
Testing with Properties

John Hughes

Anatomy of a property

• A function that should always return True*

*Not quite—the truth is a bit more general

prop_Delete :: Int32 -> [Int32] -> Bool
prop_Delete x xs =

not (x `elem` delete x xs)

Once an element has been
deleted from a list, it should
no longer be present

x and xs are the test case, which
will be randomly generated

We need to specify the
type, to determine what
data will be generated

Testing a property
import Test.QuickCheck

prop_Delete :: Int32 -> [Int32] -> Bool
prop_Delete x xs =

not (x `elem` delete x xs)

*Example> quickCheck prop_Delete
+++ OK, passed 100 tests.
*Example> quickCheck prop_Delete
+++ OK, passed 100 tests.
*Example> quickCheck prop_Delete
+++ OK, passed 100 tests.

Testing a property

*Example> quickCheck prop_Delete
*** Failed! Falsifiable (after 9 tests and 1 shrink):
2
[2,2]

prop_Delete x xs =
not (x `elem` delete x xs)

*Example> delete 2 [2,2]
[2]

More examples
*Example> quickCheck prop_Delete
*** Failed! Falsifiable (after 9 tests and 2 shrinks):
-12
[-12,-12]
*Example> quickCheck prop_Delete
*** Failed! Falsifiable (after 7 tests and 1 shrink):
-7
[-7,-7]
*Example> quickCheck prop_Delete
*** Failed! Falsifiable (after 4 tests):
1
[1,1]

different examples (random)

shrinking discarded list
elements that don’t affect
the failure

+ = Easy
debugging

Everything in the reported test case is
relevant to the failure!

2
[2,2]

We know we must have both
elements for the test to fail;
otherwise QuickCheck would
shrink it to

2
[2]

Where is the bug?

• We have a failing test!

• Is delete in Data.List wrong?

*Example> quickCheck prop_Delete
*** Failed! Falsifiable (after 10 tests and 4 shrinks):
6
[6,6]

What shall we do about it?

• The property fails for repeated values in the list.

• Is this reasonable?

prop_Delete x xs =
xs == nub xs ==>
not (x `elem` delete x xs)

*Example> quickCheck . withMaxSuccess 10000 $ prop_Delete
+++ OK, passed 10000 tests.

A common approach…

• Find a bug with QuickCheck

• Characterize the situations in which the bug
appears as a predicate

• Add a precondition:
not (buggy x xs) ==> ...

We don’t think
anybody will do

that!

We don’t think
anybody should

do that!

Our code isn’t
supposed to work

in that case!

Is this a documented
restriction?

Are we sure the code is
never used in this way?

Can we at least check
that this is the case?

Preconditions
Don’t test this—

we know it
doesn’t work!

Another criticism

• The property is weak!

prop_Delete x xs =
not (x `elem` delete x xs)

delete x xs = []
passes this test!

IDEA: construct a test case with a
predictable result

prop_Delete :: Int -> _
prop_Delete x xs ys =

delete x (xs++[x]++ys) == xs++ys

*Example> quickCheck prop_Delete
*** Failed! Falsifiable (after 19 tests and 8 shrinks):
6
[6,0]
[]

IDEA: construct a test case with a
predictable result

prop_Delete :: Int -> _
prop_Delete x xs ys =

delete x (xs++[x]++ys) === xs++ys

*Example> quickCheck prop_Delete
*** Failed! Falsifiable (after 19 tests and 8 shrinks):
6
[6,0]
[]
[0,6] /= [6,0] delete 6 [6,0,6]

A good property

prop_Delete :: Int -> _
prop_Delete x xs ys =

not (x `elem` xs) ==>
delete x (xs++[x]++ys) === xs++ys

*Example> quickCheck . withMaxSuccess 10000 $ prop_Delete)
+++ OK, passed 10000 tests.

• Precisely characterizes the behaviour of delete, in all
cases when x occurs in the argument.

Unit tests for Base64 encoding
import Codec.Binary.Base64.String

testTwoPads =
encode "Aladdin:open sesame"
=== "QWxhZGRpbjpvcGVuIHNlc2FtZQ=="

testOnePad =
encode "Hello World"
=== "SGVsbG8gV29ybGQ="

testNoPad =
encode "Aladdin:open sesam"
=== "QWxhZGRpbjpvcGVuIHNlc2Ft"

testSymbols =
encode "0123456789!@#0^&*();:<>,. []{}"
=== "MDEyMzQ1Njc4OSFAIzBeJiooKTs6PD4sLiBbXXt9"

Base64 encoding

00000001Binary data
(list of bytes) 00000010 00000011 00000100 …

0000006-bit chunks 010000 001000 000011 …000001 00

A
Printable
characters Q I D …B A

= =A B … Z a b … z 0 1 … 9 + /
26 26 10 2

Unit tests for Base64 encoding
import Codec.Binary.Base64.String

testTwoPads =
encode "Aladdin:open sesame"
=== "QWxhZGRpbjpvcGVuIHNlc2FtZQ=="

testOnePad =
encode "Hello World"
=== "SGVsbG8gV29ybGQ="

testNoPad =
encode "Aladdin:open sesam"
=== "QWxhZGRpbjpvcGVuIHNlc2Ft"

testSymbols =
encode "0123456789!@#0^&*();:<>,. []{}"
=== "MDEyMzQ1Njc4OSFAIzBeJiooKTs6PD4sLiBbXXt9"

How do we write a property?

prop_Base64 bs =
encode bs === ???

Must we reimplement
base64 encoding in
the test?

Expensive!

Low value!

Another possibility…

prop_RoundTrip s =
decode (encode s) === s

*Tests> quickCheck prop_RoundTrip
*** Failed! (after 4 tests and 2 shrinks):
Exception:

toChar: Can't happen: Bad input: 69452
…

String = [Char]
Unicode!

Another possibility…

prop_RoundTrip ws =
decode (encode s) === s
where s = map w8tochar ws

w8tochar :: Word8 -> Char
w8tochar = chr . fromIntegral

What does this test?

prop_RoundTrip ws =
decode (encode s) === s
where s = map w8tochar ws

• A bug in the encoder or decoder is certain to be
found (e.g. wrong table entry)

• A misunderstanding of base 64 encoding will not be
found

• This property + unit tests == quite effective testing!

Other properties?

• The length of an encoding is a multiple of 4

• Every character in an encoding belongs to the base
64 alphabet

• Groups of three bytes are encoded independently
encode s === encode (take 3 s) ++ encode (drop 3 s)

• The encoding represents the same bit string as the
original

Example: Binary Search Trees
module BST where

data BST k v = Leaf
| Branch (BST k v) k v (BST k v)

find :: Ord k => k -> BST k v -> Maybe v

nil :: BST k v
insert :: Ord k => k -> v -> BST k v -> BST k v
delete :: Ord k => k -> BST k v -> BST k v

union :: Ord k => BST k v -> BST k v -> BST k v

• Tests are inside the
abstraction boundary

• Can refer to the
representation

• Properties important
to the developer

vs.
• Tests are outside the

abstraction boundary

• Can refer only to the
exported API

• Properties important
to the user

• Binary search trees have an important invariant:

valid Leaf = True
valid (Branch l k v r) =

valid l && valid r &&
all (<k) (keys l) && all (>k) (keys r)

keys t = map fst (toList t)

toList Leaf = []
toList (Branch l k v r) =

toList l ++ [(k,v)] ++ toList r

Validity properties

prop_InsertValid :: Int -> Int -> _
prop_InsertValid k v t = valid (insert k v t)

…and so on for all the
ways to create a BST

prop_ArbitraryValid :: BST Int Int -> _
prop_ArbitraryValid t = valid t

Why do we need to
test this?

Postconditions
What should
be true after
insert?

We should be able
to find the inserted
value, and all the

previous ones.

prop_InsertPost :: Int -> Int -> _
prop_InsertPost k v t k' =

find k' (insert k v t)
===
if k==k' then Just v else find k' t

Postconditions
What’s the

postcondition
of find?

It depends on
whether or not the
key is present! How

can I tell that?

prop_FindPostPresent :: Int -> Int -> _
prop_FindPostPresent k v t =
find k (insert k v t) === Just v

prop_FindPostAbsent :: Int -> BST Int Int -> _
prop_FindPostAbsent k t =
find k (delete k t) === Nothing

This probably
doesn’t construct all
possible trees in
which k can be
found

Metamorphic Testing
If I change the input to a

function , can I predict the
change to the output?

t

insert k v

??

??insert k’ v’

insert k v

??

insert k’ v’
O(n2) possible
properties

Metamorphic Testing
prop_InsertInsert :: Int -> Int -> _
prop_InsertInsert k v k' v' t =

insert k v (insert k' v' t)
===
insert k' v' (insert k v t)

*BSTSpec> quickCheck prop_InsertInsert
*** Failed! Falsifiable (after 4 tests and 8 shrinks):
0
0
0
1
Leaf
Branch Leaf 0 0 Leaf /= Branch Leaf 0 1 Leaf

Metamorphic Testing
prop_InsertInsert :: Int -> Int -> _
prop_InsertInsert k v k' v' t =
insert k v (insert k' v' t)
===
insert k' v' (insert k v t)

*BSTSpec> quickCheck prop_InsertInsert
*** Failed! Falsifiable (after 4 tests and 8 shrinks):
0
0
0
1
Leaf
Branch Leaf 0 0 Leaf /= Branch Leaf 0 1 Leaf

We inserted the
same key twice!

Of course we store the
most recent value!

Metamorphic Testing
prop_InsertInsert :: Int -> Int -> _
prop_InsertInsert k v k' v' t =

insert k v (insert k' v' t)
===
if k==k' then insert k v t

else insert k' v' (insert k v t)

*BSTSpec> quickCheck prop_InsertInsert
*** Failed! Falsifiable (after 12 tests and 8 shrinks):
0
0
1
0
Leaf
Branch (Branch Leaf 0 0 Leaf) 1 0 Leaf /=
Branch Leaf 0 0 (Branch Leaf 1 0 Leaf)

Metamorphic Testing
prop_InsertInsert :: Int -> Int -> _
prop_InsertInsert k v k' v' t =
insert k v (insert k' v' t)
===
if k==k' then insert k v t

else insert k' v' (insert k v t)

*BSTSpec> quickCheck prop_InsertInsert
*** Failed! Falsifiable (after 12 tests and 8 shrinks):
0
0
1
0
Leaf
Branch (Branch Leaf 0 0 Leaf) 1 0 Leaf /=
Branch Leaf 0 0 (Branch Leaf 1 0 Leaf)

Different keys this time;
different failing test.

Metamorphic Testing
prop_InsertInsert :: Int -> Int -> _
prop_InsertInsert k v k' v' t =

insert k v (insert k' v' t)
===
if k==k' then insert k v t

else insert k' v' (insert k v t)

*BSTSpec> quickCheck prop_InsertInsert
*** Failed! Falsifiable (after 12 tests and 8 shrinks):
0
0
1
0
Leaf
Branch (Branch Leaf 0 0 Leaf) 1 0 Leaf /=
Branch Leaf 0 0 (Branch Leaf 1 0 Leaf)

The contents of the
trees are the same; only
the shape is different!

Abstraction

• The order of insertions affects the tree shape, but
not the semantics

• Compare trees ”up to shape”

t1 =~= t2 =
toList t1 === toList t2

toList abstracts away
the shape, leaving only
the contents

Metamorphic Testing: Success!
prop_InsertInsert :: Int -> Int -> _
prop_InsertInsert k v k' v' t =

insert k v (insert k' v' t)
=~=
if k==k' then insert k v t

else insert k' v' (insert k v t)

*BSTSpec> quickCheck prop_InsertInsert
+++ OK, passed 100 tests.

Recall our postcondition test for
insert…

prop_InsertPost :: Int -> Int -> _
prop_InsertPost k v t k' =
find k' (insert k v t)
===
if k==k' then Just v else find k’ t

This is just a metamorphic
test for find!

A very simple metamorphic
property

prop_SizeInsert :: Int -> Int -> _
prop_SizeInsert k v t =

size (insert k v t) >= size t

Even such simple
properties can find bugs!

T.Y. Chen, F.-C. Kuo, H. Liu, P.-L. Poon, D. Towey, T.H.
Tse, and Z.Q. Zhou, "Metamorphic testing: A review of
challenges and opportunities", ACM Computing
Surveys 51 (1): 4:1-4:27 (2018).

https://en.wikipedia.org/wiki/T.H._Tse
https://en.wikipedia.org/wiki/ACM_Computing_Surveys

Inductive Testing

• How would we prove that union works?
• By induction on the size of the argument!

• Base case:
union nil t

• Inductive case:
union (insert k v t) t’
(assuming union t t’ works)

• If union works in both these cases, it works for all
inputs, by induction!

Inductive tests for union
prop_UnionBaseCase :: BST Int Int -> _
prop_UnionBaseCase t =
union nil t === t

prop_UnionInductionStep :: Int -> Int -> _
prop_UnionInductionStep k v t t' =
union (insert k v t) t' =~= insert k v (union t t')

• Could make an inefficient definition of union (if
insert/nil were constructors); makes an efficient
test

• Many applications—e.g. graph algorithms, search
algorithms, SAT solvers…

Is this
complete?

Can every BST be built with just
insert and nil?

nil

insert

insert

How I generated
test data

delete

Satisfying the invariant;
correct results

insert

Is there a sequence of insertions
to build an arbitrary tree?
insertions :: BST k v -> [(k,v)]
insertions Leaf = []
insertions (Branch l k v r) =

(k,v):insertions l++insertions r

valid' t =
t === foldl (flip $ uncurry insert) nil

(insertions t)

prop_ArbitraryValid' :: BST Int Int -> _
prop_ArbitraryValid’ t = valid’ t

Except, of course, that we only
generate trees built by insert!

Note we require exactly
the same structure.

Additional properties…
prop_NilValid’ = valid' (nil :: BST Int Int)

prop_InsertValid' :: Int -> Int -> _
prop_InsertValid' k v t = valid' (insert k v t)

prop_DeleteValid' :: Int -> BST Int Int -> _
prop_DeleteValid' k t = valid' (delete k t)

prop_UnionValid' :: BST Int Int -> _
prop_UnionValid' t t’ = valid' (union t t')

All the ways of building trees result in trees that
could be built with insert.
A new invariant on trees, testing our tests!

Testing vs. a model

tree contentstoList

insert k v

?? toList
contents’

tree’ toList

The semantics
of the tree

insertion into an
ordered list

We can implement the same API using the model
instead, to serve as a specification for the real code

The Basic Principle

Actual
input

Model
input

Actual
operation

Actual
output

Abstraction
function

Model
output

Model
operation

Abstraction
function

Model based test of insert
import qualified Data.List as L
…
prop_InsertModel :: Int -> Int -> _
prop_InsertModel k v t =
toList (insert k v t)
===

L.insert (k,v) (toList t)

*BSTSpec> quickCheck prop_InsertModel
*** Failed! Falsifiable (after 6 tests and 5 shrinks):
0
0
Branch Leaf 0 0 Leaf
[(0,0)] /= [(0,0),(0,0)]

List insertion does
not replace
existing keys

Model based test of insert
import qualified Data.List as L
…
prop_InsertModel :: Int -> Int -> _
prop_InsertModel k v t =
toList (insert k v t)
===

L.insert (k,v) (deleteKey k $ toList t)

*BSTSpec> quickCheck prop_InsertModel
+++ OK, passed 100 tests.

Summary of property types

• Validity
• Postconditions
• Metamorphic
• Inductive
• Model-based

• Auto-generated

QuickSpec: Property Discovery

• Explore equations satisfied by an API

type BSTII = BST Int Integer

main = quickSpec [
monoType (Proxy :: Proxy BSTII),

con "nil" (nil :: BSTII),
con "find" (find :: Int -> BSTII -> Maybe Integer),
con "insert" (insert :: Int -> Integer -> BSTII -> BSTII)
]

Explore equations at
this type...

...involving these
functions

...at these types

== Functions ==
nil :: BST Int Integer

find :: Int -> BST Int Integer -> Maybe Integer
insert :: Int -> Integer -> BST Int Integer -> BST Int Integer

== Laws ==
1. find x nil = find y nil
2. find x (insert x y z) = find x (insert x y w)
3. find x (insert x y z) = find w (insert w y z)
4. find x (insert y z nil) = find y (insert x z nil)
5. insert x y (insert x z w) = insert x y w

find x nil = Nothing

find x (insert x y z)
= Just x

Extend the vocabulary

con "Nothing" (Nothing :: Maybe Integer),
con "Just" (Just :: Integer -> Maybe Integer),

== Laws ==
1. find x nil = Nothing
2. find x (insert x y z) = Just y
3. find x (insert y z nil) = find y (insert x z nil)
4. insert x y (insert x z w) = insert x y w

Now in the
expected form

Inserting a key twice just
keeps the second value

Finding equations ”up to equivalence”

• Recall t1 =~= t2 =
toList t1 === toList t2

instance (Ord k, Ord v) =>
Observe () [(k,v)] (BST k v) where

observe () = toList

main = quickSpec [
monoTypeObserve (Proxy :: Proxy BSTII),

5. insert x y (insert z y w) = insert z y (insert x y w)

observe = toList

Conditional equations
predicate "/=" ((/=) :: Int -> Int -> Bool),

3. x /= y => find x (insert y z w) = find x w
...
7. z /= x => insert x y (insert z w x2) = insert z w (insert x y x2)

The Effect of a Bug

1. find x nil = Nothing
2. find x (insert x y z) = Just y
3. x /= y => find x (insert y z w) = find x w
4. find x (insert y z nil) = find y (insert x z nil)
5. insert x y (insert x z w) = insert x y w
6. insert x y (insert z y w) = insert z y (insert x y w)
7. z /= x => insert x y (insert z w x2) = insert z w (insert x y x2)

4. find x (insert x y nil) = Just y
5. insert x y (insert x z w) = insert x z w

Why do we get this
specific instance of
(2) above?

What???

Key takeaway

• The fundamental problem in property-based
testing is coming up with properties that are:

• inexpensive to write
• effective as tests

• This lecture explains many useful ideas for tackling
this problem

	Testing with Properties
	Anatomy of a property
	Testing a property
	Testing a property
	More examples
	Slide Number 6
	Where is the bug?
	What shall we do about it?
	A common approach…
	Slide Number 10
	Slide Number 11
	Another criticism
	IDEA: construct a test case with a predictable result
	IDEA: construct a test case with a predictable result
	A good property
	Unit tests for Base64 encoding
	Base64 encoding
	Unit tests for Base64 encoding
	How do we write a property?
	Another possibility…
	Another possibility…
	What does this test?
	Other properties?
	Example: Binary Search Trees
	Slide Number 27
	Slide Number 28
	Validity properties
	Postconditions
	Postconditions
	Metamorphic Testing
	Metamorphic Testing
	Metamorphic Testing
	Metamorphic Testing
	Metamorphic Testing
	Metamorphic Testing
	Abstraction
	Metamorphic Testing: Success!
	Recall our postcondition test for insert…
	A very simple metamorphic property
	Slide Number 43
	Inductive Testing
	Inductive tests for union
	Can every BST be built with just insert and nil?
	Is there a sequence of insertions to build an arbitrary tree?
	Additional properties…
	Testing vs. a model
	The Basic Principle
	Model based test of insert
	Model based test of insert
	Slide Number 53
	Summary of property types
	Slide Number 55
	QuickSpec: Property Discovery
	Slide Number 57
	Extend the vocabulary
	Finding equations ”up to equivalence”
	Conditional equations
	The Effect of a Bug
	Key takeaway

