%)
)
<
Q0
>
I
c
<
O
—_

Quuvi

CHALMERS

We need to specify the
Anato my of a prope rty type, to determine what

data will be generated

* A function that shguld always return True”
X and xs are the test case, which
will be randomly generated

prop Delete :: Int32 -> [Int32] -> Bool
prop Delete x xs =
not (x elem delete x xs)

Once an element has been
deleted from a list, it should
no longer be present

"Not quite—the truth is a bit more general

Testing a property

import Test.QuickCheck

prop Delete :: Int32 -> [Int32] -> Bool

prop Delete x xs =
not (x "elem delete x xs)

*Example> quickCheck prop Delete
+++ OK, passed 100 tests.
*Example> quickCheck prop Delete
+++ OK, passed 100 tests.
*Example> quickCheck prop Delete
+++ OK, passed 100 tests.

Testing a property

*Example> quickCheck prop Delete

*** Fajled! Falsifiable (after 9 tests and 1 shrink):
2 <
[2,2]

prop Delete x xs =
not (x elem delete x xs)

*Example> delete 2 [2,2]
[2]

More examples

*Example> quickCheck prop Delete

*** Failed! Falsifiable (after 9 tests and 2 shrinks):
-12

[-12,-12]

*Example> quickCheck prop Delete
*** Failed! Falsifiable (after 7 tests and):
-7

['7:'7]

*Example> quickCheck prop Delete
*** Failed! Falsifiable (after 4 tests):

shrinking discarded list

\ elements that don’t affect
different examples (random) the failure

Easy
debugging

Everything in the reported test case is

relevant to the failure!
We know we must have both

elements for the test to fail;
otherwise QuickCheck would
[2 2] shr/nk it to

[2]

Where is the bug?

* We have a failing test!

*Example> quickCheck prop Delete

*** Fajled! Falsifiable (after 10 tests and 4 shrinks):
6

[6,6]

* |s delete in Data.List wrong?

What shall we do about it?

* The property fails for repeated values in the list.

prop Delete x xs =
Xs == nub xs ==
not (x elem delete x xs)

*Example> quickCheck . withMaxSuccess 10000 $ prop Delete
+++ OK, passed 10000 tests.

* |s this reasonable?

A common approach...

* Find a bug with QuickCheck

* Characterize the situations in which the bug
appears as a predicate

* Add a precondition:
not (buggy x xs) ==> ...

Is this a documented
restriction?

Are we sure the code is
never used in this way?

Can we at least check
that this is the case?

We don’t think A

/%T anybody will do
that! y
~

We don’t think
anybody should
do that!

)

Our code isn’t
supposed to work

i |
S in that case! y

Don’t test this—

Preconditions we know it
doesn’t work!

Another criticism

prop Delete x xs =
not (x elem delete x xs)

* The property is weak!

delete x xs = []
passes this test!

IDEA: construct a test case with a
predictable result

prop Delete x xs ys =
delete x (xs++[x]++ys) == xs++ys

*Example> quickCheck prop Delete

*** Failed! Falsifiable (after 19 tests and 8 shrinks):
6

[6,0]
[]

IDEA: construct a test case with a
predictable result

prop Delete x xs ys =
delete x (xs++[x]++ys) === xs++ys

*Example> quickCheck prop Delete

*** Failed! Falsifiable (after 19 tests and 8 shrinks):
6

[6,0]
[]
[0,6] /= [6,0] delete 6 [6,0,6]

A good property

prop Delete x xs ys
not (x elem xs) ==
delete x (xs++[x]++ys) === xs++ys

*Example> quickCheck . withMaxSuccess 10000 $ prop Delete)
+++ OK, passed 10000 tests.

e Precisely characterizes the behaviour of delete, in all
cases when x occurs in the argument.

Unit tests for Base64 encoding

testTwoPads =
encode "Aladdin:open sesame"
=== "QWxhZGRpbjpvcGVuIHNlc2FtZQ==""

testOnePad =
encode "Hello World"
=== "SGVsbG8gV29ybGQ=""

testNoPad =
encode "Aladdin:open sesam"
=== "QWxhZGRpbjpvcGVuIHNlc2Ft"

testSymbols =
encode "0123456789!@#0*&* () ;:<>,. [1{}"
=== "MDEyMzQ1Njc40OSFAIzBeJiooKTs6PD4sLiBbXXt9o"

Base64 encoding

Binary data
(list of bytes)

6-bit chunks

Printable
characters

N

//;8000001

00000010

00000011

0000100

g

000000

010000

001000

000011 | Of

00001

00 ..

Q

¥

D

\\\¥A

S

AB..Za bl“.ZLC’lu“.S?ﬁ:/'

26

26

10

2

Unit tests for Base64 encoding

testTwoPads =
encode "Aladdin:open sesame"
=== "QWxhZGRpbjpvcGVuIHNlc2FtZQ==""

testOnePad =
encode "Hello World"
=== "SGVsbG8gV29ybGQ=""

testNoPad =
encode "Aladdin:open sesam"
=== "QWxhZGRpbjpvcGVuIHNlc2Ft"

testSymbols =
encode "0123456789!@#0*&* () ;:<>,. [1{}"
=== "MDEyMzQ1Njc40OSFAIzBeJiooKTs6PD4sLiBbXXt9o"

How do we write a property?

prop Baseb64 bs =
encode bs === 777

Must we reimplement
base64 encoding in

the test?
Expensive!
Low value!

Another possibility... String = [Char]

/_\/ Unicode!

prop RoundTrip s =
decode (encode s) === s

*Tests> quickCheck prop RoundTrip
*** Fajiled! (after 4 tests and 2 shrinks):
Exception:

toChar: Can't happen: Bad input: 69452

Another possibility...

prop RoundTrip ws =
decode (encode s) ===
where s = map w8tochar ws

w8tochar :: Word8 -> Char
w8tochar = chr . fromIntegral

What does this test?

prop RoundTrip ws =
decode (encode s) === s
where s = map w8tochar ws

* A bugin the encoder or decoder is certain to be
found (e.g. wrong table entry)

* A misunderstanding of base 64 encoding will not be
found

* This property + unit tests == quite effective testing!

Other properties?

* The length of an encoding is a multiple of 4

* Every character in an encoding belongs to the base
64 alphabet

* Groups of three bytes are encoded independently
encode s === encode (take 3 s) ++ encode (drop 3 s)

* The encoding represents the same bit string as the
original

Example: Binary Search Trees

module BST where

data BST k v =
l

find

nil

insert ::
delete ::

:: Ord k

Ord k
Ord k

Leaf

Branch (BST k v) k v (BST k v)

= k ->

BST k v -> Maybe

BST k

=> k -> v -> BST k v -> BST k

=> k

-> BST k v -> BST k

v

VS.

* Tests are inside the * Tests are outside the
abstraction boundary abstraction boundary

* Can refer to the e Can refer only to the
representation exported API

* Properties important * Properties important

to the developer to the user

* Binary search trees have an important invariant:

valid Leaf = True
valid (Branch 1 k v r) =
valid 1 && valid r &&
all (<k) (keys 1) && all (>k) (keys r)

Validity properties

prop InsertValid k v t = valid (insert k v t)

o

...and so on for all the
ways to create a BST

prop ArbitraryValid t = valid t

A\’ Why do we need to

test this?

Postconditions

What should
be true after
insert?

We should be able
to find the inserted
value, and all the

previous ones.

prop InsertPost k v t k' =
find k' (insert k v t)

if k==k' then Just v else find k' t

Postconditions

It depends on
whether or not the
key is present! How
can | tell that?

postcondition
of £ind?

This probably
doesn’t construct all
possible trees in
which k can be
prop FindPostPresent k v t = found

find k (insert k v t) === Jusy
\

prop FindPostAbsent k t =
find k (delete k t) === Nothing

Metamorphic Testing

If | change the input to a
function, can | predict the
change to the output?

insert k’ v’

@ O(n?) possible

properties

Metamorphic Testing

prop InsertlInsert k v k' v' t =
insert k v (insert k' v' t)

insert k' v' (insert k v t)

*BSTSpec> quickCheck prop_InsertInsert

*** Failed! Falsifiable (after 4 tests and 8 shrinks):
0

0

0

1

Leaf

Branch Leaf @ @ Leaf /= Branch Leaf 0 1 Leaf

Metamorphic Testing

prop InsertlInsert k v k' v' t =
insert k v (insert k' v' t)

insert k' v' (insert k v t)

*BSTSpec> quickCheck prop_InsertInsert
*¥** Failed! Falsifiable (after 4 tests and 8 shrinks):

0
0 \ We inserted the Of course we store the

0 <« same key twice! most recent value!

1
Leaf e k>
Branch Leaf © 0 Leaf /= Branch Leaf 0 1 Leaf

Metamorphic Testing

prop InsertlInsert k v k' v' t =
insert k v (insert k' v' t)

if k==k' then insert k v t
else insert k' v' (insert k v t)

*BSTSpec> quickCheck prop InsertInsert

*** Fajiled! Falsifiable (after 12 tests and 8 shrinks):
(%]

(%]

1

(%]

Leaf

Branch (Branch Leaf © @ Leaf) 1 0 Leaf /=

Branch Leaf @ @ (Branch Leaf 1 O Leaf)

Metamorphic Testing

prop InsertlInsert k v k' v' t =
insert k v (insert k' v' t)

if k==k' then insert k v t
else insert k' v' (insert k v t)

*BSTSpec> quickCheck prop InsertInsert
*** Fajiled! Falsifiable (after 12 tests and 8 shrinks):

(%]
9 <_\ Different keys this time;

1
0 — different failing test.

Leaf
Branch (Branch Leaf © @ Leaf) 1 0 Leaf /=
Branch Leaf @ @ (Branch Leaf 1 O Leaf)

Metamorphic Testing

prop InsertlInsert k v k' v' t =
insert k v (insert k' v' t)

1f k==k' then insert k v t
else insert k' v' (insert k v t)

*BSTSpec> quickCheck prop InsertInsert
*** Fajiled! Falsifiable (after 12 tests and 8 shrinks):

(%]
0 The contents of the

1 trees are the same; only
f . the shape is different!
ea

Branch (Branch Leafeaf) 1 0 Leaf /=

Branch LeaF(Br'anch Lea1c eaf)

Abstraction

* The order of insertions affects the tree shape, but
not the semantics

 Compare trees "up to shape”

tl =~= t2 =
tolList tl === tolist t2

k toList abstracts away

the shape, leaving only
the contents

Metamorphic Testing: Success!

prop InsertlInsert k v k' v' t
insert k v (insert k' v' t)
1f k==k' then insert k v t

else insert k' v' (insert k v t)

*BSTSpec> quickCheck prop_InsertInsert
+++ OK, passed 100 tests.

Recall our postcondition test for
insert..

1f k==k' then Just v else find k’ t

This is just a metamorphic
test for £ind!

A very simple metamorphic
property

prop Sizelnsert k v t =
size (insert k v t) >= size t

Even such simple
properties can find bugs!

T.Y. Chen, F.-C. Kuo, H. Liu, P.-L. Poon, D. Towey, T.H.
TIse, and Z.Q. Zhou, "Metamorphic testing: A review of

challenges and opportunities", ACM Computing
Surveys 51 (1): 4:1-4:27 (2018).

MET 2019

4the laternationalVWerkshop on

Metamorphic Testing

Ecﬂom wth Sl
Montreal QcC, Canada K :)
__'." il :...::; : \-\J;

May 26, 2019 1 s

' D iaid

https://en.wikipedia.org/wiki/T.H._Tse
https://en.wikipedia.org/wiki/ACM_Computing_Surveys

Inductive Testing &3

* How would we prove that union works?
* By induction on the size of the argument!

* Base case:
union nil t

* Inductive case:
union (insert k v t) t’
(assumingunion t t’ works)

* |f union works in both these cases, it works for all
inputs, by induction!

Inductive tests for union Isthis
complete?

prop UnionBaseCase t =
union nil t ===

prop UnionInductionStep k v t t' =
union (insert k v t) t' =~= insert k v (union t t')

e Could make an inefficient definition of union (if
insert/nil were constructors); makes an efficient
test

 Many applications—e.g. graph algorithms, search
algorithms, SAT solvers...

Can every BST be built with just
insertandnil?

insert

Satisfying the invariant; How | generated
correct results test data

s there a sequence of insertions
to build an arbitrary tree?

insertions Leaf = []
insertions (Branch 1 k v r) =
(k,v) :insertions l++insertions r

Note we require exactly

valid' E/i_/ the same structure.
t === foldl (flip $ uncurry insert) nil
(insertions t)

prop ArbitraryValid’ t = valid’ t

Except, of course, that we only J
generate trees built by insert!

Additional properties...

prop NilValid’ valid' (nil

prop InsertValid' k v t valid' (insert k v t)

prop DeleteValid' k t valid' (delete k t)

prop UnionValid' t t’ = valid' (union t t')

All the ways of building trees result in trees that
could be built with insert.

A new invariant on trees, testing our tests!

Testing vs. a model The semantics
of the tree

tolist

tolList
trgg// > contents

insertion into an
ordered list

tolist .

We can implement the same API using the model
instead, to serve as a specification for the real code

insert k v

The Basic Principle

Actual Abstraction
inp Ly function

Act
oper

ual
ation

Model
operation

_ Model

Actual Abstraction
output function

i

_output

Model based test of insert

prop InsertModel k v t =
toList (insert k v t)

L.insert (k,v) (toList t)

*BSTSpec> quickCheck prop InsertModel

*** Failed! Falsifiable (after 6 tests and 5 shrinks):
%)
0 List insertion does

Branch Leaf 0 0tes not replace
[(0,0)] /£ [(0,0),(0,0)] /existingkeys

Model based test of insert

prop InsertModel k v t =
toList (insert k v t)

L.insert (k,v) (deleteKey k $ tolist t)

*BSTSpec> quickCheck prop InsertModel
+++ OK, passed 100 tests.

Acta Informatica 1, 271—281 (1972)
© by Springer-Verlag 1072

Proof of Correctness of Data Representations
C. A. R. Hoare

Received February 16, 1972

Summary. A powerful method of simplifying the proofs of program correctness
is suggested ; and some new light is shed on the problem of functions with side-effects.

1. Introduction

In the development of programs by stepwise refinement [1-4], the programmer
is encouraged to postpone the decision on the representation of his data until
after he has designed his algorithm, and has expressed it as an “‘abstract’ pro-
gram operating on “abstract’ data. He then chooses for the abstract data some
convenient and efficient concrete representation in the store of a computer;
and finally programs the primitive operations required by his abstract program
in terms of this concrete representation. This paper suggests an automatic method
of accomplishing the transition between an abstract and a concrete program,
and also a method of proving its correctness; that is, of proving that the concrete
representation exhibits all the properties expected of it by the “abstract” pro-

e |

Summary of property types

* Validity
e Postconditions
* Metamorphic

* Inductive
* Model-based

e Auto-generated

JFP 27, el8, 49 pages, 2017. © Cambridge University Press 2017
doi:10.1017/S0956796817000090

Quick specifications for the busy programmer

NICHOLAS SMALLBONE, MOA JOHANSSON,

KOEN CLAESSEN and MAXIMILIAN ALGEHED

Chalmers University of Technology, Gothenburg, Sweden
(e-mails: nicsma@chalmers.se, moa.johansson@chalmers.se, koen@chalmers.se,
algehed@chalmers.se)

Abstract

QuickSpec is a theory exploration system which tests a Haskell program to find equational
properties of it, automatically. The equations can be used to help understand the program,
or as lemmas to help prove the program correct. QuickSpec is largely automatic: the user
just supplies the functions to be tested and QuickCheck data generators. Previous theory
exploration systems, including earlier versions of QuickSpec itself, scaled poorly. This paper
describes a new architecture for theory exploration with which we can find vastly more
complex laws than before, and much faster. We demonstrate theory exploration in QuickSpec
on problems both from functional programming and mathematics.

1 Introduction

Formal specifications are a powerful tool for understanding programs. For example,

QuickSpec: Property Discovery

* Explore equations satisfied by an API

Explore equations at

type BSTII = BST Int Integer .
s & this type...
main = quickSpec [
monoType (Proxy :: Proxy BSTII),
con "nil" (nil :: BSTII),
con "find" (find :: Int -> BSTII -> Maybe Integer),
con "insert" (insert :: Int -> Integer -> BSTII -> BSTII)

]

...involving these ...at these types
functions

== Functions ==
nil :: BST Int Integer
find :: Int -> BST Int Integer -> Maybe Integer
insert :: Int -> Integer -> BST Int Integer -> BST Int Integer

= Laws == find x nil = Nothing

1. find x nil = find y nil
2. find x (insert xy z) = find x (insert x y w)
3. find x (insert xy z) =Xind w (insert wy z)

4. find x (inserty z nil) = §
5.insertxy (insertx zw) = find x (msert XYy Z)

= Just x

Extend the vocabulary

con "Nothing" (Nothing :: Maybe Integer),
con "Just" (Just :: Integer -> Maybe Integer),

Now in the

== Laws == expected form
1. find x nil = Nothing } / P

2. find x (insert xy z) = Justy
3. find x (insert y z nil) = find y (insert x z nil)
4. insert xy (insert xzw) =insertxy w

& Inserting a key twice just

keeps the second value

Finding equations “up to equivalence”

e Recall tl =~= t2 =
tolist tl1l === tolist t2

instance (Ord k, Ord v) =>
Observe () [(k,v)] (BST k v) where

observe () = tolist p
. . observe = tolist]
main = quickSpec |
monoTypeObserve (Proxy :: Proxy BSTII),

5. insert X(y)insert Z(y)w) = insert Z(y)insert X(y)w)

Conditional equations

predicate "/=" ((/=) :: Int -> Int -> Bool),

3.x /=y =>find x (inserty zw) =find xw

7.z /=x=>insert X Y (insert Z W x2) = insert Z W (insert X Y x2)

The Effect of a Bug

U

.insert x y (insert@lv insert

. find x nil = Nothing

. X /=y =>find x (inserty zw) = find x w
. find x (insert y z nil) = find y (insert x z nil)

.insertxy (insert zy w) =insertzy (insert xy w)
.z [=x=>insert xy (insert zw x2) = insert z w (insert x y x2)

find x (insert x y nim Why do we get this

specific instance of

\ /, (2) above?

What???

Key takeaway

* The fundamental problem in property-based
testing is coming up with properties that are:
* inexpensive to write
 effective as tests

* This lecture explains many useful ideas for tackling
this problem

	Testing with Properties
	Anatomy of a property
	Testing a property
	Testing a property
	More examples
	Slide Number 6
	Where is the bug?
	What shall we do about it?
	A common approach…
	Slide Number 10
	Slide Number 11
	Another criticism
	IDEA: construct a test case with a predictable result
	IDEA: construct a test case with a predictable result
	A good property
	Unit tests for Base64 encoding
	Base64 encoding
	Unit tests for Base64 encoding
	How do we write a property?
	Another possibility…
	Another possibility…
	What does this test?
	Other properties?
	Example: Binary Search Trees
	Slide Number 27
	Slide Number 28
	Validity properties
	Postconditions
	Postconditions
	Metamorphic Testing
	Metamorphic Testing
	Metamorphic Testing
	Metamorphic Testing
	Metamorphic Testing
	Metamorphic Testing
	Abstraction
	Metamorphic Testing: Success!
	Recall our postcondition test for insert…
	A very simple metamorphic property
	Slide Number 43
	Inductive Testing
	Inductive tests for union
	Can every BST be built with just insert and nil?
	Is there a sequence of insertions to build an arbitrary tree?
	Additional properties…
	Testing vs. a model
	The Basic Principle
	Model based test of insert
	Model based test of insert
	Slide Number 53
	Summary of property types
	Slide Number 55
	QuickSpec: Property Discovery
	Slide Number 57
	Extend the vocabulary
	Finding equations ”up to equivalence”
	Conditional equations
	The Effect of a Bug
	Key takeaway

