| x { variable }

be ::= a { atomic expression }
| f ai { function/primitive operator application }
| 〈ai〉 { tuple construction }
| C ai { constructor application }

e ::= be { binding expression }
| let 〈xi :: τi〉 = be in e { sequential let. Left part of the binding can be a tuple }
| letfun defi in e { let for mutually recursive function definitions }
| case a of alt i[; → e] { case distinction with optional default branch }

tldef ::= define {ψ1} def {ψ2} { top level function definition with pre- and post-conditions }
def ::= f (xi :: τi) :: (yj :: τj) = e { function definition. Output results are named }
alt ::= C xi :: τi → e { case branch }
τ ::= α { type variable }

| T τi { type constructor application }

Fig. 1. CAVI-ART IR abstract syntax

height of an AVL with a time cost in O(1), by just getting the value stored
in its root node. The second one just joins two trees and a value received as
arguments to form an AVL tree. The other two are responsible for performing
the LL, LR, RL and RR rotations that reestablish the height invariant of AVLs.
In what follows, we will use the insertAVL function, together with all its auxiliary
functions defined in the letfun expression, as a running example of UUT.

We define a static path through a set of mutually recursive functions defined
together in an UUT, as a potential execution path starting at the top level
function, and ending when this function produces a result. Not all the static
paths correspond to actual execution paths, since some static paths may be
unfeasible.

We define the depth of a static path, as the maximum number of unfoldings
that any recursive function may undergo in the path. When all the UUT func-
tions are tail recursive, this definition of depth corresponds to the number of
iterations in imperative loops. Depth-0 paths correspond to none iteration in all
loops, depth-1 ones correspond to at most one iteration, and so on. When there
is at least one non-tail recursive function in the UUT, the depth of the path is
the depth of the call tree deployed during the path execution, considering only
the calls to the non-tail recursive function. Depth 0 means that each non-tail
recursive function executes one of its base cases, depth 1 corresponds to that at
least one recursive function has executed a recursive case by generating one or
more recursive calls, and then these recursive calls have executed its base case,
and so on.

In the insertAVL example there are two depth-0 paths. In the first one, the
input tree is empty and the internal function ins immediately terminates by
creating a new node with the key x and with height 1. In the second one, the
key x being inserted is already present at the root of the input tree, and the ins



4 R. Peña, J. Sánchez

define insertAVL (x::Int, t::AVL Int)::(res::AVL Int) =
letfun

ins (x::Int, t::AVL Int)::(res::AVL Int) =
case t of

leafA -> nodeA x 1 leafA leafA
nodeA y::Int h::Int l::(AVL Int) r::(AVL Int) ->

let b1::Bool = x < y in
case b1 of

true -> let ia::(AVL Int) = ins x l in
equil ia y r

false -> let b2::Bool = x > y in
case b2 of

true -> let ib::(AVL Int) = ins x r in
equil l y ib

false -> t

equil (l::AVL Int, x::Int, r::AVL Int)::(res::AVL Int) =
let hl::Int = height l in
let hr::Int = height r in
let hr2::Int = hr + 2 in
let b::Bool = hl == hr2 in

case b of
true -> leftBalance l x r
false -> let hl2::Int = hl + 2 in

let b2::Bool = hr == hl2 in
case b2 of

true -> rightBalance l x r
false -> compose l x r

... definitions of height, compose, leftBalance and rightBalance
in ins x t

Fig. 2. CAVI-ART IR for function insertAVL

function terminates without inserting anything. With depth 1, there are at least
4 paths through the function ins: two of them recursively call to ins with the
left subtree as an argument, and another two call to ins with the right one as an
argument. The rest of the path inside these recursive calls is one of the depth-0
paths. After inserting the key, the static paths go on with a call to function equil,
and there are two paths in this function. Combined with the other 4, this gives
8 paths. Then, we should consider paths through leftBalance or rightBalance,
depending on the branch taken by equil, and so on. The combinatorics soon
produces an exponential number of paths when the UUT is as complex as in our
example. Notice however, that many of these paths are unfeasible. For instance,
when inserting a new node in the left subtree, it may not happen that equil takes
the branch calling to rightBalance: if any unbalance arises after inserting to the
left, it should be in the left subtree.

Given an UUT written in the IR language, and fixed by the user fixed a
maximum depth, our tool generates all the static paths having a depth smaller
than or equal to this maximum depth.



White-Box Paths in Recursive Programs 5

3 Assumed Properties

Generating paths in recursive programs cannot be regarded as just a graph prob-
lem, as it is the case in iterative programs. In the latter, the control flow graph
(CFG) can be depicted as a directed planar graph. Loops become the strongly
connected components (SCC) of those graphs. Computing paths is then a com-
bination of computing the graph SCCs, then collapsing them into single nodes,
and then computing paths in the resulting DAG (directed acyclic graph), which
is an easy problem. The path depth corresponds to the number of iterations the
path undergoes in each SCC. Recursive programs cannot be depicted as planar
graphs, unless recursive calls are represented as non-expanded nodes in those
graphs. But, as soon as recursive calls are unfolded and replaced by their bodies,
the graph representation is not possible anymore.

We, then, propose a graph representation of recursive programs at two dif-
ferent levels:

– One level consists of the CFG of each function body. This is a DAG in which
the internal calls are represented as non-expanded nodes.

– The other level is the call-graph (CG) of the whole function collection. An
edge (f, g) here represents one or more calls from function f to function g.
An SCCs in this graph symbolises a loop of functions calling each other in
a mutually recursive way.

These two kinds of representations are not arbitrary directed graphs. By knowing
that they come from code written in a programming language (PL), we assume
them to satisfy the following properties:

1. Each SCC in the CG has a unique entry node. This property holds because
iterative loops and recursive functions in conventional PLs have a unique
entry point.

2. However, a SCC may have more than one exit to nodes external to it. This
is because a loop or a function may abruptly terminate by sentences such
as break, continue, return, or an exception, which interrupt the normal
flow.

3. Each function CFG has a single source node and a single sink node. Each
internal node is reachable from the source and the sink is reachable from
each internal node. This is because we assume no dead code and (statically)
terminating loops in our code, and also that recursive functions have at least
a base case.

4 Path Generation Algorithm

As said above, an UUT consists of a top function —we will call it top— and a set
of internal functions defined in a letfun expression within it. Function top may
call any of them, but not the other way around. The path generation algorithm
consists of the following phases:



6 R. Peña, J. Sánchez

1. Generation of the CFG of each function.
2. Generation of the template paths (TP) of each function. These are all the

paths from its source to its sink.
3. Generation of the CG.
4. Splitting the CG into a set of disjoint subgraphs.
5. Computing the SCCs of each subgraph.
6. Computing the paths by expanding the TP and the SCCs.

4.1 Generating the CFGs and the TPs

We assume a fresh name supplier so that every node of any graph is given an
identifying key which is unique in the whole set of graphs. The CFG of each
function is a DAG having four types of nodes:

Source This is the entry point of the function. It has no code associated to it.
Block This is either a basic block node —having associated sequential code

consisting of a sequence of let bindings, and ending in an edge to a call
node or to a conditional block—, or it is a conditional block node having as
associated code a case expression. In this case, the node has outgoing edges
to more than one node.

Call g Node exactly containing a call to a function, where g is the key of the
called function entry node.

Sink Node with no associated code representing the sink of the function.

From the UUT IR, the algorithm computes the CFG of each function by
using conventional techniques such as those one can find in compilers. In Fig. 3
we show the CFG computed for function ins of insertAVL. Circle nodes labeled
with a B are blocks, the reminder circle nodes are calls, the square node is the
source and the diamond one is the sink.

Then, a simple recursive algorithm computes all the paths from the source to
the sink in each DAG. These are the template paths (TP). There is a list of TPs
associated to each function. We call them template because they may contain
call nodes which should be later expanded in order to compute the final paths.
A final path does contain neither call nodes, nor source nodes, nor sink ones. It
just consists of a sequence of blocks.

4.2 Generating the CG

From the TP, the algorithm generates the CG. This one consists only of call
nodes, plus an additional sink node. The graph edges are marked as tail or non-
tail. This is important for the following phases. Let us assume that the algorithm
is processing the TPs of a function f :

– If it finds a node Call g not followed by a sink node, it marks function
g as non-tail, and all the edges from any other function to it are marked
accordingly.



White-Box Paths in Recursive Programs 7

insins

B

B B

B

B

B

ins

equil

ins

equil

S

Fig. 3. Control Flow graph for function ins of insertAVL.

– If all the call nodes to g are in tail positions (i.e. followed by the sink node),
then the edges to it are marked as tail ones.

– If there exists a path containing no tail-call nodes, then an edge from f to
the sink is included in the graph. This path represents the execution of a
base case function f .

In Fig. 4 we show the CG computed by this algorithm for function insertAVL.
The non-tail edges are labeled NT, being tail edges the remainder ones.

4.3 Splitting the CG

The CG is not directly appropriate for generating the final paths from it. There,
a set of mutually recursive functions belonging to an SCC should be dealt with
as a single unit in order to control the depth of the paths. Also, if a function
is non-tail recursive, their paths must be independently generated, and then
embedded into the bigger paths of the functions calling it. For those reasons,
it is convenient to split the CG into disjoints subgraphs, each one representing
a piece of code whose paths must be generated independently of those of other
pieces. Each subgraph will have a unique entry function. There exists a hierarchy
between these subgraphs: if there is a call from a function of subgraph G1 to
the entry function of subgraph G2, then it may not exist direct or indirect calls
from the functions of G2 to the entry function of G1.



8 R. Peña, J. Sánchez

top

ins

S

equil

leftUnbalance rightUnbalance

compose

height

NT
NT

NT

NT

NT

NT

NT

Fig. 4. Call graph for function insertAVL.

The splitting algorithm does a depth-first traversal of the CG starting at the
top node. Each time a non-tail edge (f, g) is reached, it checks whether node f is
reachable from g. If so, the edge is kept; otherwise, it is removed. Tail edges are
kept. Additionally, if a function f is non-tail recursive, all the calls not belonging
to the SCC component involving f are considered non-tail calls and the edges
to them are removed.

By applying this algorithm to the CG of Fig. 4, we get the split graph of
Fig 5.

4.4 Computing the SCCs

Now, the SCCs of all the subgraphs of the split CG are computed, and each
one is collapsed into a single node of type SCCnode. In this way, each subgraph
becomes a DAG. For the SCC nodes, all their internal paths from depth-0 to
the maximum depth are computed. At this stage, we consider the depth of an
SCC path to be the maximum number of times minus one that the path hits
the entry function of the SCC. So, if a path hits the entry function only once,
and then exits the SCC, it would be a depth-0 path; If it hits the entry function
twice, it would be a depth-1 path; and so on.



White-Box Paths in Recursive Programs 9

top

ins

S

equil

leftUnbalance rightUnbalance

compose height

S

S

S

Fig. 5. Split call graph for function insertAVL.

4.5 Computing the paths

The algorithm starts by generating all the paths of the subgraph containing the
top function, from the entry node to the sink. Each of these paths represents
a complete execution of function top. The rest of the algorithm just expands
each of these paths. The expansion consists of traversing the path and, in turn,
expanding each node. The expansion of a node depends on its type:

– If it is a node Call g, not being g the top function of a subgraph, it means
that g is part of the current subgraph. The algorithm, then, replaces the node
by all the template paths of g matching the rest of the path. The notion of
matching requires traversing the subsequent path nodes looking for the first
node of the form Call h, of type SCCnode, or a sink.
• If the node found is a sink, then the TPs of g selected for expansion are

those not ending in a tail-call.
• If the node found has the form Call h, then the TPs of g selected for

expansion are those containing one or more calls to h.
• If the node found is an SCC node with entry function h, then the TPs

of g selected for expansion are those containing one or more calls to h.
Additionally, the paths computed for the SCC are appended to these
paths.

– If it is a node Call g, being g the top function of a subgraph G, it means that
g is an independent function. Then, all the paths from G’s entry function to
its sink are computed, and the node Call g is replaced by them.



10 R. Peña, J. Sánchez

– If it is a node of type Block, it does not need further expansion and it is
skipped.

– If it is a source or a sink, it is removed from the path.

5 Conclusions

We have applied the above algorithm to a collection of UUTs including purely
functional algorithms such as insertAVL, or computing the union of two leftist
heaps; purely iterative ones, such as inserting and searching a value in a sorted
array, or the Dutch National Flag problem [2]; and to hybrid ones, such as the
recursive quicksort algorithm including an iterative version of partition. We have
confirmed in the examples that the notion of path depth defined here coincides
both with the number of iterations in loops and with the depth of the call tree
in non-tail recursive functions. A single algorithm suffices, then, to generate
exhaustive white-box paths in iterative, recursive, and hybrid programs.

References

1. Anand, S., Burke, E.K., Chen, T.Y., Clark, J.A., Cohen, M.B., Grieskamp, W.,
Harman, M., Harrold, M.J., McMinn, P.: An orchestrated survey of methodologies
for automated software test case generation. Journal of Systems and Software 86(8),
1978–2001 (2013), https://doi.org/10.1016/j.jss.2013.02.061

2. Dijkstra, E.W.: A Discipline of Programming. Prentice-Hall (1976)
3. Flanagan, C., Sabry, A., Duba, B.F., Felleisen, M.: The essence of compiling with

continuations. In: Cartwright, R. (ed.) Proceedings of the conference on Program-
ming Language Design and Implementation (PLDI’93). pp. 237–247. ACM (1993),
http://doi.acm.org/10.1145/155090.155113

4. Montenegro, M., Nieva, S., Peña, R., Segura, C.: Liquid types for array invariant
synthesis. In: International Symposium on Automated Technology for Verification
and Analysis, ATVA 2017. pp. 289–306. Springer, LNCS 10482 (2017)

5. Montenegro, M., Peña, R., Sánchez-Hernández, J.: A generic intermediate repre-
sentation for verification condition generation. In: Falaschi, M. (ed.) Logic-Based
Program Synthesis and Transformation - 25th International Symposium, LOPSTR
2015, Siena, Italy, July 13-15, 2015. Revised Selected Papers. Lecture Notes in Com-
puter Science, vol. 9527, pp. 227–243. Springer (2015), http://dx.doi.org/10.1007/
978-3-319-27436-2


