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Abstract

Agile software development and Formal Methods are traditionally seen as being in conflict.
From an Agile perspective, there is pressure to deliver quickly, building vertical prototypes
and doing many iterations / sprints, refining the requirements; from a Formal Methods
perspective, there is pressure to deliver correctly and any change in requirements often
necessitates changes in the formal specification and might even impact all arguments of
correctness. These two goals are often discordant. In this paper, we argue that given the right
attitudes on both sides, it is possible to fuse good practices from formal methods and agile
software engineering to deliver software that is simultaneously reliable, effective, testable,
and that can also be delivered rapidly.

This suggests a new lightweight software engineering methodology, that is inspired by
and exploits appropriate formal methods, while also providing the benefits of agile software
development. Our methodology is informed and motivated by practical experience. We
have devised and adapted it in the light of experience in delivering a large-scale software
system that needs to meet complex real-world requirements: the Cardano crypto-currency.
The Crypto-Currency domain is a rather new application area for which no clear engineering
habit exists, so it is fitting well for agile methods. At the same time, there is a lot of real
monetary value at stake, making it a good fit for using formal methods to ensure high quality
and correctness. The paper reports on the issues that have been faced and overcome, and
provides a number of real-world lessons that can be used in similar situations.

1 Introduction

There has long been a tension between Software Engineering and Formal Methods. From
a software engineer’s perspective, there is pressure to deliver quickly; from a formal methods
perspective, it is essential to deliver correctly. In this paper, we argue that rather than fueling
this tension, formal methods not only can, but should, be fused with agile software engineering
methods . The goal is to promote a new flexible software engineering methodology that aims to
combine the best aspects of both agile and formal methods to deliver properly engineered and



correct software solutions quickly and effectively. We illustrate this methodology by referring to
our experience at IOHK, a company that is using strongly typed and functional programming
(specifically Haskell and Rust) to deliver a new crypto-currency. IOHK is not entirely unique in
seeing benefits of appropriate use of formal methods as part of a good software development
process.

1.1 Formality versus Agility

Agile software development [BBvB™01] has, since its inception at the turn of the century, risen to
become one of the most prevalent software development methodologies. Agile methodologies
are attractive because they promise rapid delivery, and fit normal development approaches.
When done well, with a focus on what needs to be delivered, rather than what is easily delivered,
agile techniques allow effort to be focused towards the most important goals, and away from
unimportant goals. However, if they are to be used successfully, discipline is essential and
management must exercise strong control. Agile techniques can appeal to undisciplined developers
precisely because they can deflect attention from what needs to be done (which is often hard)
towards what can quickly be done (which is usually much easier). This allows an illusion of
progress to be maintained. Management is then happy because they can apparently observe
progress, and the software is close to product, or only needs a few more small adaptations; and
software developers feel valued because they are producing code that is apparently appreciated,
and there are continual exciting challenges that they must overcome. Unfortunately, the software
may have little real utility, may be hard to maintain, and may also be unreliable. When this
happens, “agile” methods are both costly and ineffective: the precise opposite of the motivation
for adopting them.

In contrast, classical formal methods require careful thought and design. It is necessary to
first carefully specify a system, then to laboriously translate this into an implementation, and
finally to verify the result against some complex and often hard-to-understand semantics. The
output of this process is often software that is fragile, hard to change, and difficult to understand.
Small local changes can break key assumptions, and require complete redesign and laborious
reverification. While it has the advantage of being “correct”, the correctness of the software
therefore comes at the cost of speed of development, flexibility and maintainability. This is the
very antithesis of “agile development”. Once an implementation has been finally verified, there
is a very strong incentive never to change it again. For this reason, commercial product teams
can be very wary of traditional formal methods, and startups can feel that they cannot afford
the costs. Strong formal methods are therefore mostly confined to safety-critical projects that are
run by large and established companies (e.g. Airbus uses abstract interpretation as part of its
control design http://projects.laas.fr/IFSE/FMF/J1/P04_JSouyris.pdf).

1.2 Novelty

In this paper, we argue from experience that rather than an inevitable messy divorce, it is
possible to instead have a happy marriage between formal methods and agile development. As
in most marriages, compromise and a willingness to collaboratively overcome faults is essential
on both sides. But the result can be a lifetime of happiness (or at least one of reasonable harmony
for the duration of the software project). This paper has the following novelties:

e We describe the motivation that led to the real-world adoption of formal methods tech-
niques and functional programming technologies within an advanced technology company
(IOHK);

e We provide examples of the real-world use of lightweight formal methods and functional
programming as part of a large software development process;
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e We consider the positive and negative aspects of both formal and agile techniques in the
light of experience with both approaches;

¢ Based on this analysis we suggest a new, flexible software engineering methodology that
provides the most significant benefits of both agile and formal software development;

e We discuss the advantages of functional programming for flexible software development.

2 Cardano: a Proof-of-Stake Crypto-Currency

Cardano (https://www.cardano.org) is a novel decentralised blockchain and crypto-currency
that is being developed by IOHK. Crypto-currencies are distributed systems that contain a
public shared transaction ledger, which allows participants to track and send funds in a virtual
currency. The striking feature is that these systems are permissionless and decentralised, in the
sense that anyone can run a node and take part in maintaining the ledger without needing to be
registered with a central authority,

This poses an immediate problem: since there is no central authority, it is necessary to reach
consensus on how to progress the construction of the blockchain. The consensus algorithm has
to be resistant to a malicious actor setting up any number of nodes with the aim of taking
over the decision finding process (a so-called Sybil attack [Dou02]). Bitcoin [Nak09], the first
crypto-currency, achieves this using a Proof-of-Work (PoW) mechanism, where taking part in
the consensus requires computational resources that are proportional to the total amount of
computational resources in the system. This renders a Sybil attack highly expensive. The cost is
in making the whole system ridiculously inefficient: Bitcoin is now at a stage where it consumes
as much electrical power as a mid-sized nation state, but can only enter a handful of transactions
into its ledger per second. Were it not for the computational cost of the POW Sybil protection,
this could be easily achieved using a single commodity laptop or other small device.

In contrast, Cardano uses an alternative Proof-of-Stake mechanism (PoS). Under PoS, the price
of participating in the consensus algorithm is not paid in computational power, but instead by
having to own some of the virtual currency in the system. The larger your share of the total
funds (the higher your stake), the greater is the probability of your being elected as the leader in
the next consensus round.

While PoS has many advantages over POW - it is ecologically sustainable, and automatically
incentivises powerful parties in the consensus to behave honestly (since large stakeholders
have a lot to lose if the system is found to be manipulated) — it is hard to get right. For this
reason, IOHK committed itself to base Cardano on a solid foundation of original peer-reviewed
research, and to using formal methods in the development process.

In addition to being a crypto-currency, Cardano will also in time become a smart contracts
platform, running the languages Plutus and Marlowe, which have been specifically designed to
be used on Cardano.

3 Why use Formal Methods?

While IOHK has always been devoted to getting things right, building upon sound academic
research and robust, reliable engineering, the company is also aware of commercial realities,
such as the importance of time-to-market in a relatively young and quickly evolving sector. For
this reason, it set out on a two-pronged approach for Cardano: a team A of energetic developers
would quickly develop, in an Agile manner, a Minimal Viable Product (MVP) to release to
market. Meanwhile, a second team B would aim for a high-assurance version, using formal
methods, that would, once ready, replace the first implementation. Team A would deliver
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swiftly, and Team B would use the experience from having a working system in production to
guide their design and development. Both implementations were done in Haskell.

Some time after releasing the MVP, it became clear that maintaining it and adding new
features was much harder than anticipated. The organically grown code, which had been
developed under time pressure in an agile style, lacked a proper separation of concerns or good
documentation of the design. This resulted in poor testability and extensibility for the codebase.
Development times for new features were consequently much longer than they needed to be.
At the same time, team B had achieved a first success, in successfully implementing a wallet! for
Cardano based on a semi-formal specification. A decision was thus made to pivot, cutting back
development effort on the existing implementation to a bare minimum. Team B would scale
up and accelerate their efforts, and the next features on the roadmap would be implemented
exclusively in the follow-on to the MVP. At this point, Team B faced a number of challenges:

e Since team A was no longer adding new features, they had to accellerate their pace in
order to quickly get to a point where the new implementation could be used to deliver
new feaetures.

o Compromising on the quality and robustness, or future maintenance costs, was not an
option; Cardano has to safely manage and secure large-scale financial transactions, and
needs to be fit for that purpose.

e They had to ensure backwards compatibility with the already released code. The lack of
good documentation meant that they had to write a specification based on the existing
code. Writing specifications and code adhering to them is like time travel, in that one
direction is significantly easier than the other.

o As the research and design for the new features were still somewhat in flux, they would
need to be flexible to adjust to changing requirements.

To overcome those challenges, the team chose a pragmatic approach — with a well-dosed, non-
dogmatic use of lightweight formal methods, and a focus on rapid delivery — that we will describe
in this paper.

4 “Flexible Software Development”: the Fusion of Formal Methods
and Agile Software Engineering

Agile Developers and Formal Methods Proponents can seem like followers of two different
religions. Followers may agree on key points, but the differences in philosophy mean that there
are schisms that are hard to reconcile: agile development is all about speed and flexibility; formal
methods is all about correctness and method. This is not helped by the number of books, papers
and experts that promote specific methods (whether formal or agile) as a complete solution.
Examples include Agile Scrum Methodology [SB01]; Lean Software Development [PP03]; Kan-
ban [Brel5]; Extreme Programming (XP) [Bec00]; Feature Driven Development (FDD) [PFO01];
Model Checking [CGP99]; Abstract Interpretation [CC77]; Type-Driven Development [Bral6]
etc. Clearly, this creates fission in the software development community. In this section, we will
explore the broad differences, similarities, and potential synergies between formal and agile
approaches and aim to understand how their fusion can ensure software that is both certifiable
and reasonably cost effective to produce.

LA crypto-currency wallet is a piece of software that allows users to track their balance in the system and submit
transactions.



4.1 What do we need?

Fundamentally, software development needs are quite simple. In general, we need to produce
software that:

1. does what it is supposed to do;
is produced quickly;
costs no more to produce than is necessary,

can be easily maintained, at reasonable cost;
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doesn’t require expensive support.

Other issues are generally secondary or specific to particular domains (e.g. telecommunications
applications may have real-time constraints, aerospace applications may have overriding safety
concerns, autonomous vehicles may have regulatory concerns, etc). A successful software
engineering methodology therefore needs to meet the criteria that are listed in the table below.

Issue Agile | Formal
Identify the requirements for the software Y? Y
Ensure that the software meets these requirements | Y? Y
Provide usable prototypes rapidly Y N
Minimise the costs of development Y? N?
Ensure that code is high quality N Y
Ensure that software is easy to use N N
Ensure that changes can be made easily Y N

Be easily applied without extensive training N N

The details of this table can be argued, of course, mainly because there are many different agile
techniques and many different formal methods. Different development teams may also have
different levels of experience and be more or less familiar with specific techniques and technolo-
gies. They will also have different competencies in terms of e.g. mathematical backgrounds or
training in specific development techniques. Effective deployment of either technology, however,
needs extensive specific training and practice. We will consider each of the issues from the table
in detail, considering how well they are met by agile and formal development techniques.

Identify Requirements.

Here, the key issue is to have a strong product vision. Ideally, there should be a dialogue between
the product manager and the software developers. Agile developers should then interact with the
product manager to deliver the capabilities in the software that is needed, and the product manager
should adapt the capability requirements of the product to make it easier to implement/maintain,
without compromising on essential features. In practice, there may be no distinct product
manager, meaning that the development team acts as the designers. This can create a number of
problems, including failure to deliver a successful product, repeated non-converging iterations,
missing essential features, and included non-essential features. Requirements gathering and
design is done on the fly. Because it is easy to change requirements, the software design and
implementation will frequently change direction. The final solution will then have no clear
design pathway. Formal methods techniques on the other hand often require detailed and
careful analysis of alternatives, followed by months of painstaking work to laboriously craft out
possible solutions, prove that they are sound with respect to some formal model or semantics,



and then to verify that the software matches those requirements. Even small changes may require
major alterations to the formal specification, and significant effort to re-prove, re-verify and then
re-implement the software. In this approach, it is therefore essential for the product owner to
be involved in the requirements analysis and problem specification. Unfortunately, they will
often lack the technical/mathematical knowledge to be able to understand the implications of
the design decision.

Meet Requirements.

Since formal methods use mathematical techniques to specify requirements, provided that they
are properly captured and the process is followed correctly, then the software will always meet
these requirements. This is a major strength of a formal approach. When using agile methods,
on the other hand, the product owner can easily see the current version of the software, identify
any mistakes or misunderstandings and feed corrections into the development process.

Provide Prototypes.

Good agile methods will always ensure that a prototype is available. By using continuous
integration and continuous testing, a non-breaking version will always be available for deployment.
Non-breaking means, of course, that the code will compile and that none of the tests have failed,
not that the code works perfectly. However, it is easy to observe change, and therefore to measure
(real or apparent) progress. Some formal methods also allow the production of prototypes. For
example, where a modelling approach is used, an executable specification might be produced,
or where a refinement process is used, then successive refinements will produce gradually more
detailed prototypes. However, this is not a feature of all formal methods techniques. Because it
is usually necessary to formally prove software correctness, there may be long periods when
no new software versions are produced. Since there is no observable change, it is difficult to
measure progress.

Minimise Development Cost.

A key goal of agile (especially lean) software development is to minimise software costs by
producing precisely the minimal product that is required, and by focusing attention on the
most important features. By avoiding implementing unnecessary features or by delaying less
useful features, the software can be brought to market more quickly, and at an adequate cost.
In practice, achieving this requires strong discipline. It is easy to focus attention instead on
short-term, but less important bug fixes, on easy-to-implement features, or on features that are
nice-to-have. While daily “stand-up” meetings allow good team communication, they need to
be properly organised if a priority task list is to be produced and followed. By using continuous
testing, software is not accepted that does not pass regression tests, so fewer bugs will enter the
code base. However, this same process can also act as a barrier to major change — completely
new tests will then be necessary. In contrast, reducing development cost is not usually a major
goal of formal methods development. If correctness is paramount, then spending effort to
ensure correctness is always the right thing to do. Although there has been major progress in
e.g. automated proof assistants and model checking, most formal methods tooling is not well
integrated into the usual software development process.

Ensure High Quality.

The primary aim of formal methods is to produce very high quality, high reliability, high
assurance software. This is, however, rarely an explicit goal of agile methods.



Maximise Ease of Use.

Ease of use is not a primary goal for either agile software development or when using formal
methods. Rather, it must be layered as an additional concern. For agile development, this
can interplay negatively with the primary goal of rapid software development. For formal
development, it can, conversely, interact badly with correctness.

Enable Change.

Software is notoriously hard to change. While agile methods allow design changes to be incor-
porated during development, as discussed above, they do not encourage major design changes:
any significant change will break not only the existing code, but also testing, documentation, etc.
Similarly, traditional formal methods do not provide any assistance with major design changes.
While small changes can usually be incorporated without major work, large changes will often
require significant and laborious specification, verification, proof or other work. In both cases, it
is often easier to start with a blank canvas and produce a completely new design. This can also
be cheaper and quicker than adapting an existing design. However, it means that significant
effort has been wasted.

Do Not Require Extensive Training.

There is a major software skills shortage. As evidenced by e.g. salary levels, good software
developers (“10X developers”) are rare and in high demand. It is not cost effective to require
them to learn to use new tools and techniques on a regular basis. While they may be highly
effective once mastered, mathematical techniques may also require extensive study and practice,
which is also costly. Unfortunately, much of the available tooling to support both agile software
development and formal methods is special-purpose and requires extensive time to learn to
use effectively. This creates stickiness: better tooling is not used because it takes time to learn to
use (or sometimes, especially in smaller companies, because it costs money). It also means that
few people have experience with both kinds of tools or the expertise to move easily between
them.

4.1.1 Our Goal: Flexible Software Engineering

Based on the analysis above, we argue for flexible software engineering that goes beyond simple
agile software engineering, but is easier to deploy than traditional heavyweight formal methods.
Our goal is to combine the best elements of agile and formal software engineering so that we
can produce software that meets all of the criteria above. In particular, it should be high quality,
quick and cost effective to produce, easy to change, clearly meet the requirements and not
require extensive training to develop. This is naturally highly ambitious, and in this paper we
will only be able to report on the initial steps that we have taken. However, it is important that
the software development community does not simply settle for the status quo but strives to
achieve these goals. In this way, we will be able to deliver software that is better, less costly, and
easier to adapt both by design and by construction. Modern functional programming is key to
helping us achieve this.

5 Key Messages and Lessons

5.1 Approach(es) taken at IOHK

When rebuilding Cardano, we separated concerns into layers, as is common when dealing with
larger projects. This allowed us to parallelise work, test things in isolation, and will allow us to



swap out individual components when needed, to produce customised variants. It turns out
that there is sufficient difference in nature between the components to make each amenable to
a different approach in designing and implementing them. In the following, we will briefly
describe each layer, and explain the methodology chosen for each, and why.

5.1.1 Ledger Layer

The ledger comprises the brain of a crypto-currency. It is where all the data is kept, and has
to ensure that users’ balances are recorded correctly, that money can not be arbitrarily created
or destroyed, that no one can spend funds they do not own (or spend their funds twice), etc.
Correctness of the ledger is thus of utmost importance to the integrity of the system.

The Cardano ledger is of moderate complexity. It does not have to deal with any concurrency
issues — those are contained in the consensus and networking layers — but it is more than just
a simple book-keeping device. In addition to listing and ordering transactions, and keeping
balances, it has to also keep track of state that is important for the operation of the system itself.
Parameters of operation (such as the frequency with which new blocks? are created) can be
adjusted during operation, by announcing the new value on the ledger. Similarly, new versions
of the software itself can be announced via an update mechanism. Another aspect of the ledger
is delegation: while every stakeholder has the right to participate in the consensus algorithm, it is
unlikely that each and every user of the system would want to continuously run and maintain a
node in the system. In Cardano, users can chose to delegate their stake to people who do run
a node, forming a stake pool. Rewards that the system pays out for maintaining consensus are
automatically shared between operators and participants of such pools.

All of this lead to a rather voluminous design; the informal document describing the mecha-
nisms of delegation and incentives alone [SL-D1] runs at roughly 60 pages, and builds upon
two papers of original research conducted for Cardano [KKL18, BKKS18]. While none of the
individual parts are rocket science, they can interact in subtle ways. Since the ledger is where the
value is being held, correctness has to be on the top of the list of priorities of the development
methodology chosen. However, we also needed a flexible approach: commercial reality required
us to start work on the implementation before the design and research of the whole ledger
was truly finished, so choosing an approach where small changes in the design would require
massive amounts of work to be done had to be ruled out.

We chose to implement the ledger via a semi-formal specification: we wrote down all the
valid state transition rules (adding a new transaction to the ledger, announcing a parameter
change, etc.) in an operational small-step semantics. We produced two versions of this: one
pdf file for readability, and an executable version in Haskell. Those two artifacts were written
in parallel (and indeed, in the future, we are exploring tooling to generate them both from
one common source). Crucially, the ledger layer itself only describes valid state transitions;
storing this state is done by the consensus layer. This keeps the ledger layer much simpler, and
in particular restricts concerns related to eventual consistency (the need to “roll back” blocks
occasionally) to the consensus layer, where they are unavoidable. The ledger only has to consider
one, linear, history, while switching between alternative “forks” is done by the consensus layer.
As a consequence, the ledger layer is just pure code, and does not involve 10 at all, greatly
facilitating the semi-formal approach.

We did not, initially, produce any proofs about the emergent properties of the ledger (such
as conservation of value, delegating stake properly modifying the stake of a pool, etc.). Instead,
we got some confidence by having the executable specification pass the type checker (we got the
plumbing right), and in addition wrote the desired properties as QuickCheck properties. Not
writing down (or even formalising) proofs allowed us to move quickly, and react to changes

2Crypto-Currencies are built on a data structure called blockchain, which are essentially linked lists, where each
block contains a page of a transaction ledger



in the design. Having the type checker and QuickCheck properties allowed us to do so with
confidence that the changes were not breaking parts of the system. In that way, the approach
combines elements from formal methods and agile practices like test-driven development. As
things became more stable, we also started proving the essential properties, most of them in a
traditional, pen and paper style, and some also formally in Isabelle.

The production implementation of the ledger was produced from the executable specification,
via a series of refinement steps. We used QuickCheck to ensure that those did not violate any of
the properties of the ledger that we had specified.

This approach requires two techniques that are not stock items in the repertoire of software
engineers: semi-formal specifications, and efficient use of property based testing®. We organised
a one-week intensive on-site training course in those techniques for our engineers to make up
for that, run by Well-Typed, QuviQ, and the IOHK education department. The course was very
well-received, and our engineers report that programming from executable specifications was a
very comfortable experience.

Here is a list of the things that we found worked well, or not so well:

+ The language of transition rules in a small-step operational semantics formed a lingua
franca to talk about the ledger within the company. While it might look intimidating when
unfamiliar, we found that after a little bit of introduction to the framework, we could
use it to communicate not only with engineers, but also other stakeholders within the
company (researchers, product management, and the CEO). Subtle questions from the
researchers were easier to answer by looking at the formal spec than by looking at the code.
Additionally, we received a lot of very helpful feedback from our auditors, concerning
details in the specification.

+ The simple mathematical style of the small-step operational semantics translated extremely
well to Haskell. Comparing the two specs side-by-side is very easy to do, therefore
strengthening our trust in the translation from paper to machine.

+ Flexibility with confidence, through the type-checker and QuickCheck.

+ Extensibility: even before the first version of the ledger was finished, we had one team
member work on integrating the next feature, integration of the smart contract language
Plutus, on the level of the specification. This required adding some new types, some new
transition rules, and some minor modifications to a few existing rules. We expect a massive
reduction in lead times for future features.

+ The formal spec made the job of estimating the work required to implement new features
much easier than it would have been with code alone. Similarly, when integration issues
made us consider the impact of refactoring, the formal spec was valuable for choosing the
path forward.

- We had to keep two versions of essentially the same document — the semi-formal and
executable specification — in sync. In the future, we will want to generate them from a
common source.

5.1.2 Consensus Layer

The consensus layer provides the heartbeat for the system, in determining who is allowed
to produce a block at which point in time. It is based upon Ouroboros [KRDO17], the first
provably secure PoS protocol, and variants [DGKR17, BGK™18]. Ouroboros guarantees — as
long as more than half of the participants (weighted by their stake) behave according to the

3While the use of property based testing has surged in recent years, with QuickCheck clones available in most
languages, experience in efficient use, including writing good generators and shrinkers, is not common.



protocol — that transactions submitted to the network will be included in the ledger, and that the
ledger stabilises, so that transactions can not be dropped after they have been in the ledger for a
certain amount of time. Having those guarantees for Cardano requires a faithful implementation
of the consensus protocol.

Unfortunately, the consensus protocol inherently involves concurrency, which is notoriously
hard to get correctness guarantees about. While we do want to ultimately get a high-assurance
implementation of Ouroboros, we decided that going for that right away was too risky in terms
of development time.

So again, we chose an approach of two development streams, with different speeds and levels
of formality. But we took a lesson from the past, and asked very experienced and disciplined
engineers to do the initial implementation. They would produce code that was well documented,
designed with testability in mind, modular, and solid. They would use prototyping to make
informed design decisions. Rigorous code review, direct communication with the Ouroboros
authors, and extensive property based testing would ensure that the resulting code was of high
quality. Extensive use of polymorphism and Haskell type classes was essential in achieving a
flexible and testable design (more on that in Section 5.1.4).

To eventually get the extra bit of assurance that comes with a formal model and proofs, a
second group of people will follow their traces, and model the resulting design formally in
Isabelle/HOL, using a process calculus. They should then be able to provide machine-checked
proofs about the correctness of aspects of the implementation, or providing a basis for re-
implementing parts of the consensus to build on the fully formal core. As a first step towards
this goal, we have developed a custom process calculus [Jel19] and proved some example
statements about networking based on it.

The advantage of our approach is that we do not have to make an up-front decision about
this, but can defer the decision to a point where we have a better understanding of the complexity
of the endeavour. The code that we do have is robust enough stay in production for the lifetime
of the system. Every step that we go on the formal side increases our confidence in the design,
and thus is not wasted, regardless of whether we will go to an actual implementation derived
from the formal model.

For instance, one of the proofs that we did concerns the way that chains of blocks are
distributed amongst nodes in the system. In the research paper, there is an abstract and perfect
notion of a network where every node can broadcast their chain to every other node, and then
each node will pick the “best” one according to certain rules. The proofs of the security of the
protocol assume this perfect broadcast, but it is not feasible to directly implement this in a real
world system; for one, nodes will already agree on a long prefix of the correct chain, so they
should only interchange the latest blocks. Also, in a large network, the abstract broadcast will
be implemented in terms of communications of each node with a limited number of peers. We
have been able to prove that our design for relaying blocks through the network is a refinement
of the abstract chain broadcast functionality in the paper.

Our plan is to produce more of those proofs, gradually increasing our (already good)
confidence in the correctness of the design of the existing implementation. We may also decide
to go one step further, and try to have parts of the implementation derived directly from the
formal version. In contrast to a traditional formal methods approach, this does not have to be
an all-or-nothing decision; instead, we get to pick the effort we are willig to spend, and the
boundary between the proven and unproven code.

5.1.3 Networking Layer

If we wish to stick to anatomical metaphors, the networking layer is most aptly compared to the
digestive tract. It nourishes everything, can get pretty messy, and it has to filter out garbage that
might be injected from the outside world.
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A PoS blockchain cryptocurrency like Cardano is very demanding on the networking side.
Ouroboros divides time into discrete slots, and elects slot leaders for the consensus in a pseudo-
random manner. For this to work, the next block in the blockchain has to traverse the network
from one elected leader to the next leader within the available time*, and it must do so success-
fully in the vast majority of cases. This places a hard real-time constraint on the networking layer.
At the same time, the network should be decentralised and permissionless, allowing anyone to
join the network. Not only is this in tension with ensuring performance, it also increases the
attack surface. Nodes in the system must interact with other potentially adversarial nodes, and
the design of this interaction has to enable honest nodes to avoid asymmetric resource attacks,
which is not simple in PoS designs.”.

The networking design for Cardano consists of nodes engaging in one-to-one protocols. To
reduce complexity, this communication is divided into separate concurrent “mini-protocols”,
each with a narrow focus®. The protocols are designed to ensure that honest nodes can work in
bounded resources; they all use consumer-driven control flow for example. The construction of
the peer-to-peer network aims to ensure rapid dispersion of information across the network, and
limiting an attacker’s ability to spam the network, or slow down the network by intentionally
delaying replies. We used simulations to verify that our peer selection algorithm (which takes
decisions locally) leads to suitable network topologies globally. The peer selection takes into
account both the number of hops to disperse information and the network distance of each hop,
relying on local measurements of the network distance to available peers.

Networking protocols can be hard to get right. Reducing complexity by having dedicated
mini-protocols for specific tasks was already very helpful, but we also wanted to reason formally
about those protocols. To do that, we used session types, modeling the communication between
two nodes as state machines. We intentionally restricted the admissible communication patterns,
so that in each state, one of the nodes could send a message, and the other had to expect and
handle any message by the other node. That restriction ensures that there can be no deadlocks
(since it there is no state in which both nodes are expecting a message), and also no race
conditions (since there is no state where two nodes send messages at the same time). And those
guarantees do not have to be proven manually, but are enforced by the Haskell type checker!

Both the network and consensus layers must make significant use of concurrency which
is notoriously hard to get right and to test. We use Software Transactional Memory(STM) to
manage the internal state of a node. While STM makes it much easier to write correct concurrent
code, it is of course still possible to get wrong, which leads to intermittent failures that are hard
to reproduce and debug.

In order to reliably test our code for such concurrency bugs, we wrote a simulator that can
execute the concurrent code with both timing determinism and giving global observability,
producing execution traces. This enables us to write property tests that can use the execution
traces and to run the tests in a deterministic way so that any failures are always reproducible.

The use of the mini-protocol design pattern, the encoding of protocol interactions in session
types and the use of a timing reproducable simulation has yielded several advantages:

+ Adding new protocols (for new functionality) with strong assurance that they will not
interact adversly with existing functionality and/or performance consistency.

4In the original version of Ouroboros [KRDO17] the time between slot leaders was fixed and the leaders were
known in advance, while in a later revision of the protocol, Ouroboros Praos [DGKR17], the time between slot leaders
follows a Poisson distribution and the leaders are not known in advance.

5In PoW systems, there is a distinct computational cost advantage for the honest nodes, in that validating a block
is very cheap (just hashing the block) but producing a block requires an enormous amount of computational work by
an adversary. In PoS, the computational costs are much more finely balanced and the validation checks require the
full ledger state, and thus a closer coupling of the networking layer with the rest of the application.

®For efficiency and to aid with network resource management complexity, we use multiplexing to just use one
network connection for all protocols between a pair of nodes.

11



+ Consistent approaches (re-usable design approaches) to issues of latency hiding, intra
mini-protocol flow control and timeouts / progress criteria.

+ Performance consistent protocol layer abstraction / subsitution: construct real world
realistic timing for operation without complexity of simulating all the underlying layer
protocol complexity. This helps designs / development to maintain performance target
awareness during development.

+ Consitent error propagation and mitigation (mini protocols to a peer live/die together)
removing issues of resource lifetime management away from mini-protocol designers /
implementors.

5.1.4 Integration

Having broken the design into components allowed us to parallelise work, which was crucial
to reduce development time. Unless done carefully, however, this can often lead to a situation
where after each component is finished and working in isolation, integration of the components
becomes unexpectedly painful and time intensive.

A common way to avoid that situation is to fix, up front, the interfaces between the com-
ponents, and ensure that every team works against those unyielding interfaces. But this goes
against our goal of flexibility: during the design and development process, we might discover
that the interfaces we put in place were not ideal, forcing one or more team to work around
those imperfections, making their component(s) clunkier, and the whole system more brittle
and inefficient than necessary. Conversely, a laissez-faire attitude to the interfaces is asking for
trouble during the integration phase. But we can find a middle ground.

For us, the key to avoiding problems with late integration was to perform large parts of the
integration at a very early stage, before any of the components was actually finished.

For the consensus/ledger integration, our design puts the consensus in control. It will access
functions provided by the ledger layer for things like transaction validation, evolving the ledger
state, or querying the distribution of stake between actors in the system (which is relevant for
the consensus itself in a PoS system). To achieve an early integration, the consensus layer is
developed against a Haskell type class representing an arbitrary ledger, that provides exactly the
functions that consensus needs. The result is a consensus implementation that is polymorphic
in the ledger.

When we noticed during development that we needed to change that type class, the team
was free to do so — after talking to the ledger team to ensure that there would be nothing
preventing writing an instance of the new type class for the real ledger.

The benefits of this approach go well beyond avoiding integration pains, though. Being able
to swap components proved to be very useful for running demos, and for testing. The ability to
demonstrate continuous progress to stakeholders is a key goal emphasised by agile techniques.
Performing demo sessions where we could show working code in different stages of readiness —
from a mock implementation, to an executable specification/prototype, through refinements of
these, up to the final production code — let us achieve this goal.

We used the same technique to improve the testability of our code. Not only could we run
tests for the consensus layer before the ledger was ready, by using a mock ledger. We also
wrote a mock implementation for the cryptography layer, that would not perform cryptographic
signatures, for testing purposes. Not only are tests using the mock cryptographic layer faster
and produce test output that is easier to analyse; it also simplified the process of generating and
shrinking test cases in property based testing.

To test resilience of the storage layer against file corruption, we wrote a mock implementation
that would simulate a file system. Not only did that allow us to run those tests consistently and
reproducably, it also allowed us to increase the frequency of file system errors during tests, to
find bugs during testing that would occur only after years of running in production otherwise.
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Finally, being polymorphic in the ledger allows IOHK to reuse the codebase for other
blockchain-based products.

+ Avoids both late integration pains and the inflexibility that comes with setting interfaces
in stone up front.

+ Better testability: tests can be performed independently of other components. That allows
us to run them before those components are ready, can make tests run faster, and test
output easier to understand.

+ Continuously assessing progress: we could run an early demo session using mock compo-
nents, use an executable specification (that would already have the real logic, but might
not be efficient, not feature persistence, etc) in another demo, and plug in the production
implementation when ready.

+ Facilitates code reuse in other projects.

5.1.5 Upcoming Features: Smart Contracts Languages Plutus and Marlowe

In IOHKSs forthcoming smart contract offering Plutus, formal methods have been involved from
the outset. Aspects of the design have been prototyped first in Agda before implementation
in Haskell [PJGK™19]. This is because the Agda type system and its interactive programming
environment provide greater assistance to the programmer that help speed up development on
certain tasks. Building on the methodology described in this paper, Plutus Core (the compilation
target for the Plutus language) has an executable specification written in Agda [CKNW19].
Plutus is a general purpose language for designing smart contracts that is closely related to
Haskell. It is complemented by the Marlowe [LST18] language, a domain specific language
specifically targetted at financial smart contracts. In Marlowe, formal methods also play a crucial
role; Marlowe programmers can use builtin support for static analysis when programming [IOH].
This functionality makes use of the Z3 SMT solver [DMBO08].

5.2 Lessons

We have learned several lessons from our experience.

Lesson 1: Flexibility. One key lesson is about flexibility. As we have outlined above, flexibility
can be an issue both with traditional formal methods and with agile development. In the
former case, changes may need to be filtered top-down from specification to implementation in
a laborious way. In the latter case, code can be hard to change once it is written. While short
term and small changes can easily be incorporated into an agile cycle, classic agile development
techniques offer no real assistance with major design changes. If code has not been designed
with flexibility in mind, then it will be hard to change. Inflexible code will need to either be
scrapped and redesigned (so restarting the agile cycle), or patched (so introducing potential
bugs). Since redesign and reimplementation is so expensive (in terms of time, effort, scarce
developers, as well as financially), patching is generally preferred. With classic heavyweight
formal methods, however, such an approach is usually not an option: redesign is essential if
formal properties are to be preserved. This reinforces the notion that formal methods must
always be expensive, and that they are incapable of incorporating even small design changes. By
adopting an agile mentality and by using suitably lightweight formal methods, we have been able
to quickly and effectively incorporate design changes, even at a late stage in the implementation
process, without either breaking code or restarting the development process. Using the type
system to bank the consensus between teams - type classes being especially useful in this respect
- proved to be an efficient technique for retaining flexibility in a large scale project.
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Lesson 2: Communication. A second major lesson that we have learned is about communi-
cation. Agile methods are effective partly because they are designed to ensure good internal
communication within a team (this may break down in practice, of course), but also, less ob-
viously, because they naturally improve external communication. Agile methods are effective
precisely because the results of the development process are visible externally: there should al-
ways be a workable fallback once the MVP is produced, and it is easy to evaluate the differences
between the current status of the product and what is wanted /needed (the feature list). In con-
trast, members of formal methods teams usually work independently and in isolation’. Proofs
either work perfectly or are completely incorrect, and it can be difficult to know what needs to
be done to make them work (or even whether the proof is possible). Although software can be
developed very quickly once a specification has been checked, until this is done there is nothing
to see apart from some (often incomprehensible and uncheckable) documents. This makes it
hard to evaluate externally what remains to be done to bring software into existence. Clearly
this creates a high degree of risk and uncertainty, as well as encouraging interventions that can
actually slow down the overall development process. By enforcing better communication (both
internal and external), including by providing regular measurable results, it is possible to bring
software projects to a quicker, more successful conclusion, without compromising on software
quality.

Lesson 3: No “Big Bang”. A third, related, lesson is about iteration. Rather than saving results
until a formal process is finished, it is important to share intermediate results, even if they
are not fully worked out. This has the key benefit of demonstrating progress, but also has the
advantage that it is possible to obtain constructive feedback, that can then be incorporated into
new designs and implementations. Sometimes, this reveals that some planned work is not
actually necessary, or that some part of the design or implementation can be eliminated, because
it is no longer required, or of reduced interest. This is, of course, part of a good agile approach.
Refinement-based or gradual approaches, where abstractions are made increasingly concrete,
can be highly effective. An advantage is that refinement can be stopped and restarted at any
point. By connecting the formal refinement process with software equivalents, high assurance
prototypes or demonstrators can be produced, with details left to be implemented at a later date.

Lesson 4: Ensure Consistency. A fourth lesson relates to testing and verification. By using a
formal approach, it is easy to demonstrate consistency between the design and the implementa-
tion. Formal properties can be derived, either manually or directly from a specification, that can
then be used as part of a methodical property-based testing approach, e.g. QuickCheck [CHO0]
or Hedgehog (https://hackage.haskell.org/package/hedgehog). At IOHK, we manually
translated the required formal properties into property-based tests.The same properties can
be used to support formal proofs, to drive a model checker or some other formal verification
technique. It is not necessary to use multiple techniques to verify the same property, but this
can give higher assurance. For example, a property can be manually proved to be sound, an
automated proof can be produced based on this, and assertions can be introduced into the
code. Since properties are derived systematically from the specification, effort can be focused
on the most important issues. Where there is good coverage or proofs have been produced, it
is possible to reduce testing if desired. Since testing is expensive and can seriously slow the
development process (especially where e.g. continuous testing is used), this can have a significant
positive benefit.

Lesson 5: Maintain Progress. A final lesson relates to diversion of effort. By maintaining focus
on the end goal of the software development process, as required by good agile development

7Like mediaeval monks, who are members of a silent order.
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methodologies, we can avoid diverting effort to short-term fixes that have no long-term benefit.
For example, by prioritising the properties that need to be proved or tested, we can avoid
wasting effort and so maintain progress towards the most important goals.

5.3 A new Methodology: Flexible Software Engineering

Our flexible software engineering methodology comprises the following eight elements. These
may apply at different levels of the classical software lifecycle (requirements, design, implemen-
tation, testing, deployment etc.).

Formal Requirements. Start with a good understanding of the problem. Develop this into a
formal specification. Produce suitable denotational or operational semantics if needed.

Properties. Identify important properties that the software should have. State these precisely
and formally. Prove the most important properties. Other properties can be used either as
the basis for formal verification, for property-based testing, or for normal unit testing etc.

Executable Specification. Produce an executable specification. By writing our implementation
in Haskell, it was possible to maintain a high degree of consistency between the design
and implementation.

Abstraction. Provide suitable abstractions that can be easily be instantiated in different ways.

Iteration. Work iteratively. Refine the system design to add more detail, verifying that these de-
tails do not violate the required properties. By using an executable specification approach,
it is possible to ensure that a working prototype is always available.

Redesign. Maintain design flexibility. Use suitable levels of abstraction (e.g. in Haskell, type
classes or polymorphic types), so that alternative implementations can be produced. Feed
new or changing requirements into the design and implementation process.

Prove, Test and Verify. Apply the right technology (manual/automated proof/automated test-
ing etc) to obtain the required assurances in the correct operation of the software.

Communication. Hold regular meetings to discuss progress, focus design and implementation
effort, discuss technical issues, and ensure that the team is aware of each other’s activities.
Encourage all team members to express concerns, suggest ideas, or to ask for technical
help. Hold regular detailed technical seminars to discuss new techniques or to investigate
specific issues in detail. Make sure that results are communicated throughout the organ-
isation (it may be necessary to use different techniques for this — senior management is
unlikely to read detailed soundness proofs, for example) and that input is taken.

By combining the best features of both agile and formal software development, we can obtain
significant advantages over either approach used independently. Functional programming
technology is, of course, critical to achieving this. Functional programming naturally supports
many lightweight formal methods, including advanced type mechanisms such as dependent
types, session types etc. Higher-order functions provide excellent abstraction mechanisms,
and enable flexible design and implementation. Formal proofs are much easier to relate to
implementations in a functional style. High levels of abstraction mean that it is easy to maintain
consistency between the design and implementation. Properties are easy to relate to software,
and there are good property-based testing systems. Software is concise, can often be executed
interactively, prototypes can easily be produced and demonstrated. Effects can be isolated and
contained using well-understood structuring mechanisms such as monads. It is easy to see that
the implementation conforms to the specification.
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Issue Agile | Formal | Flexible
Identify the requirements for the software Y? Y Y
Ensure that the software meets these requirements | Y? Y Y
Provide usable prototypes rapidly Y N Y
Minimise the costs of development Y? N? Y
Ensure that code is high quality N Y Y
Ensure that software is easy to use N N N
Ensure that changes can be made easily Y N Y

Be easily applied without extensive training N N ?

In short, we have found that we can obtain major practical benefits from our approach in terms
of both the speed of development and the quality of code that is produced.

6 Related Work

There is a vast literature on software development, and an equally vast literature on formal
methods. The potential for interaction between the two has not gone unnoticed: the annual
Formal Methods for Software Engineering conference publishes a regular collection of the latest
formal methods techniques and suggests how they might be deployed in practice. Software engi-
neering has moved away from classical “Waterfall” development towards “Agile” development.
This means a move away from a rigid specification-design-implement-test-debug-deploy cycle
towards a more flexible approach where phases are intermingled and a software development
team can work in a less hierarchical way. In many ways, this is more of a philosophy. It reflects
how actual software engineering has always been practiced, but encourages better internal
and external communication, earlier product release, and ideally responsiveness. Continuous
testing [AD14] using automated frameworks is a key part of the corpus: no software should
be committed without being tested against the recognised test suite. CT tools in common use
include ... Continuous integration, where changes are continually applied to a master version, is
also key to the success of an agile approach, ensuring that fixes and improvements can quickly
be made available to end-users. In the most ambitious projects, this can result in daily, or even
more frequent, software releases.

“Lean” software development [PP03] is one of the more extreme forms of agile development.
Here, the focus is on strong product design and minimising wasted effort. The goal is to produce
a “Minimal Viable Product” as quickly as possible. This requires very high levels of discipline:
it is necessary to avoid deviating from the most important goals, to avoid adding unnecessary
features, to test adequately but not excessively, and to quickly adapt to changing goals.

What is less common is the recognition that functional programming techniques can play
a key part in agile software engineering. They are the glue that holds together the flexible
software engineering methodology that we have described above, and that enables us to quickly
incorporate appropriate lightweight formal methods, while maintaining high levels of flexibility.
By building on well-understood, malleable and abstract functional components, we can quickly
and easily refine designs, use existing components as part of a new design, and The discipline
that is imposed by strong type systems means that we can have a high degree of confidence in
the correctness of any software that is released.

Safety critical systems are the more traditional application area of formal methods, as errors
in software for these systems can have grave impact, potentially causing accidents and hurting
or even killing people. At the same time there is a strong pressure to realize more and more
functionality in software which makes agile development approaches attractive for critical
systems. One research project in critical systems was the openETCS ® project from the rail
domain. The project developed a toolchain for ETCS (European train control system) which

84ww.openetcs.org
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supports agile development combined with formal methods [openetcs-miv(07]. Another research
project which investigated this was the Open-DO ? project from the avionics domain. In the
hi-lite 1 subproject, there was considerable tool development for making the use of formal
methods easier [hilite-L5.3], in particular by automating large parts of the formal proof effort.
Increased automation allows for more frequent changes by reducing the required work on
the formal model and proof part. Even for interactive theorem provers, this now allows for
proof-replay, automated proof-finding [CK18] and counterexample detection [BN10]. These
approaches are quite specific to their application domains. This is in contrast to our approach
which is independent. As there is currently no standard or regulation for development of
crypto-currencies, there is more freedom in our domain. Regardless, the approaches do share
automation as a common topic.

7 Conclusions

This paper has described the approach to complex software engineering that has been success-
fully deployed at IOHK for the construction of a new distributed blockchain. The Cardano
system is designed to support large-scale, verifiable transactions in a decentralised way, without
requiring the inefficient PoW consensus mechanism that is used by e.g. BitCoin. The new
flexible software development approach that we describe in this paper combines the speed and
visibility advantages of agile software development with the correctness advantages of formal
methods development, while also delivering additional new advantages in terms of the ease of
design change. This approach codifies our own experience, as well as that of others at the many
companies that are using functional programming and formal methods as part of an integrated
software development approach. While it is possible to obtain major benefits from such an
approach, it is still, of course, necessary to apply strong discipline, to direct effort towards the
most important goals, and to be aware of the importance of communication. Moreover, some
important aspects, such as usability, are not explicitly addressed by this approach, and while we
do not anticipate any major difficulties, we have not yet integrated non-functional requirements
(performance etc.). We intend to explore these in the future.

7.1 Achievements

To summarise, our main achievements are:

Flexibility: our approach supports flexibility of both design and implementation, and we
can deploy the right formal methods where needed (for example, we can leave “holes” to be
filled later by heavyweight techniques); Fusion: we have blended the best facets of formal
methods and agile software engineering into a coherent approach; Discipline and Method: our
approach encourages engineering discipline, including providing a basis for systematic (rather
than ad-hoc) testing, that links with good property-based testing; High Assurance: our approach
increases confidence that deep errors have been eliminated, and provides assurance that many
shallow errors have been eliminated; Speed and Effectiveness: by adopting agile software
development techniques, but increasing the usual level of rigour, we have been able to bring
large, complex software projects to completion quicker and more effectively than can be achieved
using purely agile techniques; Transparency: our approach clearly exposes requirements and
design decisions and tracks them through the full design, implementation and deployment cycle;
Explainability: our approach is explainable and defensible, both to formal methods experts and
to developers.

9www.open-do.org

Ohttp: //www.open-do.org/projects/hi-lite/
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7.2 Possible Improvements

We will continute to evolve our methodology, based on our experience in developing Cardano
and future projects. Below, we list some concrete improvements we will be pursuing. Firstly, in
certain places, we failed to use the right abstractions in our code. Refactoring the code to change
properties on Haskell type classes was time-consuming, for example. In hindsight, greater
abstraction would have allowed more flexibility and saved overall development time. Secondly,
we could and should have produced more prototypes and demonstrators. There was a tendency
for the team to hold back until software was correct rather than when it was working, which
could be perceived as a lack of progress. We could also have achieved better visibility of our
results both internally and externally (for example, some documents could be hard to find, more
blog posts could have been written, more interviews given, etc.).

Thirdly, we produced our executable specification and tests manually from the formal speci-
fication. It would have been more efficient and provided greater confidence in their consistency
if we had instead produced the executable specification and property-based tests directly from
the formal specification. We are not aware of suitably robust tooling that would allow us
to do this, unfortunately, but we would welcome any suggestions and future developments.
Finally, it is absolutely essential to use a shared repository when producing multi-authored
documents. We used github (https://www.github.com) as our document repository. This was
not ideal, since it imposes consistency checks and complications that are not appropriate to
document construction (the main purpose of github is to store software, which tends to change
much less dramatically than text). For example, our continuous builds were slow and often
required unimportant document changes, binary files (images) can be expensive to include,
trivial changes are flagged (requiring manual effort to check), and the merging strategy often
failed to automatically include text that was created independently (pushing us towards a
slower, single-threaded approach). We are not aware of a perfect solution to this, though Overleaf
(https://www.overleaf.com) provides a system for writing LateX documents that is easy to
use and maintains consistency through a git backend.
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