
State will do

Willem Seynaeve ?1, Koen Pauwels ??1, and Tom Schrijvers1

Category: Research Article (extended abstract)

Department of computer science KULeuven Belgium
willem.seynaeve@student.kuleuven.be

Abstract. The main strength of pure languages like Haskell is that
they allow a straightforward way of reasoning about programs called
equational reasoning. Gibbons and Hinze propose an axiomatic approach
for monadic equational reasoning which uses laws to characterise effects.
In this paper they show how the state monad and the nondeterminism
monad can be combined in one effect called backtrackable state (or “local
state”) and they illustrate how the two effects interact. A second way
for state and nondeterminism to interact is non-backtrackable state (or
“global state”) where state persists after backtracking. Pauwels et al.
show how backtrackable state can be simulated with non-backtrackable
state and prove correctness using the axiomatic approach proposed by
Gibbons and Hinze. Within this project we take this approach one step
further and simulate the backtrackable state (state and nondeterminism)
with only the state effect.

Keywords: monads · equational reasoning · nondeterminism · state

1 Introduction and background

One of the appeals of purely functional programs is that they possess the prop-
erty that equals may always be substituted for equals [5], which makes reasoning
about these programs more straightforward. This power comes at a disadvan-
tage: our functions must be free of side effects, which makes some programs (for
example, stateful or nondeterministic programs) harder to express. Wadler [6]
shows how such effects can be encapsulated using the Monad interface. In Haskell
the monad class looks as follows:

class Monad m where

return :: a -> m a

(>>=) :: m a -> (a -> m b) -> m b

This class is accompanied by three laws, which are rules we want any implemen-
tation of the monad interface to obey.

? Student
?? Phd Student

2 W. Seynaeve et al.

--Left identity:

return a >>= f = f a

--Right identity:

m >>= return = m

--Associativity:

(m >>= f) >>= g = m >>= (\x -> f x >>= g)

So, with monads as an interface to implement side effects, we can now have much
cleaner code while our functions are still pure, so we can use equational reasoning
on our programs. One method of reasoning about effectful programs is to expand
then out and to prove properties about them. This again is a tedious task. Hut-
ton and Fulger [2] show how one can reason about effectful programs without the
need for this expansion. Gibbons and Hinze [1] go even further. Instead of rea-
soning about a concrete implementation of an effect, they present an axiomatic
approach: by exploiting algebraic properties of a monadic interface, they show
that one can write equational proofs which preserve the monadic abstraction (in
other words, the proof is entirely independent on the concrete implementation of
an effect). They also show that this axiomatic approach works for combinations
of effects, which they illustrate on a “backtrackable state” effect (also called “lo-
cal state”), defined as a combination of nondeterminism and state with laws that
stipulate the backtracking behaviour. Pauwels et al. [4] build upon the work of
Gibbons and Hinze by documenting the laws that give rise to non-backtrackable
state (also called “global state”), and using the same axiomatic reasoning tech-
nique to show that the backtrackable state interface can be implemented in terms
of the non-backtrackable state interface. In this work, we take this approach one
step further and simulate the backtrackable state effect with only state.

2 Simulating Nondeterminism and State with just State

In this project, we aim to simulate a “stateful nondeterminism” effect (more
specifically backtrackable state) with a “lower level” implementation that only
uses state. Furthermore, we wish to prove this simulation correct. Eventually we
will use the approach proposed by Gibbons and Hinze to prove one interface can
be simulated by the other, but we first explore a Hutton and Fulger style proof,
based on concrete implementations for both effects. The concrete proof can then
be a guide for finding the minimal set of laws we have to impose on the relevant
interfaces to prove the simulation. Eventually this project should lead to a proof
of the simulation in Coq1.

2.1 Motivational Example

One could ask why is a simulation of the stateful nondeterminism monad with
the state monad useful. The backtrackable state effect [1] is a setting that feels
natural for implementing naive straightforward backtracking algorithms. Say,

1 https://coq.inria.fr

State will do 3

for example, that you want to write a Prolog interpreter, and prove it correct.
If you were to write this program only in terms of “low level” effects such as
state, it would be a tedious task to prove the correctness of your algorithm,
because you have to take into account a lot of the low level “plumbing”. Having
read Hutton and Fulger [2], one knows that a higher level effect shields away
that complexity allowing you to reason about the program without having to
take into account the low level plumbing. So you write an implementation with
a backtrackable state effect which will be relatively easy to prove correct. The
problem with this implementation would be that it would most likely not be
very efficient. To optimize our conceptual interpreter we would like to have a
more low level implementation, like one using only the state monad. So we want
a backtrackable state implementation to reason about the program and a state
implementation to have the tools to optimize our implementation. If we can
simulate the backtrackable state monad with the state monad, we allow the
programmer to implement the high level interpreter, simulate it with state, so
that he have a low level implementation, and from there he can optimize. If every
optimization is correct, the optimized interpreter is correct.

2.2 Simulating Nondeterminism with State

To illustrate how such a simulation might work, this section provides a simulation
of an implementation of nondeterminism using an implementation of state. The
Monad class for our implementation of nondeterminism Nondet is:

data Nondet a = Ret a

| Fail

| Nondet a :| Nondet a

instance Monad [] where

return x = Ret x

m >>= f = case m of

Ret a -> Ret f a

Fail -> Fail

a :| b -> (f >>= a) :| (f >>= b)

Note that for the implementation we used free Monads [3]. To transform our
Nondet program into a stateful program, we need the programs to be data.
For this reason, we make the Nondet effect a data type and have an explicit
runNondet function.

runNondet :: Nondet a -> []

runNondet (Ret x) = [x]

runNondet Fail = []

runNondet (a :| b) = (runNondet a) ++ (runNondet b)

For State, we also have a free monad implementation, accompanied by a runState
function.

4 W. Seynaeve et al.

data State s a = Get (s -> State s a)

| Put s (State s a)

| Return a

runState :: State s a -> (s -> (s, a))

runState (Get f) = \s -> runState (f s) s

runState (Put st x) = \s -> runState x st

runState (Return x) = \s -> (s, x)

instance Monad (State s) where

return x = Return x

st >>= f = case st of

Get k -> Get (\s -> ((k s) >>= f))

Put s m -> Put s (m >>= f)

Return x -> f x

2.3 The Simulation

To simulate the Nondet effect, we need a state with two components: a list where
we store the results calculated during the computation and a stack storing what
we still have to do. This stack is thus a stack of stateful subprograms. This
recursive type of stateful programs containing stateful programs is encapsulated
in the type Prog a. We also provide a few helper functions to modify the State
variables namely, push and pop, that modify the Stack, and emit that adds a
solution to the list of solutions. This brings us to the following transformation:

newtype Prog a = Prog (State ([a],[Prog a]) ())

emit :: a -> Prog a -> Prog a

emit x (Prog k) = Prog $ Get $ \(xs,stack) -> Put (xs++[x],stack) k

push :: Prog a -> Prog a -> Prog a

push p (Prog k) = Prog $ Get $ \(xs,stack) -> Put (xs,p:stack) k

pop :: Prog a

pop = Prog $ Get $ \(xs,stack) -> case stack of

[] -> Return ()

((Prog p):ps) -> Put (xs,ps) p

trans :: Nondet a -> Prog a

trans Fail = pop

trans (Ret x) = emit x pop

trans (p :| q) = push (trans q) (trans p)

The function emit adds a solution, the function push pushes a stateful program
onto the stack and the function pop pops one element of the stack, unless the

State will do 5

stack is empty, then the program returns. For example, consider the following
Nondet program:

(Ret x :| Fail) :| (Ret y :| Ret z)

Or in tree form: :|

:|

Ret x Fail

:|

Ret y Ret z

Evaluating with runNondet Running this program with the runNondet func-
tion recursively evaluates the two branches of the root (:|), and concatenates
the results. A visual representation of the evaluation is given below.

Evaluating with State To simulate the Nondet effect in a program with two
stateful variables. A stack that serves as a continuation and a list of solutions
found so far. We define the “runNondet” function as:

runNondet' nd (sol, stack) = fst $ fst $ runProg (trans nd) $ ([], [])

runProg :: Prog a -> (([a],[Prog a]) -> (([a],[Prog a]), ()))

runProg (Prog x) = runState x

The simulation happens in the trans function. In our example, we first observe
the program :|

:|

Ret x Fail

:|

Ret y Ret z
This is simulated by first translating the two branches, then handling the left-
hand side and pushing the right-hand side onto the stack to be executed later.

6 W. Seynaeve et al.

When we execute the left-hand side the same pattern has to be handled so we
again push the right branch on the stack and execute the left-hand branch.

Now we reach the leaf Ret x, this adds one element to the list of solutions.

Now, there is nothing more to be done, so we pop from the stack to execute
what we did not yet:

We see the result we want from the Nondet effect as the eventual list of solutions,
namely [x, y, z].

2.4 Proof of correctness

Theorem: Say x : Nondet n, then:

runNondet' x ([] , [])

=

runNondet x

Proof: The two cases x = Fail and x = Ret x are handled by lemma’s 2 and
3 respectively. So all that is to prove is: x = a :| b. This is just a consequence

State will do 7

of lemma 4, with [] and [] as the initial solutions and stack.
Q.E.D

Lemma 2:

runNondet' Fail ([], [])

=

[]

Proof:

runNondet' Fail ([], [])

= --definition of runNondet'

fst $ fst $ runProg (trans Fail) $ ([], [])

= --definition of trans

fst $ fst $ runProg (Prog pop) $ ([], [])

= --definition of runProg

fst $ fst $ runState pop $ ([], [])

= --definition of pop

fst $ fst $ runState (Return ()) ([], [])

= --definition of runState

[]

Lemma 3:

runNondet' (Ret x) ([], [])

=

[x]

Proof:

runNondet' (Ret x) ([], [])

= --definition of runNondet'

fst $ fst $ runProg (trans (Ret x)) $ ([], [])

= --definition of trans

fst $ fst $ runProg (Prog (emit x pop)) $ ([], [])

= --definition of runProg

fst $ fst $ runState (emit x pop) $ ([], [])

= --definition of emit

fst $ fst $ runState pop ([x], [])

= --definition of pop

fst $ fst $ runState (Return ()) ([x], [])

= lemma

[x]

8 W. Seynaeve et al.

Lemma 4: Say x,y is of type (Nondet n), sol is of type [n] and stack is of
type (Prog a), then:

runNondet' (x :| y) (sol , stack)

=

sol ++ runNondet' x ([], []) ++ runNondet' y ([], stack)

Proof:

– case: x = Fail

runNondet' (x :| y) (sol, stack)

= --lemma 5

runNondet' Fail (sol, ((Prog $ trans y):stack)

= --def runNondet' and trans

fst $ fst $ runProg pop (sol, (Prog $ trans y):stack)

= --lemma 7

fst $ fst $ runProg (trans y) (sol, stack)

= --def of runNondet'

runNondet' y (sol, stack)

= --lemma's 2 and 8

sol ++ runNondet' Fail ([], []) ++ runNondet' y ([], stack)

– case: x = Ret a

runNondet' (x :| y) (sol, stack)

= --lemma 5

runNondet' (Ret a) (sol, (Prog $ trans y):stack)

=

fst $ fst $ runProg (emit a pop) (sol, (Prog $ trans y):stack)

= -- lemma 6

fst $ fst $ runProg pop (sol ++ [a], (Prog $ trans y):stack)

= --lemma 7

fst $ fst $ runProg (trans y) (sol ++ [a], stack)

= --def of runNondet'

runNondet' y (sol ++ [a], stack)

= --lemma's 3 and 8

sol ++ runNondet' (Ret a) [] [] ++ runNondet' y ([], stack)

– case: x = a :| b

runNondet' (x :| y) (sol, stack)

= --lemma 5

runNondet' (a :| b) (sol, (Prog $ trans y):stack)

= --Inductie

sol ++ runNondet' a ([], []) ++ runNondet' b ([], (Prog $ trans y):stack)

= --lemma 5

sol ++ runNondet' a ([], []) ++ runNondet' (b :| y) ([], stack)

= --Inductie

sol ++ runNondet' a ([], []) ++ runNondet' b [] [] ++ runNondet' y ([], stack)

State will do 9

= --Inductie

sol ++ runNondet' (a :| b) ([], []) ++ runNondet' y ([], stack)

The following lemma’s are given without proof:

Lemma 5:

runNondet' (x :| y) (sol , stack)

=

runNondet' x (sol , (Prog $ trans y):stack)

Lemma 6:

runNondet' (emit x y) (sol , stack)

=

runNondet' y (sol ++ [x], stack)

Lemma 7:

runNondet' pop (sol , s:stack)

=

runNondet' s (sol, stack)

Lemma 8:

runNondet' x (sol , s:stack)

=

sol ++ runNondet' x ([], stack)

3 Results and Discussion

We intend to simulate backtrackable state using only state as an effect. We will
first do this for concrete implementations of state and backtrackable state, in
the style of the previous example. We will then provide a proof of such a simula-
tion in the axiomatic style proposed by Gibbons and Hinze. It is our hope that
working from the State-only characterisation of “backtrackable State” to an op-
timized backtracking algorithm will be a relatively short step and that this work
will become useful for proving the correctness of such optimized backtracking
algorithms.

10 W. Seynaeve et al.

References

1. Gibbons, J., Hinze, R.: Just do it: Simple monadic equational reasoning. Proceedings
of the ACM SIGPLAN International Conference on Functional Programming, ICFP
pp. 2–14 (2011). https://doi.org/10.1145/2034773.2034777

2. Hutton, G., Fulger, D.: Reasoning about effects: Seeing the wood through the trees.
Tfp (2008), http://www.cs.nott.ac.uk/ gmh/effects.pdf

3. Kiselyov, O., Ishii, H.: Freer monads, more extensible effects. Haskell 2015 - Pro-
ceedings of the 8th ACM SIGPLAN Symposium on Haskell, co-located with ICFP
2015 pp. 94–105 (2015). https://doi.org/10.1145/2804302.2804319

4. Pauwels, K., Schrijvers, T., Mu, S.: Handling Local State with Global State pp.
18–44 (2019). https://doi.org/10.1007/978-3-030-33636-32

5. Wadler, P.: A critique of Abelsonand Sussmanor why calculating is better than schem-
ing 1987 ACM SIGPLAN Notices, vol. 1 (1987)

6. Wadler, P.: Monads for functional programming. Lecture Notes in Computer Science
(including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioin-
formatics) 925(August 1992), 24–52 (1995). https://doi.org/10.1007/978-3-662-02880-
38

