
Monads and all that… Exercises John Hughes 

1. The Tree Monad 
The Tree type defined in the lecture can actually be interpreted as a monad—we can think of a value 

of type Tree a as a computation delivering a tree of results, such as one might use in a search 

algorithm, for example. Write the Monad instance for this type. 

You can check your definition by copying the following into the file Tree.hs, and adding your 

definition to it. 

module Tree where 

import Control.Monad 

import Test.QuickCheck 

import MonadLaws 

 

data Tree a = Leaf a | Branch (Tree a) (Tree a) 

  deriving (Eq, Show) 

 

instance Arbitrary a => Arbitrary (Tree a) where 

  arbitrary = frequency [(2,liftM Leaf arbitrary), 

               (1,liftM2 Branch arbitrary arbitrary)] 

  shrink (Branch l r) =  

    [l,r]++map (Branch l) (shrink r)++map (`Branch`r) (shrink l) 

  shrink (Leaf a) = map Leaf (shrink a) 

 

prop_TreeLeftUnit  = prop_LeftUnit  :: PropLeftUnit Tree 

prop_TreeRightUnit = prop_RightUnit :: PropRightUnit Tree 

prop_TreeAssoc     = prop_Assoc     :: PropAssoc Tree 

 

As well as a definition of the Tree type, this code defines how to generate random trees 

(arbitrary)1, and how to simplify a tree in a failed test (shrink). It also defines property 

instances for testing the monad laws. These property instances use another module, MonadLaws, 

that you will need to copy into the file MonadLaws.hs. 

module MonadLaws where 

import Test.QuickCheck 

import Test.QuickCheck.Function 

 

type PropLeftUnit m = Integer -> Fun Integer (m Integer) -> Bool 

 

prop_LeftUnit x (Fun _ f) = (return x >>= f) == f x 

 

type PropRightUnit m = m Integer -> Bool 

 

prop_RightUnit m = (m >>= return) == m 

 

type PropAssoc m = m Integer ->  

               Fun Integer (m Integer) -> 

              Fun Integer (m Integer) -> 

  Bool 

 

 

                                                           
1
 Leaves are given a higher weight than branches to ensure that random generation terminates. 
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prop_Assoc m (Fun _ f) (Fun _ g) = 

  ((m >>= f) >>= g) 

  == 

  (m >>= \x -> f x >>= g) 

 

Add your definition of the Monad instance for Tree, load Tree.hs into ghci, make sure it type-

checks, and then test the laws. 

I’m not familiar with Haskell—how do I do that? 

Install the Haskell Platform. Once you’ve done so, on Windows it’s convenient to use WinGHCi, which 

you will find in the Haskell Platform folder in the Start menu. On Linux/Mac just type ghci in the shell. 

To load a file into ghci, type either 

:l <filename without the .hs> 

or, in WinGHCi, use the File->Load… menu item. Imported modules will also be loaded, and any 

compile-time errors will be reported. 

Once you have loaded your code, you can evaluate expressions at the ghci prompt. To test the 

monad laws, just type 

quickCheck prop_TreeLeftUnit 

and so on. 

2. The State Monad 
Copy the following code into State.hs. 

module State where 

 

import Control.Monad 

import Test.QuickCheck 

 

newtype State s a = MkState {unState :: s -> (a,s)} 

 

instance Monad (State s) where 

  return x = MkState (\s -> (x,s)) 

  MkState f >>= g = MkState (\s -> let (a,s') = f s in 

                   unState (g a) s') 

 

get :: State s s 

get = undefined 

 

put :: s -> State s () 

put s = undefined 

 

(===) ::  

  Eq a => State Integer a -> State Integer a -> Integer -> Bool 

(f === g) s = unState f s == unState g s 

 

prop_get_get = 

  do x <- get 



Monads and all that… Exercises John Hughes 

     y <- get 

     return (x,y) 

  === 

  do x <- get 

     return (x,x) 

 

It defines the state monad presented in the lecture, but using a newtype definition rather than a 

type synonym, so that it is accepted by GHC. Instead of a tick operation to increment the state, it 

defines a get operation to read the state, and a put operation to write the state. But these 

definitions are incomplete—finish them. 

It is a little awkward to generate random values of the State type (we would need to generate 

values containing a QuickCheck Fun, and convert them into the State type as needed), so instead we 

use QuickCheck to formulate and test some properties of put and get.  The (===) operator 

checks that two values of type State Integer a deliver the same value and final state, when 

invoked in the same state. It can be used to define properties such as prop_get_get, which says 

that two consecutive gets are equivalent to a single one. Check that this property passes (using 

quickCheck prop_get_get), and add and test properties relating puts and gets in either 

order, and relating two puts to one put. 

3. Readers and Writers 
The state monad lets us thread a state through a program, passing it in to each computation, and 

returning a new state after each one. Sometimes, though, we need only to do one of these things. 

The Reader s monad lets us pass a state into a computation, but does not let us modify it: 

newtype Reader s a = MkReader {unReader :: s -> a} 

 

ask :: Reader s s 

 
The Writer s monad lets us return state from a computation, but does not let us read it. Since we 

may write the state many times in a computation, we collect a list of state values: 

data Writer s a = MkWriter [s] a 

 

tell :: s -> Writer s () 

 

Write Monad instances for Reader s and Writer s, and definitions of ask and tell, and make 

sure they type-check. 

The version of the Writer monad in the Haskell libraries is a little more general than this: is allows the 

state  to be of any monoid type, rather than just lists; we need to be able to combine states (a binary 

operator) in (>>=), we need an “empty” state to use in return, and the monad laws demand that 

these form a monoid.  
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4. The List Monad 
Haskell’s list type is also a monad—think of it as representing computations that return zero, one, or 

more answers. Try to define a suitable Monad instance for lists2: 

instance Monad [] where 

  return x = … 

  xs >>= f = … 
 

Sadly, you cannot compile this definition yourself, because a monad instance for lists is already 

defined. Instead, you will need to define an isomorphic list type MyList, and write your instance for 

that. Copy the following code into MyList.hs, add a suitable Monad instance, and test the monad 

laws. 

{-# LANGUAGE GeneralizedNewtypeDeriving #-} 

module MyList where 

 

import Control.Monad 

import Test.QuickCheck 

import MonadLaws 

 

newtype MyList a = MkList {unList :: [a]} 

  deriving (Eq, Show, Arbitrary) 

 

prop_MyListLeftUnit  = prop_LeftUnit  :: PropLeftUnit MyList 

prop_MyListRightUnit = prop_RightUnit :: PropRightUnit MyList 

prop_MyListAssoc     = prop_Assoc     :: PropAssoc MyList 

 

mymap f (MkList xs)    = MkList (map f xs) 

 

flat :: MyList (MyList a) -> MyList a 

flat (MkList xs) = MkList (concat (map unList xs)) 

 

This code defines the MyList type, inheriting test data generation from the underlying list type via 

“deriving Arbitrary”—the pragma at the top enables this useful extension to Haskell 98. It 

defines monomorphic properties for testing the monad laws, and then a pair of useful auxiliary 

functions for writing a Monad instance. Add your own Monad instance, and test the stated 

properties, now. Try varying your definitions, and see whether the monad laws then fail. 

Once you have experimented a little, read the next section of the exercise. 

It turns out that there is another plausible way to write a Monad instance for MyList. If you found 

the expected definition, then the flat function will have played a central role in the definition of 

(>>=). This function just concatenates a list of lists to obtain a list of all the elements. But if we 

think of a list of lists as a matrix, then there is another natural way to extract a list of elements—we 

can just take the diagonal of the matrix! Add the following code to your file: 

diag :: MyList (MyList a) -> MyList a 

diag (MkList (MkList (x:xs):xss)) =  

  mycons x (diag (MkList (map mydrop xss))) 

                                                           
2
 The parameterised list type in Haskell is written [], so [] a  is the same type as [a]. 
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diag _ = MkList [] 

 

mycons x (MkList xs)   = MkList (x:xs) 

 

mydrop (MkList (x:xs)) = MkList xs 

mydrop (MkList [])     = MkList [] 

 

Now, what if we replace the concatenation in (>>=) with the diagonal—do we get another, 

different monad? 

It turns out that we have to modify the return function too; the right definition of return in this 

case should construct an infinite list. 

return x = MkList (repeat x) 

This in turn means that we may need to compare infinite lists as we test the monad laws. Of course, 

this will not terminate—so let us replace the definition of equality for MyList with an approximate 

equality that only compares the first 100 elements. This is good enough for testing the monad laws; 

we expect that any failures will be observable in far fewer than 100 elements. Add the following 

instance definition to your code, and remove the “Eq,” from the deriving clause. 

instance Eq a => Eq (MyList a) where 

  MkList xs == MkList ys = take 100 xs == take 100 ys 

 

Complete a Monad instance using diag. Is the result really a monad? 

 


