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I. I n t r o d u e t l o n  

In this paper we introduce a slight variation on the old idea of a memo-function. We 

call our variant "lazy memo-functions" since they are suitable for use in systems 

with lazy evaluation. Lazy memo-functions are much more useful than the conventional 

kind. They can be used to define functions on cyclic structures in a natural way, and 

to allow modular versions of algorithms to be used when the only efficient alterna- 

tive is to destroy the algorithm's structure. They can be implemented more effi- 

ciently than ordinary memo-functions, and can be used to define ordinary memo- 

functions if these are really required. 

Memo-functions were originally invented by Michie [14]. The idea behind them is very 

simple: a memo-function is like an ordinary function, but it remembers all the argu- 

ments it is applied to, together with the results computed from them. If it is ever 

re-applied to an argument the memo-function does not recompute the result, it just 

re-uses the result computed earlier. "Memolsation" is an optimisation which replaces 

a potentially expensive computation by a simple table look-up. 

The classic example of a function which can be improved by memoisation is the 

Fibonacci function. 

fib n = I, if n<2 

fib n = fib(n-l) + fib(n-2), otherwise 

Since each call of fib generates two rec~sive calls with smaller arguments, the cost 

of computing the nth Fibonacci n~ber in this way is exponential in n. Yet if fib is 

memoised, so that (fib n) is computed only once for each value of n, then the nth 

Fibonacci number can be computed in linear time. We will indicate memoisation by pre- 

fixing the equations defining a function by the keyword memo. 

memo fib n = I, if n<2 
memo fib n = flb(n-1) + fib(n-2), otherwise 

Memolsation can make an enormous difference to the efficiency of an algorithm. As in 

this case, the difference can be so large that it is impractical to use the algorithm 

without it. Indeed, Turner has remarked that memoisation is a generally useful tool 

for developing programs: often an elegant algorithm with exponentially bad perfor- 

mance can be converted into an efficient one by memolsation [20]. Bird reports that 

program development by transformation often results in an algorithm that would be 

efficient if it were memoised [3]. Keller and Lindstrom argue that "mathematical 

elegance in problem specifications can invite [needless function recomputation]" 
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[12]. Yet memoisation is rarely used in practice. Instead, such algorithms are 

transformed further so that the need for memoisation disappears. This involves the 

programmer in more work, and often destroys the modular structure of the algorithm, 

making it hard to understand and hard to modify. 

Why are memo-functions so rarely used in practice? One reason is that they are hard 

to implement efficiently when the argument to the memo-function is a compound data- 

structure. The memo-function must compare each argument against the arguments in its 

memo-table, and comparing data-structures for equality is expensive (a recursive pro- 

cedure is required). It is difficult to apply sophisticated techniques such as hash- 

ing to find equal structures. The alternative of storing all data-structures uniquely 

(using a hashing cons, see section 5) so that equality can be tested by a simple 

pointer comparison is even less attractive because it imposes an overhead on the 

creation of all data-structures, whether they are ever passed as arguments to memo- 

f~mctions or not. In a language with lazy evaluation this problem is aggravated: 

since verifying that two data-structures are equal requires that each be completely 

evaluated, all memoised functions are completely strict. This means they cannot be 

applied to circular or infinite arguments, or to arguments which (for one reason or 

another) cannot yet be completely evaluated. Therefore memo-functions cannot be com- 

bined with the most powerful features of lazy languages. Finally, memo-functions can 

interfere with garbage collection and cause otherwise harmless programs to run out of 

space. This is because the memo-table in which arguments and results are stored 

always grows. Even if an argument will never be passed to a memo-function again, it 

and the associated result remain in the memo-table taking up space. The implementa- 

tion cannot know when it is safe to delete such entries from the memo-table. 

2. Lazy Memo-f~tlons 

Our variant, lazy memo-functions, is intended to be used with lazy evaluation. It 

addresses all the problems discussed above to a greater or lesser extent. The basic 

idea is to weaken the requirement a memo-function must satisfy. Ordinary memo- 

functions are required to re-use previously computed results if applied to arguments 

equal to previous ones. Lazy memo-functions need only do so if applied to arguments 

identical to previous ones - that is, arguments stored in the same place in memory. 

In Lisp terms, we are using EQ to test for repeated arguments, rather than EQUAL. Two 

objects are tested for identity as follows: 

(i) 

(2) 

(3) 

If they are stored at the same address, they are identical. 
Return true. 
If they are atomic values (such as numbers, booleans, characters) 
they are identical if they are equal. 
Otherwise they are not identical. Return false. 

(We test atomic values for equality because, not being data-structures, they have no 

address to compare. Even if atoms are stored as data-structures it is essential that 

equal atoms be ~dentical to provide a base-case for unique, defined in section 5). 
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This is much more efficient than a potentially recursive equality test. In addition, 

memo-tables can be indexed by a hash value computed from the address of the stored 

argument, making memo-lookup more efficient. Hash techniques are hard to use with 

conventional memo-functions because equal structures must have the same hash value. 

Also we can see from the definition that the components of a compound object (such as 

a CONS cell) are not involved when the object is tested for identity. Thus in a lazy 

language it is possible to test partially evaluated objects for identity. The argu- 

ments to a lazy memo-function must be evaluated far enough to discover which object 

they refer to, but the components of that object need not be evaluated. Thus lazy 

memo-functions are strict only to one level. They combine well with lazy evaluation. 

Finally, it is possible to delete some entries from lazy memo-tables without risking 

repeating computations. When an argument stored in a memo-table is reclaimed by the 

garbage collector it can also be deleted from the memo-table, since it can never 

reappear as an argument to any function. Implementing this requires some care, 

though, since references from memo-tables themselves must not be counted. We will 

return to this in section 6. 

Lazy memo-functions can be implemented in terms of an identity test, hash tables, and 

assi~ament. Morris has suggested adding an identity test and hash tables directly to 

a functional language [15]. Unfortunately this compromises referential transparency, 

since equal structures cannot be substituted for equals in identity tests without 

changing the meaning. For example 

(lambda x. identical x x) (cons I 2) 

evaluates to true, but the supposedly equivalent 

identical (cons 1 2) (cons 1 2) 

evaluates to false, since the two calls of cons construct cells at different 

addresses. Lazy memo-functions provide some of the same power as Morris' primitives, 

and do not compromise referential transparency at all. 

3. F u n c t i o n s  on  C y o l l o  S t r u c t u r e s  

The most striking application of lazy memo-functions is to the manipulation of cyclic 

structures. These are used to represent infinite objects in a compact and efficient 

way. For example, the infinite list of ones can be represented by the cyclic struc- 

ture 

+----+------+ 

+ ......  11101 
I +___÷_ --÷ 

÷ ............. + 

The programmer creates cyclic structures using recursive declarations. For example, 

the structure above would be created by the declaration 
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ones = 1:ones 

(where ":" is the "cons" operator which adds an element to the front of a list. Our 

notation in this paper is based on Turner's language KRC [21] with a few liberties 

taken here and there). 

Unfortunately cyclic structures are not "first-class citizens", in the sense that any 

manipulation of a cyclic structure is likely to result in an infinite one. For exam- 

ple, one might try to define the infinite list of twos by 

twos = map double ones 
double x = 2*x 

where map returns the llst obtained by applying double to each element of ones. This 

definition makes twos a non-cycllc, infinite llst of twos. Essentially this is 

because there is no way for a f~ction to distinnguish a cyclic representation from a 

truly infinite one of the same data-structure, and therefore (map double) must return 

the same result whichever it is applied to. When it is applied to a truly infinite 

list, it cannot possibly predict that ali the elements of the llst will be one, and 

so it cannot possibly return a cyclic structure. Therefore it must return an infinite 

result even when its argument is cyclic. 

This means that cyclic structures must be manipulated with great care if they are not 

to become infinite. It is important to keep structures cyclic, not only because 

cyclic structures are much more compact than infinite ones, but because finite struc- 

tures take only a finite amount of work to build. Once completed they can be accessed 

freely. An infinite structure, on the other hand, consumes more and more computer 

time as more and more of it is created. 

Lazy memo-functions can help keep structures cyclic. To see why, let us return 

(map double ones). The definition of map is 

map f [] = [] 
map f (a:x) = f a:map f x 

(In KRC lists are written down by enclosing their elements in square brackets, so 

represents the empty list), and so 

map double ones = map double (1:ones) 
= double 1:map double ones 
= 2:map double ones 

(since ones=1:ones) 

So (map double ones) evaluates to the structure 

+------+------+ 

map double ones .... >I 2 I o ...... > map double ones 
+------+------+ 

to 

[] 

The arguments of the recursiw call of map are identical to the arguments of the 

first call. Therefore if map is memoised, the original result will be re-used, pro- 

ducing the structure 
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+------+------+ 

m a p  d o u b l e  o n e s  . . . .  > l  2 I o . . . . . .  > m a p  d o u b l e  o n e s  
+--> +---+---+ 

, I 
+ . . . . . . . . . . . . . . . . . . . . . . . . . .  + 

Since the recursive call forms part of the result of the first call, a cyclic struc- 

ture is created. (Cycles of length one are recognised and treated in the same way in 

Daisy [22]). The new definition of map is 

memo map f [] : [] 
memo map f (a:x) = f a:map f x 

So simply by writing the keyword memo in front of the equations defining map we can 

convert it into a function which produces cyclic results from cyclic arguments. (We 

adopt the convention that memo memoises a function with respect to all the arguments 

appearing in the memoised equation, so this definition of map is memoised with 

respect to both arguments. Map and (map f) are both memo-functlons. We do not con- 

sider whether any meaning can be given to definitions in which some equations are 

prefixed with memo and others are not). 

Another interesting example is the function zip, which takes two lists and constructs 

a list of pairs of corresponding elements. For example, (zip [a,b,c] [1,2,3]) is 

[[a,1],[b,2],[e,3]]. Zip can be defined by 

memo zip [] [] = [] 
memo zip (a:x) (b:y) = [a,b]:zip x y 

Now consider the cyclic lists 

ab = a: b: ab 
abc = a:b:c:abc 

Zipping these together gives 

zip ab abc= zip (a:b:ab) (a:b:c:abc) 
= [a,a]:zip (b:ab) (b:c:abc) 
= [a,a]:[b,b]:zlp ab (c:abc) 
= [a,a]:[b,b]:[a,c]:zip (b:ab) abc 
= [a,a]:Eb,b]:[a,c]:Eb,a]:zip ab (b:c:abc) 
= [a,a]:[b,b]:[a,c]:[b,a]:[a,b]:zip (b:ab) (c:abc) 
= [a,a]:[b,b]:[a,c]:[b,a]:[a,b]:[b,c]:zip ab abc 

At this point zip is applied to arguments identical to those of the first call, and a 

cyclic structure is constructed. This structure could also be defined by 

z = [a,a]:[b,b]:[a,c]:[b,a]:[a,b]:[b,c]:z 

Six llst cells are required to represent it (not counting cells used to represent 

pairs [a,a] etc.). This is the product of the number of cells used to represent each 

argument. 
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On the other hand, if ab is zipped together with itself, we get 

zip ab ao = [a,a]:zip (b:ab) (o:ab) 
= [a,a]:[b,b]:zip ab ab 

and so a cyclic structure with only two cells is created. In fact, the n~nber of 

cells in zip's result is the least common multiple of the number of cells in each 

argument. This behaviour is not trivial to predict, but the memo-mechanism automati- 

cally makes the results as small as possible. 

4. S t r u e t u s - t n s F u n e t t o n s  o n  T r e e s  

4.1 A Simple E]c~eple 

Lazy memo-functions can also be used to make modular versions of algorltb~s effi- 

cient. As a very simple example of this, consider the problem of finding the deepest 

leaves in a tree. Since there may be many leaves at the same depth, the result must 

be a list of leaves. Assuming that nodes in the tree are either (leaf x) or (node i 

r), we can define 

deepest (leaf x) = [x] 
deepest (node i r) = deepest i, i_~f depth l>depth r 

= deepest r, i_~f depth l<depth r 
= deepest 1 ++ deepest r, otherwise 

(where +÷ appends two lists together). We must also define the function depth: 

depth (leaf x) = 0 
depth (node i r) = I + max (depth i) (depth r) 

As it is written this algorithm is very inefficient, because the depth of each node 

is computed many times. The deepest parts of the tree have their depth computed as 

many times as there are levels in the tree. This makes the total cost of the algo- 

rithm quadratic in the size of the tree. All that is necessary to make it efficient 

is to memoise the function depth. Then the depth of each node is computed only once, 

and the whole algorithm requires time linear in the size of the tree. 

Deepest can be computed efficiently in other ways. For example, an extra component 

could be added to every node to hold the depth of the subtree below it. This tech- 

nique of storing additional data in trees is commonly used in imperative programs. 

However, it's rather unsatisfactory here. Because f~ctions are written using pat- 

tern matching, every function on trees must ,'know about" the extra component, even 

though it is often irrelevant. Responsibility for maintaining the depth information 

is divided among all the functions that construct trees, instead of localised in one 

place (depth). There is therefore greater scope for error. Finally, trees with added 

depth information are a different type from ordinary trees, so functions that are 

common to both types must be duplicated. Me~oising depth can be thought of as adding 

a "depth" field to those trees that need one, and in fact it has very similar space 

requirements. However, this is achieved in a transparent way and so the accompanying 

problems are avoided. 
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An alternative method is to combine the functions depth and deepest into one function 

wlth two results. This is the conventional "functional" solution, and it is equally 

efficient. However, the resulting function is large and complex compared to the ori- 

ginal two. Memoising depth is a simpler, more modular solution. 

Adding extra fields to data structures to hold derived values, and combining several 

functions into one with several results, are both common programming techniques. As 

in this simple example, memoisation can often offer a more elegant alternative. 

4.2 An I n t e r p r e t e r  f o r  t h e  Lambda-ca lculus  

Compilers and interpreters provide many examples where lazy memo-functions can be 

applied. They manipulate syntax trees, and often need to attach derived information 

to the nodes. We will discuss several examples of this type. The first is an inter- 

preter for the lambda-calculus. Lambda-expressions are represented by syntax trees 

with three different kinds of node, 

<exp> ::= id <string> Iapp <exp> <exp> I lam <string> <exp> 

The interpreter is a function called eval which takes a lambda-expression and reduces 

it to head normal form (HNF). An expression is in head normal form if it is not an 

application of a lambda-expression. There is no requirement that the parts of an 

expression in HNF be in HNF themselves. It follows that an expression in HNF must be 

either a lambda-expresslon (whose body may be in any form), or an application of an 

identifier to zero or more arguments (which may be in any form). Reduction to HNF is 

akin to lazy evaluation of functional programs, because the "components" of a result 

are not evaluated when the result is. 

Eval can be defined by 

eval (app f x) = apply (eval f) x 
eval E : E, otherwise 

apply (lam x e) a = eval (subst x a e) 
apply f a = app f a, otherwise 

where subst is a function which substitutes a for x wherever it occ~s in the syntax 

tree e. This interpreter quite correctly does not try to evaluate arguments to func- 

tions before substituting them into the function body. If it did so, it would risk 

going into an infinite loop, since the argument might be an expression which has no 

HNF and which causes eval to loop infinitely looking for it. If E is such an expres- 

sion then (app (id"f") E), for example, has a HNF - itself - which eval finds. If 

eval tried to evaluate the argument E it would fail to find this HNF. There is a 

penalty for this: arguments which are used several times in a function are rc- 

evaluated each tlme they are used. If eval is memoised this causes no problem. 

Without memoisation it makes the evaluator far too inefficient to be used - some 

expressions take exponentially longer to be evaluated. 

In this example the memolsation mechanism mimics the ordinary lazy evaluation mechan- 

ism. Just as the latter records the value of an expression the first time it is 
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computed so that subsequent evaluations do no work, so the memoised eval records the 

value of a node the first tlme it is computed, and never redoes the work. One can 

even add lazy memo-functions to the interpreted language by adding a new kind of 

lambda-expression, (memo <string> <exp>)., and a new equation to the definition of 

appl y: 

apply (memo x e) a = apmemo (memo x e) (eval a) 
memo apmemo (memo x e) a = eval (subst x a e) 

Since apmemo is itself memoised, it never applies the same memo-function to the same 

argument more than once, it just reuses the old result. The effect of this is that 

the interpreted memo-functlon is itself memoised. 

4.3 An Expert System ~ a l u a t ~ r  

Our second example of a "compiler/interpreter" is a logical expression evaluator for 

an expert system. This is a simplified version of one of the evaluators discussed 

in [4] which in turn was based on the evaluator in MYCIN [17]. The logical expres- 

sions are represented by syntax trees containing and, or and not nodes. 

<exp> ::= and <exp> <exp> I or <exp> <exp> I not <exp> I ask <string> 

At the leaves are "as~' nodes, which are evaluated by asking the user the question in 

the node and using the reply (true or false) as the value. The result of a logical 

expression is used to decide whether or not some hypothesis is true. For example, one 

might use the expression 

(or (not (ask "Will it start?")) (ask "Does it sound nasty?")) 

to decide whether or not there is anything wrong with an engine. Given an association 

list of questions and answers (qas), such a logical expression can be evaluated by 

the function eval defined by 

eval qas (ask q) = assoc qas q 
eval qas (and a b) = eval qas a & eval qas b 
eval qas (or a b) = eval qas a I eval qas b 
eval qas (not a) = ~eval qas a 

The questions which the user should be asked can be found using 

tions 

questions (ask q) = [q] 
questions (and a b) = union (questions a) (questions b) 
questions (or a b) = union (questions a) (questions b) 
questions (not a) = questions a 

the function ques- 

where union is used to ensure that the same question is not asked more than once. 

Now if the user's reply (a list of booleans) is zipped together with the llst of 

questions we get the association llst of questions and answers. Therefore we can 

define a function expert, which takes the user's input and a logical expression as 

arguments and returns a llst of questions and a boolean result as follows: 
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expert e input = [qs, ansi 
where qs = questions e 

qas = zip qs input 
ans= eval qas e 

This "expert system" leaves a lot to be desired, because it always asks the user all 

the questions in the tree. It would be far better to omit questions whose answer is 

irrelevant. For example, when evaluating the expression 

(or (ask "Do you drink?") (ask "Do you smoke")) 

it is unnecessary to ask the user if he smokes if he has already admitted to drink- 

ing, because the expression will evaluate to true in any case. Indeed, since the KRC 

'I' operator does not evaluate its right argument if the left one is true, eval will 

not even be applied to the second question. To take this into account, we define 

questions qas (and a b) = 
= union (questions qas a) 

(includeif (eval qas a=true) (questions qas b)) 
questions qas (or a b) = 

= union (questions qas a) 
(inoludeif (eval qas a=false) (questions qas b)) 

includelf true set = set 
ineludeif false set = [] 

(qas has to be supplied as an additional argument to questions since it now calls the 

evalvator). This modification makes the next question asked depend on the answers to 

the previous ones - the questions in the second branch of an or, for example, are 

asked only if the first branch evaluated to false. While this certainly works without 

memoisation it works very badly, since some expressions may be evaluated very many 

times in order to decide which questions to ask. To make it acceptably efficient eval 

must be memoised. This has the added advantage that if parts of the tree are shared 

between different branches then they are only evaluated once. 

4.4 Incremental Compilation 

An incremental compiler stores a representation of the user's program, together with 

its compiled code. It allows the user to edit his program, and recompiles as little 

as possible when changes are made. Keeping track of exactly which information need be 

recomputed after a change can be difficult. Memo-functions can be used to do this 

automatically. If an ordinary compiler is modified by adding a structure editor to 

allow the syntax tree to be edited, and memoising the main code generation functions, 

then it will work as an incremental compiler. After each change the code generator 

can be applied to the entire syntax tree, and new code will be generated only for 

those parts that have changed. 

4 .5  A Compiler  t o  Super~comblnators  

Our final example is a maximal free expression abstractor due to Bird [2]. Such an 

abstractor translates lambda-expressions into "super-combinators" [7]. It is based 

on the principle that, if a sub-expression E of a lambda-expression does not contain 

the bound variable (i.e. it is a free expression) then it can be "abstracted out". 
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(lam x ...E...) => (app (lain a (lain x ...a...)) E) 

where a is a new identifier. This transformation improves the program because the 

expression E is only evaluated once, rather than every time the function containing 

it is called. If all the maximal free expressions are abstracted out from lambda- 

expressions then the resulting program is "fully lazy" - it exhibits self-optimising 

properties first observed by Turner [19]. The lambda-expressions which remain have 

no free variables, and can therefore be implemented very efficiently [10]. Such 

lambda-expressions are called super-combinators. 

The ismbda-expresslons have the same structure as those in o~ interpreter for the 

lambda-calculus, except that the strings in identifier nodes are replaced by 

integers, being the nesting depth at which they are bound. Thus the most global 

identifier is replaced by I, the next most global by 2 and so on. The translator can 

be defined by 

trans (id n) = id n 
trans (app a b) = app (trans a) (trans b) 
trans (lam n b) = abstract (mfes nb') nb' 

where b' = trans b 

Assuming that (mfes nb') returns a list of the maximal subexpressions of b' which do 

not contain the variable n, abstract replaces them by new parameters of the lambda- 

expression. 

abstract m n b ~ mkapp m (mkcom (m++[id n]) b) 
mkapp [] f = f 
mkapp (a'm) f ~ mkapp m (app f a) 
mkcom m b ~ corn (length m) (subst m [1..length m] b) 

We have introduced a new kind of node, (com n e), to represent (super-)combinators. 

(Cam n e) represents a combinator with n arguments, which are referred to be the 

numbers 1..n in the body of the combinator. The combinator is constructed by the 

function mkcom, which used another version of subst to replace the maximal free 

expressions in the body of the combinator by integers. This version takes a llst of 

expressions to replace (m) and a list of replacement values ([1..length m]). The 

function mkapp constructs an application of the new combinator to the maximal free 

expressions. 

It only remains to define the function mfes, which identifies the maximal free 

expressions. This is easily done using an auxiliary function level which finds the 

maximum (most local) identifier in an expression. Then 

mfes n e ~ [e], if level e<n 
(that is, if the most local identifier in e is more 

global than n) 
mfes n (app a b) = union(mfes n a)(mfes nb), otherwise 

mfes n e = [], otherwise 

The first equation says that if an expression contains only identifiers more global 

than n then it is itself a free expression. The second says that applications which 

are not free may yet have sub-expresslons which are. Union is used so that the same 
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expression optimisation. The third equation says that other nodes (identifiers and 

comblnators) have no sub-expressions which might be free. The last function we need, 

level, can be defined by 

level (id n) = n 
level (app a b) = max (level a) (level b) 
level (com n b) = 0 

Level is never applied to lam nodes and so does not need to be defined for them. A 

combinator is taken to be level 0 - that is, more global than any identifier, or 

effectively a constant. This is almost an efficient program. Strangely enough, mfes 

only visits each node a constant number of times [2]. However, level may be applied 

to each node many times. In fact, much better results are obtained if the mfes are 

sorted into increasing order of level before being substituted for [8], and this 

requires still more calls of level. If level is memoised then the algorithm presented 

here works well. 

In fact, it is hard to write an efficient compiler to super-combinators without the 

aid of memo-functions. Other compilers (in imperative, functional and logic 

languages) appear in [8]; all are much more complex than this one. The functional 

version combines level, mfes, abstract and trans into one function in order to avoid 

repeated computation, but this is difficult because the patterns of recurslon in each 

function differ. The resulting function is much larger than the sum of the sizes of 

the individual functions. Johnsson's lambda-lifting is a closely related problem: his 

compiler works in a similar way and is almost as complex [11]. The alternative solu- 

tion of storing level information in the nodes before compilation is hard to apply 

because the easiest way to find the level of a lambda expression is to compile it. 

4.6 S~mTmary 

In this section we have shown that lazy memo-functions can be used to make certain 

modular but inefficient algorithms efficient, where the alternatives destroy the 

program's structure in one way or another. We have argued in [9] that the most 

important advantage of functional languages is that they provide new forms of "glue" 

for combining solutions to sub-problems, thereby allowing problems to be decomposed 

in new ways and increasing modularity. These new glues are higher-order functions and 

lazy evaluation. Memo-functions are a third kind of glue in this sense. 

5. Hashing  CONS and Full Memo-fLmetions 

When we defined lazy memo-functions we relaxed the requirement that a memo-function 

avoid recomputation when applied to equal arguments, requiring it only to avoid 

recomputation when applied to identical ones. If "full" memo-functions (that is, the 

original kind) are really required they can be defined in terms of lazy ones. 

This is done using a "hashing cons" [18]. A hashing cons (hcons) is like cons, but 

does not allocate a new cell if one already exists with an identical head and tail 

(that was allocated by hcons). Hcons is easily defined by 
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memo hcons a b = a:b 

Using hcons, we can define a function that makes a unique copy of a structure. 

unique (a:b) = hcons (unique a) (unique b) 
unique x = x, otherwise (x is atomic) 

If a and b are two equal structures, then (unique a) and (unique b) are identical. 

This is clearly true for atoms, and therefore it is true for any structure built from 

atoms using cons by structural induction. Now, to make a function f into a full 

memo-function it is only necessary to apply unique to its arguments. 

f x = g (unique x) 

memo g x = ... body of f ... 

When f is applied to equal arguments unique makes them identical, and then the lazy 

memo-function g avoids recomputation of the result. Of course, full memo-functlons 

defined in this way suffer from all the same disadvantages as full memo-functlons 

defined in any other way - they are relatively inefficient, completely strict, and 

the memo-tables keep growing. 

6. Implementat ion  I s s u e s  

Lazy memo-functions can be implemented by maintaining a memo-table of previous argu- 

ments and results. Since the test for re-occurrence of an argument is a pointer com- 

parison rather than a recursive equality test the memo-table can be organised more 

efficiently than the memo-table for a full memo-function. It might be organised as a 

hash table or as a binary tree, for example. We won't go into such details here, but 

we will examine the problem of ever growing memo-tables. 

In [13] Keller and Sleep give a comprehensive discussion of the implementation of 

full memo-functions. The most serious problem they raise is that memo-tables grow 

constantly - the more a memo-function is used, the more arguments and results are 

stored in its memo-table. Unless this growth is checked the memo-tables may become so 

large that no space is left for the rest of the computation. Keller and Sleep propose 

various caching strategies for deleting entries from memo-tables. Hilden compares 

strategies experimentally, for a particular function [6]. Unfortunately, any such 

strategy must be ad hoc, since one can never know for certain that a function will 

never be applied to a particular argument again. 

Are lazy memo-functions any better? There are two ways in which they can help with 

this problem. Firstly, in many of the examples we discussed above the programmer 

knows when the memo-table should be emptied. For example, when using map with a 

cyclic argument it is vital that nothing should be deleted from the memo-table while 

a particular cyclic list is being mapped, for if it were a genuinely infinite result 

might be computed. However, once the mapping is over all entries for that cyclic llst 

can be deleted. The programmer does not care whether or not he gets an identical 

result if he maps the same function over the same list again. He only cares that he 

gets a cyclic result each time he does it. It is sufficient to create a local memo- 
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table for each "top-level" application of map, which can be thrown away in its 

entirety when that application of map is completed. The programmer can elicit this 

behavio~ by declaring a recursive memo-function local to map as follows: 

map f 1 = m 1 
where memo m [] = [] 
- -  memo m (a:x) = f a:m x 

With this definition a new memo-function with its own memo-table is created each time 

map is applied, and it exists just long enough to copy the cyclic argument, after 

which it is deleted in the normal way by the garbage collector. By localising memo- 

f~ctions in this way the programmer can go a long way towards solving the problem 

himself. 

Of course, there remain memo-functions which cannot be locallsed and so have long 

enough lifetimes to accumulate gigantic memo-tables. Most of the memo-functions in 

section 4 are of this type. Yet even here lazy memo-functions can make a contribu- 

tion. Although it is impossible to predict that a function will never again be 

applied to an argument equal to a previous one, it is easy to predict that a function 

will never again be applied to an identical one when that argument is deleted by the 

garbage collector. So the garbage collector can be used to delete entries from memo- 

tables when they are no longer required. There is a difficulty here. By definition, 

all arguments stored in accessible memo-tables are accessible, and so a garbage col- 

lector using the normal rule that all accessible structures are preserved would not 

delete them. It follows that references from memo-tables to stored arguments must not 

count. The problem lles with references from memo-tables to stored results. If the 

corresponding argument is preserved then the result must also be preserved, since it 

must be returned should the memo-function be applied to the argument. On the other 

hand, if the argument is deleted then the result can be too. Since the garbage col- 

lector may find the memo-table before it has reached some of the stored arguments, it 

cannot know when dealing with the memo-table which of the stored results must be 

preserved. Consideration of memo-tables cannot be postponed to the end of garbage 

collection because some objects (and some stored arguments) may only be accessible 

via stored results of other stored arguments. We shall show how this problem can be 

resolved in mark-scan and copying collectors. The technique we use was first used by 

Friedman and Wise to delete entries from a scatter table [5]. 

6.1 Mark-scan Garbage C o l l e c t i o n  

In the case of a mark-scan collector, we assume that all cells are the same size and 

have room for two pointers and some type bits. We assume that memo-table entries are 

stored in a cell of recognisable type 

memo-entry 
+ .......... + 

I a r g u m e n t  . . . . . . . . . . . . . .  > 
+ . . . . . . . . . .  + 

I result, 1 

+ .... I ..... + 
! 

V 
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We assume that a memo-table is a list (or perhaps a binary tree) of memo-entries, and 

that the root cell is also of a recognisable type. 

During the mark phase, when the garbage collector finds a memo-table it marks it, but 

marks the memo-entries only if the argument is already marked or is atomic. In these 

cases it also marks the result. If the argument is not yet marked, we have the struc- 

ture 

memo-entry 
+ .......... + + ........ + 

I argument ..................... >I head l 
+ .......... + + ........ ÷ 

I result I 1 tail I 

+ .... I ..... + + ........ + 

I 
V 

The garbage collector reverses the pointers from the memo-entry to the argument, pro- 

ducing the structure 

memo- ant ry 
+ . . . . . . . . . .  + + ........ + 

1 head I< ....................... o 1 
+ . . . . . . . . . .  + + ........ + 

I result l l tail I 
I 

+ .... I ..... + + ........ + 

I 
V 

If several memo-entries (in different memo-tables) refer to the same unmarked argu- 

ment this results in a llst of unmarked memo-entries hanging from the head of the 

argument. 

memo-entry memo-entry 
+ . . . . . . . . . .  + + . . . . . . . . . .  + + ........ + 

I head I< ....... o I< ............... o i 
+ .......... + + . . . . . . . . . .  + + ........ + 

I result 1 I result 1 1 tail 1 
i i 

I I 
v V 

When the garbage collector marks a cell whose head refers to a memo-entry it restores 

all these pointers to their original state and marks the memo-entries and their 

results. (The pointer stored in the head of the argument can be tagged specially if a 

bit is available so that no indirection is necessary to test whether it refers to a 

memo-entry). At the end of the mark phase all memo-entries, arguments and results 

that are still required have been marked. Memo-entries which are not required contain 

corrupted information. 

The sweep phase proceeds as normal, except that when a marked memo-table is found, 

unmarked memo-entries are deleted from it and marked cells in the structure of the 

memo-table that are no longer required are returned to the freelist. 
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Phil Wadler has pointed out that the garbage collector could also delete memo-entries 

whose result is not pointed to from elsewhere, even if the argument is. This could 

make the program less efficient, but cannot otherwise affect its behaviour. It cannot 

even affect the results of future identity tests, because if the memo-entry is recom- 

puted then the result can never be tested for identity against the previous result. 

We have not pursued this ideaany further, as it would require a non-trivial modifi- 

cation to the algorithm. 

6.2 Copying Garbage Collection 

Copying garbage collectors [I] use two heaps, only one of which is normally active. 

When the active heap be comes full all accessible structures are copied onto the inac- 

tive heap, which then becomes the active one. It is often used in virtual memory 

implementations because the inactive heap costs nothing. 

This kind of garbage collector can cope with variable sized nodes with no difficulty, 

so we assume that memo-tables are stored as contiguous vectors organised as hash 

tables. Each memo-entry consists of a pointer to the argument, a pointer to the 

result, and a pointer to the beginning of the memo-table. (This last pointer is 

present so that a pointer to a memo-entry also identifies a memo-table. It may not 

require a whole word on some machines since it can be stored as a relatively small 

offset). Since the copying process changes the addresses at which objects are stored 

memo-tables must be completely reorganised during garbage collection. 

When a memo-table is copied to the new heap, all the entries in the new table are 

cleared and the address of the copy is stored in the header of the old one. Any 

entries whose arguments have already been copied are then inserted into the new 

table, and the corresponding results are copied. Entries whose arguments have not 

been copied have their pointers reversed, as in the mark-scan collector. The reversed 

pointer points at the memo-entry, not at the start of the memo-table. If one of these 

arguments is later copied to the new heap then the pointers are restored and the 

entry is inserted into the new memo-table (which can be found by following the 

pointer in the entry to the start of the old memo-table, and from the header of the 

old table to the new one). At the end of the garbage collection all accessible memo- 

tables have been reorganised and copied into the new heap, and all inaccessible argu- 

ments and results deleted. 

This method neutralises one of the advantages of copying garbage collectors, that the 

new heap need only be accessed sequentially. Random access is required to the new 

memo-tables. This disadvantage can be minlmlsed by storing memo-tables in a separate 

area of heap, so that the bulk of the new heap is still accessed sequentially. For 

example, each heap might be arranged with normal data stored at low addresses and 

memo-tables stored at high addresses, so that a garbage collection occurs when the 

two meet. 

A representation with reversed pointers proved very useful in each garbage collection 

algorithm. This suggests yet another implementation of memo-functions, in which the 

memo-tables are always stored in the reversed form as ,'property lists" attached to 

nodes. Peyton-Jones has proposed such a representation as a way of "memolsing the 
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data" rather than the function [16]. This has the advantage that memo-tables are 

likely to be small (perhaps just one or two entries), making memo-lookup very fast. 

The problems of garbage collection are eased because as soon as a data-structure is 

no longer required all its memo-entries automatically disappear. There is still a 

difficulty, namely that of deleting memo-entries when the memo-functlon referred to 

is no longer required, but this is less severe unless many different memo-functions 

are created dynamically (this is true of many of the examples above). A more serious 

disadvantage is that it is hard to see how functions of many arguments could be 

memo-lsed in this way. 

Of course, no garbage collection mechanism can delete entries with atomic arguments 

from memo-tables, because an atom (such as "2") cannot be deleted in any sense. 

Therefore certain lazy memo-functions (such as hashing cons) still accumulate larger 

and larger memo-tables. Nevertheless, the problem is much reduced - it now arises 

only when one insists on using lazy memo-functions to implement full ones. In exam- 

ples such as those in section 4 these techniques should prove very effective. 

7. C o n c l u s i o n  

We introduced a slight variation on the old idea of a memo-f~nction. Our memo- 

functions combine well with lazy evaluation, and so we call them "lazy memo- 

functions". Lazy memo-functions increase the expressive power of a functional 

language, allowing cyclic structures to be treated as first class citizens, and 

allowing many modular but unreasonably inefficient algorithms to be used directly. 

Bird and Turner have observed that such algorithms are often derived during the 

development of a program. Lazy memo-functions can speed up program development by 

allowing it to stop at that point. The stages which are omitted thereby can destroy 

the structure of a program and render it obscure. Lazy memo-functions can be imple- 

mented efficiently and reduce the effect of "expanding memo-tables" considerably. 

We have not discussed methods for reasoning about memo-functions. Although memoisa- 

tion (of semi-strlct functions) cannot compromise correctness, it does affect space- 

and tlme-efficiency. This adds an extra dimension to the analysis of efficiency which 

could make it much more difficult. In this paper we have reasoned very informally 

about the efficiency of such programs, but a more formal treatment must await future 

work. This is probably the most serious disadvantage of lazy memo-functions. 
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