
New Slack-Monotonic Schedulability Analysis of Real-Time Tasks on
Multiprocessors

Risat Mahmud Pathan and Jan Jonsson
Chalmers University of Technology

SE-412 96, G̈oteborg, Sweden
{risat, janjo}@chalmers.se

Abstract—In this paper, multiprocessor scheduling of a set of
real-time periodic tasks with implicit deadlines is addressed. We
propose two static priority-assignment policies, called policy
Pbound and policy Psearch. Common for both policies is that
a subset of a given task set is assigned the slack-monotonic
priority while each of the other tasks is assigned the highest
static-priority. The tasks are scheduled onm processors using
preemptive global multiprocessor scheduling algorithm.

First, we show that the utilization bound of global mul-
tiprocessor scheduling using our proposed policyPbound is
higher than any other existing state-of-the-art static-priority
multiprocessor scheduling. Second, using the utilization infor-
mation of individual task of a given task set, we propose our
second priority assignment policyPsearch. We show that global
multiprocessor scheduling using policyPsearch dominates that
of using Pbound in the sense that any task set schedulable using
Pbound is also schedulable usingPsearch and not conversely.

I. I NTRODUCTION

Consider the following problem:Given a collection ofn
implicit-deadline periodic tasks, is it possible to meet all
the deadlines of the tasks scheduled onm identical, unit-
capacity processors?Real-time task scheduling on multi-
processors is primarily based on eitherglobal or partitioned
approach. In global scheduling, a task is allowed to execute
on any processor even when it is resumed after preemption.
In partitioned scheduling, the task set is grouped in different
task partitions during design time and each partition has a
fixed processor on which only the tasks of that partition are
allowed to execute. The main design goal of many static-
priority global [3], [5], [6], [7], [1], [8] and partitioned[4],
[12], [16] scheduling algorithms is to derive aschedulability
conditionthat is when satisfied implies that all the deadlines
are met. One of the most popular and expressive ways to
derive a schedulability condition of a scheduling algorithm
is in terms of itsutilization bound.

The utilization bound of a scheduling algorithmA is a
numberUBA such that all the tasks will meet their deadlines
when scheduled byA onm processors, if the total utilization
of the task set is not greater thanUBA. It has already
been proved that neither global nor partitioned static-priority
scheduling can have a utilization bound greater than0.5m
on m processors [3], [16]. There exists a static-priority par-
titioned scheduling algorithm, calledR-BOUND-MP-NFR,
having utilization bound of0.5m [4]. However, the best
state-of-the-art utilization bound of global multiprocessor
scheduling is m2

3m−2 for m ≤ 5 (RM-US scheduling [3])

and 2m

3+
√

5
for m > 5 (SM-US scheduling [1]). In this paper,

we proposetwo static priority-assignment policies, called
Pbound and Psearch, and prove that global multiprocessor
scheduling using either of these policies dominates both
RM-US andSM-US scheduling.

Both of our proposed priority assignment policies
are based onslack-monotonic hybrid priority assignment
scheme that works as follows: if the utilization of a task
is not greater than athreshold utilization, then the task is
given slack-monotonic priority, otherwise, the task is given
the highest static-priority. According to slack-monotonic
priority assignment, the smaller the difference between a
task’s period and worst-case execution time (WCET), i.e.,
called slack, the higher is the assigned priority.

For each of our proposed priority assignment poli-
cies, Pbound and Psearch, we present the correspond-
ing schedulability analysis of the Global multiprocessor
Scheduling algorithms, calledGSbound and GSsearch, re-
spectively. The threshold utilizations for policyPbound is
determined based on the schedulability analysis of a class
of task sets, called “special” task sets (presented in Section
V). The threshold utilization we use for policyPbound is
3m−2−

√
5m2−8m+4

2m−2 wherem is the number of processors,
m ≥ 2. We prove that, the utilization bound ofGSbound is
m·min{ 1

2 , 3m−2−
√

5m2−8m+4
2m−2 }. It is easy to see that the uti-

lization bound ofGSbound is higher than (hence, dominates)
that of bothRM-US [3] and SM-US [1] scheduling.

Note that, the threshold utilization used forPbound de-
pends only on the number of processors and does not use
any information (e.g., utilization) of the individual taskof a
given task set. Using the utilization information of individual
task of a given task set in addition to the information
about the number of processors, we propose our second
slack-monotonic hybrid priority-assignment policyPsearch.
In order to determine the threshold utilization for policy
Psearch, we borrowed the idea of determining the job-
level priorities of priority-drivenEDF(k) scheduling from
[13] and applied it to the static-priority setting at the task-
level. InEDF(k) scheduling, jobs of thek highest utilization
tasks are given the highest priority and the jobs of the
remaining (n − k) lowest utilization tasks are given the
Earliest-Deadline-First (EDF) priority (in fact, one such
k is searched). Based on policyPsearch, we show that

scheduling algorithmGSsearch dominatesGSbound in the
sense that if a task set is schedulable usingGSbound then it is
also schedulable usingGSsearch and not conversely. Conse-
quently,GSsearch dominates bothRM-US andSM-US since
the utilization bound ofGSbound is higher than that of
RM-US and SM-US. To this end, we make the following
major contributions:

1) We propose priority-assignment policyPbound and
show that the utilization bound ofGSbound is
m·min{ 1

2 , 3m−2−
√

5m2−8m+4
2m−2 }. This utilization bound

is higher than that of the state-of-the-art algorithms
RM-US and SM-US. Therefore,GSbound dominates
both RM-US andSM-US.

2) We propose priority assignment policyPsearch and
show that GSsearch dominatesGSbound scheduling
algorithm. We prove the domination ofGSsearch over
GSbound by showing that any task set schedulable
usingGSbound is also schedulable usingGSsearch and
not conversely.

3) We show through simulation experiments that more
than 92% of the one million randomly-generated
GSsearch schedulable task sets arenotSM-US schedu-
lable. This percentage increases up to 99.99% when
we increase the number of processors from 4 to 32
in our experiments. Therefore,GSsearch scheduling
scalesvery well in comparison toSM-US with in-
creasing number of processors.

The rest of the paper is organized as follows. First, other
works related to multiprocessor scheduling are discussed
in Section II. The system model we use in this work
is presented in Section III. Useful definitions and some
important prior results that we use are presented in Section
IV. The schedulability analysis of “special” task sets and the
two priority assignment policies are presented in Section
V and Section VI, respectively. In Section VII, we prove
the domination ofGSsearch over GSbound and domination
of GSbound over bothRM-US andSM-US scheduling, and
present our simulation results. Finally, we conclude the paper
in Section VIII.

II. RELATED WORK

The well-known Rate-Monotonic (RM) static-priority as-
signment is optimal for uniprocessor [15] and is not opti-
mal for global multiprocessor scheduling due to so called
“Dhall’s effect” [11]. Andersson, Jonsson and Baruah pro-
posed a RM hybrid static-priority assignment policy for
RM-US[m/(3m−2)] algorithm that has the utilization bound
of m2/(3m− 2) on m processors [3]. InRM-US[m/(3m−
2)] algorithm, the Dhall’s effect is avoided by assigning
the highest priority to the tasks having utilization greater
than m/(3m − 2) while the rest of the tasks are given the
traditional RM priority.

Analysis of static-priority multiprocessor global schedul-
ing is also addressed by Baker [5] based on the minimum

amount of interference in an interval that can cause a tasks
deadline to be missed. Baker’s analysis is general for any
fixed-priority scheduling and arbitrary deadline task systems.
Baker [5] showed that, for implicit-deadline task sets the
utilization bound of RM scheduling ism(1−umax)

2 + umin,
whereumax andumin are the maximum and minimum uti-
lization of any task in the task set, respectively. RM schedul-
ing is studied for uniform multiprocessors in [6], and it is
shown that the utilization bound ism3 for implicit-deadline
tasks onm unit-capacity processors. Using an analysis of
the worst-case workload in an interval, similar to that of
the Baker’s work in [5], Bertognaet al. [7] showed that,
the utilization bound for deadline-monotonic scheduling of
implicit deadline tasks ism(1−umax)

2 +umax. The work in [7]
is further improved in [8], where an iterative algorithm for
separately testing the schedulability of each task is proposed.

Based on slack-monotonic hybrid priority assignment
scheme, a static priority-assignment policy is proposed
by Andersson forSM-US scheduling algorithm [1]. In
SM-US scheduling, each task having utilization greater than
2/(3 +

√
5) is given the highest static-priority and the

rest of the tasks are given slack-monotonic priorities. The
utilization bound of theSM-US scheduling algorithm is
2m/(3 +

√
5) ≈ 0.3819m [1]. Recently, static-priority as-

signment scheme for global scheduling is proposed by Davis
and Burns [10] which has been shown (using simulation)
to have better performance than many other fixed-priority
scheduling algorithms.

In summary, the current state-of-the-art utilization bound
for global multiprocessor scheduling ism

2

3m−2 for m ≤ 5

(RM-US scheduling) and 2m

3+
√

5
for m > 5 (SM-US schedul-

ing). In this paper, we show that our proposed schedul-
ing algorithm GSbound has a higher utilization bound
than that of bothRM-US and SM-US. Moreover, we
show thatGSsearch dominatesGSbound which also implies
GSsearch dominates bothRM-US andSM-US.

III. SYSTEM MODEL

In this paper, we consider global preemptive scheduling
of n independent periodic tasks in setΓ ={τ1, τ2, . . . τn} on
m identical, unit-capacity processors. Each taskτi ∈ Γ is
characterized by a pair (Ci, Ti), where Ci represents the
WCET andTi is the period of taskτi. An instance of each
task, calledjob, is released at each periodTi and requires
at mostCi units of execution time before the next period.

Without loss of generality we assume that tasks are sorted
based ondecreasingpriority order, that is, taskτk has lower
priority than taskτi for i ≤ k. Since the execution of a
task τk can be interfered only by the higher-priority tasks,
whether taskτk meets its deadline or not depends on the
tasks in {τ1, τ2, . . . τk} but are completely unaffected by
the tasks in{τk+1, τk+2, . . . τn}. We find it useful to define

the task setΓk def
= {τ1, τ2, . . . τk} for k = 1, 2 . . . n. We

sometimes, hereafter, also use the notationΓk to denote the
collection of all the jobs of the tasks inΓk.

We define theutilization of a taskτi asui = Ci/Ti and
the total utilization of the task setΓk asUk =

∑k
i=1 ui for

k = 1, 2 . . . n. Note that,Unis the total utilization ofΓn=Γ.
We define themaximum utilizationuk

max and theminimum
utilizationuk

min of a periodic task systemΓk to be the largest
and smallest utilization of any task inΓk, respectively.

IV. U SEFUL DEFINITIONS AND PRIOR RESULTS

The schedulability analysis presented in this paper is
based on the schedulability analysis of a class of task sets
called “special” task sets. A task set is said to be “special on
m processors” based ontwo particular properties (defined
shortly in Definition 2). We prove that a task set that is
special onm processors is schedulable using global slack-
monotonic scheduling, denoted byGSSM, on m processors
(proved in Theorem 6).

It will be evident later that the schedulability analysis
of special task sets is based on the amount ofwork done
by GSSM within a particular time interval. To formally
characterize the amount of work done by any scheduling
algorithmA over a time interval of lengtht on m processors
each having speeds, we use the following well-known
definition of work (also used in [3], [6], [13]).

Definition 1 (W (A,m, s,Γk, t)). Let the jobs of the task set
Γk are to be executed using any algorithmA on an identical
multiprocessor platform where each processor has speeds.
For time instantt ≥ 0, let W (A,m, s,Γk, t) denote the
amount of work done by algorithmA on jobs of the task set
Γk over the interval[0, t), while executing onm processors
each of speeds.

Scheduling algorithmA on a multiprocessor platform is
calledwork-conserving algorithm, if it never idles a proces-
sor when there are jobs awaiting execution. Note that,global
static-priority scheduling is work-conservingby definition.
The following Theorem 1 provides a lower bound on the
amount of work completed by a work-conserving scheduling
algorithmA on an identical multiprocessor platform that has
each of them processors(2− 1

m
) times faster compared to

that of completed by any algorithmA′ on a platform with
m identical processors. Theorem 1 is based on the work
in [17] that exploits resource augmentation for on-line
scheduling of real-time jobs.

Theorem 1 (Based on [17]). For the set of all jobs of task
systemsΓk, any time-instantt ≥ 0, any work-conserving
algorithm A, and any algorithmA′, it is the case that

W (A, m, s · (2 − 1

m
), Γk, t) ≥ W (A′, m, s, Γk, t) (1)

Theorem 1 will be useful later to find the lower bound
on the amount of work completed by time instantt using
global slack-monotonic scheduling algorithmGSSM.

We will use the following function in Eq. (2) in rest of
this paper:

Fm(x) =
m(1 − x)

2 − x
+ x (2)

wherem ∈ Z
+ and0 ≤ x ≤ m

2m−1 . Two important features
of the function in Eq. (2) are given in Lemma 2.
Lemma 2. Considera, b, x, c andd such that0 ≤ a ≤ b ≤
x ≤ c ≤ d ≤ m

2m−1 for any integerm > 0. The following
two inequalities hold:

min{Fm(b),Fm(c)} ≤ Fm(x) (3)

min{Fm(a),Fm(d)} ≤ min{Fm(b),Fm(c)} (4)

Proof: Proof is given in Appendix.

V. “SPECIAL” TASK SET AND ITS SCHEDULABILITY

In this section, first we formally define the two properties
of a task system that is “special” onm processors. Then, we
present an upper and lower bound on the amount of work
within a given interval forGSSM scheduling (subsections V-A
and V-A). Finally, based on the difference between these
two bounds and using the two properties of the special task
system, we prove that all the deadlines of the special task
system are met usingGSSM scheduling onm unit-capacity
processors (subsection V-C). Then based on the schedulabil-
ity analysis of special task system of this section, we propose
the two slack-monotonic hybrid priority-assignment policies
Pbound and Psearch and the corresponding schedulability
analysis of algorithmsGSbound andGSsearch, respectively,
in Section VI.

Definition 2 (Special Task System). A periodic task system
Γk is special onm processor if it satisfies the following two
properties:

Property 1: uk
max ≤ m

2m−1

Property 2: Uk ≤ min{Fm(uk
min),Fm(uk

max)}
According to Property 1, the maximum utilization of any

task in setΓk, that is special onm processors, is not greater
than m

2m−1 . According to Property 2, the total utilization of
the special task systemΓk is not greater than the minimum
of Fm(uk

min) andFm(uk
max).

A. Upper Bound on Work ofGSSM
Over the interval[0, t), exactly ⌊ t

Ti

⌋ complete jobs of
taskτi are scheduled byGSSM and the(⌊ t

Ti

⌋ + 1)th job of
τi may be scheduled for at mostmin(t−⌊ t

Ti

⌋Ti, Ci) time
units. Thus, the maximum amount of work to be completed
by the jobs of the tasks{τ1, . . . τj−1} within [0, t) is at most
∑j−1

i=1 ⌊ t
Ti

⌋Ci + min(t − ⌊ t
Ti

⌋Ti , Ci) and this quantity is
upper bounded by the right hand side of Eq. (5) given in
Lemma 3 (proved in [1], [9]).
Lemma 3 (From [1], [9]). The maximum amount of work
∑j−1

i=1 ⌊ t
Ti

⌋Ci + min(t − ⌊ t
Ti

⌋Ti , Ci) that need to be
completed by tasks{τ1, τ2 . . . τj−1} over an interval[0, t)
is upper bounded by the following inequality in Eq.(5)

j−1
∑

i=1

[⌊ t

Ti

⌋Ci + min(t − ⌊ t

Ti

⌋Ti , Ci)]

≤
j−1
∑

i=1

[Ci + (t − Ci)ui] (5)

We will use Eq. (5) as the upper bound of the amount of
work that need to be completed by the higher priority jobs
of taskτj within a particular time interval[0, t].

B. Lower Bound on Work ofGSSM

In this subsection, first we show in Lemma 4 that there
exists an algorithm, called OPT, that can feasibly schedule
special task setΓk on m processors each of speedm2m−1 .
Then, we will show that the amount of work completed by
GSSM on m unit-capacity processors within an interval is no
less than that of completed by OPT onm processors each
of speed m

2m−1 (i.e., we derive a lower bound on the amount
of work actually completed byGSSM).

Lemma 4. Consider the task setΓk that is special onm
processors. Task setΓk is feasible onm processors each
with speed m

2m−1 .

Proof: By Property 1 of special task system we have
uk

max ≤ m
2m−1 . Therefore, we haveui ≤ m

2m−1 sinceui ≤
uk

max for all i = 1, 2, . . . k. To prove this lemma, we need
to show that the following inequality holds

Uk ≤ m2

2m − 1
(6)

This is because, ifui ≤ m
2m−1 andUk≤ m2

2m−1 , then the
task systemΓk can be scheduled to meet all the deadlines
on m processors each of speedm2m−1 using the algorithm,
called OPT, as follows

The processor sharing schedule, called OPT, as-
signs a fractionui of a processor toτi at each
time-instant, and thus ensures that each instance
of task τi completesCi units of execution within
its deadlineTi.

The algorithm OPT is also used in the schedulability
analysis ofRM-US in [3] where the above inequality in
Eq. (6) was straightforward to prove for so called “light task
system”. However, showing that the inequality in Eq. (6) also
holds for “special task system” is not as straightforward as
for RM-US. To show that inequality in Eq. (6) holds we, in
fact, show that the inequality in Eq. (7) holds.

min{Fm(uk
min),Fm(uk

max)} ≤ m2

2m − 1
(7)

The proof that Eq. (7) holds is given in Lemma 10 in
the Appendix. SinceΓk is special onm processors, using
Property 2 of special task system we have

Uk ≤ min{Fm(uk
min),Fm(uk

max)} (8)

From Eq. (7) and Eq. (8), the inequality in Eq. (6) follows
immediately.

The outcome of Lemma 4 is that there exists a scheduling
algorithm, calledOPT, through the use of which a task
systemΓk that is special onm unit-capacity processors is
feasible onm identical processors each of speedm2m−1 . Now,
since m

2m−1 × (2− 1
m

) = 1, using Theorem 1 together with
the existence of an scheduling algorithm OPT plus the fact
that GSSM is work-conserving, we get

W (GSSM, m, 1, Γk, t) ≥ W (OPT, m,
m

2m − 1
, Γk, t) (9)

for all t ≥ 0.
Note that according to algorithm OPT,

W (OPT,m, m
2m−1 ,Γk, t) = t · ∑k

i=1 ui = t · Uk for
any time instantt ≥ 0. Thus, the lower bound on the
amount of work actually completed byGSSM within [0, t)
for executing the jobs of the task setΓk is given in Eq. (10)
as follows.

W (GSSM, m, 1, Γk , t) ≥ t ·
k

∑

i=1

ui = t · Uk (10)

We will use Eq. (10) as the lower bound of the actual
amount of work completed byGSSM scheduling within a
particular time interval[0, t].

C. Slack-Monotonic Schedulability Analysis

In this subsection, we prove that a task systemΓk that is
special onm processors is feasible usingGSSM on m unit-
capacity processors. First, we prove in Lemma 5 that all the
jobs of the lowest priority taskτj of task setΓj , which
is special onm processors, complete by their deadlines
usingGSSM scheduling. Then, it follows using induction on
j = 1, 2, . . . k that the special task systemΓk is feasible on
m processors usingGSSM.

Lemma 5. Consider task setΓj that is special on
m processors. All the jobs of taskτj meet their deadlines
when Γj is scheduled usingGSSM on m unit-capacity
processors.

Proof: We will prove this Lemma using induction. Lets
assume that all the(l−1) jobs ofτj have met their deadlines
using GSSM scheduling algorithm. We will prove that the
lth job of τj also meets the deadline. Using induction on
l ≥ 1, the correctness of Lemma 5 then immediately follows.

Since each job of taskτj is released at each periodTj ,
the lth job arrives at time(l − 1)Tj and requiresCj units
of execution time before its deadlinelTj . Remember from
Lemma 4 that task setΓj is schedulable using algorithm
OPT onm processors each having speedm2m−1 . Thus, from
Eq. (10) we have,

W (GSSM, m, 1, Γj , (l − 1)Tj) ≥ (l − 1)Tj ·
j

∑

i=1

ui

= (l − 1)Tj ·
j−1
∑

i=1

ui + (l − 1)Tjuj (11)

According to Eq. (11), the minimum amount of work
completed byGSSM before the lth job of τj arrives at
time (l − 1)Tj is (l − 1)Tj ·

∑j−1
i=1 ui + (l − 1)Tjuj . Note

that, prior to time instant(l − 1)Tj , the amount of work

generated for taskτj is exactly (l − 1)Tjuj . Since we
assume that all the(l − 1) jobs of taskτj have met their
deadlines (inductive hypothesis), the total work executedby
GSSM for the higher-priority tasksτ1 , τ2 , . . . τj−1 is at
least(l − 1)Tj

∑j−1
i=1 ui prior to the time instant(l − 1)Tj .

Lemma 3 ensures that the maximum amount of work
that can be completed by all the higher-priority tasks
τ1 , τ2 , . . .τj−1 over the interval[0, lTj) is bounded from
above by

∑j−1
i=1 [Ci + (lTj − Ci)ui]. In the previous para-

graph, we saw that at least(l − 1)Tj

∑j−1
i=1 ui of this work

is completed prior to time instant(l − 1)Tj . Therefore, at
most

j−1
∑

i=1

[(Ci + (lTj − Ci)ui)] − (l − 1)Tj

j−1
∑

i=1

ui

=

j−1
∑

i=1

(Ci + (Tj − Ci)ui)

amount of work remains to be executed after time instant
(l − 1)Tj for all the higher priority tasksτ1, τ2, . . . τj−1.

The amount of processors capacity left unused by tasks
τ1 , τ2 , . . . τj−1 during the interval[(l− 1)Tj , lTj) on the
m multiprocessor platform is therefore at least

m · Tj −
j−1
∑

i=1

(Ci + (Tj − Ci)ui) (12)

Not all of this capacity is available to thelth job of τj

if several processors are available at the same time. In the
worst case (i.e., all them processors are available at the same
time) at least1

m
of this available capacity can be used byτj .

Consequently, the amount of processing capacity available
to the lth job of τj during the interval[(l − 1)Tj , lTj) on
the multiprocessor platform is at least

1

m

[

m · Tj −
j−1
∑

i=1

(Ci + (Tj − Ci)ui)

]

To guarantee that thelth job of τj meets its deadline, we
need this capacity to be at least as large as the execution
time of τj ; that is, we must have,

Cj ≤ 1

m

[

m · Tj −
j−1
∑

i=1

(Ci + (Tj − Ci)ui)

]

(13)

In the remaining part of this proof, we show that Eq. (13)
holds; which guarantees that thelth job of τj meets its
deadline. Since task setΓj is special onm processors,
according to Property 2 of special task set we have

U j ≤ min{Fm(uj
min),Fm(uj

max)} (14)

For task τj ∈ Γj , we haveuj
min ≤ uj ≤ uj

max. Thus,
according to Property 1 of special task systemΓj , we have
0 ≤ uj

min ≤ uj ≤ uj
max ≤ m

2m−1 . And using Eq. (3) of
Lemma 2, we have

min{Fm(uj
min),Fm(uj

max)} ≤ Fm(uj) (15)

From Eq. (14) and Eq. (15), we haveU j ≤ Fm(uj) which
is equivalent to

≡
j

∑

i=1

ui ≤ m(1 − uj)

2 − uj

+ uj [from Eq. (2)]

≡
j−1
∑

i=1

ui(2 − uj) ≤ m(1 − uj)

≡ uj ≤ 1 − 1

m

j−1
∑

i=1

ui(2 − uj)

≡ uj ≤ 1

m

[

m −
j−1
∑

i=1

[

ui + ui(1 − uj)
]

]

≡ Cj

Tj

≤ 1

m

[

m −
j−1
∑

i=1

[Ci

Ti

+
Ci

Ti

(
Tj − Cj

Tj

)
]

]

⇒ (According to slack-monotonic priority

assignment, we haveTi − Ci ≤ Tj − Cj)

≡ Cj

Tj

≤ 1

m

[

m −
j−1
∑

i=1

[Ci

Ti

+
Ci

Ti

(
Ti − Ci

Tj

)
]

]

≡ Cj ≤ 1

m

[

m · Tj −
j−1
∑

i=1

[CiTj

Ti

+ Ci − C2
i

Ti

]

]

≡ Cj ≤ 1

m

[

m · Tj −
j−1
∑

i=1

[

Ci + (Tj − Ci)ui

]

]

≡ Eq. (13)

Since the inequality in Eq. (13) is true, we can conclude
that thelth job of taskτj meets its deadline usingGSSM.

Based on Lemma 5 we prove in Theorem 6 that the task
setΓk that is special onm processors is feasible usingGSSM.
Theorem 6. Task systemΓk that is special onm processors
is feasible usingGSSM on m processors.

Proof: Using induction onj and applying Lemma 5 for
task setΓj for j = 1, 2, . . . k, it is easy to see that the special
task systemΓk is feasible onm processors usingGSSM.

Based on theGSSM feasibility of “special” task systems,
we propose two slack-monotonic hybrid priority-assignment
policiesPbound andPsearch for an arbitrary task setΓ.

VI. H YBRID PRIORITY ASSIGNMENT

In this section, we propose the two hybrid priority as-
signment policiesPbound and Psearch. Common for both
policies is that the priorities to the tasks are assigned based
on some threshold utilizationuts such that all the tasks
having utilization not greater thanuts are given the slack-
monotonic priorities and each task having utilization greater
than uts is given the highest priority. Using such hybrid
policy, the task setΓ is visualized as the union of two sets
Γ = ΓL ∪ ΓH such that the tasks in setΓL have the slack-
monotonic priorities and each task in setΓH has the highest
priority. It will be evident shortly that the value ofuts for
policy Pbound only depends on the number of processors.
However, the value ofuts for policy Psearch depends not
only on the number of processors but also on the utilization
information of the individual task of a given task set.

Before the thresholds for the two priority assignment
policies are presented, we present two general conditions,

denoted asC1 and C2, in Lemma 7 that can imply the
feasibility of a task set based on priority assignment policy
Pbound (Psearch). The proof technique in Lemma 7 is based
on the notion ofpredictable scheduling algorithmthat is
proposed by Ha and Liu in [14] and used in [1] as follows.

Predictability (from [14]): A job is characterized by its
arrival time, its deadline, its minimum execution time and
its maximum execution time. The execution time of a job is
unknown but it is no less than and greater than its minimum
and maximum execution time, respectively. A scheduling
algorithm A is predictable if for every setJ of jobs, the
following fact

scheduling all jobs inJ by A with execution times
equal to their maximum execution times causes all
the deadlines to be met

implies that
scheduling all jobs inJ by A with execution times
being at least their minimum execution times and
at most their maximum execution times causes all
the deadlines to be met.

This notion of predictable scheduling algorithm implies
that we only need to analyze the schedulability of the jobs
considering the WCET of the jobs. Since a periodic task
set generates a set of jobs, the notion of predictability
can be extended in a straightforward manner to algorithms
for scheduling periodic task systems. Ha and Liu’s work
also implies that global static-priority scheduling of periodic
tasks on multiprocessors is predictable [3], [1].

Lemma 7. Let uts be the threshold utilization that is used
to determine the setsΓL and ΓH such thatΓ = ΓL ∪ ΓH

assuming the priority assignment policyPbound (Psearch).
The task setΓ is schedulable usingGSbound (GSsearch) if
the following two conditionsC1 and C2 are satisfied

(C1) |ΓH | < m

(C2) ΓL is special on(m − |ΓH |) processors

Proof: We will show that ifC1 andC2 are true for pri-
ority assignment policyPbound (Psearch) that usesuts as the
threshold utilization, then the task setΓ is schedulable using
the GSbound (GSsearch) scheduling. Consider the following
task setΓ′

H such that

Γ′
H = {τ ′

i | τi ∈ ΓH and T ′
i = C ′

i = Ti}
For each taskτi ∈ ΓH , there is a corresponding taskτ ′

i in
setΓ′

H such that the period and the WCET ofτ ′
i are equal

to Ti. Therefore, each taskτ ′
i ∈ Γ′

H has utilization 1. Note
that, |Γ′

H | = |ΓH | and we letk = |Γ′
H | = |ΓH |.

Now consider the task setΓ′ = ΓL ∪ Γ′
H that is to

be scheduled onm processors usingGSbound (GSsearch).
According to policyPbound (Psearch) that uses the threshold
utilization uts, each of the tasks inΓ′

H is given the highest
priority and the tasks inΓL are given the slack-monotonic
priorities.

When scheduling the task set Γ′ using
GSbound (GSsearch), then k = |Γ′

H | processors are
devoted to tasks in setΓ′

H since these are the highest
priority tasks each with utilization 1. All these tasks in
Γ′

H are schedulable onk processors (one task is executed
in one dedicated processor) since|Γ′

H | = |ΓH | = k < m
according toC1.

According to C2, the tasks in setΓL are special on
(m−|ΓH |) = (m−k) processors. Remember that according
to Theorem 6, task setΓL that is special on(m−k) proces-
sors is schedulable using global slack-monotonic scheduling
GSSM on (m − k) processors. Consequently, the task setΓ′

is schedulable onm processors usingGSbound (GSsearch)
scheduling.

However, since global static-priority algorithm
GSbound (GSsearch) is predictable, jobs of the tasks
in set ΓH , in fact, complete earlier than the jobs of the
tasks in setΓ′

H . In other words, no jobs in task system
Γ finishes later than the corresponding job inΓ′ for
predictable scheduling algorithmGSbound (GSsearch).
Therefore, all the deadlines of the tasks inΓ are met using
GSbound (GSsearch) scheduling where the tasks are given
the priorities based on policyPbound (Psearch) whenever
the conditionsC1 andC2 are satisfied.

Based on these two general conditions (C1 and C2)
of Lemma 7, the schedulability analysis ofGSbound and
GSsearch, assuming the priority assignment policiesPbound

andPsearch, are presented in subsection VI-A and subsec-
tion VI-B, respectively.

A. Priority Assignment PolicyPbound

In this section, we present the threshold utilization
used for slack-monotonic hybrid priority assignment policy
Pbound and derive the corresponding utilization bound for
GSbound scheduling. The value ofuts is defined based on the
solution of the equationFm(uts)= m ·uts wherem is some
constant,m > 1. One of the solutions ofFm(uts)= m · uts

is uts = 3m−2−
√

5m2−8m+4
2m−2 for m > 1. The value ofuts

for policy Pbound is uts = B(m) for m > 0 whereB(m)
is defined as follows:

B(m) =

{

1 if m = 1
3m−2−

√
5m2

−8m+4

2m−2
if m > 1

(16)

The two following inequalities in Eq. (17) and Eq. (18)
hold for B(m) andB(m′) wherem ≥ m′ ≥ 1

B(m) ≤ m

2m − 1
≤ m′

2m′ − 1
(17)

B(m) ≤ B(m′) (18)

The proof that Eq. (17) and Eq. (18) hold are given
in Lemma 11 and Lemma 12 in the Appendix. Now the
schedulability condition in terms of utilization bound of
GSbound scheduling is given in Theorem 8.

Theorem 8. A task setΓ is schedulable usingGSbound if
Un ≤ m · min{1/2, B(m)} for m ≥ 2.

Proof: Given the task setΓ and the number of pro-
cessorsm, we can determine the two subsetsΓL and ΓH

such thatΓ = ΓL ∪ ΓH based on the threshold utilization
uts = B(m). Note that, based on policyPbound, the tasks
in set ΓL and ΓH are given the slack-monotonic and the
highest static priorities, respectively. We will show thatif
the total utilizationUn ≤ m · min{1/2, B(m)}, then the
two general conditionsC1 andC2 of Lemma 7 hold; which
guarantees the schedulability ofΓ usingGSbound.

(C1 holds) It is easy to see thatB(m) ≥
min{1/2, B(m)}. Then it follows that each task inΓH has
utilization greater thanmin{1/2, B(m)} since each task in
ΓH has utilization greater thanuts = B(m) using policy
Pbound. If the total utilization (i.e.,Un) of the task set
Γ is not greater thanm ·min{1/2, B(m)}, then the number
of tasks that are given the highest priority is less thanm.
In other words, we have|ΓH | < m, and this implies that
conditionC1 of Lemma 7 holds.

(C2 holds) To show thatC2 of Lemma 7 holds, we have
to show thatΓL is special onm′ processors wherem′ =
(m−|ΓH |). Let UL be the total utilization of all the tasks in
ΓL. Also let umaxL anduminL be the maximum utilization
and minimum utilization of any task in setΓL, respectively.
To show thatΓL is special onm′ processors, we show that
Property 1 and Property 2 (given in Definition 2) of special
task set are satisfied. In other words, we have to show that
the following two inequalities hold.

Property 1 umaxL ≤ m′

2m′ − 1
Property 2 UL ≤ min{Fm′(uminL),Fm′(umaxL)}

(Property 1 holds for ΓL) Using policy Pbound, no task
in ΓL has utilization greater than the threshold utilization
uts = B(m). So, we haveumaxL ≤ B(m). Moreover,
from Eq. (17), we haveB(m) ≤ m′

2m′−1 . Consequently,

umaxL ≤ m′

2m′−1 and thus Property 1 is satisfied forΓL.
(Property 2 holds for ΓL) The total utilization of the
tasks inΓH is greater than (|ΓH | · min{1/2, B(m)}) be-
cause each task inΓH has utilization greater thanuts =
B(m) and B(m) ≥ min{1/2, B(m)}. Since the total
utilization (i.e., Un) of the task setΓ is not greater than
m ·min{1/2, B(m)}, the total utilization of the tasks inΓL

is at mostm′ · min{1/2, B(m)} wherem′ = (m − |ΓH |).
Therefore, Eq. (19) holds.

UL ≤ m′ · min{1/2, B(m)} (19)

Based on the threshold utilizationuth = B(m) of
policy Pbound, we haveumaxL ≤ B(m). Moreover, from
Eq. (18), we haveB(m) ≤ B(m′). Thus,umaxL ≤ B(m′).
Furthermore, from Eq. (17), we haveB(m′) ≤ m′

2m′−1
(by replacingm by m′ in the left-hand side inequality in
Eq. (17)). Therefore,umaxL ≤ B(m′) ≤ m′

2m′−1 . Because

0 ≤ uminL ≤ umaxL, the following inequality in Eq. (20)
holds.

0 ≤ uminL ≤ umaxL ≤ B(m′) ≤ m′

2m′ − 1
(20)

Based on Eq. (20) and from Eq. (4) of Lemma 2 we have

min{Fm′(0) , Fm′(B(m′))}
≤ min{Fm′(uminL),Fm′(umaxL)} (21)

From the function definition given in Eq. (2) we have

Fm′(0) =
m′(1 − 0)

2 − 0
+ 0 = m′/2 (22)

From Eq. (16), form′ = 1 and settingx = B(m′) we
have Fm′(B(m′))= 1 = m′. And for m′ > 1 we have
Fm′(B(m′)) = m′ · B(m′) because one solution forx of
Fm′(x) = m′x is x = B(m′). Thus, for anym′

Fm′(B(m′)) ≥ m′ · min{1, B(m′)} (23)

It follows from Eq. (22) and Eq. (23) that
min{Fm′(0), Fm′(B(m′))} ≥ m′ · min{1/2,B(m′)} (24)

Now from Eq. (24) and using the fact thatB(m) ≤ B(m′)
from Eq. (18), we have

m′ · min{1/2, B(m)} ≤ min{Fm′(0), Fm′(B(m′))} (25)

Thus it now follows from Eq. (19) and Eq. (25) that

UL ≤ min{Fm′(0), Fm′(B(m′)) } (26)

Finally, from Eq. (21) and Eq. (26), we have
UL ≤ min{Fm′(uminL), Fm′(umaxL) } (27)

Therefore, Property 2 is satisfied for task setΓL. Conse-
quently,ΓL is special onm′ processors (i.e.,C2 holds).

B. Priority Assignment PolicyPsearch

Inspired by the priority assignment scheme forEDF(k)

scheduling in [13], the hybrid priority assignment policy
Psearch is defined as follows.

1) Each of thek highest utilization tasks is given the
highest priority, and

2) the remaining (n−k) lowest utilization tasks are given
the slack-monotonic priorities

for somek such that0 ≤ k < m.
The schedulability condition ofGSsearch scheduling as-

suming policyPsearch is given in Theorem 9.

Theorem 9. A task setΓ is schedulable usingGSsearch if
the set of(n− k) lowest utilization tasks ofΓ is special on
(m − k) processors for somek and k < m.

Proof: Using policy Psearch the (n − k)th highest
utilization of the task in setΓ is used as the threshold
utilization uts, for somek, 0 ≤ k < m. This threshold
utilization decides the tasks in setΓL andΓH that are given
the slack-monotonic and the highest priorities such that
Γ = ΓL∪ΓH . Note that, using policyPsearch, the number of
tasks having the highest priority is|ΓH | = k for somek and
k < m. Consequently, conditionC1 of Lemma 7 is satisfied

for policy Psearch. According to Lemma 7, to guarantee
the feasibility of task setΓ usingGSsearch scheduling, the
value of k has to be chosen such that the conditionC2
of Lemma 7 holds as well. In other words, task setΓ is
feasible usingGSsearch scheduling wheneverΓL is special
on (m−k) processors such thatΓL contains all the(n−k)
lowest utilization tasks.

Deriving a k, if one exists, that satisfies Theorem 9
is straightforward. One such example algorithm, called
Psearch(Γ), that finds (if exists) the value ofk is presented
in Figure 1. The algorithmPsearch(Γ)returnsTrue if it can
find somek such that the set of(n − k) lowest utilization
tasks ofΓ is special on(m−k) processors such thatk < m,
otherwise, it returnsFalse.

Algorithm Psearch(Γ)

1. ΓH = ∅
2. ΓL = Γ
3. For k = 0 to (m − 1)
4. If ΓL is special on(m − k) processorsThen
5. Print “All tasks in ΓL are assigned SM priority”
6. Print “All tasks in ΓH are assigned the highest priority”
7. Return True
8. End If
9. Find τts such thatuts is the largest utilization in setΓL

10. ΓH = ΓH ∪ {τts}
11. ΓL = Γ − ΓH

12.End For
13.Print “Priority Assignment Fails”
14.Return False

Figure 1. ℘ Priority Assignment Algorithm

In line 1–2, the algorithmPsearch(Γ)in Figure 1 initial-
izes local variablesΓL and ΓH as ΓL = Γ and ΓH = ∅
to consider first whether all the tasks inΓ are special on
m processors (this condition is checked during the first
iteration of theFor loop in line 3–12).

The For loop in line 3–12 iterates at mostm times for
the iterative variablek that iterates form0 to (m − 1). In
each iteration of theFor loop, we check whether the(n −
k) lowest utilization tasks in setΓL are special on(m −
k) processors. Note that in order to determine whetherΓL

is special on (m − k) processors, we need to verify that
both Property 1 and Property 2 (Definition 2) of special task
system are satisfied. If the task setΓL is special on(m−k)
processors (condition at line 4 is true), then slack-monotonic
priorities are assigned to the tasks inΓL (line 5), each of
the tasks inΓH is assigned the highest static-priority (line
6) and the algorithm returnsTrue (line 7).

During a particular iteration of theFor loop, if the task
set ΓL is not special on(m − k) processors (condition at
line 4 is false), then the highest utilization taskτts ∈ ΓL is
extracted fromΓL (line 9) and is included in setΓH (line
10). Note that during thekth iteration of theFor loop, the
largest utilization of the tasks inΓL is the(n− k)th largest
utilization of the tasks inΓ. It is easy to see that, during each

iteration of theFor loop, totalk largest utilization tasks are
in set ΓH and the rest(n − k) lowest utilization tasks are
in set ΓL. If the task setΓL is not special on(m − k)
processors for somek such that0 ≤ k < m, thenPsearch

fails to assign the static-priorities to the tasks inΓ (line 13)
and the algorithm returnsFalse (line 14).

VII. PERFORMANCEEVALUATION

In this section, first we show thatGSbound dominates both
the best state-of-the-art scheduling algorithmsRM-US and
SM-US (note that, if m ≤ 5, RM-US is the best one,
otherwise,SM-US is the best one). To show the dominance
of GSbound over RM-US and SM-US, we show that the
utilization bound ofGSbound is higher than that of both
RM-US andSM-US. Second, we show thatGSsearch dom-
inatesGSbound. To show the dominance ofGSsearch over
GSbound, we show that any task set schedulable using
GSbound is also schedulable usingGSsearch but the converse
is not true.

Dominance of GSbound over RM-US and SM-US: The
utilization bound ofGSbound is m ·min{1/2, B(m)} where
B(m) = 3m−2−

√
5m2−8m+4

2m−2 for m ≥ 2 (Theorem 8). The

utilization bound ofRM-US is m2

3m−2 [1]. It is easy to see

that,m ·min{1/2, B(m)} > m2

3m−2 for anym > 2 (they are
equal only form = 2). The utilization bound ofSM-US is

2m

3+
√

5
[1]. It is also easy to see that,m ·min{1/2, B(m)} >

2m

3+
√

5
for any m ≥ 2. Consequently, the utilization bound

of GSbound dominates that of bothRM-US andSM-US.
Dominance of GSsearch over GSbound: We will show

that any task setΓ that is schedulable usingGSbound is also
schedulable usingGSsearch. Assume a contradiction where
task setΓ is not schedulable usingGSsearch but schedulable
usingGSbound. If Γ is not schedulable usingGSsearch, then
there exist nok such thatk < m and the set of(n − k)
lowest utilization tasks is special on(m − k) processors
(contrapositive of Theorem 9).

When Γ is schedulable usingGSbound scheduling,
the proof of the schedulability condition ofGSbound in
Theorem 8 guarantees that there exists a task setΓL that
is special on(m − |ΓH |) processors and|ΓH | < m. So,
there exists somek such thatk < m and the set of(n− k)
lowest utilization tasks is special on(m − k) processors
(contradiction!). Therefore, any task set schedulable using
GSbound is also schedulable usingGSsearch.

We will now show, using an example, that the converse is
not true; that is, there is a task set that is schedulable using
GSsearch but not schedulable usingGSbound.

Example: Considern = 11 tasks in setΓ = {τ1, . . . τ11}
such thatu1 = . . . = u10 = 0.40 andu11 = 0.15. Thus, the
total utilization ofΓ is Un = 4.15. The task setΓ is to be
scheduled onm = 10 processors.

The entire task setΓ is special onm = 10 processors
(i.e., Property 1 and Property 2 of special task system are

satisfied) and hence schedulable usingGSsearch. Notice that
Property 1 of special task system is satisfied forΓ because
un

max = 0.4 < m/(2m − 1) for m = 10. And Property 2
of special task system is satisfied forΓ as well. This
is because form = 10, un

max=0.40 andun
min=0.15, we

have Fm(un
min) ≈ 4.745 and Fm(un

max) = 4.150. Con-
sequently,min{Fm(un

min), Fm(un
max)} = 4.150 which im-

plies Un ≤ min{Fm(un
min), Fm(un

max)} (i.e., Property 2).
Since Property 1 and Property 2 are satisfied,Γ is special
on m = 10 processors. Thus, according to Theorem 9, the
set of(n−k) lowest utilization tasks (i.e., entire task setΓ)
is special on(m − k) processors for the choice ofk = 0.

However, the schedulability condition ofGSbound in
Theorem 8 is not satisfied for task setΓ (i.e., utilization
boundm · min{1/2, B(m)} = 4.116 < Un). Consequently,
we can not guarantee the schedulability ofΓ usingGSbound.
In summary,GSsearch dominatesGSbound which dominates
both RM-US andSM-US scheduling.

A. Simulation Results

To quantitatively estimate the degree of dominance of
GSsearch over the state-of-the-art algorithm, we conducted
experiments using randomly generated task sets form =
4, 8, 16 and 32 processors. For simulation purpose, we
consideredSM-US as the competitive state-of-the-art al-
gorithm and estimated the dominance ofGSsearch over
SM-US scheduling. The conclusions from our experiments is
that GSsearch provides an order-of-magnitude performance
improvements in terms of number of scheduled task sets.

1) Simulation Setup:We run a number of 12 experiments.
Each experiment has three simulation parameters:m, minU ,
maxU . Each experiment is characterized by the value ofm
and the range (minU,maxU]. The value ofm denotes the
number of processors we consider for an experiment. Each
experiment is carried out for a number of task sets. The
utilization ui of a randomly generated taskτi of a task set
is uniformly distributed within (minU , maxU].

The number of processors we consider in our experiments
are m = 4, 8, 16, and 32. This parameterm is used to
measure the impact of increasing number of processors
(scalability) on number of schedulable task sets.

We consider three different utilization ranges (0, 0.5],
(0.25, 0.75] and (0, 1] for (minU , maxU]. The utilization
ranges (0, 0.5], (0.25, 0.75] and (0, 1] are used to experi-
ment with light, mediumandmixed tasks, respectively. The
four values ofm and thethreeutilization ranges for (minU ,
maxU] constitute our 12 different experiments.

For eachm a total of 1000000 task sets, that areall
schedulableusingGSsearch on m processors, are randomly-
generated using a similar approach as in [8]. The 1000000
task sets are generated according to the following procedure:

1) Initially, we generatem + 1 tasks.
2) Then we verify if the generated task set is schedulable

using GSsearch (i.e., Theorem 9 is used for verifica-
tion).

3) If this task set isGSsearch schedulable, then
a) it is counted as one of the 1000000 task sets, and
b) by adding one new task, we extend this (old) task

set to a new task set and return to Step 2.
4) If this task set is notGSsearch schedulable, then we

discard this task set and go to Step 1.
For each experiment, we calculated thedominanceof

GSsearch over SM-US as the percentage of the 1 million
task sets that arenot schedulableusing SM-US schedul-
ing. First, the total number of task sets (of the 1000000
GSsearch schedulable task sets) that are also schedulable by
SM-US scheduling is counted in variablePsearchcount. Sec-
ond, thedominanceof theGSsearch overSM-US scheduling,
denoted byDOMPsearch, is given as follows:

DOMPsearch =
1000000 − Psearchcount

1000000
× 100%

The higher the value ofDOMPsearch, the higher is the
degree of dominance ofGSsearch over SM-US scheduling.
For example, ifDOMPsearch = 20%, then 20% (20000 task
sets) of the 1000000 task sets are not schedulable using
SM-US scheduling.

2) Simulation Result:The result of the 12 experiments
are given in Table I. Each of the shaded cells in Table I
represents the value ofDOMPsearch for the simulation pa-
rameters — number of processors and utilization range —
given in the corresponding second row and first column of
Table I.

(minU,maxU]
(0, 0.5] (0.25, 0.75] (0, 1]

m = 4 48.69 % 99.91 % 92.06 %
m = 8 38.01 % 99.97 % 96.95 %
m = 16 29.16 % 99.99 % 99.21 %
m = 32 23.87 % 100.0 % 99.99 %

Table I
VALUE OF DOMPSEARCHFOR THE12 EXPERIMENTS

The impact of utilization ranges(minU,maxU] on the
dominance ofGSsearch over SM-US is significant. The
value of dominanceDOMPsearch for medium (i.e. ui is
in [0.25, 0.75]) and mixed (i.e.ui is in [0, 1]) tasks is
significantly higher (see the third and forth columns of
Table I) than that of for the light tasks (i.e.ui is in [0,
0.5]). TheSM-US scheduling fails to schedule more than
92% of the randomly generated one million task sets (having
medium/mixed tasks) that are schedulable usingGSsearch.

This significant performance gain ofGSsearch scheduling
in terms of number of schedulable medium/mixed task sets
results from our schedulability analysis of the “special” task
systems. Remember that the threshold utilization used for
SM-US is constant (i.e.,2/(3 +

√
5)) while that of for

GSsearch scheduling is searched as one of the utilizations
of the tasks of a given task set. Thus, a taskτi with
utilization greater than2/(3 +

√
5) is always given the

highest priority inSM-US scheduling while this task may be
assigned slack-monotonic priority inGSsearch scheduling.
Such exploitation of the tasks’ utilization to determine the
threshold utilization forGSsearch results in fewer number
of tasks that are given the highest priority in order to
avoid the Dhall’s effect. In other words,GSsearch is more
effective thanSM-US in dealing with tasks having large
utilization. Thus,GSsearch scheduling significantly outper-
forms SM-US scheduling for medium/mixed tasks in terms
of number of schedulable task sets.

The number of processors used in an experiment has an
impact on the value of dominance as well. As the number
of processors increases, the scalability ofGSsearch schedul-
ing in terms of dominance increases for experiments with
medium/mixed tasks (notice the increasing trend of dom-
inance value in third and forth columns of Table I). This
is because asm increases, the number of tasks in a task
set also increases due to the way tasks are generated for
our experiments. As the number of tasks increases for the
experiments with medium and large tasks having larger
number of processors, it is more likely that the number of
tasks having relatively larger individual task utilization in
a task set also increases. The ability ofGSsearch to deal
with relatively larger number of high utilization tasks results
GSsearch to schedule large number of medium/mixed task
sets in comparison to that ofSM-US. Consequently, the
value of dominance forGSsearch increases asm increases.

However, the value of dominance decreases for experi-
ments with light tasks as we increase the number of pro-
cessors (notice the decreasing trend of dominance in second
column of Table I). This is because when tasks are light
(i.e., ui ≤ 0.5), most of the individual task’s utilization of
a task set are relatively small. As a result most of the tasks
of such task sets are given the slack-monotonic priority for
both SM-US andGSsearch scheduling. In other words, the
difference between the assigned priorities to the tasks in
SM-US and GSsearch scheduling decreases as we increase
the number of processors for experiments with light tasks.
Consequently, the value of dominance decreases. Never-
theless, the value of dominanceDOMPsearch for the light
tasks is still greater than 23.5% for our experiments with
at most 32 processors. In summary,GSsearch scheduling of
medium/mixed tasksscalesvery well with the increase in
number of processors, and the dominance ofGSsearch over
SM-US for light tasks is also significant.

In general, if the utilization of the tasks are within[0, 1],
then more than 92% of the 1 million randomly-generated
GSsearch schedulable task sets are not schedulable using
SM-US scheduling. This percentage increases up to 99.99%
as we increase the number of processors in our experiments
from 4 to 32. The conclusion from the experiments is thus

that GSsearch provides an order-of-magnitude performance
improvement in terms of number of scheduled task sets, and
scalesvery well as the number of processors increases.

B. Uniprocessor Slack-Monotonic Scheduling

The schedulability analysis of “special” task system on
multiprocessors (Section V) enables the derivation of a
higher utilization bound foruniprocessorslack-monotonic
scheduling compared to that of the state-of-the-art result
in [2]. Our proposed utilization bound for uniprocessor
slack-monotonic scheduling isF1(u

n
min). We now show

how we derive this boundF1(u
n
min) and also show that it

is higher than that of the state-of-the-art result (i.e., 50%)
proposed in [2].

Consider a task systemΓ that is special on uniprocessor
(i.e. m = 1). According to Property 1 of special task system
Γ, we haveun

max ≤ 1 becausem/(2m− 1) = 1 for m = 1.
Therefore, special task systemΓ is in fact an arbitrary task
system for uniprocessor. Note that we have0 < un

min ≤
un

max ≤ 1 where un
min and un

max are the minimum and
maximum utilization of any task inΓ, respectively.

For m = 1, the functionF1(x) is increasing within
[0, 1] since F ′

1(x) = 1 − 1
(2−x)2 > 0 within (0, 1).

Consequently,min{F1(u
n
min),F1(u

n
max)} = F1(u

n
min) since

un
min ≤ un

max. It is obvious from Property 2 of special task
systemΓ that we have

Un ≤ min{F1(u
n
min),F1(u

n
max)} = F1(u

n
min) (28)

Using Theorem 6, the special task setΓ is schedulable
using GSSM (uniprocessor slack-monotonic scheduling) on
m = 1 processor. Thus, based on Eq (28) our proposed uti-
lization bound for uniprocessor slack-monotonic scheduling
is F1(u

n
min). The current state-of-the-art utilization bound

for slack-monotonic uniprocessor scheduling is 50% which
is proposed in [2].

We now show thatF1(u
n
min) > 50%. Since the function

F1(x) is increasing within[0, 1], we haveF1(u
n
min) >

F1(0) since un
min > 0. Note that F1(0) = 1(1−0)

2−0 +
0 = 1/2 = 50%. Therefore,F1(u

n
min) > 50%. Our

proposed utilization boundF1(u
n
min) for the uniprocessor

slack-monotonic scheduling is higher than that of the state-
of-the-art result in [2].

VIII. C ONCLUSION

In this paper, we have proposed two static-priority assign-
ment policies and proved their superior schedulability com-
pared to the state-of-the-art global multiprocessor scheduling
algorithms. We have also derived a higher utilization bound
for uniprocessor slack-monotonic scheduling than that of the
state-of-the-art result. Our experimental results showedthat
around more than 92% of the one millionGSsearch schedu-
lable task sets are not schedulable usingSM-US. In addition,
the GSsearch scheduling scales very well with the increase
in number of processors.

REFERENCES

[1] B. Andersson. Global Static-Priority Preemptive Multipro-
cessor Scheduling with Utilization Bound 38%. InProc.of
OPODIS, pages 73–88, 2008.

[2] B. Andersson. The Utilization Bound of Uniprocessor Pre-
emptive Slack-Monotonic Scheduling is 50%. InProc. of
ACM Symp. On Applied Computing, pages 281–283, 2008.

[3] B. Andersson, S. Baruah, and J. Jonsson. Static-Priority
Scheduling on Multiprocessors. InProc. of RTSS, pages 193–
202, 2001.

[4] B. Andersson and J. Jonsson. The utilization bounds of parti-
tioned and pfair static-priority scheduling on multiprocessors
are 50%. InProc. of ECRTS, pages 33–40, 2003.

[5] T. P. Baker. An Analysis of Fixed-Priority Schedulability on
a Multiprocessor.Real-Time Systems, 32(1-2):49–71, 2006.

[6] S. Baruah and J. Goossens. Rate-monotonic scheduling on
uniform multiprocessors.IEEE Transactions on Computers,
52(7):966–970, 2003.

[7] M. Bertogna, M. Cirinei, and G. Lipari. New Schedulability
Tests for Real-Time Task Sets Scheduled by Deadline Mono-
tonic on Multiprocessors. InProc. of OPODIS, pages 306–
321, 2005.

[8] M. Bertogna, M. Cirinei, and G. Lipari. Schedulability
Analysis of Global Scheduling Algorithms on Multiprocessor
Platforms. IEEE Transactions on Parallel and Distributed
Systems, 20(4):553–566, 2009.

[9] E. Bini, T. H. C. Nguyen, P. Richard, and S. Baruah.
A Response-Time Bound in Fixed-Priority Scheduling with
Arbitrary Deadlines. IEEE Trans. Comput., 58(2):279–286,
2009.

[10] R. I. Davis and A. Burns. Priority Assignment for Global
Fixed Priority Pre-Emptive Scheduling in Multiprocessor
Real-Time Systems. InProc. of RTSS, pages 398–409, 2009.

[11] S. K. Dhall and C. L. Liu. On a Real-Time Scheduling
Problem.Operations Research, 26(1):127–140, 1978.

[12] N. Fisher, S. Baruah, and T. P. Baker. The Partitioned
Scheduling of Sporadic Tasks According to Static-Priorities.
In Proc. of ECRTS, pages 118–127, 2006.

[13] J. Goossens, S. Funk, and S. Baruah. Priority-driven schedul-
ing of periodic task systems on multiprocessors.Real-Time
Syst., 25(2-3):187–205, 2003.

[14] R. Ha and J. Liu. Validating timing constraints in multipro-
cessor and distributed real-time systems. InProc. of ICDCS,
pages 162 –171, 1994.

[15] C. L. Liu and J. W. Layland. Scheduling Algorithms for Mul-
tiprogramming in a Hard-Real-Time Environment.Journal of
the ACM, 20(1):46–61, 1973.

[16] D.-I. Oh and T. P. Baker. Utilization Bounds for N-Processor
Rate Monotone Scheduling with Static Processor Assignment.
Real-Time Systems, 15(2):183–192, 1998.

[17] C. A. Phillips, C. Stein, E. Torng, and J. Wein. Optimal
time-critical scheduling via resource augmentation (extended
abstract). InProc. of the ACM symposium on Theory of
computing, pages 140–149, 1997.

APPENDIX
Lemma 2. Considera, b, x, c andd such that0 ≤ a ≤ b ≤
x ≤ c ≤ d ≤ m

2m−1 for any integerm > 0. The following
two inequalities hold:

min{Fm(b),Fm(c)} ≤ Fm(x) (3)

min{Fm(a),Fm(d)} ≤ min{Fm(b),Fm(c)} (4)

Proof: To show that Eq. (3) holds we will show that,
within [b, c] where b ≤ x ≤ c, the function Fm(x) =
m(1−x)

2−x
+x achieves its absolute minimum at one of the end-

points of[b, c] for any givenm. Thus, the minimum between
Fm(b) andFm(c) is the absolute minimum ofFm(x) , and
consequently Eq. (3) holds.

The first derivative ofFm(x) = m(1−x)
2−x

+ x with respect
of x is F ′

m(x) = 1 − m
(2−x)2 . By settingF ′

m(x) = 0, we
havex = (2 ± √

m). For any value ofm > 0, the point
x = (2 +

√
m) is outside of(b, c) since c ≤ m

2m−1 ≤ 1
for m > 0. Moreover, the pointx = (2 − √

m) is outside
of (0, m

2m−1) for both m = 1 and m ≥ 4. Consequently,
x = (2 − √

m) is also outside of(b, c) because(b, c) is
entirely contained within(0, m

2m−1) for m = 1 andm ≥ 4.
So, the only possiblex values wherex = (2 − √

m) and
F ′

m(x) = 0 arex = (2−
√

2) andx = (2−
√

3) for m = 2
andm = 3, respectively (stationary points).

Since there is no stationary point ofFm(x) within (b, c)
for m = 1 or m ≥ 4, the absolute minimum ofFm(x) occurs
at one of the end points of[b, c] for m = 1 andm ≥ 4.

Now for m = 2, if the point x = (2 −
√

2) is outside
of (b, c), then the absolute minimum ofF2(x) occurs at
one of the endpoints of[b, c]. Otherwise, if the pointx =
(2−

√
2) is within (b, c), then the absolute minimum occurs

at one of the pointsx = a, x = (2 −
√

2), or x = b.
The functionF2(x) is increasing within[b, 2 −

√
2) since

F ′
2(x) =1 − 2

(2−x)2 > 0 within (b, 2 −
√

2) and F2(x) is

decreasing within(2−
√

2, c] sinceF ′
2(x) =1− 2

(2−x)2 < 0

within (2 −
√

2, c). Therefore, the functionF2(x) has its
absolute maximum atx = (2 −

√
2). Thus, the absolute

minimumof F2(x) occurs at one of the end points of[b, c].
Similarly for m = 3, if the point x = (2 −

√
3) is

outside of(b, c), then the absolute minimum ofF3(x) occurs
at one of the endpoints of[b, c]. Otherwise, if the point
x = (2 −

√
3) is within (b, c), then the absolute minimum

occurs at one of the pointsx = a, x = (2−
√

3), or x = b.
The functionF3(x) is increasing within[b, 2 −

√
3) since

F ′
3(x) =1 − 3

(2−x)2 > 0 within (b, 2 −
√

3) and F3(x) is

decreasing within(2−
√

3, c] sinceF ′
3(x) =1− 3

(2−x)2 < 0

within (2 −
√

3, c). Therefore, the functionF3(x) has its
absolute maximum atx = (2 −

√
3). Consequently, the

absoluteminimumof F3(x) occurs at one of the end points
of [b, c].

Since the functionFm(x) has its minimum at one of the
end points of[b, c] for any m, we can conclude that ifx
is within [b, c] then Fm(x) is not less than the minimum
betweenFm(b) andFm(c). Therefore, Eq. (3) holds.

Since a ≤ b ≤ d and a ≤ c ≤ d,
it follows from Eq. (3) that min{Fm(a),Fm(d)} ≤
Fm(b) and min{Fm(a),Fm(d)} ≤ Fm(c). Consequently,
min{Fm(a),Fm(d)} ≤ min{Fm(b),Fm(c)} which proves
that Eq. (4) also holds.

Lemma 10. Consider the task systemΓk that is special on
m processors. The following inequality holds form ≥ 1

min{Fm(uk
min) , Fm(uk

max) } ≤ m2

2m − 1
(29)

Proof: We show that the inequality in Eq. (29) holds by
considering four different cases: Case (i)m = 1, Case (ii)
m = 2, Case (iii)m = 3, and Case (iv)m ≥ 4. Remember
that, according to Property 1 of special task setΓk, we have
uk

max ≤ m
2m−1 .

Case (i) m = 1: The function F1(x) is increasing
within [0, 1] since F ′

1(x) = 1 − 1
(2−x)2 > 0 within

(0, 1). Thus, the maximum ofF1(x) within [0, 1] occurs
at x = 1, and F1(1) = 1. Since m

2m−1 = 1 for m = 1

and uk
max ≤ m

2m−1 , both uk
min and uk

max are within [0, 1].
Therefore, min{Fm(uk

min),Fm(uk
max)} ≤ F1(1)= 1 for

m = 1. Because m2

2m−1 = 1 for m = 1, we also have

min{Fm(uk
min),Fm(uk

max)} ≤ m2

2m−1 .
Case (ii)m = 2: Since m

2m−1 = 2
3 for m = 2 anduk

max ≤
m

2m−1 , bothuk
min anduk

max of are within[0, 2
3]. The function

F2(x) is increasing within[0, 2 −
√

2] sinceF ′
2(x) = 1 −

2
(2−x)2 > 0 within (0, 2 −

√
2) and the functionF2(x) is

decreasing within[2−
√

2, 2
3] sinceF ′

2(x) = 1− 2
(2−x)2 < 0

within (2 −
√

2, 2
3). Therefore, the functionF2(x) has its

maximum atx = (2−
√

2) within [0, 2
3], andF2(2 −

√
2) =

2(2 −
√

2). Consequently,min{Fm(uk
min) , Fm(uk

max)} ≤
F2(2 −

√
2). SinceF2(2 −

√
2) = 2(2 −

√
2) ≤ 4

3 = m2

2m−1

for m = 2, we havemin{Fm(uk
min),Fm(uk

max})} ≤ m2

2m−1 .
Case (iii) m = 3: Since m

2m−1 = 3
5 for m = 3 and

uk
max ≤ m

2m−1 , both uk
minand uk

max of are within [0, 3
5].

The functionF3(x) is increasing within[0, 2 −
√

3] since
F ′

3(x) = 1 − 3
(2−x)2 > 0 within (0, 2 −

√
3) and F3(x) is

decreasing within[2−
√

3, 3
5] sinceF ′

3(x) = 1− 3
(2−x)2 < 0

within (2 −
√

3, 3
5). Therefore, the functionF3(x) has its

maximum atx = (2−
√

3) within [0, 3
5], andF3(2 −

√
3) =

(5 − 2
√

3). Consequently,min{Fm(uk
min) , Fm(uk

max)} ≤
F3(2 −

√
3). SinceF3(2 −

√
3) = (5 − 2

√
3) ≤ 9

5 = m2

2m−1

for m = 3, we havemin{Fm(uk
min),Fm(uk

max})} ≤ m2

2m−1 .
Case (iv) m ≥ 4: The function q(m) = m

2m−1 is
decreasing form ≥ 4 becauseq′(m) = −1

(2m−1)2 <

0 for m ≥ 4. Therefore, m
2m−1 ≤ 4

7 for m ≥ 4,
and bothuk

min and uk
max are within [0, 4

7]. The function
Fm(x) is decreasing within[0, 4

7] for 0 ≤ x ≤ 4
7 since

F ′
m(x) =1 − m

(2−x)2 < 0 within (0, 4
7) for m ≥ 4.

Thus, the maximum ofFm(x) occurs at x = 0, and
Fm(0) = m

2 . Therefore,min{Fm(uk
min) , Fm(uk

max)} ≤
Fm(0). SinceFm(0)= m

2 < m2

2m−1 for m ≥ 4, we have

min{Fm(uk
min) , Fm(uk

max)} ≤ m2

2m−1 .

It is proved for all the cases that ifΓk is special onm
processors, then the inequality in Eq. (29) holds.

Lemma 11. The following inequality holds form ≥ m′ ≥ 1.

B(m) ≤ m

2m − 1
≤ m′

2m′ − 1
(30)

whereB(m) is the function defined in Eq.(16).
Proof: We prove this Lemma considering three cases:

Case (i)m = 1, Case (ii)m = 2 and Case (iii)m ≥ 3.
Case (i) m = 1: For this case, we havem = m′ = 1

since m ≥ m′ ≥ 1. Therefore, m
2m−1 = m′

2m′−1 = 1 for
m = m′ = 1. From Eq. (16), we haveB(m) = B(1) = 1
for m = 1. Therefore, Eq. (30) holds.

Case (ii) m = 2: Using Eq. (16), we haveB(2) =
(2 −

√
2) for m = 2. And m

2m−1 = 2
3 for m = 2.

Because(2 −
√

2) < 2
3 , we haveB(m) < m

2m−1 for
m = 2. The function q(x) = x

2x−1 is decreasing for
x ≥ 1 becauseq′(x) = −1

(2x−1)2 < 0 for x > 1. Thus,

we have m
2m−1 ≤ m′

2m′−1 for m ≥ m′. Consequently,

B(m) < m
2m−1 ≤ m′

2m′−1 . Therefore, Eq. (30) holds.
Case (iii) m ≥ 3: The following inequality in Eq (31)

holds for anym such thatm ≥ 3.

0 ≤ m2 − 4m + 3 (31)

≡ 4m2 − 4m + 1 ≤ 5m2 − 8m + 4

≡ 2m − 1 ≤
√

5m2 − 8m + 4

≡ 3m − 2 −
√

5m2 − 8m + 4 ≤ m − 1

≡ 3m − 2 −
√

5m2 − 8m + 4

2m − 2
≤ 1

2
≡ B(m) ≤ 1

2

⇒
[

since
1

2
≤ m

2m − 1
≤ m′

2m′ − 1
for m ≥ m′ ≥ 1

]

B(m) ≤ m

2m − 1
≤ m′

2m′ − 1

Therefore, Eq. (30) holds for all the cases.

Lemma 12. Let m and m′ be two integers such thatm ≥
m′ ≥ 1. The following inequality in Eq.(32) holds

B(m) ≤ B(m′) (32)

whereB(m) is the function defined in Eq.(16).
Proof: For m ≥ 2, the first derivative ofB(m) =

3m−2−
√

5m2−8m+4
2m−2 is B′(m) = −2(

√
5m2−8m+4−m)

(
√

5m2−8m+4)(2m−2)2
.

Note that we haveB′(m) < 0 because
√

5m2 − 8m + 4 >
m for m ≥ 2. So,B(m) is decreasingfor m ≥ 2. Thus, the
maximum ofB(m) occurs atm = 2 wheneverm ≥ 2, and
B(2) = (2−

√
2). From Eq. (16), we haveB(1) = 1. Since

1 > (2 −
√

2), we haveB(1) > B(m) for any m ≥ 2.
If m = m′, then Eq. (32) trivially holds. So, to prove

this Lemma, we consider wherem > m′. Note thatm ≥ 2
wheneverm > m′ becausem′ ≥ 1.

Now, if m′ = 1, then B(m′) > B(m). This is because
B(1) > B(m) for any m ≥ 2. Otherwise, ifm′ > 1, then
m > 2 since we considerm > m′. Because the function
B(m) is decreasing form ≥ 2, we haveB(m′) > B(m)
where m > m′. Therefore, if m ≥ m′ ≥ 1, we have
B(m) ≤ B(m′).

	Introduction
	Related Work
	System Model
	Useful Definitions and Prior Results
	``Special'' task set and its Schedulability
	Upper Bound on Work of GSSM
	Lower Bound on Work of GSSM
	Slack-Monotonic Schedulability Analysis

	Hybrid Priority Assignment
	Priority Assignment Policy Pbound
	Priority Assignment Policy Psearch

	Performance Evaluation
	Simulation Results
	Simulation Setup
	Simulation Result

	Uniprocessor Slack-Monotonic Scheduling

	Conclusion
	References
	Appendix

