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Scheduling Parallel Real-Time Recurrent Tasks
on Multicore Platforms
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Abstract—We consider the scheduling of a real-time application that is modeled as a collection of parallel and recurrent tasks on a
multicore platform. Each task is a directed-acyclic graph (DAG) having a set of subtasks (i.e., nodes) with precedence constraints (i.e.,
directed edges) and must complete the execution of all its subtasks by some specified deadline. Each task generates potentially infinite
number of instances where the releases of consecutive instances are separated by some minimum inter-arrival time. Each DAG task
and each subtask of that DAG task is assigned a fixed priority. A two-level preemptive global fixed-priority scheduling (GFP) policy is
proposed: a task-level scheduler first determines the highest-priority ready task and a subtask-level scheduler then selects its
highest-priority subtask for execution. To our knowledge, no earlier work considers a two-level GFP scheduler to schedule recurrent
DAG tasks on a multicore platform. We derive a schedulability test for our proposed two-level GFP scheduler. If this test is satisfied,
then it is guaranteed that all the tasks will meet their deadlines under GFP. We show that our proposed test is not only theoretically
better but also empirically performs much better than the state-of-the-art test in scheduling randomly generated parallel DAG task sets.

Index Terms—Real-Time Systems, Parallel DAG Tasks, Global Fixed-priority Scheduling, Schedulability Analysis, Multicore
Processors
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1 INTRODUCTION

The increasing demand for more advanced functions in todays
prevailing time-critical systems is, and will be, met using compu-
tation power of multicore processors. One of the main challenges
for such systems is to maximize the utilization of the parallel
multicore architecture while meeting the real-time deadlines of
the application tasks.

Sequential programming has been the primary paradigm to
implement real-time tasks on uni- and multicore platforms [1].
However, the sequential paradigm does not allow intra-task paral-
lelism: each task must execute sequentially, which limits the extent
to which processing capacity of a parallel architecture can be
exploited (according to Amdahl’s law [2]). On the other hand, the
high-performance computing community has developed several
parallel programming models – task parallelism (e.g., Cilk [3]),
data parallelism (e.g., OpenMp loops [4]) — to better exploit the
parallel multicore architecture. Parallel programming paradigms
allow both inter- and intra-task parallelism: each classical sequen-
tial task is implemented as a collection of parallel subtasks that
can execute in parallel on multiple cores.

Many of the the parallel applications like Sort, Strassen, and
FFT in the Barcelona OpenMP Task Suites are widely used in
many real-time applications [5]. The work in [6] considers a
3D multigrid solver which is implemented as a parallel task
for executing on MERASA multicore platform. During the last
couple of years, researchers have proposed real-time scheduling
algorithms and schedulability analysis of several parallel task
models for multicore architectures [7], [8], [9], [10], [11], [12],
[13], [14], [15], [16]. The directed acyclic graph (DAG) based
task model is the most general parallel task model proposed in
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the literature. A DAG task consists of a set of nodes and directed
edges where each node is a sequential subtask and each directed
edge is a precedence constraint between two subtasks.

Tasks on a multicore platform can be scheduled statically
or dynamically. In static scheduling (also known as partitioned
scheduling) of a parallel task, the subtasks are statically pre-
assigned to fixed cores [17] which may severely underutilizes
hardware resources due to load imbalance or communication
overheads. On the other hand, dynamic scheduling (also known
as global scheduling) in which the subtasks are allowed to execute
on any core can significantly improve resource utilization [18].
However, the schedulability analysis to guarantee that all the
parallel tasks meet their deadlines under dynamic scheduling
paradigm is more complex due to many possible interleavings
of the threads across the cores. Therefore, overly pessimistic
assumptions are made to analyze parallel real-time DAG tasks
which does not allow to enjoy the full speedup on a multicore
architecture.

This paper considers dynamic (i.e., global) scheduling of a
collection of recurrent DAG tasks. Each recurrent DAG task gen-
erates potentially infinite DAG instances where two consecutive
instances are separated by some minimum inter-arrival time (also
called the period). Each DAG task and each subtask of that DAG
task are assigned fixed priorities. The tasks are scheduled using
a two-level preemptive global fixed-priority (GFP) scheduler. A
task-level scheduler first determines the highest-priority ready task
Ghp and a subtask-level scheduler then selects the highest-priority
subtask of Ghp for execution. If a lower-priority subtask is in
execution while all the cores are busy, a newly released higher-
priority subtask preempts the execution of the lower-priority
subtask. The GFP scheduling allows a subtask to execute on any
core of a multicore processor even when it resumes execution after
being preempted by a higher-priority subtask.

To apply a particular real-time scheduling algorithm in the
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domain of real-time safety-critical systems like automotive or
aerospace, the system designer needs to verify offline (i.e., before
the system is in mission) that all the timing constraints are met.
The major tool that is used to do such verification is offline
analysis of the scheduling algorithm to derive a schedulability
test for the two-level GFP scheduler. If this test is satisfied for
a given task set and a processing platform, it is guaranteed that
all the timing constraints will also be met during actual runtime.
The main endeavor of this paper is to present the schedulability
analysis of our proposed two-level GFP scheduling algorithm to
derive a schedulability test.

One of the major sources of pessimism for the analysis of
global GFP scheduling is the computation of intra-task and inter-
task interference that a subtask under analysis suffers from its
higher-priority subtasks due to the complex internal structures
of the DAG tasks (e.g., number of parallel subtasks, precedence
constraints, etc). No work on GFP scheduling of DAG tasks
exploits the internal structures of individual DAG task to deter-
mine both intra- and inter-task interference. Melani et al. [16]
recently proposed a response-time1 based schedulability analysis
for GFP scheduling of recurrent DAG tasks. However, the work
in [16] does not consider any particular subtask-level scheduler
and hides the internal structures of the DAG tasks by embracing
pessimism in their analysis, which in turn requires a relatively
larger number of cores to meet the deadlines of all the tasks (it
will be demonstrated in our experimental Section 6).

It is worth mentioning at this point that the work in [16]
considers a relative more general DAG task model (known as
conditional DAG tasks) in which some subtasks of a DAG task
may or may not be generated depending on some conditional
(e.g., if-then-else) statement. In other words, the DAG structures
of different instances of a conditional DAG task may be different
while the same DAG is generated for all the instances of a non-
conditional DAG task. We learned that the degree of pessimism in
the schedulability analysis in [16] is not due to the consideration
of a more general DAG task model rather such pessimism equally
applies for the analysis of non-conditional DAG tasks. To that
end we consider non-conditional DAG tasks in this paper and
show the effectiveness of our analysis in significantly reducing the
pessimism of the analysis in [16] even for such non-conditional
DAG tasks. Extending our analysis for conditional DAG tasks is
an interesting future work.

There are many works in non-real-time systems domains that
consider assigning priorities to the subtasks with the main aim
of reducing the average completion time [3], [19], [20], [21]. For
example, the HEFT algorithm [21] assigns higher priority to a
subtask with a relatively higher upward rank. However, the HEFT
algorithm is designed for improving the average-case performance
and the completion time of DAG may be very large for some
not-so-frequent (i.e., worst) case and could miss the deadline
of the task. This paper proposes scheduling algorithm and its
analysis considering the worst-case, i.e., a safe upper bound on
the completion time of the DAG can be computed where subtasks
are assigned priorities, which is a major contribution of this paper.

This paper has the following contributions. First, we consider
a specific subtask-level GFP scheduler to schedule the subtasks to
efficiently utilize the processing cores and to reduce the pessimism
in schedulability analysis in comparison to earlier approaches. A

1. The response time of a DAG task is also known as the makespan, which
is the longest possible time any instance of the task requires to complete its
execution.

simple but very effective heuristic to assign the fixed priorities
to the subtasks of each DAG task is proposed by unfolding the
internal structures (i.e., topology) of the DAG tasks. Second, we
propose new techniques to compute both intra- and inter-task
interference. To this end, we propose a new response-time-based
schedulability test for GFP scheduling of recurrent DAG tasks.
Third, we demonstrate the effectiveness of our proposed test based
on empirical study. Experimental results using randomly generated
DAG task sets show that our proposed test outperforms the state-
of-the-art test for various (i) loads/utilizations of the application,
(ii) number of cores, and (iii) number of tasks of the application.

The rest of the paper is organized as follows. The system
model and important definitions are presented in Section 2. The
overview of our schedulability analysis framework is presented in
Section 3. The details of the schedulability analysis of the two-
level GFP scheduler is presented in Section 4. The pessimism of
the state-of-the-art test is presented in Section 5 using an example.
We present our results in Section 6. Related works are presented
in Section 7 before we conclude in Section 8.

2 SYSTEM MODEL AND USEFUL DEFINITIONS

We consider the preemptive GFP scheduling of n recurrent DAG
tasks in set Γ = {G1, . . . Gn} on a multicore processor having
m cores. The (normalized) speed of each core is 1. Each DAG
task Gk ∈ Γ generates potentially infinite number of DAG
instances, called the jobs of the task, such that the releases of
two consecutive jobs of Gk is separated by a minimum dis-
tance. Each DAG task Gk is characterized using four parameters
Gk = (Tk, Dk, Vk, Ek) where

• Tk is the minimum inter-arrival time of consecutive jobs
(also, called the period) of task Gk;

• Dk is the relative deadline such that Dk ≤ Tk;
• Vk = {vk,1, . . . vk,nk

} is a set of nk subtasks2; and
• Ek ⊆ (Vk × Vk) is a set of directed arcs (or edges).

The parameter Dk specifies the real-time constraint: if the
source (i.e., the first) subtask of some job of task Gk becomes
ready for execution at time t, then the execution of all the subtasks
of that job must complete by time (t+Dk). Each subtask vk,j ∈
Vk represents a sequential chunk of execution having worst-case
execution time (WCET) equal to Ck,j . If (vk,p, vk,q) ∈ Ek, then
subtask vk,q can start execution after subtask vk,p completes its
execution. An example of a DAG task Gk is shown in Figure 1
where Tk = 100 and Dk = 52.

Let the task Gk in Figure 1 first arrives at time x. In other
words, the first job or instance of this DAG task Gk becomes
ready for execution at time x. This job has a deadline (x+Dk) =
(x+52) by which all its subtasks must finish their execution. The
second job of task Gk is released no earlier than time (x+Tk) =
(x + 100) since the minimum inter-arrival time is Tk = 100.
Although the second job of the task Gk is released no earlier
than time (x + 100), its actual release time may be later than
(x + 100) because we are considering sporadic tasks. Let the
second job is released at time (x+120). Then the deadline of the
second job is Dk = 52 time units after its release time, i.e., at time
(x+120)+52 = (x+172). The third job of this task is released
no earlier than time (x + 220), and so on. Note that the deadline
is specified for the entire job of the task, i.e., the execution of all
the subtasks must be completed before that job’s deadline.

2. There are works where the terms “workflow” and “task” are respectively
used to mean “task” and “subtask” as are used in this paper.
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Figure 1: A DAG task Gk with six subtasks. The WCET of each subtask is shown inside each shape. The priority ordering is
vk,1(highest) � vk,3 � vk,2 � vk,5 � vk,4 � vk,6(lowest).

A subtask with no incoming (res. outgoing) edge is called a
source (resp. sink) subtask. Without loss of generality we assume
that there is exactly one source (denoted as vsrck ) and one sink
(denoted as vsinkk ) of Gk. If there is more than one source (sink)
subtask, a dummy subtask with WCET equal to zero as a new
source (sink) subtask is added with arcs to (from) all actual source
(sink) subtasks.

We define a path in the DAG of task Gk originating at
subtask vk,a as a sequence of subtasks (vk,a, . . . vk,b) such that
(vk,j , vk,j+1) ∈ Ek, a ≤ j < b. The length of a path is the
sum of the WCETs of the subtasks in the path. The longest path
of Gk is denoted by Lk which is the length of the longest path
in Gk. For example, Lk = 46, which corresponds to the path
(vk,1, vk,3, vk,4, vk,6) in Figure 1.

We denote by Wk the total work of task Gk which is
equal to the sum of WCETs of all the subtasks of Vk, i.e.,
Wk =

∑nk

j=1 Ck,j . For example, Wk = 64 in Figure 1.
For each subtask vk,j ∈ Vk, the ancestors of vk,j , denoted by

Ancstjk, is the set of subtasks vk,p ∈ Vk such that there exists
a path from vk,p to vk,j . Subtask vk,j ∈ Vk becomes ready
for execution when each of the subtasks in Ancstjk completes
execution (i.e., all dependencies are released). The values of Lk,
Wk, and the set Ancstjk can be computed in polynomial time in
the representation of Gk [22].

Task-level Priority Assignment. The fixed priorities of the
n tasks {G1, G2, . . . Gn} are assigned based on Deadline-
Monotonic (DM) priority ordering (i.e., a task having shorter
relative deadline has higher fixed priority). The set of tasks having
higher fixed priorities than that of task Gk is denoted by hptk.

Subtask-level Priority Assignment. The fixed priorities to the
subtasks of Gk are assigned based on a topological order of the
subtasks of Gk. A topological order is such that if there is an edge
from subtask vk,j to subtask vk,g , then subtask vk,j appears before
subtask vk,g in the topological order. A topological order can be
computed in linear time in the size of the DAG of Gk [22]. A
subtask vk,j ∈ Vk is assigned a higher fixed priority than subtask
vk,g ∈ Vk if and only if vk,j appears before subtask vk,g in the
topological order of Gk. This subtask-level priority assignment
policy exploits the internal structure of the DAG task Gk based on
its topology.

The topological sort of DAG Gk in Figure 1 is given as follows
(u � w implies u has higher priority than w):

vk,1 � vk,3 � vk,2 � vk,5 � vk,4 � vk,6

During the subtask-level priority assignment, a subtask at a
lower level of the DAG is given higher priority in comparison to

the one at a higher level. If two subtasks have the same level, then
the subtask having relatively higher (subtask) index is given higher
priority.

Given a subtask vk,j ∈ Vk of particular task Gk, the set of
subtasks in Vk having higher fixed priorities than that of vk,j is
denoted by hpstjk.

The two-level GFP Scheduler. The subtasks of the DAGs are
executed based on a two-level scheduler. The task-level scheduler
determines the highest-priority ready task Ghp and the subtask-
level scheduler selects the highest-priority subtask of Ghp for
execution. A newly released relatively higher-priority subtask is
allowed to preempt the execution of a lower-priority subtask when
all the cores are busy.

Under the subtask-level fixed-priority assignment policy, sub-
task vk,j has lower fixed priority than all the subtasks in set
Ancstjk. All the ancestors of vk,j are also in the set of higher
priority subtasks of vk,j , i.e., Ancstjk ⊆ hpstjk since subtasks are
assigned priorities based on topological sort. For example, for the
subtask vk,4 in Figure 1 we have Ancst4k = {vk,1, vk,2, vk,3} and
hpst4k = {vk,1, vk,2, vk,3, vk,5}. Note that Ancst4k ⊆ hpst4k.

In this paper, we determine the response time (also known as
makespan) of each task Gk ∈ Γ. The response time of a task
Gk is the largest possible time that all the subtasks of any job of
task Gk requires to finish its execution relative to the time when
the source subtask of the job becomes ready for execution. The
response time of task Gk is denoted as Rk. We compute Rk based
on computing the response time of each subtask vk,j ∈ Vk of task
Gk. The response time of subtask vk,j of task Gk is denoted as
Rj

k.

3 OVERVIEW OF OUR ANALYSIS FRAMEWORK

This section presents an overview of our schedulability analysis
framework that is used to derive a schedulability test. If this test
is when satisfied, then it is guaranteed that all the tasks meet
their deadlines (i.e., all the real-time constraints are met). The
framework is similar to that of in [16]. To determine whether each
task Gk ∈ Γ meets its deadlines or not, the response time Rj

k of
each subtask vk,j ∈ Vk of an arbitrary job of task Gk is computed
based on worst-case schedulability analysis.

The schedulability analysis of each subtask vk,j is performed
in an interval [rdyjk,rdy

j
k + t), called the problem window of

length t, such that the subtask vk,j is released (i.e., becomes ready
for execution) at time rdyjk relative to the release time of the
source subtask of the arbitrary job. A subtask is said to be released
when all its ancestors have completed their execution (i.e., there
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is no dependency). The problem window of vk,j is depicted in
Figure 2.

Figure 2: Problem window [rdyjk,rdy
j
k + t) of subtask vk,j that

becomes ready for execution at time rdyjk relative to the release
time of the source subtask.

Within the problem window [rdyjk,rdy
j
k + t), the execution

of subtask vi,j may be interfered by the higher priority subtasks in
set hpstjk, and also by the subtasks of the higher-priority tasks in
set hptk. The response time Rj

k of vk,j is derived by computing
the total interfering workload and interference. Before computing
these terms, their definitions are formally presented.

Total Interfering Workload. The intra-task interfering workload
of a higher priority subtask vk,h ∈ hpstjk in the problem
window of vk,j is the cumulative length of intervals during which
vk,h executes in that window. Similarly, the inter-task interfering
workload of a higher-priority task Gi ∈ hptk in the problem
window of vk,j is the cumulative length of intervals during which
the subtasks of the jobs of task Gi execute in that window. Since
computing the exact interfering workload considering all possible
release times of the tasks is computationally infeasible, we will
determine an upper bound on the intra- and inter-task interfering
workloads. The total interfering workload is the sum of intra- and
inter-task interfering workloads.

Interference. The interference on subtask vk,j within its problem
window is the cumulative length of the intervals during which
subtask vk,j is ready but not executing. Under GFP scheduling,
the execution of subtask vk,j in an interval [a, b] is interfered only
if all the m processing cores are simultaneously busy executing the
higher-priority subtasks (i.e., subtasks in hpstjk and/or subtasks
of the tasks in hptk) in [a, b]. The interference is calculated based
on total interfering workload as follows.

A note on the relationship between total interfering workload
and interference. Let Ik,j(t) is the total interfering workload due
to the execution of the higher-priority subtasks in hpstjk and the
subtasks of the higher priority tasks in hptk within the problem
window of length t of subtask vk,j . By considering the worst-case
in which the total interfering workload Ik,j(t) in the problem
window keeps all the m cores simultaneously busy (i.e., no core
is idle), the maximum interference that the subtask vk,j suffers in
its problem window of length t is Ik,j(t)/m.

The difference between the length of the problem window
and interference in the problem window (i.e., t − Ik,j(t)/m) is
the cumulative length of intervals in the problem window during
which there is at least one core on which subtask vk,j can execute.
If the sum of interference and the WCET of subtask vk,j is
not larger than the length of the problem window, then its is
guaranteed that the subtask vk,j can complete its execution in
the problem window.

4 RESPONSE TIME COMPUTATION

This section presents the schedulability analysis of a DAG task
Gk ∈ Γ to determine its response time Rk. If Rk ≤ Dk, then

it is guaranteed that all the jobs of Gk meet their deadlines. To
compute Rk, the response time Rj

k of each subtask vk,j ∈ Vk

of task Gk is computed. The response time Rk is equal to the
response time of the sink subtask vsinkk and is given as follows:

Rk = max
vk,j∈Vk

{Rj
k} = Rsink

k (1)

4.1 Computing Rj
k for subtask vk,j

The response time of the higher-priority tasks in hptk is com-
puted before computing the response time of (the lower-priority)
task Gk. We also compute the response times of the subtasks of
Gk in their decreasing priority order, i.e., the response time of the
source subtask (i.e., the highest priority subtask) is computed first
and the response time of the sink subtask (i.e., the lowest priority
subtask) of Gk is computed the last. Therefore, the response
time of vk,j is computed only after the response times of all its
ancestor3 subtasks in Ancstjk are computed. To determine the
response time Rj

k of subtask vk,j , we follow the following four
steps:

• Step 1 (Find the Ready Time): We first determine the latest
time when subtask vk,j becomes ready (i.e, value of rdyjk)
for execution relative to the release time of the source
subtask vk,src of any (arbitrary) job of Gk. By considering
that the subtask vk,j must have a response time not smaller
than t, the schedulability analysis of vk,j to compute Rj

k

is performed within its problem window [rdyjk,rdy
j
k +

t) of length t. If subtask vk,j does not complete within
[rdyjk,rdy

j
k+t), then the length t of the problem window

is increased until subtask vk,j is guaranteed to complete
within [rdyjk,rdy

j
k + t) or the deadline is missed (this

is a well-known approach to compute response time, for
example, in [16]).

• Step 2 (Find the Intra-Task Interfering Workload). We de-
termine the maximum interfering workload of the higher-
priority subtasks in set hpstjk on subtask vk,j in the
problem window [rdyjk,rdy

j
k + t).

• Step 3 (Find the Inter-Task Interfering Workload). We de-
termine the maximum interfering workload of the subtasks
of the jobs of the higher-priority tasks in set hptk on
subtask vk,j in the problem window [rdyjk,rdy

j
k + t).

• Step 4 (Find Interference and the Response Time). Based
on the intra- and inter-task interfering workloads, we de-
termine the maximum interference that subtask vi,j suffers
in its problem window. Finally, based on the interference
we determine the response time Rj

k.

Step 1 (Find the Ready time): Consider that an arbitrary job
of task Gk is released at time rk, i.e., the source subtask vk,src
of the job becomes ready at time rk. In other words, the latest
time by which the source subtask vk,src of the job of Gk becomes
ready for execution relative to time rk is 0. Therefore, we have
rdysrck = 0.

A (non-source) subtask vk,j becomes ready for execution after
all the ancestor subtasks in Ancstjk complete their execution (i.e.,
when all of its dependencies are released). Therefore, the latest
time when vk,j becomes ready for execution is the maximum

3. Recall from the subtask-level priority assignment policy in Section 2 that
the ancestors of vk,j have higher priority than the priority of vk,j .
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response times of all its ancestors. The latest ready time rdyjk
of subtask vk,j is:

rdyjk = max
vk,a∈Ancstjk

Ra
k (2)

Since the response times of all the ancestor subtasks of vk,j are
computed before computing the response time of vk,j , the value of
rdyjk in Eq. (2) can be computed based on the (already available)
response times of all its ancestors.

Step 2 (Find the Intra-Task Interfering Workload). In
this step, we determine the maximum interfering workload of
the higher-priority subtasks in set hpstjk. None of the ancestors
of vk,j can interfere the execution of vk,j within the problem
window [rdyjk,rdy

j
k+t) since all the ancestors of vk,j must have

completed by time rdyjk (according to Eq. (2)). In other words,
the higher-priority subtasks from set hpstjk that may interfere the
execution of subtask vk,j are in set Sjk which is given as follows:

Sjk = hpstjk −Ancstjk (3)

The intra-task interfering workload in the problem window is
now computed based on the interfering workload of each of the
subtasks in Sjk . Since rdyjk is the time when subtask vk,j becomes
ready for execution, a higher-priority subtask vk,h ∈ Sjk executes
within the problem window [rdyjk,rdy

j
k+ t) only if vk,h has not

completed its execution by time rdyjk. Recall that for each higher-
priority subtask vk,h ∈ Sjk , the response time Rh

k has already been
computed before computing rdyjk.

If Rh
k > rdyjk, then the higher-priority subtask vk,h com-

pletes its execution after time rdyjk and contributes at most
(Rh

k − rdyjk) as the intra-task interfering workload within the
problem window. Otherwise, we have Rh

k ≤ rdyjk which im-
plies that subtask vk,h has already completed its execution by
time rdyjk and cannot contribute to the intra-task interfering
workload. Therefore, subtask vk,h ∈ Sjk can execute at most
max{0, Rh

k − rdyjk} time units inside the problem window of
vk,j . However, since the WCET of subtask vk,h is Ck,h, the
quantity max{0, Rh

k − rdyjk} can be upper bounded by Ck,h.
Consequently, the higher-priority subtask vk,h ∈ Sjk can execute
for at most min{Ck,h,max{0, Rh

k − rdyjk}} time units inside
the problem window of vk,j . The total intra-task interfering work-
load, denoted by Wintra

k , due to all the higher-priority subtasks
in set Sjk = (hpstjk −Ancstjk) is

Wintra
k =

∑
vk,h∈Sj

k

min{Ck,h,max{0, Rh
k − rdyjk}} (4)

Step 3 (Find the Inter-Task Interfering Workload).
We now determine the maximum interfering workload of the
higher-priority tasks in set hptk within the problem window
[rdyjk,rdy

j
k + t) of length t. Given a problem window of length

t, we denote4 by Winter
k,t the maximum inter-task interfering

workload of the jobs of the higher priority tasks in hptk. To
determineWinter

k,t , we compute the inter-task interfering workload

4. Note that the right-hand side of Eq. (4) is independent of the length of
the problem window, i.e., value of t. Therefore, the notation Wintra

k does
not include the symbol “t”. On the other hand (as it will be evident shortly)
the total inter-task interfering workload depends on the length of the problem
window t and we include the symbol “t” in Winter

k,t .

of each individual higher-priority task Gi ∈ hptk within the
problem window [rdyjk,rdy

j
k + t) of subtask vk,j .

The execution of different jobs of task Gi ∈ hptk in the
problem window [rdyjk,rdy

j
k + t) of subtask vk,j is divided in

to three categories: carry-in job, body jobs, and carry-out job.
The carry-in job is the first job of task Gi that executes in
[rdyjk,rdy

j
k+ t) such that its release time is before rdyjk and its

deadline is in [rdyjk,rdy
j
k + t). The carry-out job is the last job

of task Gi that executes in [rdyjk,rdy
j
k + t) such that its release

time is before (rdyjk + t) and deadline is after (rdyjk + t). All
other jobs of task Gi executing in [rdyjk,rdy

j
k+t) are body jobs.

To determine the maximum inter-task interfering workload of
the jobs of the higher priority task Gi ∈ hptk inside the problem
window, we need to consider the worst-case release pattern of
the carry-in, body, and carry-out jobs of task Gi such that their
contribution to the inter-task interfering workload is maximized.
The worst-case release pattern refers to the scenario in which the
releases and execution of the jobs of the higher priority task Gi ∈
hptk inflict maximum interference on a lower priority task inside
its problem window. We consider the following worst-case release
pattern that is depicted in Figure 3 where

• the carry-out job5 starts its execution at time
(rdyjk + t−Wi/m) and completes Wi amount of work
by time (rdyjk + t);

• all the earlier jobs arrive as late as possible (i.e., strictly
periodically); and

• the carry-in job of Gi finishes its execution at time
(rdyjk+ tcin) such that (rdyjk+ tcin−Ri) is the release
time of the carry-in job of Gi for some tcin > 0 where
Ri is the (already computed) response time of task Gi.

Similar to the body and carry-out jobs, we may also consider
that the carry-in job executes Wi amount of work in Wi/m time
units and completes at time (rdyjk + tcin), which is an upper
bound on the work done by the carry-in job in the problem
window. However, we will compute the workload of the carry-
in job more precisely by exploring the internal structure of Gi.
Therefore, the work done by the carry-in job, unlike the body and
carry-out job, is not depicted in Figure 3 to complete Wi amount
of work in a duration equal to Wi/m.

Before we present the mathematical expressions to compute
the inter-task interfering workload of task Gi ∈ hptk in the
problem window based on Figure 3, we first prove in Lemma 1
that the release pattern in Figure 3 is in fact the worst-case, i.e.,
it maximizes the inter-task interfering workload of task Gi in the
problem window [rdyjk,rdy

j
k + t).

Lemma 1. An upper bound on the interfering workload of task
Gi in a problem window of length t can be computed based on
the worst-case release pattern of the carry-in, body and carry-out
jobs of Gi that is given in Figure 3.

Proof. We prove this lemma by showing that shifting the problem
window in Figure 3 either to the right or to the left cannot increase
workload in the problem window.

Consider shifting the window to the right where the arrival
patter remains the same and we move [rdyjk and rdyjk + t] to the

5. Completing Wi amount of work in Wi/m time units contributes to
maximum work of the carry-out job in the least possible length of the problem
window, which leaves maximum length for the execution of the carry-in and
carry-out job. This leads us to compute the worst-case workload of Gi.
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Figure 3: Worst-case release pattern. The (larger) upward dotted arrow and (shorter) downward dotted arrow respectively represents the
release time and the deadline of a job.

right. Note that when a body job becomes a carry-in job during
such right shift, we consider its execution similar to the carry-
in job shown in the non-shifted window in Figure 3. Shifting the
window to the right by δ time units is same as shifting the window
to the left by (Ti − (δ mod Ti)) time units. Therefore, we only
consider left shifting the problem window.

Consider shifting the window in Figure 3 to left by δ time
units where δ ≤ Wi/m. By shifting we mean that we keep the
arrival pattern of the jobs unchanged but the problem window
[rdyjk,rdy

j
k + t] is moved leftward. In such case, the workload

is reduced by (δ ·m) from right side of the window and at most
(δ·m) amount of work may be increased from the left. Shifting the
window to the left by δ time units, where Wi/m < δ < Ti, would
reduce at least Wi amount of work from the right and the amount
of work that can be increased from the left is at most Wi. This is
because at most Wi amount of additional work can be generated
from the left in an interval not larger than Ti in Figure 3. Shifting
the window to the left by δ time units, where δ ≥ Ti, produces
scenario equivalent to shifting the window left by (δ mod Ti) time
units, which has already been considered. Therefore, the workload
cannot increase for any possible shift of the problem window.

According to Figure 3, the carry-in and the body jobs execute
in the interval [rdyjk,rdy

j
k + t − Wi/m]. The length of the

interval [rdyjk,rdy
j
k + t −Wi/m] is given (denoted by Xi(t))

as follows:

Xi(t) = max{0,rdyjk + t− Wi

m
} (5)

where rdyjk is already computed using Eq. (2).
Next we will determine the value of tcin which is the length

of the interval where the carry-in job of τi executes in the problem
window. The maximum number of body jobs that execute in the
problem window is �Xi(t)

Ti
�. Therefore, the length of the interval

inside the problem window where all the body jobs execute is

(�Xi(t)
Ti
� · Ti). The length of the interval inside the problem

window where the carry-out job executes is Wi/m.

According to Figure 3, the carry-in job completes its execution
at time (rdyjk+tcin). Note that there is an interval of length (Ti−
Ri), just after the time instant (rdyjk+tcin), during which no job
of Gi can be released since the releases of two consecutive jobs
of Gi is separated by at least the period Ti of task Gi. Therefore,
the length of the interval inside the problem window where the
carry-in job execute, (i.e., value of tcin) is computed as follows:

tcin = t− (Ti −Ri)−
⌊Xi(t)

Ti

⌋
· Ti − Wi

m
(6)

To avoid negative length of tcin in Eq. (6), we lower bound
the value of tcin by zero and tcin is given as follows:

tcin = max

{
0, t− (Ti −Ri)−

⌊Xi(t)

Ti

⌋
· Ti − Wi

m

}
(7)

Note that if tcin = 0, then there is no carry-in job. The only
jobs of Gi that execute inside the problem window are the body
jobs and the carry-out job.

Now we compute the inter-task interfering workload of the
carry-in, body and carry-out jobs. We denote by CRi(tcin) the
maximum inter-task interfering workload of the carry-in job of
Gi in [rdyjk,rdy

j
k + tcin). The computation of CRi(tcin) is

presented below (after Eq. (8)).

The maximum total work of the body jobs in the problem
window is (�Xi(t)

Ti
�·Wi) where �Xi(t)

Ti
� is the number of body jobs

in the problem window. The maximum total work of the carry-
out job during the problem window is at most Wi. Therefore, the
inter-task interfering workload of task Gi ∈ hptk is (CRi(tcin)+
�Xi(t)

Ti
� ·Wi +Wi). The inter-task interfering workload Winter

k,t

of all the tasks in hptk within the problem window of vk,j is
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Winter
k,t =

∑
Gi∈hptk

(
CRi(tcin) + �Xi(t)

Ti
� ·Wi +Wi

)
(8)

Computing CRi(tcin)

We determine the value of CRi(tcin) by considering the work
done by the subtasks of the carry-in job of task Gi ∈ hptk in
the interval [rdyjk,rdy

j
k + tcin). Consider a subtask vi,g ∈ Vi

of the carry-in job of Gi. Note that Rg
i is the response time of the

subtask vi,g ∈ Vi, which is already computed before the response
time of vk,j is computed (recall that the response time of all the
subtasks of the higher priority task Gi are computed before the
response time of vk,j is computed).

Subtask vi,g of task Gi executes in [rdyjk,rdy
j
k + tcin) only

if its response time Rg
i is > rdyjk. Based on the similar analysis

in Step 2, the higher-priority subtask vi,g of the carry-in job of Gi

can execute at most min{Ci,g,max{0, Rg
i − rdyjk}} time units

inside the problem window of vk,j . An upper bound on the total
interfering workload of all the higher-priority subtasks in set Vi of
the carry-in job of task Gi, denoted by Ai, is

Ai =
∑

vi,g∈Vi

min{Ci,g,max{0, Rg
i − rdyjk}} (9)

However, the inter-task interfering workload of the carry-in
job of Gi in [rdyjk,rdy

j
k + tcin) cannot be larger than (m · tcin)

since at most (m · tcin) amount of work can be completed within
an interval of length tcin on m cores. Therefore, the value of
CRi(tcin) is given as follows:

CRi(tcin) = min{m · tcin,Ai} (10)

Step 4 (Interference and the Response Time). The total
interfering workload, denoted by Ik,j(t), within the problem
window of length t for subtask vk,j is the sum of intra-task and
inter-task interfering workloads:

Ik,j(t) =Wintra
k +Winter

k,t (11)

where the values of Wintra
k and Winter

k,t are computed using
Eq. (4) and Eq. (8), respectively. The total interfering workload
Ik,j(t) causes maximum interference on vk,j in its problem
window if all the m cores are simultaneously busy executing the
higher-priority interfering workload Ik,j(t). In other words, the
execution of subtask vi,j is interfered, after it becomes ready for
execution, by at most Ik,j(t)

m time units within its problem window
[rdyjk,rdy

j
k+t). The response time of subtask vk,j is given using

the following recurrence:

th+1 ← rdyjk +
Ik,j(th)

m
+ Ck,j (12)

where the first term on the right-hand side in Eq. (12) is the latest
time when subtask vk,j becomes ready for execution, the second
term represents the interference on subtask vk,j within a problem
window of size th, and finally the third term Ck,j is the WCET of
subtask vk,j .

The recurrence in Eq. (12) can be solved by searching iter-
atively the least fixed point that satisfies Eq. (12) starting with
t0 = Ck,j for the right-hand side of Eq. (12). This recursion stops

when either (i) th+1 = th (i.e., subtask vk,j completes at or before
the deadline of the task Gk) and we have Rj

k = th+1; or (ii)
th+1 > Dk (i.e., task Gk can not guaranteed to be schedulable).
If th+1 > Dk, we set Rj

k = ∞ to specify that the subtask vk,j
is not guaranteed to meet the deadline of the task Gk. Given the
response time Rj

k of each subtask vk,j of task Gk, the response
time of task Gk can be be computed based on Eq. (1). Now we
prove in Theorem 1 that the recurrence to compute the response
time of each task using Eq. (12) is correct.

Theorem 1. All the tasks in set Γ = {G1, G2, . . . Gn} meet their
deadlines if Rk ≤ Dk for k = 1, 2, . . . n.

Proof. If Rk ≤ Dk, then we also have that Rj
k ≤ Dk for

each subtask vk,j ∈ Vk from Eq. (1). We prove this theorem
by showing that Eq. (12) correctly computes an upper bound on
the response time of each subtask vk,j ∈ Vk of task Gk for
k = 1, 2 . . . n.

Based on Eq. (11), we have Ik,j(th) =Wintra
k +Winter

k,th and
the recurrence in Eq. (12) can be re-written as

th+1 ← rdyjk +
Wintra

k

m
+ Ck,j +

Winter
k,th

m
(13)

The intra- and inter-task interfering workloads Wintra
k and

Winter
k,t in Eq. (4) and Eq. (8) are computed based on the WCETs

of the subtasks in set hpstjk and the subtasks of the tasks in set
hptk, respectively.

Lemma 1 proves that the release pattern of the jobs of the
higher priority task Gi ∈ hptk according to Figure 3 maximizes
the inter-task interfering workload Winter

k,t . The maximum inter-
task interference isWinter

k,t /m in a problem window of size t.
The intra-task interfering workload Wintra

k is computed by
considering the maximum work done by each higher-priority
subtask in hpstjk that are eligible to execute after time rdyjk,
where rdyjk is the latest time when the node vk,j becomes ready
for execution.

Node vk,j does not start its execution until it is ready. Apart
from the inter-task interference, to complete Ck,j amount of
execution of node vk,j it may also suffer intra-task interference
in the problem window. According to Eq. (13), the execution of
node vk,j may be delayed apart from the inter-task interference

Winter
k,t /m by at most rdyjk +

Wintra
k

m time units. Note that

rdyjk is the latest time by which node vk,j must be ready
for execution. If the ancestors of vk,j during actual execution
complete earlier than rdyjk, then the higher-priority non-ancestor
subtasks in set hpstjk may execute longer in the problem window
in comparison to the case when vk,j becomes ready for execution
at time rdyjk. Therefore, the intra-task interference may be lager

than Wintra
k

m . We will now show that such increase in intra-
task interference does not invalidate Eq. (13). This is because
if node vk,j becomes ready for execution Δ time units earlier
than rdyjk during actual execution, then the intra-task interference
within the window [rdyjk − Δ,rdyjk) during which all the m
processors are busy cannot be larger than Δ. And, the intra-task
interference beyond time rdyjk is at mostWintra

k /m. Therefore,
the maximum delay in completing the execution of vk,j is at most
the sum of (i) the ready time (rdyjk − Δ), (ii) the intra-task
interference (Δ +Wintra

k /m), (iii) its own execution time Ck,j ,
and (iv) the inter-task interference Winter

k,th /m within a problem
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window of length th. The recurrence in such case to determine the
response time is

th+1 ← (rdyjk −Δ) +Δ+
Wintra

k

m
+ Ck,j +

Winter
k,th

m

which is equivalent to the recurrence in Eq. (13), which in turn is
equivalent to Eq. (12).

In summary, the cumulative length of the intervals during
which vk,j does not execute (either because it is not ready or

suffers interference) cannot be larger than rdyjk +
Ik,j(t

h)
m where

Ik,j(th) is the total interfering workload in the problem window
of vk,j of length th in Eq. (12). Therefore, the recurrence derived
in Eq. (12) correctly computes the response time of subtask vk,j
by considering the maximum interference that the subtask vk,j in
a problem window of length th suffers.

5 COMPARISON WITH THE STATE-OF-THE-ART

TEST AND AN EXAMPLE

Melani et al. [16] recently proposed a response-time analysis of re-
current DAG tasks scheduled using GFP algorithm. In this section,
we present their proposed schedulability test and show that our test
is theoretically more precise than the test in [16]. In Section 6, we
show that our proposed test empirically performs much better than
the test in [16] for scheduling randomly generated DAG task sets.

In [16], each DAG task has a fixed priority but the subtasks
of a DAG task Gk are not assigned any priority: the subtask-level
scheduler is assumed to be an arbitrary greedy scheduler that never
idles a core if there is a subtask awaiting execution in the ready
queue. In contrast, we consider specific fixed priorities for the
subtasks in addition to the fixed priority of each task Gk ∈ Γ to
determine which subtask of the highest-priority ready DAG task to
execute. In other words, we consider a particular (fixed-priority-
based) subtask-level scheduler which is also greedy but selects
subtasks for execution in decreasing priority order.

Similar to the analysis proposed in this paper, the response
time analysis of each task Gk ∈ Γ in [16] is also performed in a
problem window [rk, rk + t) of length t where an arbitrary job of
task Gk is released at time rk. The response time of task Gk is
computed by determining an upper bound on both intra- and inter-
task interference that the longest path (i.e., that has length Lk) of
Gk suffers in [rk, rk + t). In contrast, we determine the response
time of Gk by determining an upper bound on both intra- and
inter-task interference that each subtask vk,j ∈ Vk of Gk suffers
in [rk, rk + t).

Next we present the response time test that is proposed by
Melani et al. in [16] and then we show that our proposed test is
theoretically better than the state-of-the-art test.

According to the work in [16], the intra-task interference on
the longest path of an (arbitrary) job of Gk is Wk−Lk

m where
Wk and Lk are the total work of all the nodes and the length of
the longest path in Gk. For computing the inter-task interference,
the worst-case release pattern that maximizes the workload in the
problem window (given in Figure 4) is derived in [16] by consider-
ing that (i) the carry-in job of Gi ∈ hptk starts execution at time
rk and finishes at time (rk+Wi/m) such that (rk+Wi/m−Ri)
is the release time of the carry-in job, (ii) each of the later jobs
executes Wi amount of work in Wi/m time units as soon as
possible. An upper bound on the inter-task interfering workload

(denoted as Winter
k,t ) of all the higher-priority tasks in hptk in a

problem window of length t is given as follows [16]:

Winter
k,t =

∑
Gi∈hptk

(⌊
t+Ri −Wi/m

Ti

⌋
Wi

+min

{
Wi,m · (t+Ri − Wi

m
) mod Ti

})
(14)

The total inter-task interference on the longest path of Gk in
the problem window is (

∑
Gi∈hptkW

inter
i,t )/m and the intra-task

interference on the longest path of Gk is (Wk − Lk)/m. The
response-time of task Gk for GFP scheduling is given in [16]
using the following recurrence:

th+1 ← Lk +
Wk − Lk

m
+
Winter

k,th

m
(15)

Similar to the recurrence in Eq. (12), the recurrence in Eq. (15)
is solved by searching the least fixed point starting with t0 = Lk

from the right-hand side.
Determining the workload in the problem window plays one

of the most important roles in gauging the effectiveness of
the state-of-the-art test in Eq. (15). The analysis in [16] hides
the internal structures of the DAG task Gi by using only two
parameters to represent this task: Wi and Li. Such abstraction
while being simple to analyze leads to computing the workload
in the problem window more pessimistically, which may lead
task sets to be deemed unschedulable using the proposed test in
Eq. (15) while the task set is in fact schedulable. Our proposed
technique to compute the workload is less pessimistic (will be
shown shortly in Theorem 2) due to exploiting the precedence
constraint information (i.e., subtask-level priority) of the tasks.

It will shown in Theorem 2 that our proposed response time
test in Eq. (12) dominates the test in Eq. (15) in the sense that: if
a task set is schedulable using the test in Eq. (15), then that task
set is also guaranteed to be schedulable using our proposed test in
Eq. (12); and there are task sets (see Example 1) for which our test
guarantees schedulability but the test in Eq. (15) cannot guarantee
schedulability.

Theorem 2. The response-time test in Eq. (12) dominates the
response-time test in Eq. (15).

Proof. The response time tests in Eq. (12) and Eq. (15) for task
Gk ∈ Γ can be rewritten as the sum of the following two factors
F1 and F2:

• F1. Response time of task Gk without considering the
inter-task interference, and

• F2. Inter-task interference in a problem window of length
t.

Based on Eq. (11), we re-write Eq. (12) as follows.

th+1 ← rdyjk +
Wintra

k

m
+ Ck,j +

Winter
k,th

m
(16)

where

• F1: rdyjk +
Wintra

k

m + Ck,j is the response time of task
Gk without considering the inter-task interference; and

• F2:
Winter

k,th

m is the inter-task interference in a problem
window of length th.

Similarly, in Eq. (15), we have
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Figure 4: Worst-case release pattern for workload computation in [16].

Figure 5: Left Shift of the worst-case release pattern for workload computation in [16].

• F1: the term Lk+
Wk−Lk

m is the response time of task Gk

without considering the inter-task interference; and

• F2:
Winter

k,th

m is the inter-task interference in a problem
window of length th.

To prove this theorem, we first show that each of the terms F1
and F2 is never more pessimistic in Eq. (12) in comparison to the
state-of-the-art test test in Eq. (15).

Factor F1. The quantity Lk + (Wk − Lk)/m in Eq. (15) is
the response time of DAG Gk under any work-conserving (i.e.,
greedy) algorithm without considering the inter-task interference.
In contrast, we assign fixed priorities to the subtasks and use a
fixed-priority based subtask level scheduler to schedule the tasks.
Since fixed-priority scheduler is also a work-conserving (i.e.,
greedy) scheduler, the response time of DAG task Gk, i.e., value

of rdyjk+
Wintra

k

m +Ck,j , is not larger than Lk+(Wk−Lk)/m.
Therefore, factor F1 in our test is never more pessimistic than the
factor F1 in the state-of-the-art test.

Factor F2. We will show that Winter
k,t ≥ Winter

k,t for any
problem window of size t, which implies that the inter-task

interfering workload computed using our approach is less than
or equal to that of computed by Melani et al. in [16] for the same
length of the problem window.

First, we show another worst-case release pattern (Figure 5)
that is equivalent to the release pattern in Figure 4 considered by
Melani et al [16]. The inter-task interfering workload Winter

i,t in
Eq. (15) is exactly equal to the inter-task interfering workload of
this equivalent release pattern in Figure 5.

Second, we show that the release pattern in Figure 5 com-
putes the inter-task interfering workload more pessimistically in
comparison to the release pattern that we consider in Figure 3.
Since the release patterns in Figure 4 and Figure 5 are equivalent,
we conclude that Figure 4 (the state-of-the-art) computes the
inter-task interfering workload more pessimistically in comparison
to the release pattern that we consider in Figure 3. Therefore,
Winter

k,t ≥ Winter
k,t .

Consider shifting the problem window in Figure 4 to the right
such that the body job finishes its execution of Wi time units in
an interval of length Wi/m exactly at the end of the window, i.e.,
at time (rk + t). This shifted window is shown in Figure 5. It



IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. –, NO. –, NOV 2017 10

is evident that the inter-task interfering workload in the problem
window in Figure 5 is same as that of in Figure 4. This is because
the amount of work that is decreased from the left-hand side due
to the right shift is exactly equal to the amount of work that is
increased from the right-hand side of the problem window. In other
words, the inter-task interfering workload for the release pattern
in Figure 5 is alsoWinter

k,t .
The release pattern in Figure 5 is quite similar to the release

pattern in Figure 3 except that within the window of length
[rk, rk + tcin), the work done by the carry-in job of the higher-
priority task Gi is exactly (m · tcin) in Figure 5 while it may
be smaller than (m · tcin) in Figure 3. In other words, while the
work done by the body and the carry-out jobs of Gi is same in
our release pattern (Figure 3) and the equivalent release pattern
(Figure 5), our approach to compute the work of the carry-in job
of a higher priority task Gi is less pessimistic. This is due to the
min function in Eq. (10): if CRi(tcin) = (m·tcin) in Eq. (10), then
the carry-in workload in [rk, rk+tcin) computed using Eq. (10) is
same as that of computed in [16]. If CRi(tcin) < (m · tcin), then
the carry-in workload computed using Eq. (10) in [rk, rk + tcin)
is strictly smaller than that of computed in [16]. Consequently, the
proposed technique to compute the work of the carry-in job of Gi

in [rk, rk + tcin) is smaller than or equal to that of in Figure 5.
All the body jobs and the carry-out job of the higher priority

task Gi execute exactly for Wi time units in both Figure 3 (our
analysis) and Figure 5. Since the inter-task interfering workload
in Figure 5 is Winter

i,t , our proposed technique to compute the
carry-in workload in [rk, rk+ t) is smaller than or equal to that of

proposed in [16], i.e.,Winter
i,t ≥ Winter

i,t for any problem window
of length t. Consequently, the inter-task interference using our
approach is smaller than or equal to that of computed in [16].

Since each of the factors F1 and F2 in our approach is never
worse than the state-of-the-art in [16], the computed response time
in Eq. (1) is never larger than the response time of the state-of-the-
art in [16]. Example 1 shows that the response time computation
in Eq. (1) is strictly smaller than that of computed using Eq. (15)
for an example DAG task in Figure 6, which show the dominance
of the proposed test over the state-of-the-art test.

Next we show an example of a single DAG task where
the response time computed by Eq. (15) is larger than that of
computed using our approach in Eq. (12). When applied to a single
DAG task Gk (i.e., there is no inter-task interference), the response
time of Gk based on Eq. (15) is

Rk = Lk +
Wk − Lk

m
(17)

The response time of each subtask vk,j of Gk based on
Eq. (12) is given as follows:

Rj
k = rdyjk +

Wintra
k

m
+ Ck,j (18)

Example 1. Consider GFP scheduling of a single DAG task Gk

in Figure 6 on m = 2 cores where Dk = 52 and Tk = 100.
The length of the longest path is Lk = 46 and total work of Gk

is Wk = 64. The response time using Eq. (17) is Lk + (Wk −
Lk)/m = 46 + (64 − 46)/2 = 55. Since Dk = 52 < 55, the
state-of-the-art test cannot guarantee schedulability of Gk.

Now we compute the response time of Gk using Eq. (18). The
fixed priorities of the subtasks of Gk are vk,1 � vk,3 � vk,2 �
vk,5 � vk,4 � vk,6. The response time of each subtask based on

Figure 6: An example DAG task.

Eq. (18) is given in the last column in Table 1. The sink subtask
vk,6 has response time R6

k = 50.5. Therefore, Rk = R6
k =

50.5 based on Eq. (1). Since Dk = 52 ≥ Rk = 50.5, we can
guarantee that the task Gk meets its deadline using the proposed
test.

6 EMPIRICAL STUDY

In this section, we compare the performance of our proposed
schedulability test with the state-of-the-art schedulability test
using randomly-generated parallel DAG task sets. The tasks are as-
signed fixed priorities based on deadline-monotonic (DM) priority
ordering. We denote our proposed schedulability test in Eq. (12) by
“Our-DM” and the state-of-the-art schedulability tests in Eq. (15)
by “MBBMB-DM”. Note that unlike MBBMB-DM test, Our-DM
test considers subtask-level fixed priority (i.e., topological sort in
Section 2).

The utilization uk of a task Gk is the ratio between its total
work and the period, i.e., uk = Wk/Tk. The utilization uk of the
DAG in Figure 6 is Wk/Tk = 64/100 = 0.64. For a task set Γ,
its total utilization is defined as U =

∑
Gk∈Γ uk. The utilization

U of a task set specifies its computation load. Before presenting
the experimental results, the task sets generation algorithm is
presented.

6.1 Task Sets Generation Algorithm

We use a similar DAG task set generation algorithm that is used
in [16] which generates a series of parallel graphs by recursively
expanding the non-terminal vertices for a given recursion depth.
The purpose of such expansion is to generate either a new terminal
vertices (i.e., sink subtasks) or a new parallel subgraphs. The
maximum recursion depth for all our experiments is set to 2.

The probabilities to generate a terminal vertex and a parallel
subgraph by expanding a non-terminal vertex are pterm and
(1 − pterm), respectively. The number of branches of a parallel
subgraph is uniformly selected from [2, npar] where npar is the
maximum branches (degree) for any parallel subgraph. Random
edges are added between pairs of subtasks with probability padd
in a way so that there is no cycle in the graph. Once the subtasks
and the edges of a DAG task Gk are generated, the parameters of
each DAG task Gk are generated as follows:

• the WCET Ck,i of a subtask vk,i ∈ Vk of task Gk is
uniformly selected in the range [1, 100];

• the length of the longest path Lk and the workload Wk

are computed;
• the period Tk (i.e., the minimum inter-arrival time) is

uniformly selected in the interval [Lk,Wk/β), where
β ≤ 1 is used to control the minimum utilization of task
Gk. The utilization uk of Gk is in [β,Wk/Lk]; finally,
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subtask Ck,j Ancstjk rdyj
k = max

vk,a∈Ancst
j
k

Ra
k Sj

k = hpstj
k −Ancstjk Wintra

k Rj
k = rdyj

k+
Wintra

k
m

+Ck,j

vk,1 4 ∅ 0 ∅ 0 4
vk,3 20 vk,1 4 ∅ 0 4+0+20=24
vk,2 12 vk,1 4 {vk,1, vk,3} − {vk,1} = {vk,3} 20 4 + 20

2
+ 12 = 26

vk,5 6 vk,1, vk,3 24 {vk,2} 26-24=2 24 + 2
2
+ 6 = 31

vk,4 14 vk,1, vk,2, vk,3 26 {vk,5} 31-26=5 26 + 5
2
+ 14 = 42.5

vk,6 8 vk,1, . . . , vk,5 42.5 ∅ 0 42.5 + 0 + 8 = 50.5

Table 1: Computing response time of the DAG Gk in Figure 6 where the priorities of the subtasks are vk,1 � vk,3 � vk,2 � vk,5 �
vk,4 � vk,6. From Eq. (4), we haveWintra

k =
∑

vk,h∈Sj
k
min{Ck,h,max{0, Rh

k − rdyjk}}.
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Figure 7: Acceptance ratio of Our-DM and MBBMB-DM tests for m = 4, 8, 16.

• the relative deadline Dk of Gk is uniformly selected from
the range [Lk, Tk].

6.2 Experimental Results

We set pterm = 0.5, npar = 5, padd = 0.1 and β = 0.1 for
our experiments. For a target total utilization U of a task set,
new DAG tasks are repeatedly added to the task set until the total
utilization of the task set is equal to U . In order to generate a task
set with total utilization exactly equal to U , the period of the last
task is adjusted so that the total utilization of the task set is exactly
equal to U . A total of 500 task sets are generated at each of the
utilization levels U ∈ [0.25, 0.5, . . . m] where m is the number of
cores. Each of the 500 task sets that are generated at that particular
utilization level U ∈ [0.25, 0.5, . . . m] has total utilization U .

For a specific schedulability test, and m, U values, we consider
the metric called acceptance ratio that denotes the fraction of task
sets out of 500 DAG task sets that are guaranteed to be schedulable
by the schedulability test at that utilization level on m cores.
We implemented our experiments in MATLAB and computed the
acceptance ratios of both tests for various values of U and m.

Figure 7 presents the acceptance ratios of Our-DM test and
MBBMB-DM test for m = 4, 8, 16 cores. The x-axis in each
plot in Figure 7 represents the total utilization U of each task
set and the y-axis is the acceptance ratio. Our proposed Our-
DM schedulability test outperforms the state-of-the-art MBBMB-
DM test. For example, the acceptance ratios in Figure 7a at
U = 2.0 for m = 4 of Our-DM test and MBBMB-DM test
are respectively around 50% and 70%. In other words, around
20% more task sets are deemed to be schedulable using Our-DM
test in comparison to MBBMB test at U = 2.0 and m = 4. The
difference in acceptance ratios between Our-DM and MBBMB-
DM tests increases with the increase in total utilization of the
task sets for all m = 4, 8, 16 in Figure 7a–7c. In Figure 7b

for m = 8, around 20% and 30% more task sets are deemed
to be schedulable respectively at U = 3.0 and U = 5.0 using
Our-DM test in comparison to MBBMB test. It is generally more
difficult to schedule task sets with relative higher total utilization
or higher load. Our-DM test is very effective in comparison to
MBBMB-DM test in guaranteeing schedulability of relatively
high-utilization task sets.

Unlike the response time computation using MBBMB-DM
test, the schedulability analysis used to derive Our-DM test uses
the internal structure of each DAG task to determine which
subtasks may execute in parallel with the execution of the subtasks
in the longest path of the DAG. Consequently, the response time
computation using Our-DM test is more precise than that of
MBBMM-DM test.

Variation with number of cores (m). For this set of ex-
periments, we vary the number of cores while keeping the total
utilization U of each task set fixed. Figure 8 shows the acceptance
ratio of Our-DM test and MBBMB-DM test for various values of
m using three different (fixed) total utilizations: U = 2, U = 4,
and U = 8. When the number of cores becomes larger, the
acceptance ratio also increases in all the three plots in Figure 8a–
8c. This is expected because a relative higher number of cores has
higher likelihood of meeting all the deadline of the task sets for
both tests.

However, for many resource-constrained systems where the
size, weight, and power are limited and costly, we cannot afford a
much larger number of cores. In such case (i.e., when the number
of cores is small), Our-DM test has much larger acceptance ratio
than that of the MBBMB-DM test. For example in Figure 8a where
U = 2.0, Our-DM test has 80% acceptance ratio when m ≥ 8
while the MBBMB-DM test reaches 80% acceptance when m ≥
20 cores. In Figure 8c where U = 8.0, Our-DM test has larger
than 80% acceptance ratio when m ≥ 64 while the MBBMB-DM
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Figure 8: Acceptance ratios of Our-DM and MBBMB-DM tests for varying number of cores.

test has 80% acceptance when m ≥ 100 cores. These results show
the effectiveness of our proposed schedulability test in reducing
the demand for hardware resources (particularly, the number of
cores), which in turn reduces the cost of developing the systems
for mass production.

Variation with number of tasks (n). We vary the number
of tasks while keeping the total utilization (U ) of each task set
and number of cores (m) fixed. Since the number of tasks (n) of
each task set is fixed for a fixed value of U , the total utilization
of n tasks in each randomly-generated task set must be equal
to the target utilization U . The UUnifast algorithm, proposed
by Bini and Buttazzo [23], with parameters n and U is used to
generate the utilization values of the n tasks in a task set such
that the total utilization of the task set is exactly U . Figure 9
shows the acceptance ratios for various values of n for two given
configurations of (U,m): Figure 9a–9b shows results for (U =
2,m = 4) and (U = 4,m = 8), respectively.

When the number of tasks (n) increases while the total
utilization U is unchanged, the number of low-utilization tasks
in a task set increases because the total utilization U is distributed
across a relatively larger number of tasks of the task set. A low-
utilization task uses less computing resource and provides more
opportunity for other tasks to execute on the cores (i.e., easier bin-
packing). Consequently, when the number of tasks in the random
tasks sets is relatively larger (e.g., n ≥ 6 in Figure 9a and n ≥ 14
in in Figure 9b), then the acceptance ratios of both tests are 100%.

When the number of tasks is relatively small (i.e., there are
more high-utilization tasks in a task set), then Our-DM test has
higher acceptance ratio than that of the MBBMB-DM test. For
example, when U = 4 and m = 8 in Figure 9b, the acceptance
ratio for n = 5 of Our-DM test is ≈ 65% while it is ≈ 40%
for MBBMB-DM test. Therefore, our test is more effective in
scheduling task sets having a relatively larger number of high-
utilization tasks in comparison to task sets with higher number of
low-utilization tasks for the same total utilization U .

6.3 Other tests: Implicit Deadlines

Some recent works [24], [25] have proposed schedulability tests
for DAG tasks where the relative deadline Di is equal to the
period Ti for each task Gi (known as implicit-deadline task
sets) by considering scheduling policies, like federated schedul-
ing, decomposition-based scheduling. This subsection presents
the acceptance ratios of the following four schedulability tests
(in addition to MBBMB-DM and Our-DM) for implicit deadline
tasks:

• MBBMB-EDF: This test in [16] considers global EDF
scheduling of DAG tasks.

• DECOM-EDF: This test in [25] considers decomposing
each DAG task by assigning artificial release time and
artificial deadline to each subtask where such subtasks are
scheduled using global EDF policy.

• FED-LI: This test in [24] considers federated scheduling
where a DAG task with high utilization is assigned a ded-
icated number of processors while all the light-utilization
tasks are executed sequentially and scheduled on a shared
set of processors.

• SIM:For each set of DAG tasks, their execution is simu-
lated using our proposed two-level GFP scheduler where
the release time of each DAG task is zero and the jobs of
each task are released strictly periodically. The simulation
of the schedule is run for 106 time units. The acceptance
ratio of SIM is an upper bound on the acceptance ratio the
random task sets that are actually schedulable using the
proposed scheduler. The acceptance ratio of SIM depicts
the tightness of our proposed schedulability test MBBMB-
DM with respect to a hypothetical exact test.

The acceptance ratios for SIM, Our-DM, MBBMB-DM, FED-
LI, DECOM-EDF and MBBMB-EDF tests are shown in Figure 10
for m = 4 and m = 8 processors. It can be observed that
our proposed Our-DM performs better than all other tests. More
importantly, the difference between the plot of Our-DM is not
very far from the plot for SIM. This signifies that the preciseness
of Our-DM test is close to the (hypothetical) exact test for our
proposed two-level GFP scheduling policy.

7 RELATED WORKS

Many of the earlier works on parallel task models proposed
resource-augmentation bounds and schedulability tests for various
scheduling algorithms. The resource augmentation bound B of a
scheduling algorithm A indicates that if there is a way to schedule
a task set on m identical unit-speed cores, then algorithm A is
guaranteed to successfully schedule the same task set on m cores
with each core being B times as fast as the original. However,
resource-augmentation bound cannot be used as a schedulability
test since it is derived based on a hypothetical optimal scheduler.

The works on real-time scheduling of parallel tasks on mul-
ticores can be categorized in three groups considering the task
model that each group considers: (i) fork-join model [7], (ii)
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Figure 9: Acceptance ratios by varying n.
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Figure 10: Acceptance ratios by varying U for implicit-deadline tasks for m = 4 (left-hand side graph) and for m = 8 (right-hand side graph).

synchronous parallel task model [8], [9], [10], (iii) the dag task
model [12], [13], [14], [15], [16].

Each task in fork-join model has alternating sequential and
parallel segments [7]. The fork-join task model is generalized in
synchronous parallel task model by allowing multiple parallel seg-
ments to execute without a sequential segment in between [8], [9],
[10]. Different resource augmentation bounds and schedulability
tests are proposed for both fork-join and synchronous parallel task
models [7], [8], [9], [10].

The third group of works considers dag task model which is
more general than the synchronous task model [12], [13], [14],
[15], [16]. The work in [12] proposed both a polynomial and
a pseudo-polynomial schedulability test for scheduling a single
sporadic (i.e., recurrent) dag task using global dynamic-priority-
based Earliest-Deadline-First (GEDF) scheduling. The works in
[13], [14] derived resource augmentation bound of (2 − 1/m)
for GEDF scheduling of multiple sporadic dag tasks, where
m is the number of unit-speed cores. The work in [13] also
derived a resource augmentation bound of (3 − 1/m) for global
fixed-priority-based deadline-monotonic scheduling. The work by
Melani et al. [16] derived a schedulability test for GFP scheduling.
The analysis in [16] is the state-of-the-art result for response-time
computation of multiple recurrent DAG tasks. We have shown that
the performance of our proposed test is much better than the test
in [16].

In addition to global scheduling, researchers have analyzed at
least two other mechanisms to schedule parallel DAG tasks: Fed-
erated scheduling [24] and Decomposition-based scheduling [25].

The main idea of federated scheduling is the following: each DAG
task with utilization larger than 1 (called, high-utilization task) is
assigned a dedicated number of processors while each of the other
tasks with utilization no larger than 1 (called, low-utilization task)
executes sequentially on the remaining processors. It is shown in
[24] that federated scheduling has a capacity augmentation bound
of 2 for the case when the number of processor is large.

In decomposition based scheduling, each DAG task is trans-
ferred into a set of independent sporadic task by inserting artificial
release time and artificial deadline for each of the subtasks of
the DAG task. The artificial release times and deadlines to each
subtask are assigned such that the precedence constraints of the
original DAG task are satisfied. The decomposed subtasks of all
the DAG tasks are scheduled based on GEDF scheduling policy in
[25]. We have shown that our proposed Our-DM test empirically
performs better than both the federated scheduling [24] and the
decomposition-based scheduling in [25].

There are many works on scheduling parallel tasks on mul-
tiprocessors without concerning real-time requirements [3], [20],
[21]. The Heterogeneous Earliest Finish Time (HEFT) scheduler
in [21] prioritizes the subtasks of the DAG based on the structure
of the DAG. The HEFT algorithm sorts the tasks based on the
decreasing order of their upward rank. The task with the highest
upward rank is dispatched to the processor that the task will
have the smallest execution time. Similarly, the Critical-Path-on-
a-Processor (CPOP) scheduler, also proposed in [21], in addition
to the upward rank takes into account also the downward rank and
the tasks are sorted based on this two characteristics of the DAG.
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For both HEFT and CPOP schedulers, two subtasks can have
the same rank and ties are broken randomly. Such random tie
breaking may lead the subtasks to execute differently in different
executions. Moreover, if some subtask takes less than its WCET,
then the DAG task can generate a relatively longer schedule than
the schedule that is generated when each subtask takes its WCET,
which is known as execution-time based timing anomalies [19].
There is no built-in strategy in such algorithm to avoid timing
anomaly and therefore cannot be applied to real-time systems. In
short, scheduling algorithms designed for improving the average
case performance, like the HEFT or CPOP algorithms, cannot be
directly applied to guarantee real-time constraints.

8 CONCLUSION

This paper presents a schedulability analysis of recurrent DAG
tasks considering GFP scheduling at both subtask and task levels.
A simple method to assign fixed priorities to the subtasks of a
DAG task is proposed based on the structure (i.e., topology) of
each DAG task. To the best of our knowledge, assigning fixed
priorities to the subtasks of a DAG task by exploring the internal
structure of each DAG task has not been addressed in any earlier
work. Based on the priorities of the subtasks, a new technique
to compute the response time of each subtasks is presented.
Simulation results using randomly generated tasks show that
our proposed test performs better than the state-of-the-art test,
particularly, for task sets with relatively larger utilization and also
for task set with relatively higher number of high-utilization tasks.
Finding a more effective priority assignment for the subtasks of
each task is left as a future work.
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