
Stateful Systems

John Hughes

QuickCheck Generators 101

• newtype Gen a = ...

• sample :: Show a => Gen a -> IO ()

A random generator
for values of type a

A function that generates
and displays random
samples

choose
> sample $ choose (1,100)
23
25
40
51
39
17
45
98
88
90
68

elements :: [a] -> Gen a

> sample $ elements ["a","b","c"]
"b"
"b"
"a"
"c"
"c"
"a"
"c"
"b"
"c"
"b"
"b"

oneof :: [Gen a] -> Gen a
> sample $ oneof [choose (1,10),choose(100,1000)]
859
978
7
9
336
3
8
390
936
3
947

class Arbitrary a where
arbitrary :: Gen a

> sample (arbitrary :: Gen [Int])
[]
[-1]
[-4,-2]
[]
[1,3,-1,6,6]
[-4,2,-7,-10,-6,-8,-9,10,-8,-9]
[-3,9,-8,5,9]
[-7,0,14,7,-9,-11,-5,9,-12,9]
[15,11]
[-15,-12,-17,-12,-5,14,-12,16,16,4,-14]
[2,-6,10,7,11]

Default generators
for a bunch of built-
in types; extensible
for each new type

Example: a Process Registry

• Three operations [inspired by the Erlang process registry]
register :: String -> ThreadId -> IO ()
unregister :: String -> IO ()
whereis :: String -> IO (Maybe ThreadId)

• A simple example
> tid <- forkIO (threadDelay 100000000)
> tid
ThreadId 252
> register "me" tid
> whereis "me"
Just ThreadId 252
> unregister "me"
> whereis "me"
Nothing

registerArguments Results

registerArguments Results

Helps us generate
a meaningful test

Day 2: Model based tests

Actual
input

Model
input

Actual
operation

Actual
output

Model
output

Model
operation

Abstraction
function

Abstraction
function

Actual
input

Model
input

Actual operation

Actual
output

Model
output

Model
operation

Abstraction function

Abstraction function

Actual
input

Model
input

Actual operation

Actual
output

Model
output

Model
operation

Abstraction function

Actual
input

Model
input

Actual operation

Actual
output

Model
output

Model
operation

Abstraction function

Known state

Generate, then test

State Modelling Libraries

• Concept of a state and an action

• The library generates, shrinks, and executes the
action sequences…

• …given that the user does the same for the actions

State Modelling Libraries

• Quviq QuickCheck eqc_statem
• …
• Test.StateMachine in quickcheck-state-

machine

• A simple one: StateModel.hs

Back to the Registry

• What is the state model?

• What are the actions?

data RegState = RegState{ … }

We’ll fill this is in
as we discover
what’s needed

register
unregister
whereis
spawn

Is there anything
else I need to do
in test sequences?

I need to create
threads dynamically
in each test run!

instance StateModel RegState where

data Action RegState =

Spawn
| WhereIs String
| Register String ThreadId
| Unregister String

Models are instances of
this class

instance StateModel RegState where

data Action RegState =

Spawn
| WhereIs String
| Register String ThreadId
| Unregister String

This isn’t available
until test execution
time!

Models are instances of
this class

spawn

register

Step 1 Step 2 Step 3 Step 4 Step 5 Step 6 Step 7 Step 8 Step 9

Label every
action with a
step number

instance StateModel RegState where

data Action RegState =

Spawn
| WhereIs String

| Register String Step
| Unregister String

instance StateModel RegState where

data Action RegState =

Spawn
| WhereIs String

| Register String Step
| Unregister String

instance StateModel RegState where

…

arbitraryAction s =
oneof [return Spawn,

Register
<$>
<*>

]

…a name…
…a step…

How should names be chosen?

• We want the same name to appear repeatedly in
the same test case

• Probably the actual strings used is not important

allNames = ["a", "b", "c", "d", "e"]

arbitraryName = elements allNames

instance StateModel RegState where

…

arbitraryAction s =
oneof [return Spawn,

Register
<$> arbitraryName
<*>

]
…a step…

How should a step be chosen?

• Random step number?

• One of the steps of a previous Spawn!

• How can we know which steps were Spawn?

• We keep track of it in the model state!

data RegState = RegState{
tids :: [Step]

}

instance StateModel RegState where

…
initialState = RegState []

nextState s Spawn step =
s{tids = step:tids s}

nextState s _ _ = s

Usually we use a
record so we can
easily extend it

Thread ids

State Action
Current step

Default case specifies
no effect for other
actions… so far

instance StateModel RegState where

…

arbitraryAction s =
oneof [return Spawn,

Register
<$> arbitraryName
<*> elements (tids s)

]

Action generation
can depend on
the state

Just choose a result
from a previous
Spawn!

Now we can generate tests!

White lie:
The code won’t compile without

data Ret RegState = Ret
type ActionMonad RegState = IO

Now we can generate tests!
> sample (arbitrary :: Gen (Script RegState))
Script
[(Step 1,Spawn),
(Step 2,Register "d" (Step 1))]

Script
[(Step 1,Spawn),
(Step 2,Register "b" (Step 1)),
(Step 3,Register "c" (Step 1)),
(Step 4,Spawn)]

Script
[(Step 1,Spawn),
(Step 2,Spawn)]

Script
[(Step 1,Register "c" (Step *RegistryModel> ***

Exception: QuickCheck.elements used with empty list

A test case is
called a
Script

Steps paired with
Actions

instance StateModel RegState where

…

precondition s (Register name step)
= step `elem` tids s

precondition _ _ = True

StateModel does not
generate (or shrink to)
sequences with a False
precondition

This is False if
tids s is
empty

Now we really can generate tests!
*RegistryModel> sample (arbitrary :: Gen (Script RegState))
Script []
Script []
Script
[(Step 1,Spawn),
(Step 2,Spawn),
(Step 3,Spawn),
(Step 4,Register "e" (Step 3)),
(Step 5,Spawn),
(Step 6,Register "c" (Step 3)),
(Step 7,Spawn)]

Script
[(Step 1,Spawn)]

Script
[(Step 1,Spawn),
(Step 2,Spawn),
(Step 3,Spawn),
(Step 4,Spawn),
(Step 5,Register "e" (Step 1))]

Script
[(Step 1,Spawn),
(Step 2,Spawn),
(Step 3,Spawn)]

Script
[(Step 1,Spawn),
(Step 2,Spawn)]

Script
[(Step 1,Spawn),
(Step 2,Register "c" (Step 1)),
(Step 3,Register "d" (Step 1)),
(Step 4,Spawn),
(Step 5,Register "a" (Step 4)),
(Step 6,Register "a" (Step 1)),
(Step 7,Register "b" (Step 4)),
(Step 8,Spawn),
(Step 9,Spawn),
(Step 10,Spawn),
(Step 11,Register "e" (Step 8)),
(Step 12,Spawn),
(Step 13,Register "e" (Step 12)),
(Step 14,Register "a" (Step 12)),
(Step 15,Register "b" (Step 9)),
(Step 16,Register "b" (Step 8)),
(Step 17,Register "a" (Step 9)),
(Step 18,Register "d" (Step 8)),
(Step 19,Register "e" (Step 4)),
(Step 20,Register "b" (Step 12)),
(Step 21,Register "d" (Step 4)),
(Step 22,Spawn),
(Step 23,Spawn),
(Step 24,Spawn),
(Step 25,Register "c" (Step 1)),

(Step 26,Spawn),
(Step 27,Spawn),
(Step 28,Register "a" (Step 12)),
(Step 29,Register "c" (Step 9)),
(Step 30,Spawn),
(Step 31,Spawn),
(Step 32,Spawn),
(Step 33,Spawn),
(Step 34,Register "e" (Step 32)),
(Step 35,Spawn),
(Step 36,Register "d" (Step 9)),
(Step 37,Register "e" (Step 24)),
(Step 38,Register "a" (Step 27)),
(Step 39,Spawn),
(Step 40,Register "a" (Step 26))]

Script
[(Step 1,Spawn),
(Step 2,Spawn),
(Step 3,Register "d" (Step 2)),
(Step 4,Register "a" (Step 2)),
(Step 5,Spawn),
(Step 6,Spawn),
(Step 7,Spawn),
(Step 8,Register "b" (Step 6)),
(Step 9,Register "e" (Step 6)),
(Step 10,Spawn)]

Script
[(Step 1,Spawn),
(Step 2,Spawn),
(Step 3,Register "a" (Step 2)),
(Step 4,Spawn),
(Step 5,Register "c" (Step 2)),
(Step 6,Register "d" (Step 4)),
(Step 7,Spawn),
(Step 8,Register "c" (Step 1)),
(Step 9,Spawn),
(Step 10,Register "e" (Step 1)),
(Step 11,Spawn),
(Step 12,Register "b" (Step 1)),
(Step 13,Spawn),
(Step 14,Spawn)]

Script
[(Step 1,Spawn),
(Step 2,Register "c" (Step 1)),
(Step 3,Spawn),
(Step 4,Register "e" (Step 3)),
(Step 5,Spawn)]

How do we perform Actions?

perform Spawn
= forkIO (threadDelay 10000000)

perform (Register name step)
= register name step

Ten second
wait time—
enough

Different types
This is a Step,
not a ThreadId

Return Values

instance StateModel RegState where

…

data Ret RegState
= Tid ThreadId
| None ()

Return type
from Spawn

Return type from
Register

perform Spawn []
= Tid <$> forkIO (threadDelay 10000000)

perform (Register name step) [Tid tid]
= None <$> register name tidstep

We need a
ThreadId Let’s just

pass one in

Who’s going to
pass that in?

StateModel!

We’re going to
tell it to!

How will it
know to do it?

perform Spawn []
= Tid <$> forkIO (threadDelay 10000000)

perform (Register name step) [Tid tid]
= None <$> register name tid

needs (Register _ step) = [step]
needs _ = []

While performing a test,
StateModel determines
what each action needs…

…and passes it
to perform

perform :: Action state -> [Ret state] ->
ActionMonad state (Ret state)IO

type ActionMonad RegState = IO

The property

prop_Registry :: Script RegState -> Property
prop_Registry s = monadicIO $ do

runScript s
assert True

data RegState = RegState{ tids :: [Step] }
deriving Show

instance StateModel RegState where

data Action RegState = Spawn
| WhereIs String
| Register String Step
| Unregister String

deriving Show

data Ret RegState = Tid ThreadId
| None ()

deriving (Eq,Show)

type ActionMonad RegState = IO

arbitraryAction s =
oneof [return Spawn,

Register
<$> arbitraryName
<*> elements (tids s)

]

initialState = RegState []

nextState s Spawn step =
s{tids = step:tids s}

nextState s _ _ = s

precondition s (Register name step) =
step `elem` tids s

precondition _ _ = True

needs (Register _ step) = [step]
needs _ = []

perform Spawn _
= Tid <$> forkIO (threadDelay 10000000)

perform (Register name step) [Tid tid]
= None <$> register name tid

arbitraryName = elements allNames

allNames = ["a", "b", "c", "d", "e"]

prop_Registry :: Script RegState -> Property
prop_Registry s = monadicIO $ do
runScript s
assert True

Model State

Associated Types

Action Generator

State Transitions

Preconditions

Performing Actions

Extra Generators

Overall Property

<50 LOC

We can run tests!
*RegistryModel> quickCheck prop_Registry
*** Failed! (after 4 tests and 1 shrink):
Exception:

bad argument
CallStack (from HasCallStack):
error, called at .\Registry.hs:50:10 in main:Registry

Script
[(Step 1,Spawn),
(Step 2,Register "d" (Step 1))]

We can run tests!
*RegistryModel> quickCheck prop_Registry
*** Failed! (after 4 tests and 1 shrink):
Exception:

bad argument
CallStack (from HasCallStack):
error, called at .\Registry.hs:50:10 in main:Registry

Script
[(Step 1,Spawn),
(Step 2,Register "d" (Step 1))]

The script

We can run tests!
*RegistryModel> quickCheck prop_Registry
*** Failed! (after 4 tests and 1 shrink):
Exception:

bad argument
CallStack (from HasCallStack):
error, called at .\Registry.hs:50:10 in main:Registry

Script
[(Step 1,Spawn),
(Step 2,Register "d" (Step 1))]

The script

Let me run it again…
*RegistryModel> quickCheck . withMaxSuccess 1 $
prop_Registry $ Script
[(Step 1,Spawn),
(Step 2,Register "d" (Step 1))]

+++ OK, passed 1 test:
100% Register
100% Spawn

Actions (2 in total):
50% Register
50% Spawn

Copied and
pasted the
test case

It passes!

Let’s run it again!
*RegistryModel> quickCheck . withMaxSuccess 1 $
prop_Registry $ Script
[(Step 1,Spawn),
(Step 2,Register "d" (Step 1))]

*** Failed! (after 1 test):
Exception:

bad argument
CallStack (from HasCallStack):
error, called at .\Registry.hs:50:10 in main:Registry

Fails when less than
ten seconds passed
since the last test

Test Test Test Test

Test outcomes depend on
the previous tests!

Tests that succeed or fail
at random strongly

suggest interference
between tests

DON’T TRY TO
DEBUG THIS!!!

Always start in a known state!

prop_Registry :: Script RegState -> Property
prop_Registry s = monadicIO $ do

run cleanUp
runScript s
assert True

cleanUp = sequence
[try (unregister name)

:: IO (Either ErrorCall ())
| name <- allNames]

At the beginning
of the test case

*RegistryModel> quickCheck prop_Registry
*** Failed! (after 5 tests and 2 shrinks):
Exception:

bad argument
CallStack (from HasCallStack):
error, called at .\Registry.hs:50:10 in main:Registry

Script
[(Step 3,Spawn),
(Step 4,Spawn),
(Step 5,Register "d" (Step 3)),
(Step 11,Register "d" (Step 4))]

We get a shrunk
test case with all
the relevant info

We tried to
register the
same name twice!

Positive testing
• We test the cases that should work

• Our tests should not include calls that will fail!
• Advantage: we test the interesting intended behaviour

Negative testing
• We include failing calls in our tests

• We catch exceptions and check that the error behaviour
is as it should be

• Advantage: can expose all kinds of dangerous
behaviours and vulnerabilities in cases many forget to
test

Positive testing

• We should not call register twice with the same
name

• We need to know which names have been
registered

Strengthen the
precondition

Enrich the model state

Enriching the model state

data RegState = RegState{
tids :: [Step],
regs :: [(String,Step)]

}

The registered
name

The registered ThreadId
(represented by the Step
when it was created)

Updating the model state

initialState = RegState [] []

nextState s Spawn step =
s{tids = step:tids s}

nextState s (Register name tid) step =
s{regs = (name,tid):regs s}

nextState s _ _ = s

The new precondition

precondition s (Register name step) =
step `elem` tids s

&& name `notElem` map fst (regs s)
precondition _ _ = True

Repeating the same test
*RegistryModel> quickCheck . withMaxSuccess 1 $
prop_Registry $ Script
[(Step 3,Spawn),
(Step 4,Spawn),
(Step 5,Register "d" (Step 3)),
(Step 11,Register "d" (Step 4))]

*** Gave up! Passed only 0 tests; 10 discarded tests:

The precondition
caused every test to
be discarded

*RegistryModel> quickCheck . withMaxSuccess
10000 $ prop_Registry

+++ OK, passed 10000 tests:
92.97% Spawn
82.05% Register

Actions (253566 in total):
88.3257% Spawn
11.6743% Register

The proportion of
tests that performed
a Spawn or a
Register at all

Spawn and Register
as a proportion of all
actions performed

Positive testing of unregister

Exercise for the reader!

Adding whereis

whereis :: String -> IO (Maybe ThreadId)

arbitraryAction s =
oneof […,

WhereIs
<$> arbitraryName

]

Performing WhereIs

perform (Whereis name) []

= MaybeTid <$> whereis name

A new type of result

data Ret RegState =
Tid ThreadId

| None ()

| MaybeTid (Maybe ThreadId)

Tests pass, but…

*RegistryModel> quickCheck . withMaxSuccess 1000 $
prop_Registry
+++ OK, passed 1000 tests:
87.0% Spawn
85.8% WhereIs
73.9% Register
54.1% Unregister

Actions (25755 in total):
36.199% Spawn
35.733% WhereIs
16.622% Register
11.446% Unregister

We’re not checking
the result!

Checking whereis

whereis :: String -> IO (Maybe ThreadId)

Do we get Just
tid when name
is in the registry?

Do we get the
correct ThreadId?

Action

WhereIs String

Return Value

MaybeTid (Maybe ThreadId)

Model State

regs :: [(String,Step)]

We need to
know the value
at each Step

postcondition ::
state ->
Action state ->
(Step -> Ret state) ->
Ret state -> Bool

postcondition s
(WhereIs name)
stepValue
(MaybeTid mtid) =

(stepValue <$> lookup name (regs s))
==

(Tid <$> mtid)

postcondition _ _ _ _ = True

Maybe Step
Maybe ThreadId

Maybe
(Ret RegState)

postcondition ::
state ->
Action state ->
(Step -> Ret state) ->
Ret state -> Bool

postcondition s
(WhereIs name)
stepValue
(MaybeTid mtid) =

(stepValue <$> lookup name (regs s))
==

(Tid <$> mtid)

postcondition _ _ _ _ = True

If this pattern
doesn’t match, the
error is undetected!

Rather than a catch-all…

postcondition s Spawn _ (Tid _) = True

postcondition s (Register name step) _ (None _) = True

postcondition s (Unregister name) _ (None _) = True

postcondition _ _ _ _ = False

Check the return type
for each Action

Fail if any call returns a wrongly-
tagged result (defends against
mistakes in perform)

Negative testing

• We should include calls that might fail in test
cases—e.g. call register twice with the same name

• We should test whether or not an exception was
correctly raised

Weaken the
precondition

Catch exceptions and write
a postcondition to
check them

precondition s (Unregister name) =
...

precondition _ _ = True

precondition s (Register name step) =
step `elem` tids s

positive s (Register name step) =

positive s _ = True

We will still need to know
whether a call ought to succeed

&& name `notElem` map fst (regs s)
Of course we still
can’t register a
non-existent tid

*RegistryModel> quickCheck prop_Registry
*** Failed! (after 9 tests and 4 shrinks):
Exception:
bad argument
CallStack (from HasCallStack):
error, called at .\Registry.hs:54:10 in

main:Registry
Script
[(Step 2,Spawn),
(Step 3,Spawn),

(Step 4,Register "a" (Step 2)),

(Step 7,Register "a" (Step 3))]

Catching the exception

perform (Register name step) [Tid tid]

= Caught <$> try (register name tid)= None <$> register name tid

data Ret RegState =
Tid ThreadId

| None ()

| Caught (Either ErrorCall ())

*RegistryModel> quickCheck prop_Registry
*** Failed! Assertion failed (after 6 tests and 3
shrinks):
Script
[(Step 10,Spawn),
(Step 12,Register "a" (Step 10))]

Step 10: Spawn [] --> Tid ThreadId 194198
Step 12: Register "a" (Step 10) [Tid ThreadId 194198] -->
Caught (Right ())

When there’s no
exception, we see
the arguments and
return values

postcondition
failed because the tag
was wrong

postcondition

s (Register name step) _ (None _)
= True

postcondition

s (Register name step) _ (Caught (Right()))
= True

*RegistryModel> quickCheck prop_Registry
*** Failed! Assertion failed (after 13 tests and 4 shrinks):
Script
[(Step 2,Spawn),
(Step 4,Spawn),

(Step 9,Register "e" (Step 2)),
(Step 10,Register "e" (Step 4))]

Step 2: Spawn [] --> Tid ThreadId 194312
Step 4: Spawn [] --> Tid ThreadId 194313
Step 9: Register "e" (Step 2) [Tid ThreadId 194312] -->
Caught (Right ())
Step 10: Register "e" (Step 4) [Tid ThreadId 194313] -->

Caught (Left bad argument
CallStack (from HasCallStack):

error, called at .\Registry.hs:54:10 in main:Registry)

A postcondition for +/-ve cases

postcondition s (Register name step) _ (Caught res) =

positive s (Register name step)
==

(res == Right ())

*RegistryModel> quickCheck . prop_Registry $ Script
[(Step 2,Spawn),
(Step 4,Spawn),
(Step 9,Register "e" (Step 2)),
(Step 10,Register "e" (Step 4))]

+++ OK, passed 100 tests:
…

class (...) => StateModel state where

data Action state
data Ret state
type ActionMonad state :: * -> *

arbitraryAction :: state -> Gen (Action state)
perform :: Action state -> [Ret state] ->

ActionMonad state (Ret state)
needs :: Action state -> [Step]

initialState :: state
nextState :: state -> Action state -> Step -> state

precondition :: state -> Action state -> Bool
postcondition :: state -> Action state ->

(Step -> Ret state) -> Ret state ->
Bool

Key takeaways

• Stateful software is harder to test than pure
functions, but state-machine models offer an
effective way to do so.

• Random generation and shrinking is still highly
effective, but intricate enough that a good library is
essential.

• Stateful software is widespread: most tests used by
Quviq customers are of this form.

	Stateful Systems
	QuickCheck Generators 101
	choose
	elements :: [a] -> Gen a
	oneof :: [Gen a] -> Gen a
	class Arbitrary a where� arbitrary :: Gen a
	Example: a Process Registry
	Bildnummer 8
	Bildnummer 14
	Bildnummer 15
	Day 2: Model based tests
	Bildnummer 17
	Generate, then test
	State Modelling Libraries
	State Modelling Libraries
	Back to the Registry
	Bildnummer 22
	Bildnummer 23
	Bildnummer 24
	Bildnummer 25
	Bildnummer 26
	Bildnummer 27
	How should names be chosen?
	Bildnummer 29
	How should a step be chosen?
	Bildnummer 31
	Bildnummer 32
	Now we can generate tests!
	Now we can generate tests!
	Bildnummer 35
	Now we really can generate tests!
	How do we perform Actions?
	Return Values
	Bildnummer 39
	Bildnummer 40
	Bildnummer 41
	Bildnummer 42
	The property
	Bildnummer 44
	We can run tests!
	We can run tests!
	We can run tests!
	Let me run it again…
	Let’s run it again!
	Bildnummer 50
	Bildnummer 51
	Always start in a known state!
	Bildnummer 53
	Bildnummer 54
	Positive testing
	Enriching the model state
	Updating the model state
	The new precondition
	Repeating the same test
	Bildnummer 60
	Positive testing of unregister
	Adding whereis
	Performing WhereIs
	Tests pass, but…
	Checking whereis
	Bildnummer 66
	Bildnummer 67
	Rather than a catch-all…
	Negative testing
	Bildnummer 70
	Bildnummer 71
	Catching the exception
	Bildnummer 73
	Bildnummer 74
	Bildnummer 75
	A postcondition for +/-ve cases
	Bildnummer 77
	Key takeaways

