
Placement Strategies: Structured Skeleton
Composition with Location Aware Remote Data

Lukas Immanuel Schiller
- research student -

Philipps-Universität Marburg
Fachbereich Mathematik und Informatik
schiller@mathematik.uni-marburg.de

Abstract. The additional complexity of dividing the computations of
parallel programs into parallelizable parts and mapping these parts onto
the available processors asks for a structured solution. Functional pro-
gramming seems like an auspicious approach to control the additional
complexity and numerous functional high-level approaches that reduce
complexity exist. Of all the different approaches to parallel programming
the concept of algorithmic skeletons is one of the most promising. Not
least because skeletons are a known technique to achieve modularity. In
this paper we extend algorithmic skeletons with Placement Strategies:
a functional, structured mechanism to organize coordination of paral-
lel computation placement. Placement Strategies allow to access explicit
and semi-explicit placement in a functional style. By doing so we increase
the flexibility and clarity of algorithmic skeletons. Example skeletons are
implemented using an extension of Eden’s Remote Data, that allows for
simple skeleton composition and drop-in parallelization of sequential pro-
grams. Nevertheless the scheme of Placement Strategies is transferable to
other functional languages that use explicit placement. In experimental
evaluation we will show the effectiveness of the new skeletons and that
the overhead caused by the additional location information is marginal.

Keywords: parallel · functional · language design · algorithmic skeleton
composition.

1 Introduction

The additional layer of complexity that parallelism adds to a computation can
be reduced to the questions “What should be computed where?” and “How
are the necessary communications organized?”. When designing a programming
language we have to address these questions from different perspectives. The
first perspective opens the question:

“Where and by whom should be decided where a parallel computation is placed?”
The question of the location where a parallel computation is placed is often
subordinated to the question of what should be computed in parallel. However,



2 L. Schiller

at some point the decision where a certain computation is actually placed has
to be made. The mechanisms to do so are as numerous as parallel systems are.
This decision depends on the targeted hardware, the concepts of the program-
ming language, the options of the operating system and the program itself. This
decision is for example made by the compiler (Futhark [13]), the OS (POSIX
threads [14]), a VM (JVM threads [12]), the RTS (GpH [24]), a library (PFunc
[16]), the programmer (MPI[11]) or various combinations of those. From the
programmers point of view the different approaches can be categorized in three
groups: no influence on the placement is possible, the programmer needs to pro-
vide different hints that assist in the decision process, or programmers needs to
decide explicitly by themselves where the computation is placed. The question
that differentiates the first two groups is:

Should the programmer be able to manipulate the placement of parallel processes?
While some concepts try to hide as much as possible of the additional complexity
parallelism adds to a program, experience has shown that this is at most feasible
for certain restricted classes of problems. On one hand there are situations where
the class of problems the programming language aims at is clear-cut and in this
case for example a highly optimized compiler could result in better outputs
than a manual optimization of the program. Whenever the parallel task and
the targeted hardware fit well enough or the knowledge about a specific class of
similar problems is sufficient, an adequate placement can often be chosen without
interference of the programmer. Good examples for this can be found in the
advanced mechanisms used in the various systems for data parallel programming
or GPGPU programming (e.g. Futhark [13], accelerator [5]). However, with a
wider range of targeted hardware or complexer problems a prespecified analysis is
often not sufficient and additional information about the specific problem needs
to be passed to the decision-making mechanism (compare for example Repa’s fine
tuning [17], an example where even in the quite specific domain of data parallel
programming good improvements can be gained by hints from the programmer).
In general, the programmer’s knowledge about the characteristics of a particular
program is often a necessary ingredient for a successful parallelization. This
is especially the case if the programming language does not aim at a clearly
restricted class of problems. Therefore our goal is a programming language that
finds a good balance between simplicity and the possibilities of addressing a wide
range of programming problems. In the Chapel [6] community a programming
language aiming at different kinds of parallelism (data and task parallelism)
and stages of parallel hardware (co-processors, multicore processors, distributed
computing, . . . ) is sometimes called a “multifunctional” programming language.
To avoid confusion with the term “functional” we will call such a programming
language “multifaceted”.

In our opinion in a good multifaceted programming language the programmer
should be able to manipulate the placement – but this manipulation can be
restricted by the other goals of the language (e.g. functional purity).



Strategic Skeleton Composition with local aware Remote Data 3

Should the programmer be able to determine a specific parallel process placement?
The missing possibility to express an explicit placement may be considered as a
limitation itself. Not only in terms of fine-tuning but also as for some algorithms
placement is an elementary component of the algorithm. On the other hand, the
possibilities to express explicit placement are often kept basic or they struggle
with functional paradigms.

A multifaceted parallel programming language should provide high-level con-
structs to express parallel problems independent of the specific hardware as well
as allow for (hardware or problem specific) fine-tuning. In our experience this
fine-tuning is – if the programming language aims on a wide field of application
– substantially simplified by the possibility to express an explicit placement, at
best in a well structured manner.

Where should the placement decision mechanism be placed and how can the pro-
grammer communicate with it? With the balance between simplicity and ex-
pressiveness in mind our goal should be a programming language where default
implementation of parallel structures exist but the possibility to influence the
placement (up to explicit placement) is possible. For this, it is paramount where
to place the different parts of the placement mechanism and which possibilities
of communication these parts have between each other. In existing languages the
hints provided by the programmer can for instance express related tasks, either
directly (e.g. architecture aware GpH [1], where boundaries for placements dis-
tances in a virtual architecture are hinted by the programmer) or through the
data the tasks work on (e.g. HPF’s alignment [22], where data fields in different
arrays are linked with hints and then placed on the same processor element). But
most of these approaches are motivated by a specific hardware setup or again by
a specific class of problems and therefore quite restricted in their expressiveness.

In this paper we will use algorithmic skeletons [7] for a structured approach
connecting the precise computational control of explicit placement with a high
level of abstraction. They implement common computation or communication
patterns of parallel algorithms and are both suitable for data and task paral-
lelism. They are a known technique to achieve modularity and many parallel
algorithms can be expressed as an instance of an algorithmic skeleton. By doing
so the programmer can focus on the algorithm itself, leaving the details of the
parallel implementation to the skeleton. They offer the possibility to compose
different skeletons to complexer ones and thus allow for different levels of access,
suitable for different levels of fine-tuning. Another benefit of algorithmic skele-
tons is the separation of computation and coordination and skeleton composition
unfolds the full potential of this high-level approach.

Furthermore (at least for functional programming languages) a pure func-
tional solution to express parallelism and placements is desirable.

Separating the algorithm itself from its coordination of parallel communica-
tion has a long tradition in functional programming, with evaluation strategies
[21] as the prime example. Yet, the major part of functional parallel algorithmic
skeleton concepts use a combination of semi-explicit parallelism and a scheduler



4 L. Schiller

for the placement of the parallel computations. But when it comes to parallel
fine-tuning the possibilities are limited. In some cases this is answered by the
possibility to use different schedulers (e.g. the ParMonad) or the combination
of explicit placement with a scheduler [15]. But sometimes good hints for the
scheduler result in almost completely restricted schedulers [1]. Especially in the
case of high communication costs between processor elements (e.g. if some of
the processor elements are located on different computers connected by a rela-
tively slow connection like Ethernet) a good placement is often obvious to the
programmer but seldom to the scheduler.

In this paper a concept is presented that enables for flexible and elegant
explicit placement. This is done by passing functions that determine the ex-
plicit placement – called “Placement Strategies” – to algorithmic skeletons as
arguments. A specialized data type that carries some information of the current
location of an arbitrary piece of data, called “Location Aware Remote Data”,
is used. Placement Strategies build the bridge between a user-friendly high-level
approach and the possibility of expressive fine-tuning. They open the possibility
to change the placement systematically when different skeletons with different
strategic profiles are combined. These simple ingredients allow for surprising
possibilities: by locating the predefined structures of parallelism into a library
and allowing to pass even complexer functions we get a solution with functional
pureness (no need to use potentially unpure elements like selfPe), a high level
of abstraction, where the Placement Strategy has more information to deter-
mine a placement than many other systems that use hinting. This allows for
structured nesting of algorithmic skeletons. In combination with the Eden pro-
gramming language it will be even possible to combine work-pulling algorithmic
skeletons (like a workpool) with work-pushing ones (like a map). With Place-
ment Strategies it is possible to catch the non-determinism in the placement of
the work-pulling skeleton and work systematically with the actual placement in
a subsequent skeleton.

We will present different illustrative map and divide-and-conquer skeletons
with Placement Strategies. The realization of the concept is in the Eden pro-
gramming language [19,18], a parallel Haskell[20] dialect. However, the concep-
tual idea itself is independent of a specific programming language. An evaluation
section shows the usefulness of this approach.

2 Introductory Example

In the following example a sequential implementation of a merger based on the
bitonic sorting network [2,23] shall be parallelized. The structure of the network
can be found in Figure 1. Arrow boxes depict comparison elements and lines
depict the data flow. We can assume that the computation of a comparison
element is expensive enough to justify the parallelization. It is obvious that this
algorithm can be parallelized as every comparison element in the same column
works on independent data.



Strategic Skeleton Composition with local aware Remote Data 5

↓

↑

↓

↓↓

↓

↓

↑

↑

↑↑

↑

↑

↑↑

↑

↑

↑↑

↑

↑

↑

↑

↑

Fig. 1: bitonic sorter of order 8

In the given implementation a map function is applied several times. In every
stage some permutations are performed on the input list and then a comparator
element is mapped over the permuted list. For this example it is neither relevant
which permutations are behind the different functions (and how the permutation
functions are implemented) nor is it relevant to understand the structure of
the sorting network completely. It is sufficient to know that the comparison
element, a function with type [[a]] → [[a]] is mapped several times. The
implementation is given as:

res = merger map cElem inp

[...]

merger mapSkel cElem = s4 ◦ s4 ◦ s3 ◦ s2 ◦ s2 ◦ s1 where

ac = mapSkel cElem

s1 = perm1out ◦ ac ◦ perm1in

s2 = perm2out ◦ ac ◦ perm2in

s3 = perm3out ◦ ac ◦ perm3in

s4 = perm4out ◦ ac ◦ perm4in

For a sequential version of the merger Haskell’s map function for lists can be
used. At best the parallelization is done by simply changing the map in the call
of the merger function to a parallel map. But which requirements would this
parallel map have to fulfill?

The map function is one of the most basic algorithmic skeletons. Conse-
quently parallel variants of map exist in almost all parallel Haskell variants.
There are several ways to parallelize map f [a1,..,an]. Even in the most sim-
ple case if we want to create a process for each computation f a1,..,f an the
strategies to place these processes are numerous. The best strategy to do so
depends heavily on the context:

– Where are the elements a1,..,an located?

– Where do we need them and/or the computational results next?

– How expensive is the communication between (different) processor elements?

With this in mind we can decide which strategy is the most suitable:



6 L. Schiller

1. In some cases we want to distribute the computations along the available pro-
cessor elements (e.g. all elements are on the same processor element and we
want the computation to be spread across all available processor elements).

2. In some cases we know exactly where we want the computation to take place
(e.g. if communication of the computational results is more expensive than
the communication of the elements itself, the communication is an inherent
aspect of the skeleton or a follow up computation is supposed to be co-located
on specific processor elements.

3. In some cases we want the computations to be placed where the data is
located (e.g. every element ai is already on a different processor element
and we do not want to move them because of high communication costs).

4. In some cases a more complex strategy is needed (e.g. “minimize the com-
munication between processor elements but do not place more than three
computations on the same processor element”).

The first two ways to parallelize the map function are already feasible in
Eden. In this paper we will present a safe (in terms of functional pureness) way
to realize the last two ways using Placement Strategies. Especially in the fourth
case when an arbitrary complex strategy is needed a good interface to express
and change the strategy is essential.

We will see that in the above merger example a naive parallel map does not
co-locate processes and an explicit placement requires a complete understanding
of the different permutations and can result in an inflexible solution or might
need deeper changes in the program while a data and strategy guided placement
is possible solving the parallelization problem with ease.

3 Eden in a Nutshell

Eden 1 extends Haskell with explicit parallel function application via parallel
processes with implicit communication.

A process can be instantiated with explicit or implicit placement. A parallel
process abstraction can be created and instantiated with explicit placement by
the function instantiateFAt (read “instantiate function at”) where the first
argument denotes a processor element (PE) on which the process is instantiated.
Processor elements are also called (logical) machines and are numbered from 1 to
number of PEs. They usually correspond with the number of CPUs in the system.
The process output is in the parallel action monad, thus it can be combined to
a larger parallel action.

instantiateFAt :: (Trans a, Trans b)

⇒ Place -- ^PE number

→ (a → b) -- ^function for process

→ a -- ^process input

→ PA b -- ^process output

1 url: http://www.mathematik.uni-marburg.de/~eden



Strategic Skeleton Composition with local aware Remote Data 7

The class Trans consists of transmissible values. Place is a type synonym for
Int. If the first argument of instantiateFAt is 0 the processes are placed round
robin on all available processor elements.

runPA $ instantiateFAt 0 f expr with some function f :: a → b will
create a (remote) child process. The expression expr will be evaluated (concur-
rently by a new thread) in the parent process and the result val will be sent to
the child process. The child process will evaluate f $ val (cf. Figure 2).

parent process
(evaluates expr to val)

child process

release ◦ f
val

(f $ val)
result of

creates

Fig. 2: The scheme of process instantiation. Source: [18]

With spawnFAt a version of instantiateFAt for structures exists. It ex-
pects PE numbers for the placement, functions to be instantiated and input
data. spawnFAt is a data centric function, thus the PE numbers and functions
are cycled and therefore the number of created processes equals the number of
elements in the data input.

spawnFAt :: (Trans a, Trans b,

Traversable f, Traversable t1, Traversable t2)

⇒ f Place -- ^PE numbers

→ t1 (a → b) -- ^function input

→ t2 a -- ^data input

→ t2 b -- ^data output

For example spawnFAt [2,6] [(+3), (∗5)] [4,7] will compute ((+3) 4)
on PE 2 and ((∗5) 7) on PE 6. The functions, the input data and the results
will be communicated implicitly.

With these basic constructs it is possible to build simple algorithmic skeletons
and combine them to more complex ones. A simple parallel map (as our first
and most basic skeleton) can be defined using spawnFAt. We structure the class
of parallel map functions with our ParFunctor class which is a parallel version
of the Functor class. Instances of ParFunctor should satisfy the same laws as the
fmap function from Functor:

class ParFunctor f where

-- | parallel version of @’fmap ’@.

pmap :: (Trans a, Trans b) ⇒ (a → b) → f a → f b

Additionally we define a pmap with explicit placement:



8 L. Schiller

pmapAt :: (Traversable t, Trans a, Trans b)

⇒ t Place -- ^places for instantiation

→ (a → b) -- ^worker function

→ f a -- ^tasks

→ f b -- ^results

And the instance for lists fulfills this requirement.

instance ParFunctor [] where

pmap = pmapAt [0]

pmapAt pos f tasks = spawnFAt pos (repeat f) tasks

With these two parallel map functions the merger from the example can be
parallelized; merger pmap cElem and merger (pmapAt [1..4]) cElem would
result in the same placement with four processes placed on PE 1, 2, 3 and 4.
However the hidden communication of the processes would result in a repeated
aggregation of the data on the PE on which the merger function is called between
every two stages of the algorithm (cf. Figure 3).

↓

↑

↓

↓↓

↓

↓

↑

↑

↑↑

↑

↑

↑↑

↑

↑

↑↑

↑

↑

↑

↑

↑

Fig. 3: Actual communication scheme of the parallelized algorithm.

When composing skeletons an efficient connection between output and input
is often essential for performance. The Eden programming language provides a
sophisticated yet simple and effective concept for a division of computational
and coordinational communication which is called Remote Data. The Remote
Data [10] concept uses data handles to lighten the data volume of intermedi-
ate communication steps by enabling direct communication between both ends
of a communication chain, therefore allowing for efficient skeleton composition.
Between the skeletons the smaller handle is transmitted instead of the compu-
tational data. The actual data is transmitted directly, without the detour. The
involved functions converting local data into corresponding Remote Data and
back again are:

release :: Trans a ⇒ a → RD a

fetch :: Trans a ⇒ RD a → a

-- list variants

releaseAll :: Trans a ⇒ [a] → [RD a]



Strategic Skeleton Composition with local aware Remote Data 9

fetchAll :: Trans a ⇒ [RD a] → [a]

In Figure 4 the communication scheme of a Remote Data connection is shown.
Two functions, f and g, are instantiated in succession from the same parent
process. Without Remote Data the intermediary result is communicated through
the PE where the parent process is located.

PE0

f

PE1

g

PE2

inp

(a) Indirect connection.

PE0

release ◦ f

PE1

g ◦ fetch

PE2

inp

(b) Direct connection.

Fig. 4: Remote Data scheme. Source: [18].With RD a handle is generated on PE1

and transferred via PE0 to PE2, the actual result is transferred directly.

The separation of the computational and the coordinational communication
results in a largely intuitive coordination of the communication while the algo-
rithms stays unchanged. This adaption is often particularly simple. In the in-
troductory example we solely need to wrap the mapped function into fetchAll

and releaseAll (cf. Figure 5).

(a) Intermediary communication without
Remote Data using pmap cElem.

(b) And with Remote Data using
pmap (releaseAll ◦ cElem ◦ fetchAll).

Fig. 5: Introductory Example with and without Remote Data.

If we use this modified version of a parallel map all comparison elements on
the same row are placed on the same PE (cf. Figure 6). The function ac which
calls the parallel map is still located on the PE where the merger is located.

Although this seems like a very good solution it is not an optimal one. If
for example the location of the results is not relevant (as it usually is not in
distributed computing) a better placement is possible (cf. Figure 7).

Even though this does look like only a small improvement, it is to be noted
that this sorting network was already created to be parallelized efficiently with a



10 L. Schiller

PE 1

PE 2

PE 3

PE 4

↓

↑

↓

↓↓

↓

↓

↑

↑

↑↑

↑

↑

↑↑

↑

↑

↑↑

↑

↑

↑

↑

↑

Fig. 6: bitonic sorter with rowise placement

PE 1 PE 1

PE 2 PE 3

PE 3 PE 2

PE 4 PE 4

↓

↑

↓

↓↓

↓

↓

↑

↑

↑↑

↑

↑

↑↑

↑

↑

↑↑

↑

↑

↑

↑

↑

Fig. 7: bitonic sorter with communication minimized placement

row-wise placement. The placement is partially tied to the structure of data (thus
hidden in the permutations). If different design considerations are more impor-
tant (e.g. semantic provability) it is desirable to separate the additional layers of
potential parallelization and suitable placement. One could for example think of
another sorting network evolved from this one by altered permutations with the
same semantic properties but extremely inadequate for a row-wise placement.

Hence, we want to emphasize the usefulness of the disengagement of the
different layers of communication. While the Remote Data concept decouples
the computational and the data communication a third layer of (independent)
placement communication is needed. This is the case whenever the placement is
not (completely) given by the data structure. The improved placement could be
achieved with the explicit placement of pmapAt but at the cost of deep changes
to the program. The other possible solution – to change the permutations and
represent the new location inside the data structure – is also not preferable
because again of its deep intervention into the structure of the program.

Another, more intuitive way to solve this problem is to write algorithmic
skeletons which carry the location of the results along. But this solution might
be oversized and cumbersome as it changes the type of the results of a skeleton.
The additional information could be hidden inside a monadic structure but this
again would cause bigger changes.

In this paper we will address this problem by carrying the location of the
data along the Remote Data handle and using specialized algorithmic skeletons
which benefit from this additional information.



Strategic Skeleton Composition with local aware Remote Data 11

4 Extended Implementation of Remote Data

Dieterle [8] introduced the idea of tagging a remote data with its location. The
previous definition

type RD a = ChanName (ChanName a)

is therefore changed to

data RD a = RD {place :: Place ,

rd :: ChanName (ChanName a) }

where place is a data field which contains the current position of the Remote
Data. This location is the location where the Remote Data is created. We must
ensure that the data selector place is not misused as it is not purely functional.
We are free to use it for process placement but we must not use it somewhere
else. One simple solution to do so is to use a hidden data field which is not
exported and therefore restrict its use to skeletons only.

The new field can be used for co-located function application in a natural
way. For this we will define an instance of ParFunctor for Remote Data as a
simple example:

instance ParFunctor RD where

pmap f rd = runPA $

instantiateFAt (place rd) (liftRD f) rd

pmapAt places f rd = runPA $

instantiateFAt (head (toList places )) (liftRD f) rd

liftRD :: (Trans b, Trans a) ⇒ (a → b) → RD a → RD b lifts a func-
tion to Remote Data. Let rdd = release d for some data d. Then pmap f rdd

computes f $ d on the PE where the Remote Data handle was created.

Analogous to the previously introduced pmap for lists we can define a parallel
map for functors containing Remote Data with a co-locational placement.

rdmap :: (Trans a, Trans b, Functor t, ParFunctor t)

⇒ (a → b) -- ^map function

→ t (RD a) -- ^inputs

→ t (RD b) -- ^outputs

rdmap f = fmap (pmap f)

The mapped function is placed where the inputs are located. Therefore the
inputs need to be distributed already. A possible solution for this is the following
function:

releaseAt :: (Trans a, Traversable f, ParFunctor t)

⇒ f Place -- ^target locations

→ t a -- ^input data

→ t (RD a) -- ^Remote Data handle output

releaseAt places inp = pmapAt places release inp



12 L. Schiller

So, rdmap (+5) ◦ releaseAt [2,7] [3,6] will compute ((+5) 3) on PE
2 and ((+5) 6) on PE 7. Even though this function is extremely useful it is
not sufficient for the problem introduced by the introductory example. In the
example the input for the map function is a list of lists containing two elements
each. So, the optimal placement depends on a nested data structure and is more
complex than the simple mapping rdmap uses.

5 Example Skeletons and Placement Strategies

In this section we will explore the possibilities of skeletons equipped with Place-
ment Strategies. The Placement Strategy that is passed to the skeleton is a
function with three arguments:

(ParFunctor f, Traversable t, Trans a)

⇒ ((RD a1 → Place) -- place selector

→ t Place -- valid target places

→ f a -- data input

→ t Place) -- location output

The third argument is the data structure containing the Location Aware Remote
Data. The places where the data is located can be extracted by the Placement
Strategy with the help of RD’s data selector “place”. The place function itself is
(as mentioned before) a hidden field. Thus it needs to be passed to the Placement
Strategy (as the first argument) by the skeleton as it is visible to the skeleton
but not to the programmer. Note that the data has type ’a’ which might be the
same as ’RD a1’ but could also be a nested data structure (with elements of type
RD a1 inside a deeper level). The second argument is a Traversable containing
the places (“valid target places”) from which the Placement Strategy should
select a subset and return it to the skeleton as the placement. This is necessary
for a more complex nested parallelism. With this we can define skeletons with
a semi-explicit placement that can often be used as drop-in replacements in
sequential programs. Many useful strategies are possible and they can become
arbitrarily complex.

5.1 Parallel (nested) Map Skeletons

A parallel map with Placement Strategy support is given by the following defi-
nition:

rdmapPStratT

:: (ParFunctor f, Traversable t, Trans a, Trans b)

⇒ ((RD a1 → Place) -- placement strategy

→ t Place

→ f a

→ t Place)

→ t Place -- valid target places

→ (a → b) -- map function

→ f a -- input



Strategic Skeleton Composition with local aware Remote Data 13

→ f b -- output

rdmapPStratT pstrat targets f xs = pmapAt places f xs where

places = pstrat place targets xs

With rdmap we introduced a map where the computation follows the data.
If we have a list l = [a1,..,a4] :: [RD a] and map place l = [1,3,5,7]

then rdmap f l results in four processes located on the PEs 1, 3, 5 and 7. But
if we have a different list l2 = [b1,..,b4] with map place l2 = [1,1,2,2]

we could possibly want to locate the four processes of a parallel map again on
four different PEs. This can be achieved by explicit relocation with the function:

moveTo :: (Trans a, Traversable f, ParFunctor t)

⇒ f Place -- ^target locations

→ t (RD a) -- ^input Remote Data

→ t (RD a) -- ^relocated Remote Data

moveTo places inp = pmapAt places (release ◦ fetch) inp

The same could be achieved in a more elegant and universal way with a simple
strategy. This motivates to articulate the placement in a declarative style which
usually results in a solution that is simpler adaptable to changes. We can easily
imagine a function minfreeidx that returns the balanced list of places for this
problem (e.g. minfreeidx [1,1,2,2] = [1,3,2,4]). A linear time algorithm
to choose the smallest index can be found in [3].

The strategic solution for the introductory example is now obvious. The
appropriate strategy takes the smallest non-colliding index for every sublist. If,
for example, the Remote Data is located at [[1,2],[3,4],[1,2],[3,4]] then
the chosen placement is [1,3,2,4]. For sorting networks this strategy results
in a perfect placement. This means that in every stage at most one process
is placed on the same PE (if the number of PEs is at least the width of the
sorting network) and communication is minimized. The needed changes to the
sequential program are limited to the replacement of the map in the function call.
A definition of the Placement Strategy for this distribution is given in Appendix
A. The potency of this approach becomes visible when fundamentally different
strategies are combined. For example work pushing and work pulling becomes
compatible: the workpoolSorted skeleton [9] of Eden’s skeleton library can be
perceived as a work pulling implementation of a parallel map. Work pulling is
especially suited for heterogeneous problems whose computations are difficult to
predict. Placement Strategies can pick up the nondeterminism in the placement
introduced by the work pool skeleton.

5.2 Divide-and-Conquer Skeletons

The idea of Placement Strategies is naturally transferable to other (complexer)
skeletons. All (explicit) skeletons from Eden’s skeleton library can be updated.
The necessary adjustments are straightforward and usually the previous skele-
tons are an instance of the derived skeletons. As an example a distributed divide-
and-conquer skeleton with placement strategies has the following type signature:



14 L. Schiller

rdPStratDC

:: (Traversable f, Traversable t, Trans a, Trans b)

⇒ ((RD a1 → Place)

→ f Place

→ t a

→ t Int) -- placement strategy

→ f Place -- tickets

→ (a → Bool) -- trivial?

→ (a → b) -- solve

→ (f Place → a → t a) -- split

→ (f Place → a → t b → b) -- combine

→ a → b -- input / output

The introductory example can simply be expressed through this skeleton as it
is a nested divide-and-conquer algorithm [23]. The Placement Strategy from the
previous section can be reused. The following evaluation section shows that the
new skeleton is superior to the existing algorithmic skeletons of the Eden skeleton
library.

With placement strategies even complex decision mechanisms are possible.
One can think of placement strategies that are based on cost models or ones that
take the specific hardware situation into account (e.g. heterogeneous hardware).

6 Experimental Evaluation

The main goal of algorithmic skeletons is to reduce complexity by condensing
recurring algorithmic pattern into a reusable structure. This means that if every-
thing is done right, algorithmic skeletons with Placement Strategies are as fast
as the equivalent direct explicit placement, yet easier and faster to use. Their
main advantage lies in the structuring of the different layers of parallelism and
their possibility to increase the flexibility of skeletons.

In this section we will compare a manually tuned version of an divide-and-
conquer implementation of the introductory example with different skeletons. We
tested the algorithms on a multicore computer, equipped with an AMD Opteron
CPU 6378 (64 cores) and 64 GB memory.

As the following figure shows the manually tuned version called placed (with
“perfect” placement) shows approximately the same parallel speedup as the man-
ually tuned version that fetches its placement information from the Remote Data
(called RDplaced) and the new algorithmic skeleton equipped with the previously
described Placement Strategy (called RDDC). The differences in the speedups are
within the usual scattering and the overhead is marginal. On the other hand,
the distributed divide-and-conquer skeleton from the Eden skeleton library with
the name disDC does choose a different placement, which is hard coded into the
skeleton and can not be changed without defining a new skeleton. This place-
ment is, in general, a good placement for many different divide-and-conquer
algorithms. But for our example the fine-tuning of the Placement Strategy is
clearly superior.



Strategic Skeleton Composition with local aware Remote Data 15

In particular, the transferability of the Placement Strategy is a great advan-
tage.

2 4 8 16 32 64
0

5

10

cores

sp
ee

d
u
p

placed 5 · 107 disDC 5 · 107

RDplaced 5 · 107 RDDC 5 · 107

7 Related Work

This section discusses different forms of placement organization and their relation
to Placement Strategies, as well as concepts that are structurally connected to
the idea of Placement Strategies. Some are linked directly or indirectly to the
ideas presented in this paper while others are not connected but compatible.
Beside the different functional placement concepts some non-functional concepts
use sophisticated forms of placement organization.

Not only the explicitness of expressing placement is treated differently, even
the location of the decision-making mechanism is very different in the various
parallel systems. The kind and the amount of information accessible by the
decision-making mechanism differ as well.

7.1 Implicit Placement

Implicit placement is superior whenever the usefulness of the compiler’s knowl-
edge about the specific hardware outweighs the programmer’s knowledge about
the program. In this case explicit placement becomes uneconomic. This has led
to a well justified coexistence of both concepts. While explicit placement is espe-
cially popular in distributed computing (with heterogeneous hardware), implicit
placement is, for example, very popular in functional data-parallel languages.
It is not unusual for modern parallel systems to use a mixture of distributed
computing and hardware acceleration, this rises the urge to benefit from both
research areas. While explicit and implicit placement are intrinsically opposed
concepts, some data-parallel languages organize their parallel expressiveness in
specialized functions that are close to the conceptual idea of algorithmic skeletons



16 L. Schiller

(e.g. Futhark’s Second-Order Array Combinators [13]). This means a good con-
necting between the concepts with a closely related syntax is possible, where par-
allelism (and indirect parallel placement) is coordinated with separate, higher-
order functions as the organizational units.

7.2 Annotation-based Semi-Explicit Placement

In the area of annotation-based parallelism, attempts to affect the placement
exist as well. Closest related to Placement Strategies are approaches where a
structured influence on the placement is the goal of the annotation. A common
way to influence the placement is through the expression of co-location. For
example in High Performance Fortran [22] the keyword “align” can be used to
align the data distribution of a data structure with another already distributed
data structure. Similar effects can be achieved with Location Aware Remote
Data and Placement Strategies. It is possible to adapt the placement to the
distribution of one or more distributed data structures. Often the alignment is
the gratis result of the Remote Data concept and no additional efforts must be
made to achieve co-location.

Another interesting idea is to express (relative) locality, which is very useful if
the hardware is inhomogeneous. In an architecture aware variant of GpH [1] the
(maximal) relative distance between two computations can be expressed. The
explicit equivalent would be a Placement Strategy with a representation of the
hardware structure as a function argument. Obviously all kinds of cost-functions
and metrics can be used in Placement Strategies.

Despite the different basic principle of annotation-based and explicit con-
cepts, the annotated information can be used in explicit systems as well and
Placement Strategies are a high-level access to the underlying reasoning.

7.3 Explicit Placement

Functional Explicit Placement There is a variety of functional languages sup-
porting explicit placement. The usual constructs are the possibility to express
a place for a specific computation (Clean’s “@”, Eden’s “instantiateFAt”, Er-
lang’s “spawn/4”) and a function that returns the current location (Clean’s
“self”, Eden’s “selfPE”, Erlang’s “self/1”). The use of algorithmic skeletons
to organize complexer parallel patterns is popular [19,4]. Yet, the placement is
usually decided exclusively by the skeleton and the only way to manipulate the
placement is to choose a different skeleton or reorganize the data input.

Non-Functional High-Level Explicit Placement Explicit placement is very com-
mon in non-functional languages. Apart from a direct placement similar to the
explicit placement discussed in the previous paragraph, some concepts for struc-
tured placement exist.

MPI [11] provides a rich set of options for process selection and therefore
determining placement. However, the focus is on communication models and



Strategic Skeleton Composition with local aware Remote Data 17

differs fundamentally from the function-based communication model used in
Eden and other functional languages.

Designed for high performance computing Chapel [6] provides a so-called
“multifunctional” programming approach. While we agree to almost all of the
conceptual ideas presented as the basis of the Chapel programming language the
chosen implementations differ. Domain Maps are used to express data distribu-
tion in a wide-ranging and compositional way.

7.4 Evaluation Strategies

Evaluation strategies [21,24] are a well known technique to control dynamic par-
allel behaviour through controlling the evaluation degree of an expression. The
goal of evaluation strategies is therefore the “how?” and not the “where?”, the
placement is usually delegated to the runtime system. Conceptually evaluation
strategies and placement strategies are related in the manner their goals are
pursued. Both are written in the same language as the algorithm and therefore
extensible by the user and they both try to separate the algorithm from the
organization of parallel behaviour.

8 Conclusion and Future Work

The proposed idea of this paper does not preclude other promising approaches. It
is desirable to parallelize programs without major adjustments while maintain-
ing the computational communication and the (potentially diverging) parallel
coordination separated. In the best case this happens in an functional and ele-
gant way. The vast majority of parallel functional concepts use either scheduler
(in the runtime system) or parallel data structures. This paper presents a middle
course with the opportunity to change the point of view depending on the used
skeleton. By doing so a precise parallelism control is possible with the expres-
siveness of explicit placement with improved elegance. Whenever a strategy that
solely requires the location of the data is appropriate this approach fits best.
Even thought all concepts that contribute to this solution are well known, the
resulting solution fulfills many different goals at once:

1. functional pureness / functional programming style: in our opinion Place-
ment Strategies fit perfectly into a functional programming style. They en-
courage the programmer to express a placement as a function and the use
of the potentially unpure selfPe function becomes unnecessary.

2. high level of abstraction: the combination of algorithmic skeletons and Place-
ment Strategies divide an algorithm into its computational and organiza-
tional part

3. high level of manipulation possible: Placement Strategies in combination
with Location Aware Remote Data can determine a parallel placement rel-
atively to the actual position and therefore not only co-location of tasks is
possible but more sophisticated placement is possible



18 L. Schiller

4. nesting algorithmic skeletons: it is possible to nest algorithmic skeletons in
every manner, while Placement Strategies manages the different domains the
algorithmic skeletons can work on

5. skeleton composition / catching non-determinism: by locating the organi-
sation of the parallelism into algorithmic skeletons it is possible to com-
bine work-pulling skeletons which result in non-deterministic placement with
work-pushing skeletons. A Placement Strategy can cope with the non-deterministic
placement either directly by applying a semi-explicit placement which is rel-
ative to the non-deterministic placement or transform it into a deterministic
one by applying an explicit placement.

This generates the need for a versatile skeleton library with suitable Placement
Strategies for different situations.

Appendix A Placement Strategy for Sorting Networks

pstratni place targets tasks = nextfreeidx targets pl where

pl = fmap (fmap place) tasks

nextfreeindex targets xs = fill targets xs ’ where

xs ’ = foldl (λx → nidx targets x x) init (transpose xs)

init = map (const 0) xs

nidx _ _ _ [] = []

nidx ts used (x:xs) (y:ys) = r:nidx ts (r:used) xs ys where

r = if x == 0 then r2 else x

r2 = if y ‘notElem ‘ used && y ‘elem ‘ ts then y else 0

fill ts xs = f’ (cycle ts) xs’ where

xs ’ = f’ (ts \\ xs) xs

f’ _ [] = []

f’ [] xs = xs

f’ (t:ts) (x:xs) =
if x == 0 then (t:(f’ ts xs)) else (x:f’ (t:ts) xs)

Appendix B Local Aware Remote Data Definition

Converts local data into corresponding remote data. The result is in the parallel
action monad and can be combined to a larger parallel action.

releasePA :: Trans a

⇒ a -- ^ The original data

→ PA (RD a) -- ^ The Remote Data handle

releasePA val = PA $ do

(cc , Comm sendValC) ← createComm

fork (sendValC val)

return RD {rd = cc , place = selfPe}



Strategic Skeleton Composition with local aware Remote Data 19

References

1. Aswad, M.K., Trinder, P., Loidl, H.: Architecture aware parallel programming
in glasgow parallel haskell (gph). Procedia Computer Science 9, 1807 – 1816
(2012). https://doi.org/https://doi.org/10.1016/j.procs.2012.04.199, http://www.
sciencedirect.com/science/article/pii/S1877050912003201, proceedings of the In-
ternational Conference on Computational Science, ICCS 2012

2. Batcher, K.E.: Sorting networks and their applications. In: Proceed-
ings of the April 30–May 2, 1968, Spring Joint Computer Conference.
pp. 307–314. AFIPS ’68 (Spring), ACM, New York, NY, USA (1968).
https://doi.org/10.1145/1468075.1468121

3. Bird, R.: Pearls of Functional Algorithm Design. Cambridge University Press, New
York, NY, USA, 1st edn. (2010)

4. Brown, C., Danelutto, M., Hammond, K., Kilpatrick, P., Elliott, A.: Cost-directed
refactoring for parallel erlang programs. International Journal of Parallel Pro-
gramming 42(4), 564–582 (Aug 2014). https://doi.org/10.1007/s10766-013-0266-5,
https://doi.org/10.1007/s10766-013-0266-5

5. Chakravarty, M.M., Keller, G., Lee, S., McDonell, T.L., Grover, V.: Accelerating
haskell array codes with multicore gpus. In: Proceedings of the Sixth Workshop on
Declarative Aspects of Multicore Programming. pp. 3–14. DAMP ’11, ACM, New
York, NY, USA (2011). https://doi.org/10.1145/1926354.1926358

6. Chamberlain, B., Callahan, D., Zima, H.: Parallel programmability and the chapel
language. The International Journal of High Performance Computing Applica-
tions 21(3), 291–312 (2007). https://doi.org/10.1177/1094342007078442, https:
//doi.org/10.1177/1094342007078442

7. Cole, M.: Algorithmic Skeletons: Structured Management of Parallel Computation.
MIT Press, Cambridge, MA, USA (1991)

8. Dieterle, M.: Structured Parallelism by Composition. Ph.D. thesis, Philipps-
Universität Marburg (2016). https://doi.org/10.17192/z2016.0107

9. Dieterle, M., Berthold, J., Loogen, R.: A skeleton for distributed work pools in
eden. In: Blume, M., Kobayashi, N., Vidal, G. (eds.) Functional and Logic Pro-
gramming, 10th International Symposium, FLOPS 2010, Sendai, Japan, April 19-
21, 2010. Proceedings. Lecture Notes in Computer Science, vol. 6009, pp. 337–
353. Springer (2010). https://doi.org/10.1007/978-3-642-12251-4 24, https://doi.
org/10.1007/978-3-642-12251-4 24

10. Dieterle, M., Horstmeyer, T., Loogen, R.: Skeleton composition using remote data.
In: Carro, M., Peña, R. (eds.) Practical Aspects of Declarative Languages, Lecture
Notes in Computer Science, vol. 5937, pp. 73–87. Springer Berlin Heidelberg (2010).
https://doi.org/10.1007/978-3-642-11503-5 8

11. Forum, T.M.: MPI: A Message-Passing Interface Standard. Tech. rep., Knoxville,
TN, USA (2012), https://www.mpi-forum.org/docs/mpi-3.0/mpi30-report.pdf

12. Gosling, J., Joy, B., Steele, G.L., Bracha, G., Buckley, A.: The Java Language
Specification, Java SE 8 Edition. Addison-Wesley Professional, 1st edn. (2014)

13. Henriksen, T., Serup, N.G.W., Elsman, M., Henglein, F., Oancea, C.E.:
Futhark: Purely functional gpu-programming with nested parallelism
and in-place array updates. SIGPLAN Not. 52(6), 556–571 (Jun 2017).
https://doi.org/10.1145/3140587.3062354, http://doi.acm.org/10.1145/3140587.
3062354

14. IEEE: IEEE Std 1003.1-2001 Standard for Information Technology — Portable
Operating System Interface (POSIX) Rationale (Informative) (2001), revision of

https://doi.org/https://doi.org/10.1016/j.procs.2012.04.199
http://www.sciencedirect.com/science/article/pii/S1877050912003201
http://www.sciencedirect.com/science/article/pii/S1877050912003201
https://doi.org/10.1145/1468075.1468121
https://doi.org/10.1007/s10766-013-0266-5
https://doi.org/10.1007/s10766-013-0266-5
https://doi.org/10.1145/1926354.1926358
https://doi.org/10.1177/1094342007078442
https://doi.org/10.1177/1094342007078442
https://doi.org/10.1177/1094342007078442
https://doi.org/10.17192/z2016.0107
https://doi.org/10.1007/978-3-642-12251-4_24
https://doi.org/10.1007/978-3-642-12251-4_24
https://doi.org/10.1007/978-3-642-12251-4_24
https://doi.org/10.1007/978-3-642-11503-5_8
https://www.mpi-forum.org/docs/mpi-3.0/mpi30-report.pdf
https://doi.org/10.1145/3140587.3062354
http://doi.acm.org/10.1145/3140587.3062354
http://doi.acm.org/10.1145/3140587.3062354


20 L. Schiller

IEEE Std 1003.1-1996 and IEEE Std 1003.2-1992) Open Group Technical Standard
Base Specifications, Issue 6.

15. Jones, Jr., D., Marlow, S., Singh, S.: Parallel performance tuning for haskell. In:
Proceedings of the 2Nd ACM SIGPLAN Symposium on Haskell. pp. 81–92. Haskell
’09, ACM, New York, NY, USA (2009). https://doi.org/10.1145/1596638.1596649,
http://doi.acm.org/10.1145/1596638.1596649

16. Kambadur, P., Gupta, A., Ghoting, A., Avron, H., Lumsdaine, A.: Pfunc:
Modern task parallelism for modern high performance computing. In: Pro-
ceedings of the Conference on High Performance Computing Networking,
Storage and Analysis. pp. 43:1–43:11. SC ’09, ACM, New York, NY, USA
(2009). https://doi.org/10.1145/1654059.1654103, http://doi.acm.org/10.1145/
1654059.1654103

17. Lippmeier, B., Chakravarty, M., Keller, G., Peyton Jones, S.: Guiding
parallel array fusion with indexed types. SIGPLAN Not. 47(12), 25–
36 (Sep 2012). https://doi.org/10.1145/2430532.2364511, http://doi.acm.org/10.
1145/2430532.2364511

18. Loogen, R.: Eden — Parallel Functional Programming with Haskell. In: Zsók, V.,
Horváth, Z., Plasmeijer, R. (eds.) Proceedings of the 4th Summer School Con-
ference on Central European Functional Programming School, CEFP 11, Lecture
Notes in Computer Science, vol. 7241, pp. 142–206. Springer-Verlag, Berlin, Hei-
delberg (2012). https://doi.org/10.1007/978-3-642-32096-5 4

19. Loogen, R., Ortega-Mallén, Y., Peña-Maŕı, R.: Parallel functional pro-
gramming in Eden. J. Funct. Program. 15(3), 431–475 (May 2005).
https://doi.org/10.1017/S0956796805005526

20. Marlow, S.: Haskell 2010 language report (2010), http://citeseerx.ist.psu.edu/
viewdoc/summary?doi=10.1.1.179.2870

21. Marlow, S., Maier, P., Loidl, H.W., Aswad, M.K., Trinder, P.: Seq no more:
Better strategies for parallel haskell. In: Proceedings of the Third ACM
Haskell Symposium on Haskell. pp. 91–102. Haskell ’10, ACM, New York,
NY, USA (2010). https://doi.org/10.1145/1863523.1863535, http://doi.acm.org/
10.1145/1863523.1863535

22. Rice University, C.: High performance fortran language specification. SIGPLAN
Fortran Forum 12(4), 1–86 (Dec 1993). https://doi.org/10.1145/174223.158909,
http://doi.acm.org/10.1145/174223.158909

23. Schiller, L.I.: An agglomeration law for sorting networks and its application in func-
tional programming. In: Schwarz, S., Voigtländer, J. (eds.) Proceedings 29th and
30th Workshops on (Constraint) Logic Programming and 24th International Work-
shop on Functional and (Constraint) Logic Programming, Dresden and Leipzig,
Germany, 22nd September 2015 and 12-14th September 2016. Electronic Proceed-
ings in Theoretical Computer Science, vol. 234, pp. 165–179. Open Publishing
Association (2017). https://doi.org/10.4204/EPTCS.234.12

24. Trinder, P.W., Hammond, K., Loidl, H.W., Jones, S.P.: Algorithm + strategy =
parallelism. Journal of functional programming 8(1), 23–60 (1998)

https://doi.org/10.1145/1596638.1596649
http://doi.acm.org/10.1145/1596638.1596649
https://doi.org/10.1145/1654059.1654103
http://doi.acm.org/10.1145/1654059.1654103
http://doi.acm.org/10.1145/1654059.1654103
https://doi.org/10.1145/2430532.2364511
http://doi.acm.org/10.1145/2430532.2364511
http://doi.acm.org/10.1145/2430532.2364511
https://doi.org/10.1007/978-3-642-32096-5_4
https://doi.org/10.1017/S0956796805005526
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.179.2870
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.179.2870
https://doi.org/10.1145/1863523.1863535
http://doi.acm.org/10.1145/1863523.1863535
http://doi.acm.org/10.1145/1863523.1863535
https://doi.org/10.1145/174223.158909
http://doi.acm.org/10.1145/174223.158909
https://doi.org/10.4204/EPTCS.234.12

	Placement Strategies: Structured Skeleton Composition with Location Aware Remote Data

