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Abstract. Experiment-driven observation of the natural world is a key
driver of scientific discovery and innovation. Yet, the growing technical
complexity of experimental equipment has become a pressing problem
that limits the number and diversity of experiments that can be per-
formed, as well as the institutes and enterprises that can afford them.
This project identifies an opportunity to increase the rate of discovery
and innovation by lowering the threshold for experimentation, exempli-
fied in the applications of fluorescence microscopy, a key approach in the
life sciences. Our solution is an operational, deeply embedded domain-
specific language (DSL) in Haskell. We aim to tackle this problem further
by advancing the state-of-the-art in programming languages and knowl-
edge representation to automate the equipment control and allow users
to state what experiments they want, rather than how to perform them.

Keywords: DSL · Haskell · Fluorescence Microscopy · Instrument Con-
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1 Introduction

Since at least the 17th century, the scientific method, based on observations of the
natural world, has been the driving force behind most of our knowledge discovery
and innovation. In fact, in today’s knowledge economy, experimentation-driven
research is the basic modus operandi by which new knowledge and applica-
tions are generated. A prominent example is fluorescence microscopy, a true
workhorse technique in the life sciences. It is essential for unravelling the inner
workings (architecture, dynamics, interactions) of cells and tissues and driving
the technological development in many fields of industry and research, including
the (bio-)medical, pharmaceutical, agricultural, food industry and so on. Flu-
orescence microscopy beats other microscopy methods in terms of its superior
spatiotemporal resolution, its non-invasiveness and the simple sample prepara-
tion. This paper describes the recently initiated project of applying functional
programming, and more specifically a deeply embedded DSL in Haskell, to the
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field of fluorescence microscopy. Moreover, the goals, objectives and approaches
on how to extend this project are discussed in detail.

1.1 Fluorescence Microscopy

Fig. 1. A Jablonski diagram.

Fluorescence is the emission of a photon by
a molecule that is in the electronically ex-
cited state. A Jablonski diagram [11] (Fig-
ure 1), named after the Polish physicist Alek-
sander Jab loński, shows how a substance at
the ground state absorbs light in the form of
a photon and transitions to a higher energy
level. Non-radiative transitions, such as vibra-
tional relaxation or internal conversions, cause
the molecule to relax to the lowest vibrational
level of the excited state. The emission of a
photon when returning to the ground state is
known as fluorescence.

The absorbed and emitted light typically
have different wavelengths, which makes it
possible to detect only the emission light using special filtering. In order to
use fluorescence for doing research on cells and tissues, fluorescent proteins or
labels are required. A wide variety of fluorophores is available, including fluo-
rescent proteins, organic dyes, and semiconductor particles. A good example is
the Green Fluorescent Protein (GFP) [1,16,17], discovered and developed by M.
Chalfie, O. Shimomura and R. Tsien, who won the 2008 Nobel Prize in Chem-
istry.

Fig. 2. Fluorescence on Mouse
Embryonic Fibroblasts, Olym-
pus Bioscapes 2007, Dr. Jan
Schoranzer.

Fluorescence Microscopy is a popular and
fast-moving field in the domain of biochem-
istry. It is so popular due to its selectiveness
and non-invasiveness: experiments can be per-
formed in situ and in vivo. Sample prepa-
ration is simple and fluorescent probes are
widely available. These and other factors (op-
tical transparency, spatiotemporal resolution,
. . . ) make fluorescence microscopy a widely
used imaging technique for doing research on
cells and tissues. Figure 2 shows an example of
an image taken by a fluorescence microscope,
more specifically on mouse embryonic fibrob-

lasts, from the bioscapes 2007 gallery of Dr. Jan Schmoranzer4.

4 https://www.olympus-lifescience.com/en/bioscapes/authors/

jan-schmoranzer/

https://www.olympus-lifescience.com/en/bioscapes/authors/jan-schmoranzer/
https://www.olympus-lifescience.com/en/bioscapes/authors/jan-schmoranzer/
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The general setup of doing fluorescence microscopy consists of multiple hard-
ware elements. First of all, a light source (e.g., high-power LEDs or lasers) illu-
minates a specimen with light of a specific wavelength. This light is absorbed
by the fluorophores, which then emit light of lower energy and thus a longer
wavelength and another colour. The emitted light is caught by detector, often a
camera. Filters filter out specific wavelength from the light of the light source,
allowing only fluorescence to pass to the detector. Dichroic mirrors pass the
light of a specific wavelength and reflect the light of other wavelengths.

1.2 Problem Statement

The field of fluorescence microscopy evolves very fast and innovations in fluo-
rescence imaging continue to be made at a rapid pace, evidenced by multiple
Nobel Prizes, e.g., the 2014 Nobel Prize in Chemistry for the development of
super-resolved fluorescence microscopy. The boundaries of knowledge are pushed
further and further requiring functionality and capabilities to evolve at the same
speed. Instrument manufacturers such as Nikon, Olympus, Zeiss, Leica and more,
sell equipment that costs between a few hundred thousand to over a million
euro. Consequently, further growth in experimentation is impeded by the costly
manual labor and growing technical complexity involved in setting up new ex-
periments and observing them. Dedicated staff members are required to operate
advanced instruments, both to utilize these systems to their full potential and
to guard against erroneous measurements or interpretations. Overall, it easily
takes months to years of practice before an operator becomes fully proficient
with the imaging systems, limiting the type of organizations that can provide
the necessary support to fully leverage the abilities of a particular instrument.

A number of different vendors and open-source initiatives provide software
for the control of imaging systems, including fluorescence microscopes. Unfortu-
nately, while these software solutions are useful for taking over basic low-level
manual tasks, they come with a risk of stifling rather than enabling new forms
of experiments. They do not adapt themselves dynamically to changing cir-
cumstances (e.g., burst events), the specific nature of the sample (e.g., motile
cells), and relevant events (e.g., cell death). At the same time, the control is
fairly low-level and still requires substantial technical expertise from their users,
rather than offering a high-level declarative interface. Moreover, the software is
typically tied to a particular hardware setup and exclusively compatible with
hardware from a single vendor. As a result, advanced experimentation relies on
highly trained and multi-purpose operators who are difficult to retain in many
of the organizations performing innovative research, including small to medium
enterprises and academic institutions.

Hence, there is an opportunity to increase the rate of discovery and innova-
tions by lowering the effort and cost, and thus the threshold for implementation.
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2 Towards a Haskell-based Solution

Since industrial setups are expensive, not modular and only take over low-level
tasks, they are insufficient to meet the needs of the users. As a starting ef-
fort, we designed a software solution that allows the biochemistry researchers
to construct arbitrarily complex experiment programs with any of the hardware
configurations available in the lab. A high-level overview of the software architec-
ture is shown in Figure 3. The core of the software is a measurement controller,
implemented in Haskell. This controller has three important functions.

Fig. 3. High-level overview of our solution.

First of all, the controller rep-
resents and reasons over domain-
specific knowledge, more specifi-
cally on how a user can construct a
program. This domain-specific knowl-
edge is represented by a deeply em-
bedded domain-specific language in
Haskell. A domain-specific language
(DSL) [2,6,3] is a custom-designed
specification or programming lan-
guage that allows us to concisely for-
mulate complex imaging tasks. A DSL
is especially appropriate here as it
considerably lowers the threshold to
use it for life scientists, who are not familiar with programming but already
highly familiar with the domain-specific concepts featured in the DSL. The em-
bedding approach [9] lowers the development cost compared to a stand-alone im-
plementation from scratch, as we leverage Haskells active research on this topic
[7,8] and get inspired by many existing examples for other problem domains,
such as music [10], financial engineering [13] or monadic constraint program-
ming [15]. We choose a deep embedding in order to allow for extending the DSL
with inspectors that take care of the safety of the experiments. For instance,
the total light intensity that a sample is exposed to can be inspected and should
remain limited in order to prevent the sample from photobleaching, which means
permanently fading. Similarly, the time needed to perform an experiment can
be inspected. This kind of inspections are examples of what we later refer to as
‘safety and sanity checks’.

The following represents a simplified version of the syntax and semantics of
the DSL.

data MeasurementElement = MEDetect

| MEWait Double

| MEIrradiate Double ( String , Double )

-- duration ( light source , power )

| MEDoTimes Int Prog

| MEStageLoop [ StagePosition ] Prog



A DSL for Fluorescence Microscopy 5

type Prog = [ MeasurementElement ]

data StagePosition = StagePosition { x :: Double

, y :: Double

, z :: Double }

executeProg :: Prog -> IO ()

executeProg prog = foldMap executeME prog

executeME :: MeasurementElement -> IO ()

executeME MEDetect =

executeDetection

>> putStrLn ("detecting...")

executeME (MEWait dur) =

threadDelay (round $ dur * 1e6)

>> putStrLn ("waiting...")

executeME (MEIrradiate dur params) =

executeIrradiation dur params

>> putStrLn ("irradiating...")

executeME (MEDoTimes n pr) =

mapM_ (\prs -> executeProg prs) (take n . repeat $ pr)

>> putStrLn ("times...")

executeME (MEStageLoop poss pr) =

mapM_ (\pos -> setStagePosition pos >> executeProg pr) poss

>> putStrLn ("stage looping...")

In contrast with already existing software, users can define arbitrarily com-
plex programs using this syntax. Moreover, stage loops are provided, in which
an operator can look at a sample at different user-defined positions in a user-
defined order. Essential for this stage loop is a motorized stage that can move
in different directions.

Secondly, the measurement controller is responsible for communicating with
a graphical user interface (GUI). This interface is written in Igor Pro5, scien-
tific software developed by WaveMetrics Inc. that is especially suited for image
processing and data acquisition. The GUI and measurement controller commu-
nicate via a socket sending serialized JSON objects. The GUI polls to see if data
is available at the controller. In Igor Pro, the user can construct a measurement
program using buttons provided in the interface. This way, operators can only
construct syntactically well-formed programs.

Finally, where possible, the measurement controller uses serial communica-
tion via COM ports to control the hardware. Hardware consists of cameras,
light sources, dichroic mirrors, filter wheels, microscope bodies, motorized stages
and more. Often, manufacturers provide a DLL for the hardware, written in C.
The measurement controller is able to operate with different hardware config-
urations, which makes the software solution modular to different microscope
setups.

5 https://www.wavemetrics.com/

https://www.wavemetrics.com/
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As an example of how the entire software solution works, assume an operator
uses the GUI in Igor Pro to construct the following program:

do 5 time ( s ) in t o t a l
i r r a d i a t e 2 s us ing MarcelLumencor : v io l e t@15 ;
wait 3 s
acqu i r e image ( s )

wait 10 s
acqu i r e image ( s )

"MarcelLumencor:violet" is the name of the light source together with the
colour of light that is emitted (in this case UV light), whereas @15 refers to 15%,
the used laser power. This translates to the following program in the DSL:

prog :: Prog

prog = [ MEDoTimes 5 [ MEIrradiate 2 ("MarcelLumencor:violet" , 15)

, MEWait 3

, MEDetect ]

, MEWait 10

, MEDetect ]

When executing these instructions with the executeProg-function, the mea-
surement controller operates the hardware by communicating with the COM
port connected to, in this case, the specified light source and the filter wheel
filtering the violet light.

3 Goal and Objectives

The goal of this project is to be on the vanguard in automation of experiments,
to reduce their duration, cost and required technical expertise, while utilizing
the hardware to its full potential. We will focus on fluorescence microscopy as
a showcase of our work. Taking routine tasks out of the microscopist’s hands
and performing those tasks more efficiently and more consistently than cur-
rently done leads to increased productivity, especially compared to non-expert
operators.

We aim to advance automation on two levels. On the one hand, we want to
achieve automation to optimize behaviour by learning from previous exper-
iments. On the other hand, there is a need to extend the class of automatable
routine tasks with adaptive behaviour. These routine tasks currently only sup-
port performing a fixed set of low-level instructions. Adaptive behaviour supports
the usage of observations made during the experiment to reason about which in-
structions are best executed next, resulting in better quality and relevance, with
minimal manual oversight or intervention.

Clearly, automatic operation of the instruments is faster, and thus exper-
iments can be conducted more quickly. Moreover, actions can be parallelized,
improving experiment performance. Automated design can find more optimal
ways of scheduling and executing steps in the experiments. This way, it enables
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experiments that were previously impossible due to tight timing constraints.
However, our research on the building blocks and adaptive reasoning techniques
needed is more general in nature, and a wide range of opportunities are envi-
sioned. Specifically, our objectives are to meet the following requirements that
arise naturally from the problem domain.

– When automating experiments and leaving most decisions up to software or
non-expert users, there is a danger that the hardware will be used in inap-
propriate ways. Hence, we will build safety checks into the backbone of the
automation. These serve to ensure that the hardware is not pushed beyond
its operational limits to avoid ruining expensive or time-intensive samples
and damaging or wearing out the equipment. At a higher level, when the user
instructs an experiment in terms of timing or other operational requirements,
we will automatically carry out satisfiability checking to verify whether the
requirements can be met by the available hardware given physical, biological
or chemical constraints, and that the generated plans will never violate the
safety conditions.

– The system should be usable for a wide range of users: non-experts who are
aware of the general capabilities of the devices but not of how the specific
microscopes (and other devices) are controlled, experts who want to finetune
the software where needed, as well as technical users who want to control the
microscope to set up experiments. Setting parameters and configurations is
limited to a minimum since the software will take care of this. Procedures
are abstracted over and users are only required to declare what they want
to measure.

– The reasoning behind automated procedures and settings should be clear and
transparent to users. Even when the system optimizes behaviour, using for
instance smart planning of actions, the scientists remain responsible for the
experiment. So they should get insights into why decisions were made by
the system, whether alternatives were possible, and, if not, which (safety)
constraints prevented alternatives.

– Laboratory technicians often require a specific hardware setup for a particu-
lar experiment. Switching between setups should require low effort, time and
expertise in order to increase the throughput of experiments. It should also
be possible to provide support for new devices (with new capabilities and op-
erational limits) and their integration into an existing setup. To enable this,
the software should allow modular extension with support for new hard-
ware, without replacing or otherwise changing the existing software. This
keeps the software development and maintenance costs at a minimum.

We will convincingly demonstrate the impact of our solution. We expect sub-
stantial new contributions in the area of fluorescence microscopy that critically
rely on the advances in computer science made in this project.
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4 Three-layer approach

The project consists of three essential and interactive layers, that contain tasks
on different levels of abstraction. The software is designed in collaboration with
the Lab for Nanobiology at the KU Leuven, which provides a direct feedback
loop to test the computer scientific advances made during the project.

4.1 Fluorescence Microscopy Applications

The first layer encompasses selected applications of imaging and generates spe-
cific automation needs. The following use cases are representative of current
challenges in the imaging community:

– Tracking motile cells over time: cells may move over time on their own accord
within the petri dish, causing them to disappear from view. The system
should be able to dynamically adjust to these motions.
The software will need to intelligently scan the sample, interpret the image
and change the execution.

– Dynamic changes and rare events: many biological processes are character-
ized by the occurrence of burst events (e.g., viral entry), alternated with
long less-active periods. Many images should be captured during these burst
events, but not during idle moments to avoid problematic phototoxicity.
The software will need to intelligently scan the sample and decide when and
where images must be acquired.

– Examining cell death: Cell death is a clear example of cellular heterogeneity:
cells can die in different ways, at different times and in different conditions.
Such heterogeneity is critical when treating specific cancers or autoimmune
conditions since the cellular response can be vastly heterogeneous to different
drugs.
The software needs to intelligently scan the sample, decide when and where
images must be acquired, and identify classes of cells based on their response
in space and time, making sure that all classes are covered in the experimen-
tal acquisition.

4.2 DSLs

The second layer focuses on the development of domain-specific languages, in
our case for describing fluorescence microscopy experiments and their design.
Inherently, all research towards DSL design and the methodology developed as
part of that are applicable beyond the scope of fluorescence microscopy as well.

On the one hand, we have developed an operational domain-specific pro-
gramming language, as described in Section 2, able to control the hardware and
software needed to perform the experiments, giving expert users very precise
control over how experiments should be performed.

On the other hand, we develop a domain-specific knowledge representation
language allowing users to specify at a higher level what needs to be done in a
given experiment, without mentioning the details of how this should be achieved.
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We also develop knowledge bases of background knowledge about operation
and restrictions of the components involved in these experiments. By exploit-
ing these knowledge bases, we give the system many options to optimize the
behaviour of the experimental set-up, to reason about safety conditions, and
even to suggest new experimental set-ups that might be better suited for the
task at hand. We connect both by developing a methodology for translating
plans obtained from reasoning based on knowledge, expressed in the knowledge
representation domain-specific language, into executable code of the operational
domain-specific programming language.

4.3 Intelligent System

The third layer is focused on bringing intelligence into the system, by reasoning
about observed information as well as the knowledge base, and by developing
interactive reasoning methods that can improve over time.

At the level of the operational DSL, our framework will reason over safety
and satisfiability to guarantee that all experiments, both operator driven and
machine driven, can be run and are run safely. For this, we can benefit from
Haskell’s type system but we will also use recently discovered and new tech-
niques in type inference (beyond graded monads [4,5,12]) and light-weight pro-
gram analysis (with algebraic effect handlers [14,18]) with properties to support
the modular nature of the DSL and the extensible problem domain. At the level
of the knowledge representation language, we build on top of constraint program-
ming technology and new methods for automatically finding optimal execution
plans, based on a declarative specification of the goals of the experiments in the
developed DSL.

The system will be adaptive by having low-level machine learning building
blocks, e.g., for object detection and tracking in the images, as part of the rea-
soning process. Furthermore, it can learn from previous experiments and from
interaction with the user through preference learning, that is, learning to esti-
mate how good execution plans are, and proposing new plans accordingly in an
interactive problem solving setup. To support the interactive solving, our ap-
proaches will provide explanations of the chosen execution that enable expert-
level feedback.

5 Conclusion

In summary, we want to leverage and advance the state-of-the-art in program-
ming languages and knowledge representation to automate equipment control,
applied to the field of fluorescence microscopy. This automation can be extended
to a larger part of the scientific process: automatically refine high-level research
questions into lower-level ones, choosing and designing experiments, and turning
low-level research results into high-level conclusions that are reported back. The
aim is to design:

A system that can learn from scientists and operators, and vice versa.
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