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Abstract—In this paper, multiprocessor scheduling of a set of ~ and 31”\1/5 for m > 5 (SM US scheduling[[1]). In this paper,
real-time periodic tasks with implicit deadlines is addressed. We e proposetwo static priority-assignment policies, called
propose two static priority-assignment policies, called policy Pyound and Pyearen, and prove that global multiprocessor

Pyouna and policy Pseqrcn. Common for both policies is that . . . .. .
a subset of a given task set is assigned the slack-monotonic scheduling using either of these policies dominates both

priority while each of the other tasks is assigned the highest RWM US and SM US scheduling.
static-priority. The tasks are scheduled onm processors using Both of our proposed priority assignment policies

i i scheduling algorithm. . . L .
prelieigt?tlﬁegé?wtc)sxll rIrl:jegllﬁillaoeceustﬁ?zration boun%l o? global mul- @ based orslack-monotonic hybnd priority assignment
tiprocessor scheduling using our proposed policyPounq is ~ SCheme that works as follows: if the utilization of a task
higher than any other existing state-of-the-art static-priority ~ is not greater than ¢reshold utilization then the task is
multiprocessor scheduling. Second, using the utilization infor-  given slack-monotonic priority, otherwise, the task isegiv
mation of individual task of a given task set, we propose our o highest static-priority. According to slack-monotni

second priority assignment policyPseqrcn- We show that global .. . .
multiprocessor scheduling using policyPscq-.» dominates that priority assignment, the smaller the difference between a

of using Pyoung in the sense that any task set schedulable using task’s period and worst-case execution time (WCET), i.e.,
Pround is also schedulable usingPscqrc» and not conversely. called slack, the higher is the assigned priority.

. INTRODUCTION For each of our proposed priority assignment poli-
cies, Pyouna and Pgeqrcn, We present the correspond-
ing schedulability analysis of the I@al multiprocessor
Scheduling algorithms, called@S,,..q and GS,cqrcn, re-
spectively. The threshold utilizations for polick,ouna iS
determined based on the schedulability analysis of a class
l@fbtask sets, called “special” task sets (presented in &ecti

Consider the following problentsiven a collection ofn
implicit-deadline periodic tasks, is it possible to meet al
the deadlines of the tasks scheduled om identical, unit-
capacity processors?Real-time task scheduling on multi-
processors is primarily based on eitlgbobal or partitioned

approach. In global scheduling, a task is allowed to execu D= i .
PP g g . The threshold utilization we use for polic¥young IS

on any processor even when it is resumed after preemptioR; o st i
In partitioned scheduling, the task set is grouped in differ ~—— 2m-z ~ Wwherem is the number of processors,

task partitions during design time and each partition has & = 2- We prgv\e/% utilization bound @Spouna IS
fixed processor on which only the tasks of that partition arem'm_'”{% , Sm= _275,'—”2_8m_+ }- Itis easy to see that the uti-
allowed to execute. The main design goal of many staticlization bound 0fGS,,.nq is higher than (hence, dominates)
priority global [3], (8], [6], [7], [, [B] and partitionedd], that of bothRM US [3] and SM US [] scheduling.
[12], [16] scheduling algorithms is to derivesahedulability Note that, the threshold utilization used {&%,,,,q de-
conditionthat is when satisfied implies that all the deadlinespends only on the number of processors and does not use
are met. One of the most popular and expressive ways tany information (e.g., utilization) of the individual task a
derive a schedulability condition of a scheduling algarith given task set. Using the utilization information of indival
is in terms of itsutilization bound task of a given task set in addition to the information
The utilization bound of a scheduling algorithrhis a  about the number of processors, we propose our second
numberUB,4 such that all the tasks will meet their deadlines slack-monotonic hybrid priority-assignment poli&¥.q ..
when scheduled byl onm processors, if the total utilization In order to determine the threshold utilization for policy
of the task set is not greater thaB,. It has already P,....,, we borrowed the idea of determining the job-
been proved that neither global nor partitioned statio#si level priorities of priority-drivenEDF(*) scheduling from
scheduling can have a utilization bound greater tham:  [13] and applied it to the static-priority setting at thekas
onm processors [3]/16]. There exists a static-priority par-level. In EDF(*) scheduling, jobs of thé highest utilization
titioned scheduling algorithm, calleR- BOUND- MP- NFR,  tasks are given the highest priority and the jobs of the
having utilization bound of0.5m [4]. However, the best remaining (n — k) lowest utilization tasks are given the
state-of-the-art thiIization bound of global multiproses  Earliest-Deadline-First (EDF) priority (in fact, one such
scheduling is;™™— for m < 5 (RMUS scheduling [[B]) % is searched). Based on polic¥scq,.,, We show that
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scheduling algorithmGS;.,,., dominatesGS,,..q in the  amount of interference in an interval that can cause a tasks
sense that if a task set is schedulable u§iSg,,,,; thenitis  deadline to be missed. Baker's analysis is general for any
also schedulable usin@S,..., and not conversely. Conse- fixed-priority scheduling and arbitrary deadline task sys.
quently, GS, .. dominates botlRM US andSM US since  Baker [5] showed that, for implicit-deadline task sets the
the utilization bound ofGSy,.,q IS higher than that of utilization bound of RM scheduling |§W + Umin,
RM US and SM US. To this end, we make the following wherew,,,, andu,,;, are the maximum and minimum uti-
major contributions: lization of any task in the task set, respectively. RM scledu
1) We propose priority-assignment policB,ounq and  ing is studied for uniform multiprocessors inl [6], and it is
show that the utilization bound 0iGSy,..q is  shown that the utilization bound & for implicit-deadline
m-min{%, 37rz—2—2v7i7f;—8vrt+4}_ This utilization bound tasks onm unit-capacity processors. Using an analysis of
is higher than that of the state-of-the-art algorithmsthe worst-case workload in an interval, similar to that of
RM US and SM US. Therefore,GS,,,,s dominates the Baker's work in[[5], Bertognat al. [[7] showed that,
both RM US and SM+ US. the utilization bound for deadline-monotonic schedulirig o
2) We propose priority assignment polid,cq,.., and  implicit deadline tasks iw FUmaz- The work in [7]
show thatGS,.q,.., dominatesGS,,..q scheduling is further improved in[[B], where an iterative algorithm for
algorithm. We prove the domination &S,.,,.., over  separately testing the schedulability of each task is ego
GSyoung by showing that any task set schedulable Based on slack-monotonic hybrid priority assignment
using GSy,unq IS also schedulable usingS,..,., and  scheme, a static priority-assignment policy is proposed
not conversely. by Andersson forSM US scheduling algorithm[]1]. In
3) We show through simulation experiments that moreSM US scheduling, each task having utilization greater than
than 92% of the one million randomly-generated2/(3 + /5) is given the highest static-priority and the
GSsearen SChedulable task sets atet SM US schedu-  rest of the tasks are given slack-monotonic priorities. The
lable. This percentage increases up to 99.99% wheantilization bound of theSM US scheduling algorithm is
we increase the number of processors from 4 to 32m/(3 + v/5) ~ 0.3819m [I]. Recently, static-priority as-
in our experiments. ThereforéGS;. .., Scheduling signment scheme for global scheduling is proposed by Davis
scalesvery well in comparison toSM US with in-  and Burns[[1D] which has been shown (using simulation)
creasing number of processors. to have better performance than many other fixed-priority
The rest of the paper is organized as follows. First, othefcheduling algorithms.
works related to multiprocessor scheduling are discussed In summary, the current state-of—the-ar2t utilization babun
in Section[1. The system model we use in this work for global multiprocessor scheduling ig'— for m < 5
is presented in Sectiopllll. Useful definitions and some(RM US scheduling) an% for m > 5 (SM US schedul-
important prior results that we use are presented in Sectioimg). In this paper, we show that our proposed schedul-
[Vl The schedulability analysis of “special” task sets anel t ing algorithm GSy...¢ has a higher utilization bound
two priority assignment policies are presented in Sectiorthan that of bothRM US and SM US. Moreover, we
[Vl and Sectior"MI, respectively. In Sectign_VII, we prove show thatGS,.,,., dominatesGSy,.,.q Which also implies
the domination ofGS;...., Over GSy,unqg and domination GS,.,,.., dominates botiRM US and SM- US.
of GSyoung Over bothRM US and SM US scheduling, and
present our simulation results. Finally, we conclude theepa I1l. SYSTEM MODEL

in Section_ V1.

In this paper, we consider global preemptive scheduling
Il. RELATED WORK of n independent periodic tasks in det={ry,2,...7,} on

The well-known Rate-Monotonic (RM) static-priority as- 77 identical, unit-capacity processors. Each task I is
signment is optimal for uniprocessdr [15] and is not opti-characterized by a pairck, 7;), where C; represents the
mal for global multiprocessor scheduling due to so calledVCET andT; is the period of task;. An instance of each
“Dhall's effect” [11]. Andersson, Jonsson and Baruah pro-task, callediob, is released at each peridd and requires
posed a RM hybrid static-priority assignment policy for & mostC; units of execution time before the next period.
RM US[m/(3m—2)] algorithm that has the utilization bound ~ Without loss of generality we assume that tasks are sorted
of m2/(3m —2) onm processors |3]. IRV US[m/(3m —  based ordecreasingpriority order, that is, task; has lower
2)] algorithm, the Dhall's effect is avoided by assigning Priority than taskr; for i < k. Since the execution of a
the highest priority to the tasks having utilization greate task 7, can be interfered only by the higher-priority tasks,
thanm/(3m — 2) while the rest of the tasks are given the Whether taskr, meets its deadline or not depends on the
traditional RM priority. tasks in{ry,72,...7} but are completely unaffected by

Analysis of static-priority multiprocessor global schedu the tasks in{7y1, 742, ... 7, }. We find it useful to define
ing is also addressed by Bakél [5] based on the minimunthe task sef* def {T1,72,... 7%} for k. = 1,2...n. We



sometimes, hereafter, also use the notafibrto denote the
collection of all the jobs of the tasks ii".
We define theutilization of a taskr; asw; = C;/T; and
- . k k k
the total utilization of the task sef™ asU" = )., u; for
k=1,2...n. Note that,U"is the total utilization ofl=T".
We define thenaximum utilization®, . and theminimum
utilization u*

k .. of a periodic task systeii¥* to be the largest
and smallest utilization of any task if*, respectively.

IV. USEFULDEFINITIONS AND PRIOR RESULTS

The schedulability analysis presented in this paper is
based on the schedulability analysis of a class of task sets
called “special” task sets. A task set is said to be “speaial 0

m processors” based omvo particular properties (defined

shortly in Definition[2). We prove that a task set that is
special onm processors is schedulable using global slack

monotonic scheduling, denoted 185sy, on m processors
(proved in Theorerfi]6).

We will use the following function in Eq[{2) in rest of
this paper: _
Fo() m(l —z) )

2—x
wherem € ZT and0 < z < 57 TWO important features
of the function in Eq.[{R) are given in Lemnh& 2.

Lemma 2. Considera, b, z, c andd such that) < a < b <

+x

r < ¢ <d< 5 for any integerm > 0. The following
two inequalities hold:

min{ Fon (6), Fn (6)} < Fn () 3)

min{Fm(a),Fm(d)} < min{F,(b),Fmn(c)} 4)

Proof: Proof is given in Appendix. [ ]

V. “SPECIAL" TASK SET AND ITS SCHEDULABILITY

In this section, first we formally define the two properties
of a task system that is “special” an processors. Then, we

present an upper and lower bound on the amount of work
within a given interval foiGSsy scheduling (subsectiohs VA

and[\ZA). Finally, based on the difference between these
two bounds and using the two properties of the special task
system, we prove that all the deadlines of the special task
system are met usinGSsy scheduling onm unit-capacity

Ef)rocessors; (subsectibn ¥-C). Then based on the schedulabil

It will be evident later that the schedulability analysis
of special task sets is based on the amountvofk done
by GSgv within a particular time interval. To formally
characterize the amount of work done by any schedulin
algorithm A over a time interval of length on m processors

each having speed, we use the following well-known
definition of work (also used in[]3],16],113]).

Definition 1 (W (A, m, s, T'*,t)). Let the jobs of the task set
I'* are to be executed using any algorithénon an identical
multiprocessor platform where each processor has speed
For time instantt > 0, let W(A,m,s,T'*,t) denote the
amount of work done by algorithmd on jobs of the task set
I'* over the interval0, ), while executing omn processors
each of speed.

Scheduling algorithmA on a multiprocessor platform is
calledwork-conserving algorithmif it never idles a proces-

ity analysis of special task system of this section, we psepo
the two slack-monotonic hybrid priority-assignment piglc
Pyouna @nd Pyeqrep, @nd the corresponding schedulability
analysis of algorithmsS;,,,,q and GS;cu.cn, respectively,
in Section[V].

Definition 2 (Special Task System)A periodic task system
I'* is special onm processor if it satisfies the following two
properties:

Property 1. u* 1

mar — 2m-—1

Property 2: U* < min{ Fy, (u%,;,,), Fon (0% 02)}

According to Property 1, the maximum utilization of any
task in sefC’¥, that is special om» processors, is not greater

sor when there are jobs awaiting execution. Note thlahal
static-priority scheduling is work-conservirtty definition.  than ™. According to Property 2, the total utilization of

The following Theorentll provides a lower bound on theie gpecial task systel is not greater than the minimum
amount of work completed by a work-conserving schedulingys Fo(uk . ) and Fy,(uf,, ).

algorithm A on an identical multiprocessor platform that has men mar

each of them processorg2 — %) times faster compared to A, Upper Bound on Work dBSgy

that of completed by any algorithm’ on a platform with

m identical processors. Theordm 1 is based on the wor
in [17] that exploitsresource augmentationfor on-line
scheduling of real-time jobs.

Theorem 1 (Based on[[1[7]) For the set of all jobs of task
systemsl'*, any time-instant > 0, any work-conserving
algorithm A, and any algorithmA’, it is the case that

Over the intervall0,t), exactly Lﬁj complete jobs of
|t(askn are scheduled b$Sgy and the([%J + 1)t job of
7; may be scheduled for at mostin(t — L%jTi, C;) time
units. Thus, the maximum amount of work to be completed
by the jobs of the taskgry,...7;_1} within [0,) is at most
ST 1Cs + min(t — | 7T, , C;) and this quantity is
upper bounded by the right hand side of Hg. (5) given in
0 Lemmal3 (proved in[]1],[19]).

Lemma 3 (From [1], [9]). The maximum amount of work

Theorem[L will be useful later to find the lower bound Zg;ll £G4 min(t — L%JTi ,C;) that need to be

on the amount of work completed by time instantising  completed by taskér,, 72 ... 7;_1} over an intervall0,t)
global slack-monotonic scheduling algorithB®sy. is upper bounded by the following inequality in

W(Azmys : (2 - %)7Fk7t) > W(A/7mysvrk7t)
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_ The outcome of Lemmid 4 is that there exists a scheduling
P [L [IC +min(t L AT ] algorithm, calledOPT, through the use of which a task
i—1 systemI'* that is special onn unit-capacity processors is
< Z [ Ci+ (t — Ci)w) (5) feasible onm identical processors each of spegé—. Now,
i=1 since ;- x (2 — 1) =1, using Theorerfil1 together with

We will use Eg.[(5) as the upper bound of the amount ofihe existence of an scheduling algorithm OPT plus the fact
work that need to be completed by the higher priority jobsthat GSg is work-conserving, we get

of task 7; within a particular time intervalo, t|.

<.

W (GSsw,m, 1,T% 1) > W(OPT, m,

B. Lower Bound on Work d&Sgy forall t > 0. . _

Note that according to algorithm OPT,
) = t-F u o=t U for
exists an algorithm, called OPT, that can feasibly schedulgpy time instantt > 0. Thus, the lower bound on the

special task sef'* on m processors each of speed”—.  amount of work actually completed bSsy within [0, t)
Then, we will show that the amount of work completed by for executing the jobs of the task st is given in Eq. [(ID)
GSgv ON m unit-capacity processors within an interval is no as follows.

less than that of completed by OPT en processors each W (GSsw,m, 1,T% 1) > ¢ - Zu =¢-U* (10)

k
ﬁ?r 6 (9)

of work actually completed b{ESsw). We will use Eq. [(ID) as the Iower bound of the actual
amount of work completed b¥sSsy scheduling within a

Lemma 4. Consider the task sdi” that is special onm particular time intervalo, ¢].

processors. Task sdt” is feasible onm processors each

C. Slack-Monotonic Schedulability Analysis
Proof: By Property 1 of special task system we have In this subsection, we prove that a task systéfthat is

ulfnar < 5™ Therefore, we have; < ;™ sinceu; < special onm processors is feasible usir@bsy on m unit-
uk  for aII i =1,2,...k. To prove this lemma, we need Capacity processors. First, we prove in Lenimha 5 that all the
to show that the followmg mequahty holds jobs of the lowest priority task-; of task setl’, which
Uk < m? ©) is _speC|aI onm. pProcessors, eomplete b)_/ the|r de_adlmes
~2m-—1 using GSsy scheduling. Then, it follows using induction on

j =1,2,...k that the special task systefif is feasible on

task systerrfk can be scheduled to meet all the deadlines™ processors usinGSsy
on m processors each of spegd™ using the algorithm, Lemma 5. Consider task setl” that is special on

called OPT, as follows m processors. All the jobs of task meet their deadlines
The processor sharing schedule, called OPT, as- WhenI” is scheduled usingsSsy on m unit-capacity
signs a fractionu; of a processor tar; at each processors.
time-instant, and thus ensures that each instance Proof: We will prove this Lemma using induction. Lets
of task7; completesC’; units of execution within assume that all th — 1) jobs of ; have met their deadlines
its deadlineT;. using GSgsy scheduling algorithm. We will prove that the

The algorithm OPT is also used in the schedulability!"" job of 7; also meets the deadline. Using induction on
ana|ys|s of RM+ US in [Eﬂ where the above |nequa||ty in l> 1, the correctness of LemrﬂiSthen |mmed|ate|y follows.
Eq. [8) was straightforward to prove for so called “lightiktas hSlh}ce EaCh job of task; is release((jj at each peridg,
system”. However, showing that the inequality in Eq. (6pals the I** job arrives at tlme(l — DT and require<’; units

N . e . of execution time before its deadImiQ’ Remember from
holds for “special task system” is not as straightforward a3 emmal# that task set’ is schedulable using algorithm

for RV US. To show that inequality in Eq[6) holds we, in OpT onm processors each having spegl—. Thus, from
fact, show that the inequality in Ed.](7) holds. Eq. (10) we have,
2

MM Fp (Urin ) Fon (Unas )} < ) W (GSsw,m, 1,179 (1 — 1)T;) > (I — )T Zul

2m — 1

The proof that Eq.[{7) holds is given in Lemrhal 10 in
the Appendix. Sincd'* is special onm processors, using
Property 2 of special task system we have

U" < min{ Fp (uF i) Fon (000 } (8)

(1—1T Zul (1 — 1) Tyu; (11)

According to Eg. [(IN), the minimum amount of work
completed byGSgy before thelth job of 7; arrives at
From Eq. [T) and Eq[18), the inequality in ER] (6) follows time (I — 1)7} is (I — 1)7} - ZZ L wi + (I = 1)Tju,. Note
immediately. B that, prior to time instant/ — 1)7}, the amount of work



generated for task; is exactly (I — 1)Tju;. Since we _ i“ < m —w) L [from Eq. @)]
= i< =T .

assume that all th¢/ — 1) jobs of taskr; have met their ~ 2 -y
deadlines (inductive hypothesis), the total work execined j—1

GSgy for the hlgher priority tasks , 72, ... 7;_1 is at = i (2 —uj) < m(l —uy)
least(l — 1)7; >1— 1 u; prior to the time instantl — 1)7;. =1

j—1
Lemma[3 ensures that the maximum amount of work = ; <1— izui@fuj)
that can be completed by all the higher-priority tasks mi=

T, To, ...TJ_1 over the interval0, {T}) is bounded from 1 1
above by)/” [C + (IT; — C; )uyl. In the previous para- = < {m > w4 w1 —uj)}]
graph, we saw that at leagt— 1)T; Z] 1 u; of this work =1
is completed prior to time instar(i — 1)T Therefore, at c; 1 o o T, — C,
most = fSE{m_Z[TJr?( T; )]}
. i=1 v v
J}:l[(ci (T, = Ci )] — (1= )T, Z w = (Ac.cording to slack-monotonic priority
=1 assignment, we havel’; — C; < T; — C})
j—1 j—1
Cj 1 C G, T; —C
(Ci +(T5 = Ci Yus) = ?Jga{mfZ[?+?( T )]}
i=1 J i=1 ' v J
amount of work remains to be executed after time mstant C T; C?
< _ =
(I —1)T; for all the higher priority tasksy, 72, ... 7;j_1. Ci< {m Ti- E +G T; ]}
The amount of processors capacity left unused by tasks 1
71,72, ... Tj—1 during the interval(l — 1)73,1T}) on the = G=_ {m Ty — Z [Ci + (T - Ci)ui]} = Eq. [13)
m multlprocessor platform is therefore at least i=1
Ei Since the inequality in Eq[(13) is true, we can conclude
m-Ty =3 (Ci +(T; = Ci Jui) (12)  that thel®” job of taskr; meets its deadline usingSsy. M

i=1

. Based on Lemm@l]5 we prove in TheorEm 6 that the task
Not all of this capacity is available to thé" job of 7; setl'* that is special om: processors is feasible usiGpsy.

if several processors are available at the same time. In t heorem 6. Task svsterfi® that is special oM. DIOCESSOrS
worst case (i.e., all thex processors are available at the same, ' y P P

time) at least. of this available capacity can be usedy is feasible usingsSgv on 1 processors.
Consequently, the amount of processing capacity ava|IabIe Proof: Using induction onj and applying Lemm@]5 for
to the " job of 7; during the interval(l — 1)T},11}) o task sef for j = 1,2,...k, it is easy to see that the special
the multiprocessor pIatfolrm is at least task systenT'* is feasible onm processors usinGSgy. W
1 [m Ty — Z_: Ci + (T, - C, )Ui):| Based on thezSgy feasibility pf “spepial”_ ta_sk systems,
we propose two slack-monotonic hybrid priority-assignimen

m
=1
. . . olicies Pyyynag and Py.q.cn, fOr an arbitrary task sef.
To guarantee that the" job of 7; meets its deadline, we P bound " y

need this capacity to be at least as large as the execution
time of 7,; that is, we must have, VI. HYBRID PRIORITY ASSIGNMENT

1 j—1 In this section, we propose the two hybrid priority as-
C; < o {m Ty — Z(Ci + (T - C; )Ui):| (13)  signment policiesPyoung and Pseqren. Common for both
=1 policies is that the priorities to the tasks are assigneédas
In the remaining part of this proof, we show that Hg.1(13)on some threshold utilization;; such that all the tasks
holds; which guarantees that ti& job of 7; meets its having utilization not greater tham are given the slack-
deadline. Since task sdt/ is special onm processors, monotonic priorities and each task having utilization ¢gea

according to Property 2 of special task set we have than u, is given the highest priority. Using such hybrid
policy, the task set” is visualized as the union of two sets
U’ < min{ £, (u mm) Fon (uinam’)} (14) I' =T';, UT'y such that the tasks in s&t;, have the slack-

For task; € I/, we haveumm < wuj < U%wm Thus, monotonic priorities and each task in $g§% has the highest
accordlng to Property 1 of speual task systBfm we have priority. It will be evident shortly that the value of;; for

0<a, <u <ul . And using Eq.[(B) of policy Pyuna Only depends on the number of processors.

min

maxr — 2'"L

Lemmal2, we have However, the value ofi;s for policy Pseqrcr, depends not
only on the number of processors but also on the utilization
M o (1),3,) Fon (W)} < Fo (1) (15)  information of the individual task of a given task set.
From Eq. [I#) and Eq[715), we haw® < F,,(u;) which Before the thresholds for the two priority assignment

is equivalent to policies are presented, we present two general conditions,



denoted asC1 and C2, in LemmalY that can imply the
feasibility of a task set based on priority assignment golic
Pyound (Psearern). The proof technique in Lemnid 7 is based
on the notion ofpredictable scheduling algorithrthat is

proposed by Ha and Liu in[14] and used [in [1] as follows.

Predictability (from [14]): A job is characterized by its

arrival time, its deadline, its minimum execution time and

its maximum execution time. The execution time of a job is .
nfm—T'r|) = (m—k) processors. Remember that according

unknown but it is no less than and greater than its minimu

and maximum execution time, respectively. A scheduling

algorithm A is predictableif for every setJ of jobs, the

following fact
scheduling all jobs iy by A with execution times
equal to their maximum execution times causes all
the deadlines to be met

implies that
scheduling all jobs i/ by A with execution times
being at least their minimum execution times and
at most their maximum execution times causes all
the deadlines to be met.

This notion of predictable scheduling algorithm implies

that we only need to analyze the schedulability of the jobs[h
considering the WCET of the jobs. Since a periodic taslﬁh
set generates a set of jobs, the notion of predictability

can be extended in a straightforward manner to algorithms
for scheduling periodic task systems. Ha and Liu’'s work

also implies that global static-priority scheduling of ipelic
tasks on multiprocessors is predictable [3], [1].

Lemma 7. Let u;, be the threshold utilization that is used
to determine the set6;, andI'y such thatl’ =T', UT'y
assuming the priority assignment poli@%ouna (Psearch)-
The task sel” is schedulable usin@Syouna (CSsearch) if
the following two condition€1 and C2 are satisfied

(Cy
(€2

‘PH| <m
I'z is special on(m — |I'x|) processors

Proof: We will show that ifC1 andC2 are true for pri-
ority assignment policYPyound (Pscarcn) that usesi;s as the
threshold utilization, then the task déis schedulable using
the GSpound (CSsearcn) SCheduling. Consider the following
task setl); such that

IMy={r|mne I'yand T =C, =T}

For each task; € I'y, there is a corresponding taskin
setI”; such that the period and the WCET gf are equal
to T;. Therefore, each task € I'}; has utilization 1. Note
that, |I;| = [Tx| and we letk = T, | = [T x|

Now consider the task sdt’ = I';, U T, that is to
be scheduled omn processors usingSyoung (CSscarch)-
According to policyPyouna (Psearen) that uses the threshold
utilization u,,, each of the tasks i}, is given the highest
priority and the tasks id';, are given the slack-monotonic
priorities.

When  scheduling the task setI” using
GSpouna (CSsearen), then k [T;| processors are
devoted to tasks in sef’; since these are the highest
priority tasks each with utilization 1. All these tasks in
I, are schedulable ok processors (one task is executed
in one dedicated processor) sin@&;| = Tyl =k < m
according toC1.

According to C2, the tasks in sefl’; are special on

to Theorenib, task sét;, that is special orfm — k) proces-
sors is schedulable using global slack-monotonic schegluli
GSsy on (m — k) processors. Consequently, the taskISet
is schedulable omn processors usin@Syounag (CSscarch)
scheduling.

However, since global static-priority algorithm
GSpound (GSsearcn) IS predictable, jobs of the tasks
in setI'y, in fact, complete earlier than the jobs of the
tasks in setl;;. In other words, no jobs in task system
I’ finishes later than the corresponding job It for
predictable scheduling algorithmGSy,ung  (CSsearch)-
Therefore, all the deadlines of the taskslirare met using
GSpound (CSsearen) SCheduling where the tasks are given
e priorities based on policYyouna (Psearcn) Whenever
e conditionsC1 and C2 are satisfied. [ ]
Based on these two general conditior@1(and C2)
of LemmalT, the schedulability analysis &S;,.,.q and
GSsearch, @ssuming the priority assignment poliCiBs,,nq
and Ps.qcn, are presented in subsection VI-A and subsec-
tion [VI=B] respectively.

A. Priority Assignment PolicyP,,.nq

In this section, we present the threshold utilization
used for slack-monotonic hybrid priority assignment pplic
Pyouna and derive the corresponding utilization bound for
GSpouna SCheduling. The value af, is defined based on the
solution of the equatiod,,, (us)= m-u;s wherem is some
constantyn > 1. One of the solutions oF},, (uss )= m - us
iS uy, = Sm=2=yom —8mtd for iy > 1. The value Ofuy,
for policy Pyound IS uts = B(m) for m > 0 where B(m)
is defined as follows:

B(m) {1 if m=1 (16)
m) = 3m—2—+/5m?2—-8m+4 .
D it m>1

The two following inequalities in Eq[{17) and Ed.{18)
hold for B(m) and B(m’) wherem > m’ > 1

m m
B(m) < <
(M) S S =1 S o 1

7

B(m) < B(m') (18)

The proof that Eq.[(17) and Eq[(18) hold are given
in LemmalIl and LemmBTlL2 in the Appendix. Now the
schedulability condition in terms of utilization bound of
GSyouna Scheduling is given in Theorefd 8.



Theorem 8. A task setl’ is schedulable usingS;,.,,,q if 0 < Uminr < Umasr, the following inequality in Eq.[{20)
U™ <m-min{l/2,B(m)} for m > 2. holds. )

’ m
Proof: Given the task sef’ and the number of pro- 0 < tmint, < Umaer, < B(m') < 5 (20)

cessorsm, we can determine the two subsétg andI'y Based on Eq[{20) and from Edl (4) of Lemida 2 we have
such thatl’ = I';, UT'y based on the threshold utilization . ,

uss = B(m). Note that, based on polic¥y,unq, the tasks min{ £,/ (0) ! For (B(m))}

in setI', andI'y are given the slack-monotonic and the < min{E, s (Umint ) Frp (4mawr ) } (21)
highest static priorities, respectively. We will show thfit  From the function definition given in E1(2) we have

the total utilizationU" < m - min{1/2, B(m)}, then the m/(1 —0) /

two general condition€1 andC2 of LemmalY hold; which Fw(0) = ——5~ t0=m/2 (22)

guarantees the sch_edulablllty Bfusing GSpound- From Eq. m) form’ — 1 and settings — B(m') we
(C1 holds) It is easy to see thatB(m) > have F,(B(m'))=1=m'. And for m’ > 1 we have

min{1/2, B(m)}. Then it follows that each task ifiy has B(fn = m - B(m') because one solution far of

utilization greater thamin{1/2, B(m)} since each task in Fm E ) = m x is x = B(m'). Thus, for anym’

T'y has utilization greater than,; = B(m) using policy

Pyouna- If the total utilization (i.e.,U™) of the task set

T is not greater tham - min{1/2, B(m)}, then the number It follows from Eq. [22) and Eq[(23) that

F _(B(m") >m' -min{l, B(m)} (23)

of tasks that are given the highest priority is less than min{F, /(0), F,/(B(m'))} > m’ - min{1/2,B(m")} (24)
In other words, we havel'y| < m, and this implies that o from E and using the fact t .
condition C1 of LemmalY holds. from Eq. m‘)q \;%qﬂave g h&t(m) < B(m')

(C2 holds) To show thatC2 of Lemmal[T holds, we have m' - min{1/2, B(m)} < min{F,.(0), F, (B(m'))} (25)
to show thatl';, is special onm’ processors where) = _ B " "
(m—|Ty]). Let UL be the total utilization of all the tasks in 11US it now follows from Eq.[(19) and Ed. (P5) that
T';. Also let u,,q:1, andu,,;,, be the maximum utilization UL < min{F,,(0), F,(B(m')) } (26)
and minimum utilization of any task in s&t,, respectively. .
To show thafl";, is special onn’ processors, we show that Finally, from Eq.. (21) and EqL(26), we have
Property 1 and Property 2 (given in Definitibh 2) of special UL < min{F,,/ (umint), Frpr (Umazr) } (27)
task set are satisfied. In other WordS, we have to show that'rherefore, Property 2 is satisfied for task $o1. Conse-
the following two inequalities hold. quently,T';, is special onn’ processors (i.eC2 holds). m

m/
Property 1 tmasr < 57— B. Priority Assignment PolicyP,.qrch

Property 2 UL < min{F,/(uminL),F} (Umacr)} Inspired by the priority assignment scheme fbF(*)
(Property 1 holds for T';) Using policy Pyuna, NO task schedul?ng iq [[1B], the hybrid priority assignment policy
in ', has utilization greater than the threshold utilization £ searcn 1S defined as _fOHOWS' o o
w, = B(m). S0, we haveuasr < B(m). Moreover, 1) Each of thek highest utilization tasks is given the
from Eq. CD’) we haveB(m) < ;2. Consequently, highest priority, and o _
UmazL < 5,,7—7 and thus Property 1 is satisfied fbF, . 2) :22 ;ﬁ;i'_r:qnognﬁ;)ﬁi)clov;ﬁfitt itéillzatlon tasks are given
(Property 2 holds for I';) The total utilization of the P
tasks inT'y is greater than|(y| - min{1/2, B(m)}) be- o Somek such that0 < k < m. ,
cause each task ifiy has utilization greater than,, = The schedulability condition 08S;ca,.,_Scheduling as-
B(m) and B(m) > min{1/2, B(m)}. Since the total SUYMNg policy Pscarcn is given in Theorenilo.
utilization (i.e., U™) of the task sefl” is not greater than Theorem 9. A task sefl” is schedulable usinGS;.arcn if
m-min{1/2, B(m)}, the total utilization of the tasks ifi,  the set of(n — k) lowest utilization tasks of is special on

is at mostm’ - min{1/2, B(m)} wherem’ = (m — [U'y|).  (m — k) processors for some and k < m.

Therefore, Eq.L(119) holds. ) ) )
a[29) Proof: Using policy Ps.qrern the (n — k) highest

UL < m' - min{1/2, B(m)} (19)  utilization of the task in sel is used as the threshold
Based on the threshold utilization,;,, = B(m) of utilization u;,, for somek, 0 < k < m. This threshold
policy Pyound, We haveu,,.., < B(m). Moreover, from utilization decides the tasks in séf andI'y that are given
Eq. (I8), we haveB(m) < B(m’). Thus,umq... < B(m').  the slack-monotonic and the highest priorities such that
Furthermore, from Eq A7), we havB(m/) < 2”,‘/ I I' = ', Ul'y. Note that, using policYs.qcn, the number of
(by replacingm by m’ in the left-hand S|de inequality in tasks having the highest priority [ | = & for somek and
Eq. (12)). Thereforey,... < B(m') < 55— . Because k < m. Consequently, conditioB1 of LemmalY is satisfied



for policy P,cqren. According to Lemmdl7, to guarantee
the feasibility of task set’ using GS,..,.., Scheduling, the
value of £ has to be chosen such that the conditicg
of LemmalT holds as well. In other words, task $eis
feasible usingGS,..-.», Scheduling whenevelr, is special
on (m — k) processors such th&lt, contains all then — k)
lowest utilization tasks. [ |

Deriving a k, if one exists, that satisfies Theordm 9
is straightforward. One such example algorithm, called

Pseoren( ), that finds (if exists) the value df is presented
in Figure[d. The algorithn®;....;,( T') returnsTrue if it can
find somek such that the set ofn — k) lowest utilization
tasks ofT" is special on(m — k) processors such that< m,
otherwise, it return$alse

Algorithm = Pscaren(T)

1. Tu=0

2. I' =T

3. Fork=0to (m—1)

4. If Ty is special on(m — k) processordhen

5. Print “All tasks in Iz, are assigned SM priority”

6. Print “All tasks in 'y are assigned the highest priority”
7. Return True

8. EndIf

9. Find7s such thatu.s is the largest utilization in sdf .,

10. Ty =Tu U {ms}

11. Ty =T -Tgy

12.End For

13.Print “Priority Assignment Fails”
14.Return False

Figure 1. e Priority Assignment Algorithm

In line 1-2, the algorithmP,.,,..;,(T') in Figure[1 initial-
izes local variabled’;, andI'y; asT';, =T andT'y = 0
to consider first whether all the tasks Ihare special on

iteration of theFor loop, totalk largest utilization tasks are
in setl'y and the res{n — k) lowest utilization tasks are
in set';. If the task setl';, is not special on(m — k)
processors for somk such thatd < k < m, then Pseqren
fails to assign the static-priorities to the taskdirfline 13)
and the algorithm returnBalse (line 14).

VII.

In this section, first we show th&S,,.,,,s dominates both
the best state-of-the-art scheduling algorithRM US and
SM US (note that, ifm < 5, RMUS is the best one,
otherwise,SM US is the best one). To show the dominance
of GSyouna Over RMHUS and SM US, we show that the
utilization bound of GSy,..q is higher than that of both
RM US and SM US. Second, we show tha&S,.,,., dom-
inates GS;,,,,q. TO show the dominance d&S;.,,..,, over
GSpound, We show that any task set schedulable using
GSpound IS also schedulable usingS,.,...;, but the converse
is not true.

Dominance of GSy,.,q Over RM US and SM US: The
utilization bound ofGS;,4 IS m - min{l/2, B(m)} where
B(m) = 3m=2=yom’—8mi4 for 1 > 2 (Theorem(B). The

2m—2
utilization bound ofRMt US is 3;1”; [A]. It is easy to see

that,m-min{1/2, B(m)} > 37’;{2 for anym > 2 (they are
equal only form = 2). The utilization bound ofSM US is
32735 [1]. It is also easy to see thaiy-min{1/2, B(m)} >
W for any m > 2. Consequently, the utilization bound
o#&bound dominates that of botRM US and SM US.
Dominance of GS;.qren, OVEr GSpouna: We will show
that any task seff that is schedulable usingS,..q is also
schedulable usin@S;..-.»,.- Assume a contradiction where

task sefl” is not schedulable usin@S;..,., but schedulable

PERFORMANCEEVALUATION

m processors (this condition is checked during the firstusingGSy,unq- If T is not schedulable usinGS;.q..,, then

iteration of theFor loop in line 3-12).

The For loop in line 3-12 iterates at most times for
the iterative variable: that iterates fornD to (m — 1). In
each iteration of théor loop, we check whether thg: —

k) lowest utilization tasks in seff; are special onm —
k) processors. Note that in order to determine wheiher
is special on fn — k) processors, we need to verify that

there exist nok such thatk < m and the set ofn — k)
lowest utilization tasks is special ofin — k) processors
(contrapositive of Theoreifd 9).

When T" is schedulable usingGSy,.,q Scheduling,
the proof of the schedulability condition dBS,,,,q in
Theoreni B guarantees that there exists a tasK gethat
is special on(m — |T'y|) processors andl'y| < m. So,

both Property 1 and Property 2 (Definitioh 2) of special taskthere exists somé such thatt < m and the set ofn — k)

system are satisfied. If the task $&t is special onm — k)
processors (condition at line 4 is true), then slack-mamicto
priorities are assigned to the tasksIip (line 5), each of
the tasks inl'y is assigned the highest static-priority (line
6) and the algorithm return&rue (line 7).

During a particular iteration of th€or loop, if the task
setT';, is not special on(m — k) processors (condition at
line 4 is false), then the highest utilization tagk € ', is
extracted froml';, (line 9) and is included in sdf g (line
10). Note that during th&'" iteration of theFor loop, the
largest utilization of the tasks ifi;, is the (n — k) largest
utilization of the tasks if". It is easy to see that, during each

lowest utilization tasks is special ofin — k) processors
(contradiction!). Therefore, any task set schedulablagisi
GSpound is also schedulable usingS;cq.-ch-

We will now show, using an example, that the converse is
not true; that is, there is a task set that is schedulableyusin
GSscarch but not schedulable usinGSy,...q-

Example: Considern = 11 tasks in sel” = {ry,... 711}
such thatu; = ... = w9 = 0.40 anduy; = 0.15. Thus, the
total utilization of I' is U™ = 4.15. The task sel" is to be
scheduled onn = 10 processors.

The entire task sef' is special onm = 10 processors
(i.e., Property 1 and Property 2 of special task system are



satisfied) and hence schedulable usB8y..,.,. Notice that using GS,cqren (i.€., Theorenild is used for verifica-

Property 1 of special task system is satisfied Ifobecause tion).

Upae = 0.4 < m/(2m — 1) for m = 10. And Property 2 3) If this task set iSGS,.q,c, Schedulable, then

pf special task system is satisfied for as well. This a) it is counted as one of the 1000000 task sets, and
is because fomn = 10, uy,,,=0.40 anduy,;,=0.15, we b) by adding one new task, we extend this (old) task
have Fin (up,,) ~ 4.745 and Fr,(up,,,) = 4.150. Con- set to a new task set and return to Sfép 2.

sequentlymin{F,, (ul;,,), Fm (tuha)} = 4.150 which im-
plies U™ < min{Fy, (ul;.), Fm(ull.)} (.., Property 2). . . _
Since Property 1 and Property 2 are satisfieds special discard this task set and go to Sfdp 1.

onm = 10 processors. Thus, according to Theofgm 9, the O €ach experiment, we calculated teminanceof
set of (n— k) lowest utilization tasks (i.e., entire task $&) CBSke‘““C’L ovr(]ar SMUS ashtr:je Ipslrcer_ltage of the 1h "E'"I'O'"
is special on(m — k) processors for the choice &f= 0. task sets that areot schedulableusing SM US schedul-

However, the schedulability condition 0BS,pung in ing. First, the total number of task sets (of the 1000000
TheorenB is not satisfied for task sBt(i.e., utilization GScarch SChEdl_Jlab.le task SEts) thaF are also schedulable by
boundm - min{1/2, B(m)} = 4.116 < U™). Consequently, SM US schedullng is counted in variab®carch count- S_ec-
we can not guarantee the schedulabilityrofising GSy,..4- ond, thedominancef the GSscar., OverSM US scheduling,

In summary,GS,cquren, dominatesGSy,..q Which dominates denoted byDOWbsear cn, is given as follows:

4) If this task set is noGS,...., Schedulable, then we

both RM US and SM US SChedU”ng. 1000000 — Psearchcount
= 1
I:XJ*'|2’sezarc:h 1000000 x 100%
A. Simulation Results The higher the value 0DOMbsearch, the higher is the

To quantitatively estimate the degree of dominance ofiégree of dominance dBSc.,., over SM US scheduling.
GSicarch OVer the state-of-the-art algorithm, we conductedFor €xample, ifDOVbsearch = 20%, then 20% (20000 task
experiments using randomly generated task setsifor=  S€ts) of the 1000000 task sets are not schedulable using
4,8,16 and 32 processors. For simulation purpose, we SM US scheduling. .
consideredSM US as the competitive state-of-the-art al- 2) Simulation ResultThe result of the 12 experiments
SM US scheduling. The conclusions from our experiments is'€Presents the value @OVbsearcn for the simulation pa-
that GS,cq,., Provides an order-of-magnitude performancef@meters — number of processors and utilization range —
improvements in terms of number of scheduled task sets. 9iven in the corresponding second row and first column of

1) Simulation SetupWe run a number of 12 experiments. Tablef].

Each experiment has three simulation parametersninU, (minU, mazU]

maxU. Each experiment is characterized by the valuenof 0,05 | © 25’ 0.75]] (0, 1]
and the rangenginU, maxU]. The value ofm denotes the 48’ 6§ % 9'9 él % P 66 %
number of processors we consider for an experiment. Each T T reEw
experiment is carried out for a number of task sets. The 38.01 %) 99.97% | 96.95 %

I
wo| =] oo

31333

R =16 | 29.16 % | 99.99 % | 99.21 %
utilization u; of a randomly generated task of a task set —5 2387 % 1000% | 99.99 %
is uniformly distributed within {uinU, maxU]. — : d -

The number of processors we consider in our experiments Table |
arem = 4, 8, 16, and 32. This parameter is used to VALUE OF DOVbsgarciFOR THE 12 EXPERIMENTS

measure the impact of increasing number of processors

(scalability) on number of schedulable task sets. The impact of utilization rangegminl, mazU] on the

. ) o dominance ofGS;..-., Over SM US is significant. The
We consider three different utilization ranges (0O, 0'5]'value of dominanceDOM o for medium (i.e.u; is
searc o U

(0.25, 0.75] and (0, 1] forreinU, maxzU]. The utilization in [0.25, 0.75]) and mixed (i.eu; is in [0, 1]) tasks is
ranges .(0’.0'5]’ (0'2.5’ 0.75] ‘?”d (0, 1] are use_d to experl'significantly higher (see the third and forth columns of
ment withlight, mediumand mixedtasks, respectively. The Table[]) than that of for the light tasks (i.es is in [0,

four values ofim and thethreeutilization ranges foriwinl, g 51y The SM US scheduling fails to schedule more than
mazU] constitute our 12 different experiments. 92% of the randomly generated one million task sets (having

For eachm a total of 1000000 task sets, that &8  qqiym/mixed tasks) that are schedulable USBSg, q..
schedulablausing GS;..-., ON'm processors, are randomly- This significant performance gain 65,...., scheduling

generated using a similar approach aslin [8]. The 1000000, tarms of number of schedulable medium/mixed task sets
task sets are generated according to the following proeedur .oq ,its from our schedulability analysis of the “specialsk
1) Initially, we generaten + 1 tasks. systems. Remember that the threshold utilization used for
2) Then we verify if the generated task set is schedulablééM US is constant (i.e..2/(3 + v/5)) while that of for



GS;carch SCheduling is searched as one of the utilizationgthat GS,.,-c, provides an order-of-magnitude performance
of the tasks of a given task set. Thus, a taskwith improvement in terms of number of scheduled task sets, and
utilization greater thar2/(3 + +/5) is always given the scalesvery well as the number of processors increases.
highest priority inSM US scheduling while this task may be
assigned slack-monotonic priority i8S,.....,, scheduling.
Such exploitation of the tasks’ utilization to determine@th ~ The schedulability analysis of “special” task system on
threshold utilization forGS,...., results in fewer number multiprocessors (Section]V) enables the derivation of a
of tasks that are given the highest priority in order tohigher utilization bound foruniprocessorslack-monotonic
avoid the Dhall's effect. In other word€S,..,.,, is more  Scheduling compared to that of the state-of-the-art result
effective thanSM US in dealing with tasks having large in [2]. Our proposed utilization bound for uniprocessor
utilization. Thus,GS,...., Scheduling significantly outper- slack-monotonic scheduling i$" (v, ). We now show
forms SM US scheduling for medium/mixed tasks in terms how we derive this bound (u;.,;,,) and also show that it
of number of schedulable task sets. is higher than that of the state-of-the-art result (i.e %%0
The number of processors used in an experiment has afoposed in([2].
impact on the value of dominance as well. As the number Consider a task systein that is special on uniprocessor
of processors increases, the scalabilityGSt,....,, schedul-  (i-e.m = 1). According to Property 1 of special task system
ing in terms of dominance increases for experiments with', we haveuy, . <1 becausen/(2m —1) =1 for m = 1.
medium/mixed tasks (notice the increasing trend of dom-Therefore, special task systeimis in fact an arbitrary task
inance value in third and forth columns of Talfle I). This system for uniprocessor. Note that we have< ug,;, <
is because asn increases, the number of tasks in a taskun,., < 1 whereuy,; anduy,,, are the minimum and
set also increases due to the way tasks are generated féy@ximum utilization of any task i, respectively.
our experiments. As the number of tasks increases for the For m = 1, the function F|(z) is increasing within
experiments with medium and large tasks having largef0,1] since F{(z) = 1 — 5=—s > 0 within (0,1).
number of processors, it is more likely that the number ofConsequentlymin{ £y (u},,, ), F1(ul..)} = Fi(ul,;,) since
tasks having relatively larger individual task utilization — «,,,, < un,,... It is obvious from Property 2 of special task
a task set also increases. The ability @,..,., t0 deal systeml that we have
with relatively larger number of high utilization tasks ués " . n " "
GS,eqren to schedule large number of medium/mixed task U™ < mind By (0 ) P2 (Ui )} = Fi(nin) - (28)
sets in comparison to that &M US. Consequently, the Using Theoreni]6, the special task getis schedulable
value of dominance foS;...., iNnCreases as: increases. using GSgy (uniprocessor slack-monotonic scheduling) on
However, the value of dominance decreases for experim = 1 processor. Thus, based on EQI(28) our proposed uti-
ments with light tasks as we increase the number of profization bound for uniprocessor slack-monotonic schexyli
cessors (notice the decreasing trend of dominance in secomsl F' (u]’,.). The current state-of-the-art utilization bound
column of Tabldll). This is because when tasks are lighfor slack-monotonic uniprocessor scheduling is 50% which
(i.e., u; < 0.5), most of the individual task’s utilization of is proposed in[]2].
a task set are relatively small. As a result most of the tasks We now show that (u? ) > 50%. Since the function
of such task sets are given the slack-monotonic priority forF (z) is increasing within[0, 1], we haveF;(u?, ) >
both SM US and GS;..,., Scheduling. In other words, the Fy(0) sinceu”,;, > 0. Note that F}(0) = %—00) +
difference between the assigned priorities to the tasks i0 = 1/2 = 50%. Therefore, Fy(u?,,,) > 50%. Our
SM US and GS;..cn Scheduling decreases as we increaseroposed utilization bound? (u?,,) for the uniprocessor
the number of processors for experiments with light tasksslack-monotonic scheduling is higher than that of the state

B. Uniprocessor Slack-Monotonic Scheduling

Consequently, the value of dominance decreases. Nevesf-the-art result in[[R]. |
theless, the value of dominan@OVbsearcn for the light

tasks is still greater than 23.5% for our experiments with VIIl. CONCLUSION

at most 32 processors. In summaBg;..,., scheduling of In this paper, we have proposed two static-priority assign-

medium/mixed taskscalesvery well with the increase in  ment policies and proved their superior schedulability eom
number of processors, and the dominanc&sf....., over  pared to the state-of-the-art global multiprocessor saliegl
SM US for light tasks is also significant. algorithms. We have also derived a higher utilization bound
In general, if the utilization of the tasks are witHily 1],  for uniprocessor slack-monotonic scheduling than thahef t

then more than 92% of the 1 million randomly-generatedstate-of-the-art result. Our experimental results shotheadl
GS;caren SChedulable task sets are not schedulable usinground more than 92% of the one milli@%;.,..., schedu-
SM US scheduling. This percentage increases up to 99.99%able task sets are not schedulable ussivy US. In addition,

as we increase the number of processors in our experimentise GS,......, scheduling scales very well with the increase
from 4 to 32. The conclusion from the experiments is thusin number of processors.
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Lemmal2. Considera, b, z, c andd such that) < a <b < Sincea < b < d anda < ¢ < d,
z < ¢ <d< 5" for any integerm > 0. The following it follows from Eq. [3) that min{F,(a),Fn(d)} <
two inequalities hold: F,(b) and min{F,,(a),Fpn(d)} < F(c). Consequently,
M { Fon (b),Fn (¢)} < Fon(2) @ min{Fm(a),fn(d)} < min{Fn(),F,(c)} which proves
that Eq. [(4) also holds. [ |

mind i (@), Fon (d)} < min{ o (b),Fi(0)} @



Lemma 10. Consider the task systeht that is special on
m processors. The following inequality holds far > 1

2
m

2m — 1

mln{F (umm) ) Fm(uﬁnaz) } < (29)

Proof: We show that the inequality in Eq-_(29) holds by

considering four different cases: Case(i)= 1, Case (ii)
m = 2, Case (iiiym = 3, and Case (iv)n > 4. Remember
that, according to Property 1 of special task &t we have
e < 52

Case 2(i) rln = 1: The function Fy(z) is increasing
within [0,1] since F{(z) = 1 — 55 > 0 within

(0,1). Thus, the maximum ofFl(ac) within [0,1] occurs
atx—l,andFl() 7 =1form =1

andul,,, < 77+ both uk and umw are within [0, 1].

Therefore,mm{Fm( i) Fm(uk O} < Fi(1)= 1 for

m = 1. Because;"— = 1 for m = 1, we also have

NN Fop (01, Fo (0F50)} < :::

Case (ii)m = 2: Since;."~ = 2 for m = 2 andul;,,, <
s, bothuf .. andumam of are W|th|n[ 2]. The function
Fy(x) is increasing within[0,2 — v/2] sincer’(a:) =1-
@7 > 0 within (0,2 — v2) and the function (x) is
decreasing withir2 — /2, ] since Fj(z) = 1 — 525 <0
within (2 — /2, 2). Therefore, the functiong(x) has its
maximum atr = (2—+/2) within [0, Z], andF2(2 —2)
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2(2 — /2). Consequentlymin{ F,, (u mm) , Fo(u mam)}
F3(2 — V/2). Since (2 — v2) =2(2 - v2) < & = ;7
for m = 2, we havemin{ F, (u mm) Fm(u,:nax})} <

Case (|||) m = 3! Since 5"~ I = % for m = 3 and
uF e < 52, bothuf . anduf . of are within [0, 2].
The functlonF3( ) is increasing within[0,2 — /3] since
Fi(z) =1 — z2pz > 0 within (0,2 — V3) and F3(z) is
decreasing withii2 — /3, 2] since Fj(z) = 1— 5202 <0
within (2 — /3, 2). Therefore, the fUnCtiOfFé(lC) has its
maximum atz = (2—/3) within [0, 2], and F5(2 — v/3) =
(5 — 2v/3). Consequentlymin{ F;,, (u mm) , Fr(uF, )} <
Fy(2— V/3). Since F3(2 — v3) = (5—2v/3) < 2 = ;o
for m = 3, we havemin{F,, (u* ;,), Fm(umax})} < 2;321

Case (iv) m > 4: The function g(m) = 5 is
decreasing form > 4 becauseq’ (m) ﬁ <
0 for m > 4. Therefore, s < 2 for m > 4,
and bothu?  anduf . are within [0, 2]. The function
F,,(z) is decreasing within0, 2] for 0 < 2 < % since
F () =1 — "5 < 0 within (0,2) for m > 4.
Thus, the maximum ofF,,,(z) occurs atz = 0, and
Fm(()) = 2. Therefore, mln{Fm( ko) s F(uk ) <

F..(0). SlnceF (0)= % < 52— for m > 4, we have
mln{F ( mln) 1 Fm( max }< mil'

It is proved for all the cases that If* is special onm
processors, then the inequality in EQ.1(29) holds. =

Lemma 11. The following inequality holds farn > m’ > 1.

m m/
Bim) < 50— S 51
where B(m) is the function defined in E{18).
Proof: We prove this Lemma considering three cases:
Case (i)m = 1, Case (iiym = 2 and Case (iiiyn > 3.
Case (i) m = 1: For this case, we haves = m’ = 1

(30)

sincem > m’ > 1. Therefore,z " = ;™ = 1 for
m = m’ = 1. From Eq. [IB), we havé3(m) = B(1) =1

for m = 1. Therefore, Eq.[{30) holds.

Case (i) m = 2: Using Eq. [I16), we haveB(2) =
(2 —V2) for m = 2. And ;2 = %form: 2.
Because(2 — v2) < 2, we have B(m) < 5™ for
m = 2. The functionq(z) = 5% is decreasing for
r>1 becauseq’(:c) @onz < 0for z > 1. Thus,

we have 55 < 2m’ ; for m > m’. Consequently,
s < = —. Therefore, Eq.[{30) holds.

B(m) < m < ’HL
Case (iii) m > 3: The following inequality in Eq[{31)
holds for anym such thatmn > 3.

0<m?—4m+3
dam? —dm+1<5m* —8m+4

(CHY)

= 2m—1<+v5m? —-8m+14
= 3m—2—vVm?2—-8m+4<m-—1
3m—2—vVbm?—-8m-+4 1 1
= <- =B < =
om — 2 =3 (m) <3

. 1 m m
= |since- < <
27 2m—1 "~ 2m’ —

/

1form2m/21}

B(m) < Qmm— 1 = QmT’n— 1
Therefore, Eq.[{30) holds for all the cases. [ |
Lemma 12. Let m and m’ be two integers such that >
m/ > 1. The following inequality in Eq{32) holds
B(m) < B(m/) (32)

where B(m) is the function defined in EIE).

Proof: For m > 2, the first derivative ofB(m) =
3m—2—;/5m;—w is B/(m) _ —2(v/5m?—8m+4—m) .

m— (vV5m2—8m~+4)(2m—2)2

Note that we have3’(m) < 0 because/5m? — 8m + 4 >
m for m > 2. So, B(m) is decreasingor m > 2. Thus, the
maximum of B(m) occurs atm = 2 wheneverm > 2, and
B(2) = (2—v/2). From Eq.[[I6), we havé(1) = 1. Since
1> (2 —+/2), we haveB(1) > B(m) for anym > 2.

If m = m/, then Eq.[(3R) trivially holds. So, to prove
this Lemma, we consider whera > m’. Note thatm > 2
wheneverm > m’ becausen’ > 1.

Now, if m’ = 1, then B(m') > B(m). This is because
B(1) > B(m) for any m > 2. Otherwise, ifm’ > 1, then
m > 2 since we considefn > m’. Because the function
B(m) is decreasing form > 2, we haveB(m') > B(m)
where m > m'. Therefore, ifm > m’ > 1, we have
B(m) < B(m/). [ |
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