
How to Go Eff Without a Hitch: On Efficient
Compilation from Eff to OCaml

(Extended Abstract)?

Stien Vanderhallen??, Georgios Karachalias, and Tom Schrijvers

KU Leuven, Department of Computer Science, Belgium

Abstract. In the light of algorithmic, as well as performance-related
challenges in Eff-compilation, we introduce the implementation of an
explicit type-and-effect system into the Eff-compiler, as described by
Saleh et al. Thus, the way is cleared for a more efficient compilation to
languages with a native effect system. We leverage this implementation
to increase performance of compilation to languages without a native
effect system as well. Karachalias et al. propose such a translation, which
however does not seamlessly fit into the current state of the compiler.
We describe the issues faced in integrating that translation, as well as a
preliminary implementation.

Keywords: Algebraic effects and handlers · Efficient compilation · Eff
· OCaml

Introduction

Given the growing use of algebraic effects and handlers, a need arises for efficient
compilation of languages like Eff [1] supporting them. A stable theory [2, 4, 5] is in
place for a performance-enhanced translation of Eff to Multicore OCaml, which
supports effects as well. Compilation to backend languages having no native
effect system, like OCaml, however remains in exploration [2], but without a
well-established formalisation that is compatible with the Eff-compiler’s current
state.

1 Introducing the ExEff Language

1.1 Need for Explicit Effects

The Eff-compiler currently takes ImpEff as its core language, which is implicitly
typed and resembles a desugared version of Eff. In practice, this approach yields
a buggy and error-prone compilation process, as terms being typed implicitly
leads to great intricacy in transforming them. Moreover, with compilation in

? Category: research.
?? Stien Vanderhallen, the main author, is a student.

2 S. Vanderhallen et al.

effect Decide : bool;;

handle

let x = (if perform Decide then 10 else 20) in

x-1

with

| effect Decide k -> k true;;

Fig. 1. Eff code snippet

itself presenting as a delicate challenge, optimisations to the process are hard
to formulate, or implement adequately [3]. Facing both these algorithmic and
performance-related issues, we introduced an explicit type-and-effect system into
the Eff-compiler.

1.2 Formalisation and Implementation

The ExEff language, as presented by Saleh et al. [5], provides such an explicit
type-and-effect system, and now extends the Eff-compiler’s backend as an extra
intermediate language. Type inference and elaboration from ImpEff to ExEff are
implemented as proposed by Saleh et al. [5], and by extension enable transla-
tion from the Eff source language to ExEff through ImpEff. Further compilation
from ExEff to Multicore OCaml is supported by introduction of SkelEff as a
second intermediary language. In SkelEff, no coercions or explicit effect informa-
tion are supported, and skeletons replace ExEff-(sub)types. As such, translation
from ExEff to SkelEff requires no extra type inference, only erasure of ExEff’s
subtyping- and effect-information. SkelEff does provide an explicit term-level ef-
fect system, resulting in a strong resemblence to (a subset of) Multicore OCaml,
which concludes full compilation from source Eff to Multicore OCaml via ExEff.

An illustrative example of this compilation is given by Fig. 1 and Fig. 2.
Fig. 1 shows a simple Eff code snippet making use of effect handling, whose
translation to Multicore OCaml as produced by the compiler is given by Fig. 2.

The left backend branch in Fig. 4 illustrates how the intermediary languages
introduced so far fit into the Eff-compiler, as well as their interactions. The
ExEff-to-ExEff code optimisation depicted there, refers to performance-related
transformations as explored by Serckx [6], which aim to reduce redundancy in
further compilation, and to improve execution time.

2 Elaboration to Languages Without Native Effects

2.1 Ongoing and Future Research

To relieve the constraint of the Eff-compiler’s target language needing an effect
system, Karachalias et al. [2] introduce elaboration from ExEff to NoEff, which
is a language without native support for effects. Fig. 3 depicts the syntax of

Title Suppressed Due to Excessive Length 3

fun _ ->

(fun comp -> match comp with

| c -> c

| effect (Decide ()) k ->

continue (Obj.clone_continuation k) true)

(fun _ ->

(fun x -> x - 1)

(match (perform Decide ()) with

| true -> 10

| false -> 20)) ;;

Fig. 2. Multicore OCaml code snippet

Terms

value t ::= x | unit | fun x : A 7→ t | t1 t2 | Λα.t | t A | Λ(ω : π).t | t γ
| t B γ | return t | h | let x = t1 in t2 | Op t1 (y : B.t2)
| do x← t1; t2 | handle tc with th

handler h ::= {return (x : A) 7→ tr, [Opx k 7→ tOp]Op∈O}

Types

type A,B ::= α | Unit | A→ A | AV B | π ⇒ A | Comp A | ∀α.A
coercion type π ::= A 6 B

Coercions

γ ::= ω | 〈Unit〉 | 〈α〉 | γ1 → γ2 | γ1 V γ2 | handToFun γ1 γ2 | funToHand γ1 γ2
| ∀α.γ | π ⇒ γ | Comp γ | return γ | unsafe γ

Fig. 3. NoEff syntax

NoEff. That elaboration however takes for its input an ExEff language with a
syntax and operational semantics different from the one originally described by
Saleh et al. [5]. The latter is implemented in the optimizing Eff-compiler, causing
the elaboration of ExEff to NoEff to be non-applicable in its current form.

The two variants of ExEff are specifically distinguished by the different co-
ercion forms they support. As the two however both can be elaborated to from
the same ImpEff language, they exhibit the same level of expressivity for our
purposes. A transformation from the original ExEff to the more recent version
(hereafter referred to as inter-ExEff elaboration) thus should be possible, upon
which elaboration to NoEff can be applied as already described.

This approach however has proven to be very complex. The interactions be-
tween the coercion forms in the original ExEff language and the ones in the ExEff
variation used for elaboration to NoEff, introduce a combinatorial explosion of
expression forms for which extra elaboration rules are to be formulated in order
to retain a deterministic elaboration procedure. A different, more elegant ap-
proach thus is preferred, which might include a new definition of the expression
forms that are the target of inter-ExEff-elaboration.

4 S. Vanderhallen et al.

More specifically, careful consideration of the coercion forms that can appear
in those ”terminal” forms is to be done, as those determine which interactions
with the original ExEff’s coercion forms must actually be considered in elabora-
tion. Further extending this approach of inter-ExEff-elaboration, the introduc-
tion of an intermediary level of expressivity in its syntax, outside of its terminal
expression forms might reduce the amount of elaboration rules to formulate, as
well as their complexity.

2.2 Preliminary Implementation of Eff-Compilation to OCaml

Though limited by the incompleteness of ExEff-to-NoEff elaboration, we still
introduced NoEff into the compiler’s backend. In order to steer clear of this limi-
tation, we removed all polymorphism in skeletons, types and coercions from both
ExEff and NoEff. Ongoing work includes implementation of a (rather straightfor-
ward) translation from NoEff to OCaml, which like NoEff has no native effects.
As such, full compilation from source Eff to OCaml via ExEff is enabled for
Eff-programs without polymorphism.

Fig. 4 in its right backend branch illustrates the introduction of NoEff into
the Eff-compiler’s backend, as well as the projected position of OCaml as a target
language for the Eff-compiler.

References

1. Bauer, A., Pretnar, M.: Programming with algebraic effects and handlers. J. Log.
Algebr. Meth. Program. 84(1), 108–123 (2015)

2. Karachalias, G., Pretnar, M., Saleh, A.H., Schrijvers, T.: Explicit effect subtyping
(2019), under consideration for publication in J. Functional Programming

3. Pretnar, M., Saleh, A.H.S., Faes, A., Schrijvers, T.: Efficient compilation of alge-
braic effects and handlers. Tech. Rep. CW 708, KU Leuven, Informatics Section,
Department of Computer Science (2017)

4. Saleh, A.H.: Efficient Algebraic Effect Handlers. Ph.D. thesis, KU Leuven, Infor-
matics Section, Department of Computer Science, Faculty of Engineering Science
(2019)

5. Saleh, A.H., Karachalias, G., Pretnar, M., Schrijvers, T.: Explicit effect subtyping.
In: 27th European Symposium on Programming (ESOP) (2018)

6. Serckx, B.: Optimalisaties in de Eff Compiler. Master’s thesis, KU Leuven, Faculteit
Ingenieurswetenschappen (2019)

Title Suppressed Due to Excessive Length 5

F
ig
.
4
.

S
ch

em
a
ti

c
ov

er
v
ie

w
o
f

in
te

rm
ed

ia
ry

la
n
g
u
a
g
es

in
th

e
E

ff
-c

o
m

p
il
er

.
T

h
e

le
ft

b
a
ck

en
d

b
ra

n
ch

sh
ow

s
co

m
p
il
a
ti

o
n

to
a

la
n
g
u
a
g
e

w
it

h
n
a
ti

v
e

su
p
p

o
rt

fo
r

eff
ec

ts
,

th
e

ri
g
h
t

b
ra

n
ch

ta
rg

et
s

a
la

n
g
u
a
g
e

w
it

h
o
u
t

th
a
t

su
p
p

o
rt

.

