
Monads and all that… Exercises John Hughes

1. The Tree Monad
The Tree type defined in the lecture can actually be interpreted as a monad—we can think of a value

of type Tree a as a computation delivering a tree of results, such as one might use in a search

algorithm, for example. Write the Monad instance for this type.

You can check your definition by copying the following into the file Tree.hs, and adding your

definition to it.

module Tree where

import Control.Monad

import Test.QuickCheck

import MonadLaws

data Tree a = Leaf a | Branch (Tree a) (Tree a)

 deriving (Eq, Show)

instance Arbitrary a => Arbitrary (Tree a) where

 arbitrary = frequency [(2,liftM Leaf arbitrary),

 (1,liftM2 Branch arbitrary arbitrary)]

 shrink (Branch l r) =

 [l,r]++map (Branch l) (shrink r)++map (`Branch`r) (shrink l)

 shrink (Leaf a) = map Leaf (shrink a)

prop_TreeLeftUnit = prop_LeftUnit :: PropLeftUnit Tree

prop_TreeRightUnit = prop_RightUnit :: PropRightUnit Tree

prop_TreeAssoc = prop_Assoc :: PropAssoc Tree

As well as a definition of the Tree type, this code defines how to generate random trees

(arbitrary)1, and how to simplify a tree in a failed test (shrink). It also defines property

instances for testing the monad laws. These property instances use another module, MonadLaws,

that you will need to copy into the file MonadLaws.hs.

module MonadLaws where

import Test.QuickCheck

import Test.QuickCheck.Function

type PropLeftUnit m = Integer -> Fun Integer (m Integer) -> Bool

prop_LeftUnit x (Fun _ f) = (return x >>= f) == f x

type PropRightUnit m = m Integer -> Bool

prop_RightUnit m = (m >>= return) == m

type PropAssoc m = m Integer ->

 Fun Integer (m Integer) ->

 Fun Integer (m Integer) ->

 Bool

1
 Leaves are given a higher weight than branches to ensure that random generation terminates.

Monads and all that… Exercises John Hughes

prop_Assoc m (Fun _ f) (Fun _ g) =

 ((m >>= f) >>= g)

 ==

 (m >>= \x -> f x >>= g)

Add your definition of the Monad instance for Tree, load Tree.hs into ghci, make sure it type-

checks, and then test the laws.

I’m not familiar with Haskell—how do I do that?

Install the Haskell Platform. Once you’ve done so, on Windows it’s convenient to use WinGHCi, which

you will find in the Haskell Platform folder in the Start menu. On Linux/Mac just type ghci in the shell.

To load a file into ghci, type either

:l <filename without the .hs>

or, in WinGHCi, use the File->Load… menu item. Imported modules will also be loaded, and any

compile-time errors will be reported.

Once you have loaded your code, you can evaluate expressions at the ghci prompt. To test the

monad laws, just type

quickCheck prop_TreeLeftUnit

and so on.

2. The State Monad
Copy the following code into State.hs.

module State where

import Control.Monad

import Test.QuickCheck

newtype State s a = MkState {unState :: s -> (a,s)}

instance Monad (State s) where

 return x = MkState (\s -> (x,s))

 MkState f >>= g = MkState (\s -> let (a,s') = f s in

 unState (g a) s')

get :: State s s

get = undefined

put :: s -> State s ()

put s = undefined

(===) ::

 Eq a => State Integer a -> State Integer a -> Integer -> Bool

(f === g) s = unState f s == unState g s

prop_get_get =

 do x <- get

Monads and all that… Exercises John Hughes

 y <- get

 return (x,y)

 ===

 do x <- get

 return (x,x)

It defines the state monad presented in the lecture, but using a newtype definition rather than a

type synonym, so that it is accepted by GHC. Instead of a tick operation to increment the state, it

defines a get operation to read the state, and a put operation to write the state. But these

definitions are incomplete—finish them.

It is a little awkward to generate random values of the State type (we would need to generate

values containing a QuickCheck Fun, and convert them into the State type as needed), so instead we

use QuickCheck to formulate and test some properties of put and get. The (===) operator

checks that two values of type State Integer a deliver the same value and final state, when

invoked in the same state. It can be used to define properties such as prop_get_get, which says

that two consecutive gets are equivalent to a single one. Check that this property passes (using

quickCheck prop_get_get), and add and test properties relating puts and gets in either

order, and relating two puts to one put.

3. Readers and Writers
The state monad lets us thread a state through a program, passing it in to each computation, and

returning a new state after each one. Sometimes, though, we need only to do one of these things.

The Reader s monad lets us pass a state into a computation, but does not let us modify it:

newtype Reader s a = MkReader {unReader :: s -> a}

ask :: Reader s s

The Writer s monad lets us return state from a computation, but does not let us read it. Since we

may write the state many times in a computation, we collect a list of state values:

data Writer s a = MkWriter [s] a

tell :: s -> Writer s ()

Write Monad instances for Reader s and Writer s, and definitions of ask and tell, and make

sure they type-check.

The version of the Writer monad in the Haskell libraries is a little more general than this: is allows the

state to be of any monoid type, rather than just lists; we need to be able to combine states (a binary

operator) in (>>=), we need an “empty” state to use in return, and the monad laws demand that

these form a monoid.

Monads and all that… Exercises John Hughes

4. The List Monad
Haskell’s list type is also a monad—think of it as representing computations that return zero, one, or

more answers. Try to define a suitable Monad instance for lists2:

instance Monad [] where

 return x = …

 xs >>= f = …

Sadly, you cannot compile this definition yourself, because a monad instance for lists is already

defined. Instead, you will need to define an isomorphic list type MyList, and write your instance for

that. Copy the following code into MyList.hs, add a suitable Monad instance, and test the monad

laws.

{-# LANGUAGE GeneralizedNewtypeDeriving #-}

module MyList where

import Control.Monad

import Test.QuickCheck

import MonadLaws

newtype MyList a = MkList {unList :: [a]}

 deriving (Eq, Show, Arbitrary)

prop_MyListLeftUnit = prop_LeftUnit :: PropLeftUnit MyList

prop_MyListRightUnit = prop_RightUnit :: PropRightUnit MyList

prop_MyListAssoc = prop_Assoc :: PropAssoc MyList

mymap f (MkList xs) = MkList (map f xs)

flat :: MyList (MyList a) -> MyList a

flat (MkList xs) = MkList (concat (map unList xs))

This code defines the MyList type, inheriting test data generation from the underlying list type via

“deriving Arbitrary”—the pragma at the top enables this useful extension to Haskell 98. It

defines monomorphic properties for testing the monad laws, and then a pair of useful auxiliary

functions for writing a Monad instance. Add your own Monad instance, and test the stated

properties, now. Try varying your definitions, and see whether the monad laws then fail.

Once you have experimented a little, read the next section of the exercise.

It turns out that there is another plausible way to write a Monad instance for MyList. If you found

the expected definition, then the flat function will have played a central role in the definition of

(>>=). This function just concatenates a list of lists to obtain a list of all the elements. But if we

think of a list of lists as a matrix, then there is another natural way to extract a list of elements—we

can just take the diagonal of the matrix! Add the following code to your file:

diag :: MyList (MyList a) -> MyList a

diag (MkList (MkList (x:xs):xss)) =

 mycons x (diag (MkList (map mydrop xss)))

2
 The parameterised list type in Haskell is written [], so [] a is the same type as [a].

Monads and all that… Exercises John Hughes

diag _ = MkList []

mycons x (MkList xs) = MkList (x:xs)

mydrop (MkList (x:xs)) = MkList xs

mydrop (MkList []) = MkList []

Now, what if we replace the concatenation in (>>=) with the diagonal—do we get another,

different monad?

It turns out that we have to modify the return function too; the right definition of return in this

case should construct an infinite list.

return x = MkList (repeat x)

This in turn means that we may need to compare infinite lists as we test the monad laws. Of course,

this will not terminate—so let us replace the definition of equality for MyList with an approximate

equality that only compares the first 100 elements. This is good enough for testing the monad laws;

we expect that any failures will be observable in far fewer than 100 elements. Add the following

instance definition to your code, and remove the “Eq,” from the deriving clause.

instance Eq a => Eq (MyList a) where

 MkList xs == MkList ys = take 100 xs == take 100 ys

Complete a Monad instance using diag. Is the result really a monad?

