
A Family of λ-Calculi with Ports

Seyed Hossein Haeri1 and Peter Van Roy1

UCLouvain, Belgium {hossein.haeri,peter.vanroy}@uclouvain.be

Abstract. Distributed systems programming exhibits a considerable
degree of mostly-functional behaviour. On the other hand, programming
every distributed system with no side-effect whatsoever is not realistic.
Observational purity lends itself as a plausible alternative.
To exercise that choice for programming distributed systems, we present
the λ(port) family of λ-Calculi. Ports and pure blocks are two chara-
teristics of this family. Ports are the only single source of side-effects in
the λ(port) family. Pure blocks are the linguistic support for declaring
observational purity. Notably, pure blocks specify which nodes in the dis-
tributed system they are pure for. We promote a programming paradigm,
in which, the programmer strives to maximise pure blocks and only leave
the unavoidably effectful computations outside. Our paradigm brings
added value to speculative execution, mock testing, distributed garbage
collection, partial order reduction, and treatments of flaky tests.
We start the λ(port) family from its most basic member, in which mes-
sages are delivered instantly. We prove that observational equivalences
of the more basic members of the family are retained upon addition of
message delay, message loss, node failure, and network partitions. As
such, one can freely prove observational equivalences in the most basic
member without worrying about any of the successor features.

Paper Category: Research

1 Introduction

Pure functional programming can be concurrent without monadic treatments.
Due to the confluence of λ-Calculus, any such piece of code can run in multiple
threads, execution of which is nondeterministically interleaved by a scheduler,
and still remain pure. More generally, any code consisting of concurrent entities
passing asynchronous messages can be pure, provided that each entity knows
from which entity its next message will be received. A classical example of such
a system is a Kahn network [12]. Many more such examples are given in [28, §4].

The trivia that distributed systems are by their very nature effectful is wrong.
In § A, we present the Distributed λ-Calculus [27] and show its equivalence with
ordinary λ-Calculus (Theorem 7). Hence, purity of the Distributed λ-Calculus.

Important classes of distributed systems, e.g. pipelines, can be modelled using
the Distributed λ-Calculus, and, are thus pure. In a pipeline of processes, each
process reads messages from an asynchronous channel, does a computation with

2 S. H. Haeri and P. Van Roy

internal state, and sends an asynchronous message to the next process. Pipelines
are in wide use, to the extent that they are recognised as one of the six patterns
of Microsoft Durable Functions: Function Chaining.1

General distributed systems are not always pure. They are not pure when
their execution cannot be modelled using reductions in λ-Calculus. This is the
case when information is added to the execution during the reduction that is not
known in advance (i.e., it cannot be put in the initial λ-expression). A general
distributed system interacts with the external world (meaning any system out-
side of it). In other words, accepting information from the external world during
its execution is an essential property of a general distributed system. For such
systems, the Distributed λ-Calculus does not help.

On the other hand, experience shows that codes written for distributed sys-
tems exhibit a substantial degree of mostly-functional behaviour [13]. That leads
us to promote a programming paradigm for distributed systems, in which the
cut between pure and effectful code is clear. In our paradigm, the programmer
strives to push all the pure code to one side and all the effectful part to the
other. The aim is to maximise the pure side and rather isolate the side-effects.

To that end, we advise pure blocks: a linguistic support for marking portions
of code that are pure. Pure blocks are similar to pure annotations of Pearce [21]
but with finer granularity. In addition, a piece of distributed code might not be
universally pure; but, so to a selection of nodes in the distributed system. As
such, in line with observational purity [1], pure blocks nominate the nodes for
which they are not to have any side-effects.

Our family of λ(port) calculi are inspired by λ(fut) [19]. However, whereas
λ(fut) adds futures to λ-Calculus, the λ(port) calculi add ports. Futures, per
se, do not imply impurity. In λ(fut), cells are used for modelling side-effects. We
choose ports over cells because we find them more natural to distributed systems
programming. By design, ports are our solo source of side effects. A port is an
asynchronous medium for unidirectional message passing. See [28, §5] for various
example on the effectiveness of ports in programming distributed systems.

We chose the λ(port) ports to be multiple-read/multiple-write. Any part of
the program can send messages to a port; any part of a program can begin to
read the contents of a port. However, suppose a piece of code begins reading a
port’s contents at the port’s time t = t0. That reader piece of code will only
have access to the messages delivered at t ≥ t0.

Contributions Our λ(port) developments start with λ(port)◦ (§ 3). λ(port)◦ is
essentially λ-Calculus with ports and pure blocks. However, λ(port)◦ messages
are delivered instantly. We add message delay to λ(port)◦ to get λ(port)1 (§ 4);
then, message loss to get λ(port)2 (§ 5); then, node failure to get λ(port)3 (§ 6);
and, then, network partitioning to get λ(port)4 (§ 7).

We have a special purpose from this stepwise addition of distributed system
features. At each step, we prove that the observational equivalences of the pre-

1 https://docs.microsoft.com/en-us/azure/azure-functions/durable/durable-f

unctions-overview?tabs=csharp#chaining

https://docs.microsoft.com/en-us/azure/azure-functions/durable/durable-functions-overview?tabs=csharp#chaining
https://docs.microsoft.com/en-us/azure/azure-functions/durable/durable-functions-overview?tabs=csharp#chaining

A Family of λ-Calculi with Ports 3

decessor hold in the successor too. Those results are Theorems 3, 4, 5, and 6.
Our motivation is that proving observational equivalences in λ(port)◦ are much
easier and particularly less involved.

We showcase the usefulness of chaining those theorems using two results
obtained for λ(port)◦: First, Theorem 1 legislates pure block expansion by moving
neighbour expressions inside. Second, Theorem 2 legislates load-balancing.

We also provide two example programs written in λ(port)◦: Example 1 is a
simple client-server architecture. Example 2 shows (impure) pipelining with and
without load balancing.

Last but not least, we formally refute the trivia on distributed systems pro-
gramming being effectful by nature (Theorem 7).

The proofs we omit here can be found in the accompanying technical reports
available from the authors.

Organisation We start in § 2 where we provide concrete evidence to elucidate
the our design choices for the λ(port) family. λ(port)◦ to λ(port)4 are presented
in § 3–§ 7. Literature review comes in § 8. Future work and conclusions are in
§ 9. Finally, we present the Distributed λ-Calculus and its results in § A.

2 Design Philosophy

A distributed system is a collection of nodes, each of which aiming at their own
computations. Such computations are sometimes independent of one another
and sometimes different parts of a larger computation performed collaboratively.
Nodes manage such collaborations by passing messages to one another.

With that picture in mind, a distributed system’s program is a collection
of computations run concurrently. Such computations might have interdepen-
dencies, i.e., the result of one might depend on that of another. More than one
computation might run on a given node. In addition, one tends to reuse a compu-
tation’s code when required. For instances, it is possible for a single computation
to be repeated on different nodes. Similarly, different instances of a computation
might run on a single node – concurrently or on different occasions. As such, in
our model, the configuration of a distributed system’s program (cf. Definition 1)
consists of concurrently run computations and computation definitions (to be
reused). We use “ || ” for composition of a configuration’s constituents.

Pure blocks are constructs to discipline distributed systems programming
with explicit purity specifications. Pure blocks operate at the level of the con-
stituents of a configuration or lower, down to the level of individual expressions.
A pure block is a promise for not having any side effects for the nominated nodes.

For example, consider purea {e1; e2; . . . ; pureb {e′1; e′2; . . . e′k}; . . . ; en}, where a
and b are disjoint. The expressions e1, e2, . . . , en promise not to have side effects
for the nodes a.2 Whilst those expressions are fine to be effectful for b, the ex-
pressions e′1, e

′
2, . . . , e

′
k are not. Neither are the latter expressions allowed to be

2 a is a1, a2, . . . , am, for some given m that is not important in this context. We use
similar list comprehensions throughout this paper.

4 S. H. Haeri and P. Van Roy

effectful for a. The promise of a pure block is currently checked at the runtime.
(Cf. the (Pure) rule in Definition 2.)

We have our own take of observational purity in the context of distributed
systems: We write e1 ∼a e2 when e1 and e2 have similar side-effects for the node
a. (Cf. Definition 4.) Note that e1 ∼a e2 is deliberately silent about comparing
the effectfulness of e1 and e2 for other nodes than a. Additionally, examining
effectfulness might be of interest for only a selection of resources. For example,
only the ports and the local heap of a node might be of interest. Our notation for
that would be (port , heap) � e1 ∼a e2. From § 3 onwards, our attention would
be on ports exclusively. Thus, thereafter, we write e1 ∼a e2 for port � e1 ∼a e2.

Here is how the rest of this section is organised: § 2.1 explains what took
us this particular account of distributed systems programming. § 2.2 gives real-
world examples where distributed systems programming in our fashion is ben-
eficial. Finally, we present the λ(port) family as a formal model for our fashion
of distributed systems programming. § 2.3 discusses alternative formalisms for
specifying the λ(port) semantics.

2.1 Mostly Functional

Former study shows that 24 − 78% of fields in Java are never written after an
object is constructed [3]. The authors of that study conclude that “realistic Java
programs exhibit a substantial degree of mostly-functional behaviour.”

Our experience in the FP7 SyncFree3 and H2020 LightKone4 EU projects
suggest that distributed systems’ programs too exhibit a substantial degree of
mostly functional behaviour. Nevertheless, such programs typically contain far
too many parts coded under the false assumptions about their effectful nature.
Such assumptions lead to the use of effectful tools. That is whilst those programs
very much can be coded purely. This suggests a need for a paradigm shift in
programming distributed systems.

Our conjecture is that code for most distributed systems can be designed
so it is mostly pure with very few effectful parts. (Example 1 illustrates that
in a client-server scenario.) That would be sheer benefit. The pure parts win
the code typical purity gifts such as idempotence, referential transparency, and
equational reasoning. That motivates the programming paradigm we promote:
a paradigm urging knowledgeable decisions about the purity of different pieces
of a distributed systems’ program. Schematically, that is code like the following:

port p1, p2, . . . || f1(x1) = e1 || f2(x2) = e2 || . . . || (purea {e1; e2}; e3; e4; e5)a1

|| (pureb {e6}; e7; purec {e8; pured {e9; e10}}; e11)a2 || . . .

2.2 Observational Purity

Flaky Tests When tests nondeterministically produce different results for the
same input, they are said to be flaky. A very recent study [7] reports that the

3 https://pages.lip6.fr/syncfree
4 https://www.lightkone.eu

https://pages.lip6.fr/syncfree
https://www.lightkone.eu

A Family of λ-Calculi with Ports 5

vast majority of developers recognise flakiness as a significant impediment. That
study identifies the following as a source of flakiness: not employing wait mech-
anisms when making asynchronous calls. A former study [15] too reports a need
in 25% of the cases for fixing the order of events to tackle flakiness.

Such solutions, unfortunately, do not work for distributed systems. Fixing
the order of events defeats the purpose of such systems. Observational purity, on
the other hand, can make the order of interleaving irrelevant for the test results.
Two test results might be different but still observationally equivalent. A test
that produces results {e} on a node a is no longer flaky, with that insight, when
∀e1, e2 ∈ {e}. e1 ∼a e2.

Another recent study [14] reports 86% failure in reproduction of flaky tests,
even after 100 trials. That is a call for idempotence, which (observational) purity
can guarantee. Again, our a-bisimulations (Definition 4) respond to that call.

Speculative Execution At a branching point in the execution, instead of eval-
uating the condition first to determine the right branch, one can execute all the
possible branches greedily so the condition evaluation can proceed in parallel.
Such a speculative execution specially appeals to distributed systems where mes-
sages are likely to be delayed due to network reasons. After all, evaluation of a
condition can very well depend on the arrival of messages.

Tapus and Hicky [26] give an operational semantics for speculative execution
in distributed systems. Armed with their semantics, they formally prove gain
in reliability and fault tolerance due to speculative execution. In their work,
a great proportion is dedicated to bookkeeping shared objects. Purity makes
that redundant, and, hence, understanding speculative execution easier for dis-
tributed systems. That conjecture is backed up by an earlier empirical study
on speculative execution of distributed file systems [20]. Authors of the latter
work observe correctness of speculation for functions with observational purity.
(Although they do not formulate that observation of theirs like us [20, §5.3].)

Mock Testing Often, in testing, one needs to test a subsystem in the absence
of other collaborating subsystems. To that end, one mocks the behaviour of
the other subsystems and composes the under-test subsystem with the mocks
of the other ones. Bell and Kaiser [2] report that, in practice, mocking gives
false positives/negatives because of side-effects. To tackle that, their approach
prescribes a sort of observational purity: They isolate each subsystem’s side-
effects to themselves (but also allow other side-effect that can be reverted).
Suppose that the set of all nodes is N. Then, in our terms, for a given node
a, that is like an enclosing pureN\a {.} for every computation running on a.
As such, the subsystem under test is acknowledged for its effectfulness, mock
testing nevertheless succeeds because that subsystem is observationally pure to
other subsystems.

Distributed Garbage Collection Garbage collection in distributed databases
is known to be highly non-trivial. In the absence of a clear solution, a technique

6 S. H. Haeri and P. Van Roy

resorted to by distributed DBMSes such as Cassandra5 is stop-the-world. That
technique is, however, suboptimal because it increases downtime. The reason
why stop-the-world has nevertheless to be used is mutability of data: Dead data
might come back to life after mutation. Observational purity dismisses that need
because local mutations will not be observable to the wrong parties. For a node
a, enclosing pureN\a {.} blocks help automatic inference of that dismissal.

Model Checking Partial order reduction is a classical technique used in model
checking for reducing the search space. For example, the technique is widely used
in Spin [11], which targets distributed systems specifically. Intuitively, one might
expect purity to help partial order reduction. That is because, in the absence of
side-effects, altering the interleaving makes no observable difference. Contrary
to that intuition, Déjà Fu – a stateless model checker in the pure programming
language Haskell – fails to realise that expectation [29, §8]: In the absence
of any side-effect, the execution leaves no trace either. That is another call for
observational purity, where side-effects are acknowledged but under good control.
For example, suppose that {a} is the set of nodes in the search space. Suppose
also that one is interested in examining local memory traces, exclusively. Then,
∀a ∈ {a}. memory � e1 ∼a e2 legislates pruning the e1 path once that of e2 is
already searched, and vice versa.

2.3 Obvious Alternatives

Monadic Treatments Mind the subtle difference between our work and monadic
programming. Meritoriously, monads pretend there are no side-effects. They in-
terpret an effectful computation as a state transition of a superficial universe.
That is, monads are to deny the existence of side-effects (despite the track they
leave in type signatures and the programming paradigm). In contrast, we ac-
knowledge side-effects, yet, help the right nodes benefit from the purity of the
correctly marked code proportions.

Algebraic Effects Monads aside, algebraic effects look hopeful. After all, using
algebraic effects, one typically specifies the effects of a function alongside its type
signature. We are, at the moment, investigating reasonableness of that hope.
Two matters are not clear to us: First, how does one use algebraic effects for
purity specification at a finer granularity than functions? That is at the level of
individual statements or blocks of code. Control blocks of the language Koka6

are the first that comes to mind. Secondly, how beneficial can algebraic effects
be for promoting the notion of observational purity? Using algebraic effects in
conjunction with an observational semantics [18,25] or an equational semantics
[5] is worth investigating for that.

5 http://cassandra.apache.org
6 https://koka-lang.github.io/koka/

http://cassandra.apache.org
https://koka-lang.github.io/koka/

A Family of λ-Calculi with Ports 7

π-Calculus One may wonder why we build on top of λ-Calculus as opposed
to π-Calculus. Those two calculi were designed for modelling computations and
agent systems, respectively. As such, exceptions [22,4] aside, most programming
languages results are established on top of the former. In this work, we are
particularly interested in those of the pure functional programming languages.
Our aim is to reuse those results. So, like more conventional λ-Calculi with
futures [8,19], we build on top of λ-Calculus.

3 λ(port)◦: Ports with Instant Delivery

The λ(port)◦ syntax is tailored for our minimal working example (Example 1),
in particular.

Definition 1. The expressions (E) and configurations (G) of the λ(port) family
are defined below, where this font is for keywords:

e ::= x | c | λx.e | e1 e2 | f e | e1; e2 | e :: s | match s for {x :: s′ ⇒ e}
| send e to pb | purea {e},

g ::= ea | port pa | f(x) = e | g1 || g2.

Assume stream names s, s′, . . . , s1, s2, · · · ∈ S, where E, S, and N are dis-
joint. The syntax for an expression e is mostly routine: variables, constants,
λ-abstractions, applications, applications of named functions to a list of expres-
sions (f e), sequential composition, and, cons expressions. Our pattern matching
is less routine by only allowing a single match and only against cons expressions.
Then, there are sending to ports, and pure blocks. Marking e’s lack of side-
effects for a list of nodes a, if at all, is purea {e}. Write pure {e} to indicate
universal purity of e. Purity markings are verified at runtime. The final piece
of the expression syntax is send operations. Configurations are node-annotated
expressions, port declarations, named functions (i.e., f(x) = e, with parame-
ter list x), and concurrent compositions. One annotates an expression e with
a node a as ea. Such an annotation only applies to the outermost layer. The
intuition is the expression e being run on the node a. Assuming port names
p, p′, . . . , p1, p2, · · · ∈ P , our ports pa, p′a, . . . , pb, p′b, · · · ∈ P ×N = PN consist
of their name and the node they belong to. We use structural congruence for
concurrent compositions: g1 || g2 and g2 || g1 are the same. In the λ(port) family,
the number of concurrent compositions is known statically.

Definition 2 presents the small-step operational semantics that λ(port)◦ gives
the syntax of Definition 1. Judgements ĺ, ĺ′, · · · ∈ J of the operational semantics
take the form τ : g →◦ τ ′ : g′. A system setting τ is a tuple (ρ, σ), where
ρ : S ⇀ {⊥} ∪ (E × S) is an environment and σ : PN ⇀ S is a store. ρ(s) = ⊥
denotes that s is not fresh in ρ but still unbound in the current state of the
program. The clause ĺ = τ : g →◦ τ ′ : g′ sets ĺ as an alias for τ : g →◦ τ ′ : g′.
Define ∆node(σ, σ

′) = {a | ∃pa. σ(pa) 6= σ′(pa)} for nodes bound differently by
σ and σ′. Likewise, for ĺ = (σ,) : →◦ (σ′,) : , define ∆node(ĺ) = ∆node(σ, σ

′),
where “ ” is our wildcard. Write g →◦ g′ as a shorthand for τ : g →◦ τ : g′.

8 S. H. Haeri and P. Van Roy

Write→∗◦ for the transitive and reflexive closure of→◦. Finally, fix a set of values
ranged over by v1, v2, . . . , including unit and all cs.

Definition 2. Rules of the λ(port)◦ operational semantics follow.

(λx.e1) e2 →◦ e1[e2/x] (App-E)

f e || f(x) = e′ →◦ e′[e/x] || f(x) = e′ (App-F)

match ⊥ for {x :: s⇒ e} →◦ match ⊥ for {x :: s⇒ e} (Mat-1)

match (e :: s) for {x :: s′ ⇒ e′} →◦ e′[e/x, s/s′] (Mat-2)

τ : e1 →◦ τ ′ : e′1
(Seq-1)

τ : e1; e2 →◦ τ ′ : e′1; e2
v; e→◦ e (Seq-2)

e→◦ e′
(Annot)

ea →◦ e′a
τ : g1 →◦ τ ′ : g′1

(Cncr)
τ : g1 || g2 →◦ τ ′ : g′1 || g2

ĺ = τ : e→◦ τ ′ : e′ a /∈ ∆node(ĺ)
(Pure)

τ : purea {e} →◦ τ ′ : purea {e′}
p, s fresh

(Port)
(ρ, σ) : port pa →◦ (ρ[s 7→ ⊥], σ[pa 7→ s]) : unit

σ(pa) = s ρ(s) = ⊥ s′ fresh
(Send)

(ρ, σ) : send e to pa →◦ (ρ[s′ 7→ ⊥, s 7→ e :: s′], σ[pa 7→ s′]) : unit

The rules in the first six lines are standard. Inside a block that is to be pure
from the viewpoint of a, the rule (Pure) allows reductions that do not alter
the parts of store that pertain to a. That is, they do not declare new ports
for a; neither do they send to any of a’s ports. According to (Send), when
an expression e is sent to pa, the respective stream s needs to be unbound.7

In such a case, we reduce by allocating a fresh and unbound stream s′ and
resetting the environment binding of s to e :: s′, hence, putting e at the front
of the trailing stream. Note that, consequently, sends are delivered instantly in
λ(port)◦, implying causal order by construction.

We also define the following utility meta-function for the programmer: When
σ(pa) = s, define stream(pa) = ρ(s). Moreover, at each step, we call the part of
the configuration that is being reduced the active expression/configuration.

The following auxiliary function (for the semantics) determines the nodes
that will engaged in the evaluation of an expression or configuration. That piece
of information will help us in Sections 6 and 7.

7 One should pay special attention here not to confuse port streams with those of the
lazy functional languages. Contents of the latter streams can be obtained on demand.
Whereas, the tail of a port stream remains unbound until new items are sent to it.
In other words, a port is an asynchronous FIFO communication channel. Note that
it is due to their asynchronicity that ports can serve anti-causal programming.

A Family of λ-Calculi with Ports 9

Definition 3. Define a function engaged : E ∪G→ ℘(N) as follows:

engaged(x) = engaged(c) = ∅ engaged(λx.e) = engaged(e ::) = engaged(e)

engaged(e1 e2) = engaged(e1; e2) = engaged(e1) ∪ engaged(e2)

engaged(f e) = engaged(f) ∪
⋃
e∈e engaged(e)

engaged(match for { ⇒ e}) = engaged(e)

engaged(send e to pa) = engaged(e) ∪ {a}
engaged(purea {e}) = engaged(e) ∪ {a} engaged(port pa) = {a}

engaged(ea) = engaged(e) ∪ {a} engaged(g1 || g2) = engaged(g1) ∪ engaged(g2).�

Example 1. Let N = {srv , c1, c2}, where srv is a server and c1 and c2 are clients.
The internal states of the nodes are sts, st1, and st2, respectively. Based on their
own state, clients form a query and send it to the server’s single port (psrv). The
server processes queries locally. Let fc and fs be pure client-side and server-
side functions. Then, the client-server program below is pure everywhere, except
upon: (1) declaring the port, and, (2) sending queries to the server – exclusively
from the viewpoint of the server.

port psrv || (srv sts stream(psrv)) || (client st1)c1 || (client st2)c2

|| client(st) = purec {send (query st) to psrv ; client (fc st)}
|| srv (st , s) = pure {match s for {q :: s′ ⇒ srv (fs (q, st), s′)}}. �

Let σ|a = {pb 7→ s ∈ σ | a = b} and ρ|a = {s 7→ ρ(s) | s ∈ range(σ|a)}.
Likewise, for τ = (σ, ρ), define τ |a = (σ|a, ρ|a). Write σ

α≡σ′ when σ and σ′

bind ports similarly modulo the familiar α-renaming. Write ρ
α≡ ρ′ when ρ and ρ′

bind streams similarly, again modulo α-renaming. Next, extend
α≡ elementwise

to τs. Finally, define ∆∗node(τ, g) =
⋃
{∆node(ĺ) | ĺ ∈ τ : g →∗◦ : }. In words,

∆∗node(τ, g) is the nodes for which new ports were declared or the existing ports
of which were sent to over τ : g →∗◦ : , where “ ” is our wildcard notation.

Throughout this paper, we maintain the notation →n for a single reduction
step of λ(port)n. Likewise, we write →∗n for the reflexive and transitive closure
of →n. Thus far, we have only defined →◦ (Definition 2). In the subsequent
sections, we will also define →n for n ∈ {1, 2, 3, 4}.

Intuitively, according to Definition 4 below, a node observes two configu-
rations equivalently when, for reduction steps of one configuration, the other
configuration can take steps with α-equivalent impacts on the parts of the envi-
ronment and store that pertain to the node.

Definition 4. For a given node a, call a relation R a
n an “a”-bisimulation for

the reduction →n when g1R a
n g2 implies

∀τ.

{
τ : g1 →∗n τ1 : g′1 ⇒ ∃τ2. (τ : g2 →∗n τ2 : g′2) ∧ (τ1|a

α≡ τ2|a) ∧ (g′1R a
n g
′
2)

τ : g2 →∗n τ2 : g′2 ⇒ ∃τ1. (τ : g1 →∗n τ1 : g′1) ∧ (τ1|a
α≡ τ2|a) ∧ (g′1R a

n g
′
2)

.

Write ∼an for the largest a-bisimulation for →n.

10 S. H. Haeri and P. Van Roy

Proposition 1. g ∼an g for all nodes a and n ∈ {0, 1, 2, 3, 4}.

In words, the following theorem states that, when an expression is proceeded
by a pure block, if the expression has no side-effect for the nodes the proceeding
block is pure for, one can move the expression into the pure block; the result
will be the same for those nodes.

Theorem 1. Let e1, e2 ∈ E and a ∈ N. Then, ∀τ. a /∈ ∆∗node(τ, e1) implies
e1; purea {e2} ∼a◦ purea {e1; e2}. Likewise, ∀τ. a /∈ ∆∗node(τ, e2) implies
purea {e1}; e2 ∼a◦ purea {e1; e2}.

Proof. We prove the first implication. The second one is similar. Fix a tuple τ .
There are only two possible reductions for τ : purea {e1; e2}. First,

ĺ1 = τ : e1 →◦ τ ′ : e′1
(Seq-1)

τ : e1; e2 →◦ τ ′ : e′1; e2
(Pure).

τ : purea {e1; e2} →◦ τ ′ : purea {e′1; e2}

In this case, one gets

ĺ1
(Seq-1).

τ : e1; purea {e2} →◦ τ ′ : e′1; purea {e2}

Note that it is the condition ∀τ. a /∈ ∆∗node(τ, e1) that legislates conclusion in the
other direction, i.e., concluding the former derivation from the latter. Without
that condition, e1; purea {e2} might reduce in situations where purea {e1; e2}
fails at runtime. That is because (Pure) requires lack of side-effects for a for ĺ;
or, it will fail.

The second possible reduction for τ : purea {e1; e2} is when e1 = v for some
value v:

(Seq-2)
τ : v; e2 →◦ τ : e2

(Pure).
τ : purea {v; e2} →◦ τ : purea {e2}

In this case,
(Seq-2).

τ : v; purea {e2} →◦ τ : purea {e2}
The result follows by symmetry. �

The following example shows λ(port)◦ stream pipelining with and without
load-balancing between ports. Many aspects of this example are designed to be
rudimentary. The idea is to demonstrate the usefulness of our developments in
this section despite their simplicity. In particular, one can prove observational
equivalence of the above two pipelining scenarios for the output node.

Example 2. Let N = {bes, fes, in, out}, where bes is a back-end and fes is a
front-end server, in is the input stream provider, and, out is our output stream
node. Fix a constant c and a pure function f . In the configuration glb− below,

A Family of λ-Calculi with Ports 11

in sends an infinite stream of cs to the port pfes of fes. In return, fes applies f
to every element in pfes and sends the result to pout of out . The configuration
glb+ is similar to glb− but with load-balancing. In glb+ , the same input stream
of in is sent to pfes . However, based on the output of a function choose-p#,
the result of applying f to c is sent to either pbes1 or pbes2 . Then, bes sends the
contents of both those ports of its, intact, to pout . The configuration gcm below
captures the commonality between glb− and glb+ . Note that, in glb+ , we assume
let-expressions even though the λ(port)◦ syntax (Definition 1) does not include
that. That is only for clarity. The example works without that too.

gcm = port pfes || port pout || traffic(x) = {send x to pfes ; traffic x} || (traffic(c))in

|| process(s) = {match s for {x :: s′ ⇒
send (f x) to pout ; process s′}}

glb− = gcm || (process stream(pfes))fes

glb+ = gcr || balance(s) = {match s for {x :: s′ ⇒ let i = choose-p#() in
send x to pbesi ;
balance s′}}

|| port pbes1 || port pbes2 || (balance stream(pfes))fes

|| (process stream(pbes1))bes || (process stream(pbes2))bes �

We now present a couple of utility lemmata (Lemma 1 and Lemma 2) to set
the stage for proving that the output node of Example 2 observes the stream
pipelining equivalently with and without the load balancing (Theorem 2).

Lemma 1. g ∼a◦ g || port pb, when b is fresh in g and a 6= b.

Lemma 2. g ∼a◦ g || f(x) = e, when f is fresh in g.

Theorem 2. In Example 2, glb− ∼out
◦ glb+ .

Proof. glb− and glb+ have configurations in common (which constitute gcm) in
addition to uncommon ones. According to Proposition 1, for establishing the
desirable out-bisimulation, we can disregard those configurations in gcm . Fur-
thermore, according to Lemmata 1 and 2, we can disregard the declarations of
pbes1 and pbes2 as well as declaration of balance.

In order to proceed with the remaining parts of glb− and glb+ , take n to be
the number of expressions placed thus far on pout . We proceed by induction on
n. The goal is to prove that, for every n, the contents of pout will be exactly n
repetitions of f(c) for both glb− and glb+ .

The result is trivial for n = 0. Suppose, that it is correct for n = k as well.
Suppose also that, whilst pout contains k copies of f(c), the configuration glb−
takes an →◦ step that is due a reduction step in (process stream(pfes))fes . The
goal is clearly correct when that step is due to a (App-F), (Mat-1), or (Mat-2).

When that step is due to a (Send), the contents of pout becomes k + 1
copies of f(c). But, then, by definition of glb+ , there exists i ∈ {1, 2} such that
the configuration (process stream(pbesi))bes is also→◦-reducible by (Send), thus,
placing the (k + 1)st copy of f(c) on pout . The result follows by symmetry. �

12 S. H. Haeri and P. Van Roy

Remark 1. One may suspect Theorem 2 would fail if pout is not exclusively filled
with f(c). That is not the case. Provided the same input stream, the stream of
pout can still be the same. And, that is all that is required for the result to follow
(Definition 4). (Note that the choice of the active configuration gives the same
non-determinism to both glb− and glb+ .) Our choice of the input stream is only
to facilitate the unity of input stream for glb− and glb+ . �

4 λ(port)1: Addition of Message Delay

Sent expressions in λ(port)◦ are delivered instantly: At the exact same step that
a send operation is reduced, the sent expression is delivered to the port. (Causal
order of send operations is, hence, guaranteed in λ(port)◦ by construction.) In
real distributed systems, however, messages commonly experience delays.

In order to model message delay, we present a successor for λ(port)◦: In
λ(port)1, the syntax is the same λ(port)◦. But, the semantics (Definition 5)
introduces a message soup M : PN ⇀ ℘(E), in which, for every port, all
the sent expressions that are still undelivered are stored. λ(port)1 reinforces
λ(port)◦’s notion of a system setting for τ to be a tuple (ρ, σ,M).

The idea is that the sent expressions reside in the message soup, says (D-Send),
until they are picked up at some later reduction by the port, says (PkUp). For
a port pa, the entry M(pa) is a set of undelivered expressions thus far. Out of
all those expressions, one will be picked up without paying attention to the send
timestamps, thus ignoring causal order and simulating message delay. Of course,
reducing port declarations is updated accordingly, cf. (D-Port).

Definition 5. The λ(port)1 operational semantics copies all the rules of λ(port)◦
except (Port) and (Send), which are replaced by the following two, respectively:

p, s fresh
(D-Port)

(ρ, σ,M) : port pa →1 (ρ[s 7→ ⊥], σ[pa 7→ s],M[pa 7→ ∅]) : unit

M(pa) = M
(D-Send),

M : send e to pa →1M[pa 7→M ∪ {e}] : unit

where M : g →1 M′ : g′ is a shorthand for (σ, ρ,M) : g →1 (σ, ρ,M′) : g′.
Besides, the λ(port)1 operational semantics adds the following pick-up rule:

M(pa) = M e ∈M σ(pa) = s ρ(s) = ⊥ s′ fresh
(PkUp).

(ρ, σ,M) : g →1 (ρ[s′ 7→ ⊥, s 7→ e :: s′], σ[pa 7→ s′],M[pa 7→M \ e]) : g

In order to reuse Definition 4, we write M1
α≡ M2 when M1 and M2 bind

ports to sets of expressions that are equal up to α-renaming. Then, we update

τ1
α≡ τ2 and τ |a to take message soups too into consideration. Our objective is

to prove the validity of λ(port)◦ bisimulations in λ(port)1. To that end, we first
prove an imitation lemma:

A Family of λ-Calculi with Ports 13

Lemma 3. Let (ρ, σ) : g →◦ (ρ′, σ′) : g′ and M be a message soup. Then,
(ρ, σ,M) : g →∗1 (ρ′, σ′,M′) : g′, where either M′ = M or M′ = M[pa 7→ ∅]
for some fresh p.

Proof. Let ĺ = (ρ, σ) : g →◦ (ρ′, σ′) : g′. The proof is by case distinction on
the last rule (r) applied in ĺ. When (r) is amongst those rules of λ(port)◦ that
λ(port)1 copies over, M =M′, trivially. For (r) = (Port), ĺ takes the form

p, s fresh
(Port),

(ρ, σ) : port pa →◦ (ρ[s 7→ ⊥], σ[pa 7→ s]) : unit

in which case M′ =M[pa 7→ ∅] because, by (D-Port),

(ρ, σ,M) : port pa →1 (ρ[s 7→ ⊥], σ[pa 7→ s],M[pa 7→ ∅]) : unit.

For (r) = (Send), ĺ takes the form

σ(pa) = s ρ(s) = ⊥ s′ fresh
(Send),

(ρ, σ) : send e to pa →◦ (ρ[s′ 7→ ⊥, s 7→ e :: s′], σ[pa 7→ s′]) : unit

in which case, M′ =M because

(ρ, σ,M) : send e to pa→1(ρ, σ,M[pa 7→M ∪ {e}]) : unit (D-Send)
→1(ρ[s′ 7→ ⊥, s 7→ e :: s′], σ[pa 7→ s′],M) : unit (PkUp).�

In words, Theorem 3 states that observational equivalences established in
λ(port)◦ remain valid upon addition of message delays.

Theorem 3. ∼a◦ ⊆ ∼a1. That is, let g1 and g2 be two configurations. Then,
g1 ∼a◦ g2 implies g1 ∼a1 g2.

Proof. Let g1 ∼a◦ g2. Fix a ρ, a σ, and an M and suppose that

(ρ, σ) : g1 →∗◦ (ρ′1, σ
′
1) : g′1. (4.1)

Then, by Definition 4, there exist ρ′2 and σ′2 such that

(ρ, σ) : g2 →∗◦ (ρ′2, σ
′
2) : g′2 (4.2)

where (ρ′1, σ
′
1)|a

α≡ (ρ′2, σ
′
2)|a and g′1 ∼a◦ g′2. On the other hand, by Lemma 3 and

Equations (4.1) and (4.2), one gets

(ρ, σ,M) : g1 →∗1 (ρ′1, σ
′
1,M′1) : g′1 (4.3)

(ρ, σ,M) : g2 →∗1 (ρ′2, σ
′
2,M′2) : g′2 (4.4)

where itM′1 =M′2, and, thus, (ρ′1, σ
′
1,M′1)|a

α≡ (ρ′2, σ
′
2,M′2)|a. But, then, given

that g′1 ∼a◦ g′2, by symmetry and Definition 4, it follows from Equations (4.3)
and (4.4) that ∼a◦ is an a-bisimulation for →1. By Definition 4, however, ∼a1 is
the largest a-bisimulation for →1. Hence, ∼a◦ ⊆ ∼a1 , as desired. �

14 S. H. Haeri and P. Van Roy

5 λ(port)2: Allowing Message Loss

In real distributed systems, messages occasionally get lost. λ(port)1’s successor
λ(port)2 models that by keeping the same syntax and semantics of its predecessor
but also adding a single rule for message loss.

Definition 6. The λ(port)2 syntax is the same as its predecessors. The λ(port)2
semantics keeps all the λ(port)1 rules and adds the following rule:

M =M(pa) e ∈M
(Loss).

M : g →2M[pa 7→M \ e] : g

Note that, theoretically, λ(port)2 opens door to a new sort of nondeterminism.
The choice of the active configuration was already nondeterministic in λ(port)◦
and λ(port)1. On top, at each step, λ(port)2 allows nondeterministically contin-
uing reduction according to λ(port)1 or losing information.

The imitation lemma for λ(port)2 is rather trivial:

Lemma 4. τ : g →1 τ
′ : g′ implies τ : g →2 τ

′ : g′.

In words, Theorem 4 states that observational equivalences established in
λ(port)1 remain valid upon addition of message loss. Together with Theorem 3,
then, they establish validity of λ(port)◦ observational equivalences upon addition
of message delay and loss.

Theorem 4. ∼a1 ⊆ ∼a2. That is, let g1 and g2 be two configurations. Then,
g1 ∼a1 g2 implies g1 ∼a2 g2.

Proof. Similar to Theorem 3 and using Lemma 4. �

6 λ(port)3: Allowing Node Failure

In reality, at a given point in time, nodes can fail, and, depending on the failure
model, come back to life later. To model node failure, λ(port)3 takes a failure
detector for granted. For g ∈ G and k ∈ N, write tn(g) = k when at the kth step
of the interleaving model for g’s reduction due to→n. We drop explicit inclusion
of g and n in the notation when clear. λ(port)3 assumes a temporal predicate
failk(a) that, at t = k, detects failure of the node a.

Write failan(g) = {k ∈ N | failk(a) when tn(g) = k}. Again, simply write
faila(g) when n is clear from the context.

Definition 7. The λ(port)3 syntax is that of its predecessors. The λ(port)3 se-
mantics consists of the λ(port)2 rules, apart from (D-Port), (D-Send), and

A Family of λ-Calculi with Ports 15

(PkUp) that are replaced by

t = k ¬failk(a) p, s fresh
(D-Port-F)

(ρ, σ,M) : port pa →3 (ρ[s 7→ ⊥], σ[pa 7→ s],M[pa 7→ ∅]) : unit

t = k ¬failk(a) M(pa) = M
(D-Send-F)

M : send e to pa →3M[pa 7→M ∪ {e}] : unit

t = k ¬failk(a) M =M(pa)
e ∈M σ(pa) = s ρ(s) = ⊥ s′ fresh

(PkUp-F).
(ρ, σ,M) : g →3

(ρ[s′ 7→ ⊥, s 7→ e :: s′], σ[pa 7→ s′],M[pa 7→M \ e]) : g

The imitation lemma of λ(port)3 is less trivial than that of λ(port)2. It guar-
antees the imitation when the important nodes do not fail at the imitation step.

Lemma 5. Let t3(g) = k and ∀a ∈ engaged(g). ¬failk(a). Then, τ : g →2 τ
′ : g′

implies τ : g →3 τ
′ : g′.

Definition 8. Write fail(g1) = fail(g2) when faila(g1) = faila(g2) for all a ∈
engaged(g1) ∪ engaged(g2). Read fail(g1) = fail(g2) as g1 and g2 fail likewise.

In words, Theorem 5 states that observational equivalences established in
λ(port)2 remain valid even when nodes are allowed to fail, provided that fail like-
wise. Together with Theorems 3 and 4, then, they establish validity of λ(port)◦
observational equivalences upon addition of message delay and loss and (similar)
node failure.

Theorem 5. Let g1 and g2 be two configurations that fail likewise. Then,
g1 ∼a2 g2 implies g1 ∼a3 g2.

Proof. Similar to Theorem 3 and using Lemma 5. �

Remark 2. We understand that, in practice, the condition of failing likewise is
too restrictive. Definition 4 allows two configurations to be in an a-bisimulation
even when they do not fail likewise. Nonetheless, that is the tightest sufficient
condition that we have thus far come up with for legislating bisimulations of→2

for →3. Finding a less restrictive condition is subject for future research. �

7 λ(port)4: Network Partitions

It is common for a distributed system to experience network partitions, at least
temporarily. We present λ(port)4 – a successor of λ(port)3 – to model that.
λ(port)4 assumes a temporal predicate [a] =k [b], which, when t = k, determines
whether nodes a and b belong to the same partition.

The λ(port)4 semantics uses thickened message soup, over the set of which T
ranges. It manipulates the message soup so it also records the node from which

16 S. H. Haeri and P. Van Roy

a given send operation is performed. Thus, T : PN ⇀ ℘(E ×N). A pick-up in
λ(port)4 is allowed only when, at that very pick-up step, the source node and
the destination node of a send operation are at the same partition. A system
setting in λ(port)4 is a tuple (σ, ρ, T).

Definition 9. The λ(port)4 syntax is that of λ(port)◦. The λ(port)4 semantics
retains the rules of λ(port)3 except (D-Port-F), (D-Send-F), and (PkUp-F),
which it replaces by the following rules, respectively:

t = k ¬failk(a) p, s fresh
(P-Port-F)

(ρ, σ, T) : port pa →4 (ρ[s 7→ ⊥], σ[pa 7→ s], T [pa 7→ ∅]) : unit

t = k ¬failk(b) T (pa) = T
(P-Send-F)

T : (send e to pa)b →4 T [pa 7→ T ∪ {eb}] : unit

t = k ¬failk(a) T = T (pa) eb ∈ T
[a] =k [b] σ(pa) = s ρ(s) = ⊥ s′ fresh

(P-PkUp-F).
(ρ, σ, T) : g →4

(ρ[s′ 7→ ⊥, s 7→ e :: s′], σ[pa 7→ s′], T [pa 7→ T \ eb]) : g

When in conflict, (P-Send-F) has priority over (Annot).

Here is the setup required for reusing Definition 4: Write ea
α≡ e′a

′
when

a = a′ and e
α≡ e′. Let EA = {ea1 , ea2 , . . . , ean} and EA′ = {e′a′1 , e′a

′

2 , . . . , e′a
′

m }.
Write EA

α≡ EA′ when n = m and for each eai , there is one and only one e′a
′

j

such that eai
α≡ e′a

′

j . Next, write T 5α T ′ when, for T (pa) = EA, there exists

EA′ such that T ′(pa) = EA′ and EA
α≡ EA′. Then, write T α≡ T ′ when T 5α T ′

and T ′ 5α T . Finally, define T |a = {pb 7→ T ∈ T | a = b}. We now update

τ1
α≡ τ2 and τ |a to take the thickened message soups into consideration as well.
Let M and T be the set of all message soups and thickened message soups.

Define a function [[.]]− : T→M for stripping the node information off a thickened
soup: [[T]]− = {pa 7→ {e} | ∃b ∈ N. T (pa) = {(e, b)}}. We also overload [[.]]− so
that [[(σ, ρ, T)]]− = (σ, ρ, [[T]]−).

Definition 10. Define the partition time of a configuration as: partition(g) =
{k ∈ N | ∃a1, a2 ∈ engaged(g). [a1] 6=k [a2]}.

λ(port)4’s imitation lemma depends on the lack of partitions amongst the
relevant nodes of a →4 reduction.

Lemma 6. Suppose that t4(g) = k /∈ partition(g). Then, τ : g →3 τ
′ : g′ implies

τ+ : g →4 τ
′+ : g′, where τ = [[τ+]]− and τ ′ = [[τ ′+]]−.

In words, Theorem 6 states that observational equivalences established in
λ(port)3 remain valid when, in our system, networks can be partitioned – subject
to conditions. Together with Theorems 3, 4, and 5, then, they establish validity
of λ(port)◦ observational equivalences upon addition of message delay and loss,
node failure, and network partitioning.

A Family of λ-Calculi with Ports 17

Theorem 6. g1 ∼a3 g2 implies g1 ∼a4 g2, when partition(g1) = partition(g2).

Proof. Similar to Theorem 3 and using Lemma 6. �

Remark 3. Again, we understand that the condition of similar partitioning over
the reductions g1 and g2 might be impractically restrictive. After all, both g1
and g2 might still be →4-reducible even with partitions amongst nodes engaged
in their reduction. Nonetheless, that is the tightest sufficient condition that we
have thus far come up with for legislating bisimulations of →3 for →4. Finding
a less restrictive condition is subject for future research. �

Corollary 1. Let e1, e2 ∈ E and a ∈ N. Then, ∀τ. a /∈ ∆∗node(τ, e1) im-
plies e1; purea {e2} ∼a4 purea {e1; e2}. Likewise, ∀τ. a /∈ ∆∗node(τ, e2) implies
purea {e1}; e2 ∼a4 purea {e1; e2}.

Corollary 2. g ∼a4 g || port pb, when b is fresh in g and a 6= b.

Corollary 3. g ∼a4 g || f(x) = e, when f is fresh in g.

Corollary 4. In Example 2, glb− ∼out
4 glb+ .

Of the above corollaries, it is only the latter for which the value of Theorems 3,
4, 5, and 6 will be noticed. We invite the reader to try proving Corollary 4 directly
to witness the unnecessary noise involved.

8 Literature Review

Barnett et al. [1] were the first to consider universal insufficient in practice
and recommends observational purity. Naumann [16] builds on that and gives
a formal semantics to different sorts of purity: weak vs strong. Salcianu and
Rinard [24] define a function pure when it does not mutate locations existing
in the program state right before the invocation of the method. According to
their notion of observational purity, mutation upon creation is permissible. A
taxonomy for the sorts of purity is given by Helm et al. [10]. Garrigue’s seminal
work [9] seems to be the origin of purity analysis. Nicolay et. al [17] use abstract
interpretation for that purpose.

Pearce [21] is the first to suggest linguistic support for marking purity of
code fragments. His pure annotations only decorate a function as-a-whole. Pearce
does not consider distributed systems. Pitidis and Sagonas [23] explore extending
Erlang with guard expressions for purity specification for functions. They do not
support nomination of the observer.

Knight [13] is the first to recognise mostly-functional behaviour. He suggests
a successor paradigm of ours but with no focus on distributed systems.

Desai et al. [6] tackle compositional testing of distributed systems. Wilcox,
Sergey, and Tatlock [30] enable language-based verification of such systems.

18 S. H. Haeri and P. Van Roy

9 Conclusions and Future Work

We present the λ(port) family: λ-calculi with ports and pure blocks, message
delay, message loss, node failure, and network partitioning. λ(port) models the
mostly-functional nature of distributed systems programming. We promote a
programming paradigm that is found in that nature. Pure blocks give fine-grain
linguistic support for observational purity per node. λ(port) developments seem
promising for speculative execution, mock testing, distributed garbage collection,
partial order reduction, and treatments of flaky tests.

Exploring the benefits of the λ(port) family for each of the above areas is a
complete new line of research. On a smaller scale, extending the λ(port) family to
model elastic distributed systems with more realistic features is our immediate
next goal. We also aim at providing more linguistic support for pure distributed
systems programming. Finally, we would like to seek better sufficient conditions
for porting λ(port)2’s observational equivalences to its successors.

A The Distributed λ-Calculus

The purpose of this section is to present a pure calculus for distributed pro-
gramming (Definition 12) that is computationally equivalent to the ordinary
λ-calculus (Theorem 7). We begin by fixing our definition of the ordinary λ-
calculus:

Definition 11. Let x, y, z, . . . , x′, y′, z′, . . . , x1, y1, z1, . . . range over a countably
infinite set of variable X. Ordinary λ-terms (ranged over by t1, t2, t3, . . . , t

′, t′′, . . .)
are defined as: λo 3 t ::= x | (λx.t) | (t t). Reductions on the ordinary λ-terms

are: λx.t
o→α λy.t[y/x] (α) (λx.t1) t2

o→β t1[t2/x] (β) (λx.(t x))
o→η t (η),

where the usual capture-avoiding measures apply.

Then, we give the formal definition of the distributed λ-calculus:

Definition 12. Let a, b, c, . . . , a′, b′, c′, . . . range over a set of nodes (N). The
distributed λ-terms are defined as: λd 3 ta = xa | (λx.ta)b | (ta tb)c. Reductions
on the distributed λ-terms follow, where the usual capture-avoiding measures
apply:

(λx.ta)a
d→α (λy.ta[ya/x])a (αd) ((λx.ta1)a ta2)a

d→β t
a
1 [ta2/x] (βd)

(λx.(ta xa)a)a
d→η t

a (ηd) ta
d→µ t

b (µd).

Intuitively, ta is the term t running on the node a. The (µd) rule below
captures communication (or, mobility, hence “µ”) without side-effects. Upon

ta
d→µ t

b, the term t that was running on a gets to run on b. In other words, t is
mobilised from a to b.

It now is time to define what it means to transform terms back and forth
between the ordinary and distributed λ-calculi.

A Family of λ-Calculi with Ports 19

Definition 13. [[.]]− : λd → λo strips the node information from a distributed λ-
term: [[xa]]− = x, [[(λx.ta)b]]− = λx.[[ta]]−, [[(ta tb)c]]− = [[ta]]− [[tb]]−. In the
reverse direction, [[.]]+. : λo×N→ λd annotates an ordinary λ-term with a fixed
node: [[x]]+a = xa, [[λx.t]]+a = (λx.[[t]]+a)a, [[t1 t2]]+a = ([[t1]]+a [[t2]]+a)a.

The main result of this section is the following theorem. In words, it states
that the ordinary and distributed λ-calculi are computationally equivalent. That
is, every computation in one has a corresponding in the other.

Theorem 7. t
o
� t′ implies [[t]]+a

d
� [[t′]]+a, for every node a. Likewise, ta

d
� t′b

implies [[ta]]−
o
� [[t′b]]−, for every node a and b.

References

1. M. Barnett, D. A. Naumann, W. Schulte, and Q. Sun. 99.44% Pure: Useful Ab-
stractions in Specifications. In J. Malenfant and B. M. Østvold, editors, 6th FTfJP.
Springer Berlin Heidelberg, June 2004.

2. J. Bell and G. E. Kaiser. Unit Test Virtualization with VMVM. In P. Jalote, L. C.
Briand, and A. van der Hoek, editors, 36th ICSE, pages 550–561. ACM, May 2014.

3. W. C. Benton and C. N. Fischer. Mostly-Functional Behavior in Java Programs.
In N. D. Jones and M. Müller-Olm, editors, 10th VMCAI, volume 5403 of LNCS,
pages 29–43. Springer, January 2009.

4. S. Conchon and F. Le Fessant. Jocaml: Mobile Agents for Objective-Caml. In
1st/3rd ASA/MA, pages 22–29. IEEE Computer Society, October 1999.

5. L. Correnson. Equational Semantics. Inf. Slovenia, 24(3), 2000.
6. A. Desai, A. Phanishayee, S. Qadeer, and S. A. Seshia. Compositional Program-

ming and Testing of Dynamic Distributed Systems. PACMPL, 2(OOPSLA):159:1–
159:30, 2018.

7. M. Eck, F. Palomba, M. Castelluccio, and A. Bacchelli. Understanding Flaky
Tests: The Developer’s Perspective. In M. Dumas, D. Pfahl, S. Apel, and A. Russo,
editors, 27th SIGSOFT FSE / 18th ESEC, pages 830–840. ACM, August 2019.

8. C. Flanagan and M. Felleisen. The Semantics of Future and an Application. JFP,
9(1):1–31, 1999.

9. J. Garrigue. Relaxing the Value Restriction. In 3rd APLAS, pages 31–45, November
2002.

10. D. Helm, F. Kübler, M. Eichberg, M. Reif, and M. Mezini. A Unified Lattice Model
and Framework for Purity Analyses. In S. Becker, I. Bogicevic, G. Herzwurm, and
S. Wagner, editors, SE/SWM, volume P-292 of LNI, pages 51–52. GI, February
2019.

11. G. J. Holzmann. The Model Checker Spin. IEEE Trans. Soft. Eng., 23(5):279–295,
1997.

12. G. Khan. The Semantics of a Simple Language for Parallel Programming. Inf.
Proc., 74:471–475, 1974.

13. T. F. Knight. An Architecture for Mostly Functional Languages. In 4th LFP, pages
105–112. ACM, August 1986.

14. W. Lam, P. Godefroid, S. Nath, A. Santhiar, and S. Thummalapenta. Root Causing
Flaky Tests in a Large-Scale Industrial Setting. In D. Zhang and A. Møller, editors,
28th ISSTA, pages 101–111. ACM, July 2019.

20 S. H. Haeri and P. Van Roy

15. Q. Luo, F. Hariri, L. Eloussi, and D. Marinov. An Empirical Analysis of Flaky
Tests. In S.-C. Cheung, A. Orso, and M.-A. D. Storey, editors, 22nd FSE, pages
643–653. ACM, November 2014.

16. D. A. Naumann. Observational Purity & Encapsulation. TCS, 376(3):205–224,
2007.

17. J. Nicolay, Q. Stiévenart, W. De Meuter, and C. De Roover. Purity Analysis for
JavaScript through Abstract Interpretation. J. Soft. Evol. & Proc., 29(12), 2017.

18. J. Niehren, D. Sabel, M. Schmidt-Schauß, and J. Schwinghammer. Observational
Semantics for a Concurrent Lambda Calculus with Reference Cells and Futures.
ENTCS, 173:313–337, 2007.

19. J. Niehren, J. Schwinghammer, and G. Smolka. A Concurrent Lambda Calculus
with Futures. TCS, 364(3):338–356, 2006.

20. E. B. Nightingale, P. M. Chen, and J. Flinn. Speculative Execution in a Distributed
File System. ACM Trans. Comp. Sys., 24(4):361–392, 2006.

21. D. J. Pearce. JPure: A Modular Purity System for Java. In J. Knoop, editor, 20th

CC, volume 6601 of LNCS, pages 104–123. Springer, April 2011.
22. B. C. Pierce and D. N. Turner. Pict: A Programming Language Based on the

π-Calculus. In G. Plotkin, C. Stirling, and M. Tofte, editors, Proof, Language and
Interaction: Essays in Honour of Robin Milner, pages 455–494. MIT Press, 2000.

23. M. Pitidis and K. Sagonas. Purity in Erlang. In J. Hage and M. T. Morazán,
editors, 22nd IFL (Revised Selected Papers), volume 6647 of LNCS, pages 137–152.
Springer, September 2010.

24. A. Salcianu and M. C. Rinard. Purity and Side Effect Analysis for Java Programs.
In R. Cousot, editor, 6th VMCAI, volume 3385 of LNCS, pages 199–215. Springer,
January 2005.

25. M. Schmidt-Schauß, D. Sabel, J. Niehren, and J. Schwinghammer. Observational
Program Calculi and the Correctness of Translations. TCS, 577:98–124, 2015.

26. C. Tapus and J. Hickey. Distributed Speculative Execution for Reliability and
Fault Tolerance: An Operational Semantics. Dist. Comp., 21(6):433–455, 2009.

27. P. Van Roy. Why Time is Evil in Distributed Systems and What
To Do About It. CodeBEAM Keynote Talk. Available online at:
https://www.youtube.com/watch?v=NBJ5SiwCNmU, May 2019.

28. P. Van Roy and S. Haridi. Concepts, Techniques, and Models of Computer Pro-
gramming. MIT Press, 2004.

29. M. Walker. Déjà Fu: A Concurrency Testing Library for Haskell. Technical report,
Dept. Comp. Sci., U. York, 2016.

30. J. R. Wilcox, I. Sergey, and Z. Tatlock. Programming Language Abstractions for
Modularly Verified Distributed Systems. In B. S. Lerner, R. Bod́ık, and S. Kr-
ishnamurthi, editors, 2nd SNAPL, volume 71 of LIPIcs, pages 19:1–19:12. Schloss
Dagstuhl, May 2017.

https://www.youtube.com/watch?v=NBJ5SiwCNmU

