

Technical Report No. 2009-7

Load Regulating Algorithm for Static-Priority

Task Scheduling on Multiprocessors

RISAT MAHMUD PATHAN
 JAN JONSSON

Department of Computer Science and Engineering
CHALMERS UNIVERSITY OF TECHNOLOGY/
UNIVERSITY OF GOTHENBURG

Load Regulating Algorithm for Static-Priority Task

Scheduling on Multiprocessors

Risat Mahmud Pathan and Jan Jonsson
Technical Report 2009-7

Department of Computer Science and Engineering
Chalmers University of Technology

SE-412 96, Göteborg, Sweden
{risat, janjo}@chalmers.se

Abstract

This paper proposes a fixed-priority partitioned scheduling algorithm for periodic tasks
on multiprocessors. A new technique for assigning tasks to processors is developed and the
schedulability of the algorithm is analyzed for worst-case performance. We prove that, if the
workload (utilization) of a given task set is less than or equal to 55.2% of the total processing
capacity on m processors, then all tasks meet their deadlines. During task assignment, the
total work load is regulated to the processors in such a way that a subset of the processors
are guaranteed to have an individual processor load of at least 55.2%. Due to such load
regulation, our algorithm can be used efficiently as an admission controller for online task
scheduling. And this online algorithm is scalable with increasing number of cores in chip
multiprocessor.

In addition, our scheduling algorithm possesses two properties that may be important
for the system designer. The first one guarantees that if task priorities are fixed before task
assignment they do not change during task assignment and execution, thereby facilitating
debugging during development and maintenance of the system. The second property guar-
antees that at most m/2 tasks are split, thereby keeping the run-time overhead as caused
by task splitting low.

1 Introduction

In recent years, applications of many embedded systems run on multiprocessors, in particular,
chip multiprocessors [1, 2]. The main reasons for doing this is to reduce power consumption and
heat generation. Many of these embedded systems are also hard real-time systems in nature and
meeting the task deadlines of the application is a major challenge. Since many well-known unipro-
cessor scheduling algorithms, like Rate-Monotonic (RM) or Earliest Deadline First (EDF) [3], are
no longer optimal for multiprocessors [4], developing new scheduling algorithms for multiproces-
sor platform have received considerable attention. In this paper, we consider systems where each
periodic task has its deadline equal to its period. We address the problem of meeting deadlines
for a set of n periodic tasks using preemptive static-priority scheduling on m processors. We also
propose an extension of our scheduling algorithm that can be efficiently used as an admission
controller for online scheduling.

Static-priority preemptive task scheduling on multiprocessor can be classified as global or
partitioned scheduling. In global scheduling, at any time m highest-priority tasks from a global
queue are scheduled on m processors. In partitioned scheduling, a task is allowed to execute
only on one fixed, assigned, processor. In global scheduling, tasks are allowed to migrate while

1

in partitioned scheduling, tasks are never allowed to migrate. Many static-priority scheduling
policies for both global [5, 6, 7, 8] and partitioned [4, 9, 10, 11, 12, 13, 14, 15] approaches have
been well studied. In this paper, a variation of partitioned scheduling technique in which a
bounded number of tasks can migrate to a different processor is addressed.

It has already been proved that, there exists some task set with load slightly greater than 50%
of the capacity of a multiprocessor platform on which a deadline miss must occur for both global
and partitioned static-priority scheduling [5, 15]. To achieve higher utilization bound than 50%,
some recent work proposes techniques where migratory [16] or split [17, 18, 19] tasks are allowed
to migrate using a variation of partitioned scheduling for dynamic-priority tasks. Very little
work [20] have addressed the scheduling problem for static-priority tasks using task splitting to
overcome the 50% utilization bound. We propose a static-priority scheduling algorithm, called
Interval Based Partitioned Scheduling (IBPS), for periodic tasks using task splitting approach.
By task splitting, we mean that some tasks are allowed to migrate their execution to a different
processor during execution1. We call the task that is splitted a ‘split task’ and its pieces ‘sub-
tasks’. No single task or the subtasks of a split task can run in parallel. In IBPS, rate-monotonic
(RM) prioritization [3] is used both during task assignment and during run-time scheduling of
tasks on a processor. One of the main contributions of this paper is to prove that if the total
utilization (or workload) of a set of n periodic tasks is less than or equal to 55.2% of the capacity
of m processors, the task set is RM schedulable on m processors using IBPS.

Apart from the guarantee bound, the important features of IBPS are:

• During task assignment, the individual processor loads are regulated in a way that makes
on-line scheduling (task addition and removal) more efficient than for other existing task-
splitting algorithms. Due to load regulation, a bounded number of processors have load
less than 55.2%. So, the percentage of processors with load greater than 55.2% increases
as the number of processors in a system increases. Therefore, with increasing number of
cores in chip multiprocessor (e.g. Sun’s Rock processor with 16 cores [2]), our proposed
online scheduling is more effective and scales very well.

• The priority of a task given before task assignment is not changed to another priority during
task assignment and execution, which facilitates debugging during system development and
maintenance.

• The task splitting algorithm split tasks such that the number of migrations is lower than
for other existing task-splitting algorithms.

The rest of the paper is organized as follows. In Section 2, the important features of IBPS are
further elaborated. In Section 3, we present the assumed system model. In Section 4, we briefly
discuss the basic idea of our task assignment algorithms and also present our task splitting
approach. Then, in Sections 5 through 7, we present the IBPS task-assignment algorithms
in detail. The performance of IBPS and its online version is presented in Section 8 and 9,
respectively. In Section 10, we discuss other work related to ours. Section 11 concludes the
paper.

2 Important Features of IBPS

A real-time task scheduling algorithm does not only require worst-case guarantee to meet dead-
lines but also need to be practically implementable. In addition to the utilization bound of more
than 50%, the algorithm IBPS has three other major features: (i) load regulation, (ii) priority
traceability property, and (iii) low cost of splitting.

1Here, we do not mean splitting the code.

2

Load Regulation: IBPS regulates the load of a processor during task assignment. When
assigning tasks to processors, the objective of IBPS is to have as many processors as possible with
load greater than 55.2% and still meet all deadlines. In the worst-case, the number of processors
on which the load is less than or equal to 55.2% is at most min{m,4}. This way of load regulation
bound the number of underutilized processor.

Load regulation of IBPS enables design of efficient admission controller for online scheduling.
In practice, many real-time systems are dynamic in nature, that is, tasks arrive and leave the
system online. After accepting an online task, we then need to assign the task to a particular
processor. Finding the best processor to assign the task may require disturbing the existing
schedule in all m processors by means of a reassignment of tasks (e.g. task assignment algorithms
that require sorting).

As will be evident later when IBPS is used online, finding the best processor to which an
accepted online task is assigned requires searching at most min{m,4} processors (the under-
loaded processors). Similarly, when a task leaves the system, reassignment of tasks undergo in
at most min{m,5} processors to regulate the load for future admittance of new tasks. IBPS runs
in linear time, therefore, reassignment of tasks on a bounded number of processors for load
regulation is efficient. Moreover, task reassignment on a bounded number of processors makes
our online scheduling algorithm scalable with the trend of increasing number of cores in chip
multiprocessor.

Priority Traceability Property: From a system designer’s point of view it is desirable to
facilitate debugging (execution tracing), during the development and maintenance of the system.
One explanation for the wide-spread use of RM in industry is the relative ease with which the
designer can predict the execution behaviour at run-time. The dynamic-priority EDF scheduler
has (despite being just as mature a scheduling method and having stronger schedulability prop-
erties) not received a corresponding attention in industrial applications. Even for static-priority
schedulers, the ease of debugging differs for different algorithms. For example, when studying the
recent work in [20] of the static-priority partitioned scheduling with task splitting, we see that
it is possible that the deadline of a subtask could become smaller than the given deadline of the
original task during task assignment to processor. This in turn, could make the priorities of the
subtasks different from the original task and therefore cause a different, less traceable, execution
behavior. A similar behavior can be identified in known dynamic-priority task-splitting algo-
rithms [17, 21, 18, 22, 19] where subtask of split task may have different priority (i.e. executes
in specific time slots, or has smaller deadline). IBPS is a static-priority partitioned algorithm
with a strong priority traceability property, in the sense that if the priorities of all tasks are fixed
before task assignment they never change during task assignment and execution.

Cost of Splitting: One final property of interest for task-splitting partitioned scheduling
in particular is the run-time penalty introduced due to migration. Clearly, the number of total
split tasks and number of subtasks (resulting from a split tasks) directly affect the amount of
preemptions and migrations, both of which in turn may affect cache performance and other
migration related overhead. Therefore, it is always desirable to reduce the number of split tasks
and reduce the number of subtask for each split task. For all existing dynamic- and static-priority
task-splitting algorithms, the number of split tasks is (m − 1) on m processor. In IBPS, total
number of split task in the worst-case is at most m/2. In IBPS, a split task has only two subtasks
and therefore, a split task never suffers more than once due to migration in one period.

3 System Model

In this work, we assume a task set Γ consisting of n periodic tasks. Each task τi ∈ Γ arrives
repeatedly with a period Ti and requires Ci units of worst-case execution time within each period.
Each task has an implicit deadline equal to its period, and task priorities are assigned according
to the RM policy (lower the period, the higher the priority). We define the utilization of task

3

τi as ui = Ci

Ti

. The load or total utilization of any task set A is U(A) =
∑

τi∈A ui. When a task
τi is split, it is considered as two subtasks, τ ′

i and τ ′′
i , such that both subtasks has execution

time and period equal to Ci

2
and Ti, respectively. Note that, since the period of a subtask is

equal to the period of the split task τi, we must have ui′ = ui′′ = ui

2
. When assigning tasks to

each processor, we use Liu and Layland’s sufficient feasibility condition for RM scheduling in [3]
for determining whether the tasks can be assigned to a processor. According to [3], the Liu and

Layland’s test is, if U(A) ≤ n(2
1
n −1), all n tasks in set A meet deadlines in one processor. Here,

we make the pessimistic assumption that each non-split task has an offset φi = 0. However, the
second subtask τ ′′

i of a split task τi is given an offset equal to φi′′ = Ci

2
to ensure nonparallel

execution with first subtask τ ′
i . In rest of the paper, we use the notation LLB(n)=n(2

1
n − 1) for

n tasks, LLB(∞)=ln 2 to represent an unknown number of tasks, and also let Q=(
√

2-1).

4 Task Assignment and Splitting Overview

Our proposed task assignment algorithm starts by dividing the utilization interval (0,1] into
seven disjoint utilization subintervals I1–I7 (see Table 1). For a < b, we use Ia–Ib to denote all

I1= (4Q

3
, 1] I2= (8Q

9
, 4Q

3
] I3= (2Q

3
, 8Q

9
]

I4= (8Q

15
, 2Q

3
] I5= (4Q

9
, 8Q

15
] I6= (Q

3
, 4Q

9
]

I7 = (0, Q

3
] (where, Q=

√
2 − 1)

Table 1: Seven disjoint utilization subintervals I1–I7

the subintervals Ia, Ia+1, . . . Ib. Note that, each task τi ∈ Γ will have a utilization that belongs
to exactly one of the subintervals I1–I7. By overloading the set membership operator “∈”, we
write τi ∈ Ik to denote “τi in Ik=(a,b]” for any k ∈ {1 . . . 7}, if a < ui ≤ b. For example, if a task
τi has ui=

4Q

5
, then τi ∈ I3. Clearly, the grouping of tasks into subintervals can be completed in

linear time.
Why Seven Utilization Subintervals? The seven utilization intervals result from our

four different strategies for task assignment: (i) low number of subtasks per split task, (ii) low
number of split tasks, (iii) assigning low number of tasks per processor2, and (iv) load regulation.

Following these four task assignment strategies, we start by assigning only one task to one
processor exclusively. To avoid assigning a task with very small utilization to one processor
exclusively, we need to select a task that belongs to certain utilization subintervals. If IBPS has
worst-case utilization bound Uw and load regulation try to maintain load on most processors
beyond Uw, then one task with utilization greater than Uw is assigned to one processor exclusively.
Thus, we obtain our first utilization interval which is (Uw, 1]. The exact value of Uw is determined
when we assign more than one task having utilization less than Uw to one processor. When we
try to assign two tasks with utilization less than Uw to one processor, we find that if these
two tasks have equal utilization, then each task’s utilization can not be greater than Q=(

√
2–1)

according to LLB(n=2). This implies Uw ≤ 41% without task splitting technique. To achieve
Uw greater than 50%, we split a task with utilization less than Uw in two subtasks each having
same utilization. We gain no advantage by having unequal utilization for the two subtasks as
individual task utilization is bounded from below and our strategy is to assign minimum number
of tasks per processor. So, each subtask has utilization at most Uw

2
. We assign one such subtask

and a non-split task to one processor. For RM schedulability, we must have Uw + Uw

2
≤ 2Q. This

2According to LLB, the RM scheduling on uniprocessor achieves higher utilization bound if number of tasks
assigned to the processor is small [3].

4

implies the value of Uw ≤ 4Q

3
and we get our first utilization subinterval I1=(4Q

3
,1]. Thus, this

interval also defines the maximum possible utilization bound of IBPS.
The overall goal with the task assignment is to achieve the maximum possible Uw, which is

4Q

3
≈55.2%. To achieve this bound, at each stage of task assignment, we bound the utilization of

tasks from below for load regulation by selecting a task from certain utilization interval, split a
task in only two subtasks when task splitting is unavoidable and try to assign minimum number
of tasks to one processor. The consequence is that, we derive the seven utilization intervals I1-I7

given in Table 1. The derivation of I2-I6 are done in a similar fashion as for I1, while I7 becomes
the remaining interval task utilization in which requires no lower bound. More details regarding
the derivation are available in Appendix A.

Task Assignment Overview: IBPS assigns tasks to processors in three phases. In the
first phase, tasks from each subinterval Ik are assigned to processors using one particular policy
for each Ik. Any unassigned tasks in I2–I6 after first phase, called odd tasks, are assigned to
processors in the second phase. If tasks are assigned to m′ processors during the first and second
phases, the total utilization in each of the m′ processors will then be greater than 4Q

3
≈ 55.2% due

to load regulation strategy. Any unassigned tasks after the second phase, called residue tasks,
are assigned to processors during the third phase. If, after the second phase, the total utilization
of the residue tasks is smaller than or equal to 4Qm′′

3
for the smallest non-negative integer m′′,

all the residue tasks are assigned to at most m′′ processors in third phase. The load on these
m′′ processors may be smaller than 55.2%. Load regulation in first two phases ensures that
m′′ ≤ 4 in third phase. When task arrives online, we need only to consider these m′′ processor
for task assignment. The different task assignment algorithms in the three phases constitute the
algorithm IBPS.

We use UMN(A) and UMX(A) to denote the lower and upper bound, respectively, on the total
utilization of all tasks in an arbitrary task set A:

UMN(A) =
∑

τi∈A

x where τi ∈ Ik = (x, y] (1)

UMX(A) =
∑

τi∈A

y where τi ∈ Ik = (x, y]

Clearly, the following inequality holds for any task set A:

UMN(A) < U(A) ≤ UMX(A) (2)

If IBPS assigns a task set to mx processors and mx ≤ m, we declare SUCCESS for schedu-
lability on m processors. Otherwise, we declare FAILURE. Therefore, IBPS can be used to
determine: (i) the number of processors needed to schedule a task set, and (ii) whether a task
set is schedulable on m processors.

Task Splitting Algorithm: IBPS uses the algorithm Split in Fig. 1 for task splitting.
The input to algorithm Split is a set X, containing an odd number of tasks. Each task in
X, except the highest-priority one, is assigned to one of two selected (empty) processors. The
highest-priority task is split and assigned to both processors. As will be evident in later sections,
no more tasks will be assigned to these processors.

The highest priority task τk ∈ X is determined (line 1) and τk is split into two subtasks τ ′
k and

τ ′′
k such that uk′ = uk′′ = uk

2
(line 2-4). Half of the tasks from set (X − {τk}) is stored in a new

set X1 (line 5), and the remaining half in another new set X2 (line 6). Note that |X − {τk}| is
an even number. Subtask τk

′ and all tasks in X1 are assigned to one processor (line 7), while
subtask τk

′′ and all tasks in X2 are assigned to the other processor (line 8). Note that, since
τk is the highest-priority task and no more tasks will be assigned to the selected processors, the
offset of τk

′′ (φk′′=Ck

2
) will ensure that the two subtasks are not executed in parallel.

5

Algorithm Split (TaskSet: X)
1. Let τk ∈ X such that Tk ≤ Ti for all τi ∈ X
2. Split the task τk into subtasks τ ′

k and τ ′′
k such that

3. φk
′=0, C ′

k = Ck/2, T ′
k = Tk

4. φk
′′=Ck/2, C ′′

k = Ck/2, T ′′
k = Tk

5. Let task set X1 contain |X−{τk}|
2 tasks from X − {τk}

6. X2 = X − X1 − {τk}
7. Assign τk

′ and all tasks in set X1 to one processor
8. Assign τk

′′ and all tasks in set X2 to one processor

Figure 1: Task Splitting Algorithm

5 Task Assignment: First Phase

During the first phase, IBPS assigns tasks using a particular policy for each of the seven subin-
tervals using load regulation strategy. Common for all policies, however, is that each processor
to which tasks have been assigned will have an RM schedulable task set with a total utilization
strictly greater than 4Q

3
for load regulation. We now describe the seven policies used during the

first task-assignment phase.
Policy 1: Each task τi ∈ I1=(4Q

3
, 1} is assigned to one dedicated processor. Clearly, each of

these tasks is trivially RM schedulable with a utilization greater than 4Q

3
on one processor. This

policy guarantees that there will be no tasks left in I1 after the first phase.
Policy 2: Exactly three tasks in I2=(8Q

9
, 4Q

3
] are assigned to two processors using algorithm

Split given in Fig. 1. This process iterates until less than three tasks are left in I2. Thus, there
are 0–2 unassigned tasks in I2 to declare as odd tasks.

The proof that the tasks assigned to each processor are RM schedulable and the utilization
on each processor is greater than 4Q

3
is as follows. Assume that a particular iteration assigns

the three tasks τk, τi and τj from I2 to two processors by calling Split ({τk,τi,τj}) such that
τk is the highest priority tasks. Then, line 3 of algorithm Split ensures that 4Q

9
< uk′ ≤ 2Q

3
.

Now, without loss of generality, assume X1 = {τi} in line 5 of Split. Using Eq.(1), we have
UMN({τi, τ

′
k}) = 8Q

9
+ 4Q

9
= 4Q

3
and UMX({τi, τ

′
k}) = 4Q

3
+ 2Q

3
= 2Q = LLB(2). Using Eq. (2) we

have, 4Q

3
< U({τi, τk′}) ≤ LLB(2). Similarly we have, 4Q

3
< U({τj, τk′′}) ≤ LLB(2).

Policy 3: Exactly two tasks from I3=(2Q

3
, 8Q

9
] are assigned to one processor without any

splitting. This process iterates until less than two tasks are left in I3. Thus, there are 0–1 task
left in I3 to declare as odd tasks. Two tasks in I3 must have a total utilization greater than 2×2Q

3

and less than or equal to 2×8Q

9
, assigned to one processor. Since 16Q

9
<LLB(2)=2Q, the two

tasks from I3 are RM schedulable with processor utilization greater than 4Q

3
.

Policy 4: Exactly five tasks from I4=(8Q

15
, 2Q

3
] are assigned to two processors using algorithm

Split in Fig. 1. This process iterates until there are less than five tasks left in I4. Thus, there
are 0–4 unassigned tasks in I4 to declare as odd tasks.

The proof that the tasks in each processor are RM schedulable and the utilization in each
processor is greater than 4Q

3
is as follows. Assume that a particular iteration assigns the five

tasks τk, τi, τj, τa and τb from I4 to two processors by calling Split ({τk,τi,τj,τa,τb}) such that
τk is the highest priority tasks. Then, line 3 of algorithm Split ensures that 4Q

15
< uk′ ≤ Q

3
.

Now, without loss of generality, assume X1 = {τi, τj} in line 5 of Split . Using Eq.(1),
we have UMN({τi, τj, τ

′
k}) = 8Q

15
+ 8Q

15
+ 4Q

15
= 4Q

3
and UMX({τi, τj, τ

′
k}) = 2Q

3
+ 2Q

3
+ Q

3
=

5Q

3
< LLB(3). Using Eq. (2) we have, 4Q

3
< U({τi, τj, τk′}) ≤ LLB(3). Similarly we have,

4Q

3
< U({τa, τb, τk′′}) ≤ LLB(3).

Policy 5 : Exactly three tasks from I5=(4Q

9
, 8Q

15
] are assigned to one processor. This process

iterates until there are less than three tasks left in I5. Thus, there are 0–2 tasks left in I5 to
declare as odd tasks. Three tasks in I5 must have a total utilization greater than 3×4Q

9
and less

6

than 3×8Q

15
< LLB(3). So, each processor utilization is greater than 4Q

3
and the three tasks in I5

are RM schedulable on one processor.
Policy 6: Exactly four tasks from I6=(Q

3
, 4Q

9
] are assigned to one processor. This process

iterates until there is less than four tasks left in I6. Thus, there are 0–3 tasks left in I6 to
declare as odd tasks. Four tasks in I6 must have a utilization greater than 4×Q

3
and less than

4×4Q

9
< LLB(4). So, each processor utilization is greater than 4Q

3
and the four tasks in I6 are

RM schedulable on one processor.
Policy 7: In this policy, IBPS assigns tasks from I7={0, Q

3
] using First-Fit (FF) bin packing

allocation as in [4]. We denote the lth processor by Θl and the total utilization (load) of Θl

by L(Θl). Assume that Θp is the first considered processor and that Θq is the last considered
processor, for q ≥ p using FF, in this policy. When a task τi ∈ I7 cannot be feasibly assigned
to Θl, for l = p, (p + 1), . . . (q − 1) we must have L(Θl) + ui > LLB(∞) = ln 2. Since ui ≤ Q

3
,

we have L(Θl) > ln 2 − Q

3
> 4Q

3
. So, the total utilization of the tasks in each processor is greater

than 4Q

3
, except possibly the last processor Θq. If L(Θq) ≤ 4Q

3
, the task assignment to Θq is

undone and these unassigned tasks are called residue tasks in I7. If L(Θq) > 4Q

3
, all the tasks in

I7 assigned to processors Θp, Θp+1, . . . Θq are RM schedulable with utilization in each processor
greater than 4Q

3
.

In rest of the paper, to denote the set of residue tasks in I7 we use S = {τr|τr is a residue task in I7}.
We have the following Lemma 1.

Lemma 1. All the residue task in S are RM schedulable in one processor.

Proof. From policy 7, we have U(S) ≤ 4Q

3
(undone task assignment in Θq). Since 4Q

3
< LLB(∞) = ln 2,

all tasks in S are RM schedulable in one processor.

Note that, first phase of task assignment runs in linear time due to its iterative nature.

6 Task Assignment: Second Phase

During the second phase, IBPS assigns unassigned tasks in subintervals I2–I6, referred to as odd
tasks, using algorithm OddAssign in Fig. 2. Unlike the first phase, however, each processor
can now be assigned tasks from more than one subinterval. Using algorithm OddAssign, tasks
assigned in each iteration of each while loop are RM schedulable with total utilization is greater
than 4Q

3
on each processor due to load regulation strategy. We prove this by showing that the

inequality 4Q

3
< U(A) ≤ LLB(|A|) holds (where A is the task set assigned to one processor) in

each iteration of each while loop (here, named Loop 1–Loop 6). We now analyze each loop
separately.

Loop 1 (line 1–2): Each iteration of this loop assigns A={τi,τj} to one processor such that
τi ∈ I2 = (8Q

9
, 4Q

3
] and τj ∈ I4 = (8Q

15
, 2Q

3
]. Thus, UMX(A) = 4Q

3
+ 2Q

3
= 2Q = LLB(2) and

UMN(A) = 8Q

9
+ 8Q

15
= 64Q

45
> 4Q

3
.

Loop 2 (line 3–4): Each iteration of this loop assigns A={τi,τj} to one processor such that
τi ∈ I2 = (8Q

9
, 4Q

3
] and τj ∈ I5 = (4Q

9
, 8Q

15
]. Thus, UMX(A) = 4Q

3
+ 8Q

15
= 28Q

15
< LLB(2) and

UMN(A) = 8Q

9
+ 4Q

9
= 4Q

3
.

Loop 3 (line 5–6): Each iteration of this loop assigns A={τi,τj,τk} to one processor such that
τi ∈ I3 = (2Q

3
, 8Q

9
], τj ∈ I6 = (Q

3
, 4Q

9
] and τk ∈ I6 = (Q

3
, 4Q

9
]. Thus, UMX(A) = 8Q

9
+ 4Q

9
+ 4Q

9
= 16Q

9
< LLB(3)

and UMN(A) = 2Q

3
+ Q

3
+ Q

3
= 4Q

3
.

Loop 4 (line 7–13): Each iteration of this loop assigns three tasks A={τi,τj,τk} to one
processor, selecting the tasks from two subintervals I4= (8Q

15
, 2Q

3
] and I5=(4Q

9
, 8Q

15
]. Tasks are

assigned to one processor either if (i) τi ∈ I4, τj ∈ I5 and τk ∈ I5 or (ii) τi ∈ I4, τj ∈ I4 and
τk ∈ I5. When (i) is true, we have UMX(A) = 2Q

3
+ 2×8Q

15
= 26Q

15
< LLB(3) and UMN(A) =

7

Algorithm OddAssign (Odd tasks in I2–I6):

1. while both I2 and I4 has at least one task
2. Assign τi ∈ I2 and τj ∈ I4 to a processor

3. while both I2 and I5 has at least one task
4. Assign τi ∈ I2 and τj ∈ I5 to a processor

5 while I3 has one task and I6 has two tasks
6. Assign τi ∈ I3, τj ∈ I6 and τk ∈ I6 to a processor

7. while ((I4 has one task and I5 has two tasks)
8. or (I4 has two tasks and I5 has one task))
9. if (I4 has one task and I5 has two tasks) then

10. Assign τi ∈ I4, τj ∈ I5 and τk ∈ I5 to a processor
11. else

12. Assign τi ∈ I4, τj ∈ I4 and τk ∈ I5 to a processor
13. end if

14. while I4 has two tasks and I6 has one task
15. Assign τi ∈ I4, τj ∈ I4 and τk ∈ I6 to a processor

16. while each I3, I5 and I6 has one task
17. Assign τi ∈ I3, τj ∈ I5 and τk ∈ I6 to a processor

Figure 2: Assignment of odd tasks in I2–I6

8Q

15
+ 2×4Q

9
= 64Q

45
> 4Q

3
. When (ii) is true, we have UMX(A) = 2×2Q

3
+ 8Q

15
= 28Q

15
< LLB(3) and

UMN(A) = 2×8Q

15
+ 4Q

9
= 68Q

45
> 4Q

3
.

Loop 5 (line 14–15): Each iteration of this loop assigns A={τi,τj,τk} to one processor such
that τi ∈ I4 = (8Q

15
, 2Q

3
], τj ∈ I4 = (8Q

15
, 2Q

3
] and τk ∈ I6 = (Q

3
, 4Q

9
]. Thus, UMX(A) = 2×2Q

3
+ 4Q

9
=

16Q

9
< LLB(3) and UMN(A) = 2×8Q

15
+ Q

3
= 7Q

5
> 4Q

3
.

Loop 6 (line 16–17): Each iteration of this loop assigns A={τi,τj,τk} to one processor such
that τi ∈ I3 = (2Q

3
, 8Q

9
], τj ∈ I5 = (4Q

9
, 8Q

15
] and τk ∈ I6 = (Q

3
, 4Q

9
]. Thus, UMX(A) = 8Q

9
+ 8Q

15
+ 4Q

9
=

28Q

15
< LLB(3) and UMN(A) = 2Q

3
+ 4Q

9
+ Q

3
= 13Q

9
> 4Q

3
.

Using Eq. (2), we can thus conclude that, for each iteration of each loop if task set A is
assigned to one processor, we have 4Q

3
< U(A) ≤ LLB(|A|). The second task-assignment phase

also runs in linear time due to its iterative nature.
Residue tasks: Tasks in I2–I6 that are still unassigned after the second phase are called

residue tasks. For example, if there are only two unassigned tasks in I2 after the first phase,
these two odd tasks cannot be assigned to a processor in the second phase. Such a scenario,
henceforth referred to as a possibility, of residue tasks will have to be handled during the third
phase. We identify all such possibilities of residue tasks in subintervals I2–I6 for any task set. In
particular, we determine the number of residue tasks in each of the subintervals I2–I6 for each
identified possibility.

After the first phase, I2 has 0–2 odd tasks, I3 has 0–1 odd task, I4 has 0–4 odd tasks, I5 has
0–2 odd tasks, and I6 has 0–3 odd tasks (see Section 5). Odd tasks thus exist, in subintervals
I2–I6, as one of (3 × 2 × 5 × 3 × 4 =)360 possibilities after the first phase. During the second
phase, algorithm OddAssign is able to assign all the odd tasks in subintervals I2–I6 for 316 out
of the 360 possibilities of odd tasks after the first phase. It is easy to see that, this fact can
be verified by running the algorithm OddAssign for each the 360 possibilities of odd tasks after
first phase and by counting how many possibilities remain unassigned (please also see Appendix
B for a formal proof). Therefore, for any task set, those residue tasks in subintervals I2–I6 that
need to be handled in the third phase exist as one of the remaining 44 different possibilities.
During the third phase, IBPS considers assigning any such possibility of residue tasks from I2–I6

8

including all residue tasks from I7 to processors.
We now define some functions that will be used in the next sections. Function URT denotes

the total utilization of all the residue tasks in I2–I7:

URT =
7∑

k=2

∑

τi∈Ik

ui [τi is residue task in Ik] (3)

Functions URMN and URMX denote the lower and upper bound, respectively, on total utilization
of all residue tasks τi ∈ Ik for i = 2, . . . 6:

URMN =
6∑

k=2

∑

τi∈Ik

x [τi ∈ Ik=(x, y] is residue task]

URMX =
6∑

k=2

∑

τi∈Ik

y [τi ∈ Ik=(x, y] is residue task]

It is clear that, if at least one of I2–I6 is nonempty, we have:

URMN < URT − U(S) ≤ URMX [S= residue in I7] (4)

7 Task Assignment: Third Phase

During the third phase, IBPS assigns all residue tasks to processors, thereby completing the task
assignment. Each of the 44 possibilities of residue tasks in I2–I6 is listed in a separate row of
Table 2. The columns of the table are organized as follows. The first column represents the
possibility number. Columns two through six represent the number of residue tasks in each of
the subintervals I2–I6, while the seventh column represents the total number of residue tasks in
these subintervals. The eighth and ninth columns represent URMN and URMX, respectively. The
rows of the table are divided into three categories, based on three value ranges of URMN as in the
following equations:

CAT-0 (row no 1–20): 0 < URMN ≤ 4Q

3

CAT-1 (row no 21–41): 4Q

3
< URMN ≤ 8Q

3

CAT-2 (row no 42–44): 8Q

3
< URMN ≤ 4Q

(5)

We now present the task-assignment algorithms for the three categories of residue tasks in I2–I6

and the residue tasks in I7, whose collective purpose is to guarantee that, if URT ≤ 4Qm′′

3
for the

smallest non-negative integer m′′, all residue tasks are assigned to at most m′′ processors.

7.1 Residue Task Assignment: CAT-0

Consider the first 20 possibilities (rows 1–20 in Table 2) of CAT-0 residue tasks and all residue
task in I7. Assign tasks to processor as follows. If URT ≤ 4Q

3
, all residue tasks in I2–I7 are

assigned to one processor. If URT > 4Q

3
, all residue tasks in I7 are assigned to one processor and

all CAT-0 residue tasks in I2–I6 are assigned to another processor.
We prove the RM schedulability by considering two cases—case (i): URT ≤ 4Q

3
, and case (ii):

URT > 4Q

3
. If case (i) is true, all residue tasks in I2–I7 are assigned to one processor. Since

URT ≤ 4Q

3
< LLB(∞) = ln 2, all residue tasks are RM schedulable on one processor. If case

(ii) applies, all residue tasks in I7 assigned to one processor are RM schedulable using Lemma 1.
Next, the CAT-0 residue tasks in I2–I6 are assigned to another processor. According to column
seven of Table 2, the number of CAT-0 residue tasks in I2–I6 is at most 3. And observing the

9

No. I2 I3 I4 I5 I6 Total URMN URMX

CAT-0

1 0 0 0 0 1 1 Q
3

4Q
9

2 0 0 0 1 0 1 4Q
9

8Q
15

3 0 0 1 0 0 1 8Q
15

2Q
3

4 0 1 0 0 0 1 2Q
3

8Q
9

5 0 0 0 0 2 2 2Q
3

8Q
9

6 0 0 0 1 1 2 7Q
9

44Q
45

7 0 0 0 2 0 2 8Q
9

16Q
15

8 0 0 1 0 1 2 13Q
15

10Q
9

9 0 0 1 1 0 2 44Q
45

18Q
15

10 0 1 0 0 1 2 Q 4Q
3

11 1 0 0 0 0 1 8Q
9

4Q
3

12 0 0 0 0 3 3 Q 4Q
3

13 0 0 2 0 0 2 16Q
15

4Q
3

14 0 1 0 1 0 2 10Q
9

64Q
45

15 0 0 0 1 2 3 10Q
9

64Q
45

16 0 0 0 2 1 3 11Q
9

68Q
45

17 0 1 1 0 0 2 18Q
15

14Q
9

18 0 0 1 0 2 3 18Q
15

14Q
9

19 0 0 1 1 1 3 59Q
45

74Q
45

20 1 0 0 0 1 2 11Q
9

16Q
9

CAT-1

21 0 0 0 1 3 4 13Q
9

28Q
15

22 0 1 0 2 0 3 14Q
9

88Q
45

23 0 0 0 2 2 4 14Q
9

88Q
45

24 0 0 1 0 3 4 23Q
15 2Q

25 0 0 3 0 0 3 24Q
15 2Q

26 0 1 1 0 1 3 23Q
15 2Q

27 0 1 1 1 0 3 74Q
45

94Q
45

28 0 0 1 1 2 4 74Q
45

94Q
45

29 1 1 0 0 0 2 14Q
9

20Q
9

30 0 1 2 0 0 3 26Q
15

20Q
9

31 1 0 0 0 2 3 14Q
9

20Q
9

32 0 0 0 2 3 5 17Q
9

12Q
5

33 0 0 1 1 3 5 89Q
45

38Q
15

34 1 0 0 0 3 4 17Q
9

8Q
3

35 0 0 4 0 0 4 32Q
15

8Q
3

36 1 1 0 0 1 3 17Q
9

8Q
3

37 2 0 0 0 0 2 16Q
9

8Q
3

38 2 0 0 0 1 3 19Q
9

28Q
9

39 2 1 0 0 0 3 22Q
9

32Q
9

40 0 1 3 0 0 4 34Q
15

26Q
9

41 2 0 0 0 2 4 22Q
9

32Q
9

CAT-2

42 2 1 0 0 1 4 25Q
9 4Q

43 2 0 0 0 3 5 25Q
9 4Q

44 0 1 4 0 0 5 14Q
5

32Q
9

Table 2: All 44 possibilities of Residue tasks in I2–I6

10

ninth column, we find that the maximum total utilization (URMX) of all CAT-0 residue tasks in
I2–I6 for any row 1–20 is 16Q

9
≈ 0.736 (see row 20). Since 16Q

9
< LLB(3) ≈ 0.779, all CAT-0

residue tasks from I2–I6 are RM schedulable on the second processor. In summary, for CAT-0
residue tasks, if URT ≤ 4Q

3
, we need one processor, otherwise, we need at most two processors to

assign all the residue tasks in I2–I7.

7.2 Residue Task Assignment: CAT-1

Before we propose the task assignment algorithms for this category, consider the following The-
orem from [13] that is used to assign total t tasks in s processors using RMFF algorithm3.

Theorem 1 (from [13]). All t tasks in set A are schedulable on s processors using RMFF, if

U(A) ≤ (s − 1)Q + (t − s + 1)(2
1

t−s+1 − 1).

We denote the bound in Theorem 1 by U(s, t) = (s − 1)Q + (t − s + 1)(2
1

t−s+1 − 1). Now we
consider the next 21 possibilities (rows 21–41 in Table 2) of CAT-1 residue tasks and residue
tasks in I7. If URT ≤ 8Q

3
, we assign all CAT-1 residue tasks in I2–I6 for rows 21–41 and the

residue tasks in I7 to at most two processors, otherwise, to at most three processors.
For the first case, if URT ≤ 8Q

3
, all CAT-1 residue tasks in I2–I7 are assigned using RMFF

allocation to two processors. We prove the RM schedulability in Lemma 2.

Lemma 2. If URT ≤ 8Q

3
, then all the CAT-1 residue tasks in I2–I6 and the residue tasks in I7

are RM schedulable on two processors using FF allocation.

Proof. According to Theorem 1, U(s, t) for s=2 is U(2, t) = Q + (t − 1)(2
1

(t−1) − 1). Note that,
for rows 21–41, the number of residue tasks t ≥ 2. The function U(2, t) is monotonically non-
increasing as t increases. The minimum of U(2, t) is Q + ln 2 as t → ∞. Therefore, U(2, t) ≥
Q + ln 2 = 1.10736 for any t. Since URT ≤ 8Q

3
= 1.10456, we have URT < U(2, t). Using

Theorem 1, all CAT-1 residue tasks in I2–I6 and the residue tasks in I7 are RM schedulable on
two processors if URT ≤ 8Q

3
.

For the second case, if URT > 8Q

3
, we assign all residue tasks in I7 to one processor (RM

schedulable using Lemma 1). And, all residue tasks in I2–I6 are assigned to at most two processors
using algorithms R21 37 , R38 , R39 , and R40 41 for row 21–37, row 38, row 39 and row 40–41
in Table 2, respectively. Next, we present each of these algorithms and show that all CAT-1
residue tasks in I2–I6 are RM schedulable on at most two processors.

Algorithm R21 37 : All residue tasks in I2–I6 for rows 21–37 are assigned to two processors
using FF allocation. Such tasks are RM schedulable using Lemma 3.

Lemma 3. All the residue tasks in I2–I6 given in any row of 21–37 of Table 2 are RM schedulable
on two processors using FF allocation.

Proof. According to column seven in Table 2 for rows 21–37, the number of residue tasks in
I2–I6 is at most 5. Therefore, U(2, t) is minimized for rows 21–37 when t = 5, and we have,

U(2, 5) = Q + 4(2
1
4 − 1) ≈ 1.17. Observing the ninth column of rows 21–37, we find that the

maximum total utilization (URMX) of the residue tasks in I2–I6 is at most 8Q

3
≈ 1.105 (see row

37). Since 8Q

3
< U(2, 5), all the t ≤ 5 residue tasks in I2–I6 for any row 21–37 are RM schedulable

on two processors using FF allocation.

Algorithm R38 : For row 38, there are two tasks in I2 and one task in I6. Assume that
τa ∈ I2, τb ∈ I2 and τc ∈ I6. Task τa ∈ I2 is assigned to one dedicated processor and therefore
trivially RM schedulable. Then, τb ∈ I2 = (8Q

9
, 4Q

3
] and τc ∈ I6 = (Q

3
, 4Q

9
] are assigned to another

3Symbols n and m in [13] are renamed as s and t in this paper for clarity.

11

processor. Since ub ≤ 4Q

3
and uc ≤ 4Q

9
, we have ub + uc ≤ 4Q

3
+ 4Q

9
= 16Q

9
< 2Q = LLB(2).

So, τb and τc are schedulable on one processor. All three residue tasks in row 38 are thus RM
schedulable on two processors.

Algorithm R39 : For row 39, there are two tasks in I2 and one task in I3. Assume that
τa ∈ I2, τb ∈ I2 and τc ∈ I3. We assign these tasks by calling Split ({τa,τb,τc}) where the highest-
priority task is split. We prove that task τa, τb and τc are RM schedulable on two processors in
Lemma 4.

Lemma 4. If τa ∈ I2, τb ∈ I2 and τc ∈ I3, then all three tasks are RM schedulable in two
processors using Split ({τa,τb,τc}).

Proof. It has already been proven (Policy 2 in Section 5) that three tasks in I2 are RM schedulable
on two processors using Split . The utilization of a task from I3 is smaller than that of a task
in I2. Hence, two task from I2 and one from I3 are also RM schedulable using Split on two
processors.

Algorithm R40 41 : Four residue tasks either in row 40 or in row 41 are scheduled on two
processors as in Fig. 3. We prove the RM schedulability of these tasks in Lemma 5.

Algorithm R40 41 (Residue tasks for row 40 or 41)

1. Select τa and τb from two different subintervals
2. Let τc and τd be the remaining residue tasks
3. Assign τa, τb to one processor
4. Assign τc, τd to one processor

Figure 3: Residue Task Assignment (row 40 or row 41)

Lemma 5. The residue tasks in row 40 or 41 in Table 2 are RM schedulable on two processors
using algorithm R40 41 .

Proof. The four residue tasks either in row 40 or row 41 are from exactly two subintervals. For
row 40, there is one residue task in I3=(2Q

3
, 8Q

9
] and three residue tasks in I4=(8Q

15
, 2Q

3
]. For row

41, there are two residue tasks in each of I2=(8Q

9
, 4Q

3
] and I6=(Q

3
, 4Q

9
]. Now, consider two cases:

case (i) for row 40 and case (ii) for row 41.
Case (i): Two tasks from two different subintervals of row 40 (line 1) satisfy τa ∈ I3 and

τb ∈ I4. We then have τc ∈ I4 and τd ∈ I4 (line 2). So, ua ≤ 8Q

9
, ub ≤ 2Q

3
, uc ≤ 2Q

3
and

ud ≤ 2Q

3
. Task τa and τb are assigned to one processor (line 3); we have ua + ub ≤ 8Q

9
+

2Q

3
= 14Q

9
< 2Q = LLB(2). Task τc and τd are assigned to one processor (line 4); we have

uc + ud ≤ 2Q

3
+ 2Q

3
= 4Q

3
< 2Q = LLB(2). Thus, all residue tasks in row 40 are RM schedulable

on two processors.
Case (ii): Two tasks from two different subintervals of row 41 (line 1), satisfy τa ∈ I2 and

τb ∈ I6. We then have τc ∈ I2 and τd ∈ I6 (line 2). So, ua ≤ 4Q

3
, ub ≤ 4Q

9
, uc ≤ 4Q

3
and

ud ≤ 4Q

9
. Task τa and τb are assigned to one processor (line 3); we have ua + ub ≤ 4Q

3
+ 4Q

9
=

16Q

9
< 2Q = LLB(2). Similarly, task τc and τd are assigned to one processor (line 4); we have

uc + ud ≤ LLB(2). Thus, all residue tasks in row 41 are RM schedulable on two processors.

In summary, for CAT-1 residue tasks If URT ≤ 8Q

3
, then IBPS needs to assign all residue tasks

in I2–I7 to at most two processors, and otherwise IBPS needs at most three processors.

12

7.3 Residue Task Assignment: CAT-2

We now consider the last three possibilities (rows 42–44 in Table 2) of CAT-2 residue tasks in I2–
I6 and the residue tasks in I7. We propose two task assignment algorithms R42 and R43 44 for
residue tasks in row 42 and rows 43–44, respectively, along with all residue tasks in I7.
Algorithm R42 : Algorithm R42 (see Fig. 4) assigns the four CAT-2 residue tasks in row 42
and residue tasks in I7. The RM schedulability using algorithm R42 is ensured as follows.

Algorithm R42 (Residue task in I2–I7 in row 42)

1. Let τa ∈ I2, τb ∈ I2, τc ∈ I3 and τd ∈ I6
2. Split ({τa,τb,τc})
3. if (URT ≤ 4Q) then

4. Assign τd and all tasks of I7 to one processor
5. else

6. Assign τd to one processor.
7. Assign all tasks of I7 (if any) to one processor
8. end if

Figure 4: Residue Assignment(row 42)

There are four residue tasks in row 42 such that τa ∈ I2, τb ∈ I2, τc ∈ I3 and τd ∈ I6 (line 1 in
Fig. 4). Tasks τa, τb and τc are assigned to two processors (line 2) by calling Split ({τa,τb,τc}).
Such three tasks are RM schedulable on two processors according to Lemma 4. Next, residue
task τd ∈ I6 and all residue tasks in I7 are assigned to one or two processors depending on two
cases: case (i) URT ≤ 4Q and, case (ii) URT > 4Q respectively.

Case (i) URT ≤ 4Q: When URT ≤ 4Q (line 3), task τd and all residue tasks in I7 are assigned
to a third processor (line 4). So, to ensure RM schedulability on one processor, we prove that,
ud + U(S) ≤ LLB(∞) ≈ 0.693 where S is the set of residue tasks in I7. For row 42, we have
URT = ua+ub+uc+ud+U(S) and URMN < ua+ub+uc+ud. Therefore, URT > URMN+U(S). Since,
for row 42, URMN = 25Q

9
(see eighth column of row 42) and URT ≤ 4Q (case assumption), we have

U(S) < 4Q − 25Q

9
= 11Q

9
. Since τd ∈ I6 = (Q

3
, 4Q

9
], we have ud+U(S) ≤ 4Q

9
+ 11Q

9
= 15Q

9
≈ 0.69035.

Therefore, ud + U(S) ≤ LLB(∞) ≈ 0.693.
Case (ii) URT > 4Q: When URT > 4Q, task τd is assigned to the third processor (line 6),

which is trivially RM schedulable. All residue tasks in I7 are scheduled on another processor
(line 7), which are also RM schedulable according to Lemma 1. So, task τd and all residue tasks
in I7 are RM schedulable on two processor for row 42 whenever URT > 4Q.

In summary, If URT ≤ 4Q, the four CAT-2 residue tasks in row 42 and all residue tasks in I7

are RM schedulable on at most three processors; otherwise, the tasks are schedulable on at most
four processors using R42.

Algorithm R43 44 : Algorithm R43 44 (see Fig. 5) assigns the five CAT-2 residue tasks in
row 43 or row 44 and residue tasks in I7.

The RM schedulability using algorithm R43 44 is ensured as follows. The five tasks in row
43 or in row 44 are denoted by τa, τb, τc, τd and τe. Tasks τa and τb are from two different
subintervals (line 1). For row 43, there are two residue tasks in I2=(8Q

9
, 4Q

3
] and three residue

tasks in I6=(Q

3
, 4Q

9
]. For row 44, there is one residue task in I3=(2Q

3
, 8Q

9
] and four residue tasks

in I4=(8Q

15
, 2Q

3
]. Tasks τa and τb are assigned to one processor (line 4). For row 43, τa ∈ I2 and

τb ∈ I6 and we have ua +ub ≤ 4Q

3
+ 4Q

9
= 16Q

9
< LLB(2). For row 44, τa ∈ I3 and τb ∈ I4, we have

ua + ub ≤ 8Q

9
+ 2Q

3
= 14Q

9
< LLB(2). So, tasks τa and τb are RM schedulable on one processor

for any row 43 or 44. To prove the RM schedulability of τc, τd, τe and all residue tasks in I7, we
consider two cases: case (i): uc + ud + ue ≤ LLB(3) (line 5), case (ii): uc + ud + ue > LLB(3)
(line 8).

Case (i): Here, τc, τd and τe are assigned to a second processor (line 6) and they are RM

13

Algorithm R43 44 (Residue tasks for row 43 or 44)

1. Select τa and τb in two different subintervals of I2–I6
2. Let τc, τd and τe be the remaining tasks in I2–I6
3. such that, uc ≥ ud and uc ≥ ue

4. Assign τa and τb to one processor.
5. if (U(τc) + U(τd) + U(τe)) ≤ LLB(3) then

6. Assign τc, τd and τe to a processor.
7. Assign all tasks of I7 (if any) to a processor
8. else

9. Assign τc and τd to a processor.
10. if (URT ≤ 4Q) then

11. Assign τe and all tasks of I7 to a processor
12. else

13. Assign τe to one processor.
14. Assign all tasks of I7 (if any) to a processor
15. end if

16. end if

Figure 5: Residue Assignment (row 43-44)

schedulable (case assumption). All residue tasks in I7 are assigned to a third processor (line 7)
and are RM schedulable using Lemma 1.

Case (ii): Here, τc and τd are assigned to a second processor (line 9). For row 43, τc ∈ I2 = (8Q

9
, 4Q

3
]

since uc ≥ ud and uc ≥ ue (line 3). Then obviously, τd ∈ I6 = (Q

3
, 4Q

9
] for row 43. We have

uc + ud ≤ 4Q

3
+ 4Q

9
= 16Q

9
< LLB(2). For row 44, both τc and τd are in I4=(8Q

15
, 2Q

3
], and we

have uc + ud ≤ 2Q

3
+ 2Q

3
= 4Q

3
< LLB(2). So, τc and τd assigned to one processor (line 9) are RM

schedulable for row 43 or 44. Next, task τe and all residue tasks in I7 are scheduled on one or
two processors depending on two subcases: subcase (i): URT ≤ 4Q (line 10) and, subcase (ii):
URT > 4Q (line 12).

Subcase(i): When URT ≤ 4Q, task τe and all residue tasks in I7 are assigned to a third
processor (line 11). For RM schedulability, we show that ue + U(S) ≤ LLB(∞) = ln 2 where S
is the set of residue tasks in I7. Note that URMN + U(S) < URT ≤ 4Q for this subcase. Since, for
row 43, URMN = 25Q

9
(see column 8), we have U(S) ≤ 4Q − 25Q

9
= 11Q

9
. Since τe ∈ I6 = (Q

3
, 4Q

9
]

for row 43, we have ue + U(S) ≤ 4Q

9
+ 11Q

9
= 15Q

9
≈ 0.6903 < ln 2.

For row 44, since τa ∈ I3 = (2Q

3
, 8Q

9
], τb ∈ I4 = (8Q

15
, 2Q

3
] and uc + ud + ue > LLB(3) = 3(2

1
3 − 1)

for case (ii) we have, ua + ub + uc + ud + ue > 2Q

3
+ 8Q

15
+ 3(2

1
3 − 1) = 6Q

5
+ 3(2

1
3 − 1).

Since U(S) + ua + ub + uc + ud + ue = URT and URT ≤ 4Q (subcase assumption), we have

U(S) ≤ 4Q − (6Q

5
+ 3(2

1
3 − 1)) = 14Q

5
− 3(2

1
3 − 1). Since τe ∈ I4 = (8Q

15
, 2Q

3
] for row 44, we have

ue + U(S) ≤ 2Q

3
+ 14Q

5
− 3(2

1
3 − 1) ≈ 0.6561 < ln 2 = LLB(∞). So, τe and all residue tasks from

I7 are schedulable on one processor for row 43 or row 44 if URT ≤ 4Q. So, in order to assign τa,
τb, τc, τd and τe and residue tasks in I7 we need at most three processors if URT ≤ 4Q.

Subcase(ii): When URT > 4Q, task τe is assigned to a third processor (line 13) and is trivially
RM schedulable. All residue tasks in I7 are assigned to a fourth processor (line 14) and RM
schedulable using Lemma 1. So, in order to assign τa, τb, τc, τd and τe and residue tasks in I7,
we need at most four processors if URT > 4Q.

In summary, if URT ≤ 4Q, we assign residue tasks in I2–I6 and residue tasks for I7 to at most
three processors; otherwise, these residue tasks are assigned to at most four processors.

From the scheduling analysis in this section, we have the following fact.
Fact-1. Any CAT-x residue tasks, for x = 0, 1, 2, and residue tasks from I7 are RM schedula-

ble on at most (x+1) processors if URT ≤ 4Q(x+1)
3

; otherwise, these residue tasks are schedulable
on at most (x + 2) processors. We have the following Theorem 2.

14

Theorem 2. If URT ≤ 4Qm′′

3
, for the smallest non-negative integer m′′, all the residue tasks are

RM schedulable on at most m′′ processors.

Proof. Note that, if residue tasks only exist in I7, our theorem is true because of Lemma 1.
Now, consider any CAT-x residue tasks and residue tasks from I7. For CAT-x residue tasks, we
have URT > URMN > 4Qx

3
using Eq. (4)–(5). If URT ≤ 4Q(x+1)

3
, then all the residue tasks are

RM schedulable on (x + 1) processors (using Fact-1). Note that m′′ = (x + 1) is the smallest

non-negative integer such that URT ≤ 4Qm′′

3
. Now, if URT > 4Q(x+1)

3
, then URT ≤ 4Qm′′

3
for some

m′′ ≥ (x + 2). Since, using Fact-1 in such case, all residue tasks are assigned to at most (x + 2)
processors, our theorem is true for the smallest nonnegative integer m′′ ≥ (x + 2) such that
URT ≤ 4Qm′′

3
.

Task assignment to processor completes here. The task assignment algorithms in this phase
also runs in linear time. The run time dispatcher of IBPS is given in Appendix C.

8 Performance of IBPS:

Utilization Bound: The worst-case utilization bound of IBPS is given in Theorem 3.

Theorem 3. If U(Γ) ≤ 4Qm

3
, all tasks meet deadlines on at most m processors using IBPS.

Proof. As shown in Section 5–6, each processor, to which tasks have been assigned during the
first two phases, will have an RM schedulable task set with a total utilization strictly greater than
4Q

3
due to load regulation. Let m′≥0 be the number of processors to which tasks are assigned

during the first two phases. Theorem 2 states that, if URT ≤ 4Qm′′

3
for the smallest non-negative

integer m′′, then all residue tasks are RM schedulable on at most m′′ processors during the
third phase. We must show that, if U(Γ) ≤ 4Qm

3
, then (m′ + m′′) ≤ m. Since URT ≤ 4Qm′′

3

for the smallest integer m′′, we have 4Q(m′′−1)
3

< URT. The total utilization of tasks assigned

to m′ processors during the first two phases is U(Γ) − URT. Therefore, U(Γ) − URT > 4Qm′

3

and we have, 4Q(m′′−1)
3

+ 4Qm′

3
< U(Γ). If U(Γ) ≤ 4Qm

3
, then 4Q(m′+m′′−1)

3
< 4Qm

3
which implies

(m′ + m′′ − 1) < m. Because m′, m′′, and m are non-negative integers, we have (m′ + m′′) ≤ m.
So, if U(Γ) ≤ 4Qm

3
, all tasks in set Γ are RM schedulable on at most m processors. Since

Q = (
√

2 − 1), the utilization bound on m processors is 4(
√

2−1)m
3

≈ 55.2%.

Resource Augmentation: Resource augmentation compares a given algorithm against an
optimal algorithm by determining the factor by which if a given multiprocessor platform is
augmented, then the given algorithm has equal performance to the optimal. In this paper, we
find the resource augmentation factor for IBPS as follows: given a task set Γ known to be feasible
on m processors each having speed ζ, we determine the multiplicative factor of this speed by
which the platform of IBPS can be augmented so that Γ is schedulable using IBPS. Baruah and
Fisher in [23] have proved that, if task system Γ is feasible (under either partitioned or global
paradigm) on an identical multiprocessor platform comprised of m processors each with speed ζ,
then we must have mζ ≥ U(Γ). Now, if 4Q

3
≥ ζ, then m ≥ 3mζ

4Q
. Using the necessary condition

mζ ≥ U(Γ) for feasibility in [23], we have m ≥ 3U(Γ)
4Q

⇔ U(Γ) ≤ 4Qm

3
. According to Theorem

3, Γ is schedulable on m unit-capacity processors. Therefore, the processor speed-up factor for
IBPS is 1

ζ
≥ 3

4Q
≈ 1.81.

9 Admission Controller O-IBPS

In this section we present an efficient admission controller for online task scheduling, called
O-IBPS. When a multiprocessor scheduling algorithm is used on-line, the challenge is to determine

15

how a new on-line task τnew is accepted and assigned to a processor. In O-IBPS, if U(Γ)+unew ≤
4Qm

3
, the new task τnew is accepted to the system. Theorem 3 ensures that, we have sufficient

capacity to assign the new task τnew using IBPS. If unew ∈ I1, we assign this new task to a
dedicated processor. Otherwise, if τnew ∈ Ik for some k = 2, 3, . . . 7, we have unew ≤ 4Q

3
. Let

ΓR denote the set of residue tasks before τnew is assigned to a processor such that 4Q(m′′−1)
3

≤
U(ΓR) ≤ 4Qm′′

3
. These residue tasks in ΓR were assigned on at most m′′ processors (using Theorem

2) before τnew arrives to the system. O-IBPS then forms a new task set Γnew = ΓR ∪ {τnew}. If
U(Γnew) ≤ 4Qm′′

3
, Γnew is assigned to m′′ processors using the IBPS task assignment phases. If

U(Γnew) > 4Qm′′

3
, then we have, U(Γnew) = UR +unew ≤ 4Qm′′

3
+ 4Q

3
= 4Q(m′′+1)

3
. Γnew is assigned

to at most (m′′ + 1) processors using IBPS (one new processor is introduced).
When a task leaves the system, say from processor Θx, then for load regulation we re-execute

the assignment algorithm on Θx plus on all m′′ processors. Since residue tasks never require more
than four processors (See Section 7)during third phase of IBPS, we have m′′ ≤ 4. Thus, when
τnew is admitted to the system using O-IBPS, the number of processors that require reassignment
of task is upper bounded by min{4,m}. And when a task leaves the system, the number of
processors that require reassignment of task for load regulation is upper bounded by min{5,m}.
Remember that, IBPS runs in linear time. And the trend in processor industry is to have
chip multiprocessor with many cores (16, 32, 64 cores or even higher) in near future. So, our
scheduling algorithm is efficient and scalable with increasing number of cores in CMPs for online
scheduling of real-time tasks.

10 Related Work

Non task splitting algorithms can not have utilization bound greater than 50%. In [15], it is
shown that the worst case utilization bound for partitioned RM First-Fit (FF) scheduling is
m(

√
2 − 1) ≈ 41%. In [13], this bound is improved by also including the number of tasks in the

schedulability condition. In [10], an algorithm R-BOUND-MP-NFR (based on the R-BOUND test
in [14]) is proposed that has a utilization bound of 50%. The work in [11, 12] assigns tasks to
processors according to FF with a decreasing deadline order and their worst-case performance is
characterized using resource augmentation.

In order to achieve a utilization bound for the partitioned approach that exceeds 50%, a new
type of scheduling algorithms using task splitting has evolved [16, 17, 21, 18, 19, 24, 20]. Most
of these works address task splitting for dynamic priority. In [16], a task splitting algorithm
EDF-fm is proposed that has no scheduling guarantee but instead offers bounded task tardiness.
An algorithm, called EKG [17], for dynamic-priorities using task splitting has a utilization bound
between 66% and 100% depending on a design parameter k which trade-off utilization bound and
preemption count. Using a time slot-based technique, sporadic task scheduling for constrained
and arbitrary deadline are developed in [21, 18]. Using the dynamic-priority algorithm EDDP in
[19], the deadline of a split task is changed to a smaller deadline called ‘virtual deadline’. Common
for all these dynamic-priority task splitting algorithms is the absence of priority traceability
property and load regulation. As many of the algorithms requires sorting task before assignment,
online scheduling may be inefficient. In [20], an implicit deadline task set is converted to a
constrained deadline static-priority task set during task assignment. Even if this algorithm has
more than 50% utilization bound, it does not have priority traceability property and does not
consider its online applicability as in IBPS. The static-priority task splitting algorithm in [24, 25]
has utilization bound that does not exceed 50%.

16

11 Conclusion

In this paper, we propose a task assignment algorithm, called IBPS, based on utilization of
static-priority tasks in different subintervals having worst-case utilization bound 55.2%. The
load regulation technique of IBPS enable designing of efficient admission controller for on-line
task scheduling in multiprocessor system. With increasing number of processors in a multipro-
cessor system, the percentage of processors having load greater than 55.2% also increases since at
most four processor could have load less than 55.2%. Therefore, online scheduling of tasks using
O-IBPS scales with the current trend to have increasing number of cores in chip multiprocessors.
Our algorithm possesses priority traceability property which facilitates the system designer’s
ability to debug and maintain a system during development. The task splitting algorithm has
lower number of migrations compared to any other task splitting algorithm for static and dy-
namic priority. All these salient features make our scheduling algorithm efficient for practical
implementation for chip multiprocessors with increasing number of cores.

References

[1] P. Kongetira, K. Aingaran, and K. Olukotun, “Niagara: a 32-way multithreaded sparc
processor,” IEEE Micro, vol. 25, no. 2, pp. 21–29, March-April 2005.

[2] S. Chaudhry, R. Cypher, M. Ekman, M. Karlsson, A. Landin, S. Yip, H. Zeffer, and M. Trem-
blay, “Rock: A high-performance sparc cmt processor,” IEEE Micro, vol. 29, no. 2, pp. 6–16,
2009.

[3] C. L. Liu and J. W. Layland, “Scheduling algorithms for multiprogramming in a hard-real-
time environment,” Journal of the ACM, vol. 20, no. 1, pp. 46–61, 1973.

[4] S. K. Dhall and C. L. Liu, “On a real-time scheduling problem,” Operations Research,
vol. 26, no. 1, pp. 127–140, 1978.

[5] B. Andersson, S. Baruah, and J. Jonsson, “Static-priority scheduling on multiprocessors,”
in Proc. of RTSS, pp. 193–202, 2001.

[6] T. P. Baker, “An analysis of fixed-priority schedulability on a multiprocessor,” Real-Time
Systems, vol. 32, no. 1-2, pp. 49–71, 2006.

[7] S. Baruah and J. Goossens, “Rate-monotonic scheduling on uniform multiprocessors,” IEEE
Trans. on Comput., vol. 52, no. 7, pp. 966–970, 2003.

[8] M. Bertogna, M. Cirinei, and G. Lipari, “New schedulability tests for real-time task sets
scheduled by deadline monotonic on multiprocessors,” in Proc. of Conf. on Princ. of Dist.
Syst., pp. 306–321, 2005.

[9] J. Liebeherr, A. Burchard, Y. Oh, and S. H. Son, “New strategies for assigning real-time
tasks to multiprocessor systems,” IEEE Trans. on Comput., vol. 44, no. 12, pp. 1429–1442,
1995.

[10] B. Andersson and J. Jonsson, “The utilization bounds of partitioned and pfair static-priority
scheduling on multiprocessors are 50%,” in Proc. of ECRTS, pp. 33–40, 2003.

[11] N. Fisher, S. Baruah, and T. P. Baker, “The partitioned scheduling of sporadic tasks ac-
cording to static-priorities,” in Proc. of ECRTS, pp. 118–117, 2006.

17

[12] N. Fisher and S. Baruah, “The partitioned, static-priority scheduling of sporadic real-time
tasks with constrained deadlines on multiprocessor platforms,” in Proc. of Conf. on Princ.
of Dist. Sys., pp. 291–305, 2005.

[13] J. M. López, M. Garćıa, J. L. Dı́az, and D. F. Garćıa, “Utilization bounds for multiprocessor
rate-monotonic scheduling,” Real-Time Systems, vol. 24, no. 1, pp. 5–28, 2003.

[14] S. Lauzac, R. Melhem, and D. Mossé, “An efficient rms admission control and its application
to multiprocessor scheduling,” in Proc. of International Parallel Processing Symposium, pp.
511–518, 1998.

[15] D.-I. Oh and T. P. Baker, “Utilization bounds for n-processor rate monotone scheduling
with static processor assignment,” Real-Time Systems, vol. 15, no. 2, pp. 183–192, 1998.

[16] J. H. Anderson, V. Bud, and U. C. Devi, “An edf-based scheduling algorithm for multipro-
cessor soft real-time systems,” in Proc. of ECRTS, pp. 199–208, 2005.

[17] B. Andersson and E. Tovar, “Multiprocessor scheduling with few preemptions,” in Proc. of
RTCSA, pp. 322–334, 2006.

[18] B. Andersson, K. Bletsas, and S. Baruah, “Scheduling arbitrary-deadline sporadic task
systems on multiprocessors,” in Proc. of RTSS, pp. 385–394, 2008.

[19] S. Kato and N. Yamasaki, “Portioned edf-based scheduling on multiprocessors,” in Proc. of
International Conference on Embedded Software, pp. 139–148, 2008.

[20] K. Lakshmanan, R. Rajkumar, and J. P. Lehoczky, “Partitioned fixed-priority preemptive
scheduling for multi-core processors,” in Proc. of ECRTS, pp. 239 – 248, 2009.

[21] B. Andersson and K. Bletsas, “Sporadic multiprocessor scheduling with few preemptions,”
in Proc. of ECRTS, pp. 243–252, 2008.

[22] S. Kato and N. Yamasaki, “Real-time scheduling with task splitting on multiprocessors,” in
Proc. of RTCSA, pp. 441–450, 2007.

[23] S. Baruah and N. Fisher, “The partitioned multiprocessor scheduling of sporadic task sys-
tems,” in in Proc. of RTSS, 2005.

[24] S. Kato and N. Yamasaki, “Semi-partitining fixed-priority scheduling on multiprocessor,”
in Proc. of RTAS, pp. 23–32, 2009.

[25] ——, “Portioned static-priority scheduling on multiprocessors,” in Proc. of IPDPS, pp.
1–12, 2008.

18

APPENDIX

A Why do we have seven utilization subintervals?

The seven utilization intervals result from our four different strategies for task assignment: (i)
low number of subtasks per split task, (ii) low number of split tasks, (iii) assigning low number
of tasks per processor4, and (iv) load regulation.

Following these four task assignment strategies, we start by assigning only one task to one
processor exclusively. To avoid assigning a task with very small utilization to one processor
exclusively, we need to select a task that belongs to certain utilization subintervals. If IBPS has
worst-case utilization bound Uw and load regulation try to maintain load on most processors
beyond Uw, then one task with utilization greater than Uw is assigned to one processor exclusively.
Thus, we obtain our first utilization interval which is (Uw, 1]. The exact value of Uw is determined
when we assign more than one task having utilization less than Uw to one processor. When we
try to assign two tasks with utilization less than Uw to one processor, we find that if these
two tasks have equal utilization, then each task’s utilization can not be greater than Q=(

√
2–1)

according to LLB(n=2). This implies Uw ≤ 41% without task splitting technique. To achieve
Uw greater than 50%, we split a task with utilization less than Uw in two subtasks each having
same utilization. We gain no advantage by having unequal utilization for the two subtasks as
individual task utilization is bounded from below and our strategy is to assign minimum number
of tasks per processor. So, each subtask has utilization at most Uw

2
. We assign one such subtask

and a non-split task to one processor. For RM schedulability, we must have Uw + Uw

2
≤ 2Q. This

implies the value of Uw ≤ 4Q

3
and we get our first utilization subinterval I1=(4Q

3
,1]. Thus, this

interval also defines the maximum possible utilization bound of IBPS.
The overall goal with the task assignment is to achieve the maximum possible Uw, which is

4Q

3
≈55.2%. Moreover, for load regulation, we try to maintain load in most processors greater

than 4Q

3
. When assigning two tasks (one subtasks and one split tasks) to one processor, the

individual task utilization has to be bounded from below to maintain individual processor load
greater than 4Q

3
. Simple arithmetic shows that, such individual task utilization has to be bounded

from below by 8Q

9
. In such case, the subtask and the non-split task has utilization at least 4Q

9

and 8Q

9
, respectively. Such a subtask and the non-split task assigned to one processor has load

greater than 4Q

9
+ 8Q

9
= 4Q

3
and we obtain our second utilization subinterval which is (8Q

9
,4Q

3
].

Next we consider assigning task with utilization less than or equal to 8Q

9
. Two tasks with

utilization less than or equal to 8Q

9
are RM schedulable in one processor without splitting since

2× 8Q

9
< LLB(2). However, for load regulation we need to bound the load of each task utilization

from below by 2Q

3
. In such case, the total utilization (load on a processor) of the two tasks is at

least 2 × 2Q

3
= 4Q

3
and we get our third utilization interval (2Q

3
,8Q

9
].

Next we consider assigning task with utilization less than 2Q

3
. At this stage, there is no way

we can assign two tasks (with or without splitting) to one processor to have the processor load
greater than 4Q

3
. Therefore, we decide to assign three tasks to one processor. Since we want to

minimize number of split task, we first try to assign three tasks with utilization less than 2Q

3
to

one processor without splitting. Since 3 × 2Q

3
> LLB(3), we can not assure RM schedulability

of three tasks if they all have utilization equal to 2Q

3
. Therefore, we split the highest priority

task (of the three selected tasks) in two subtasks. Note that, such a subtask’s utilization is
upper bounded by Q

3
. We assign one such subtask and two non-split tasks to one processor. The

subtask and the two non-split task have maximum total utilization Q

3
+ 2Q

3
+ 2Q

3
= 5Q

3
< LLB(3)

and hence RM schedulable in one processor. However, for load regulation we need to bound the

4According to LLB, the RM scheduling on uniprocessor achieves higher utilization bound if number of tasks
assigned to the processor is small [3].

19

load of each task utilization from below by 8Q

15
. In such case, the minimum utilization of the

subtask and the non-split task are 4Q

15
and 8Q

15
, respectively . Therefore, total utilization (load on

a processor) of the three tasks (one subtask and two non-split tasks) is at least 4Q

15
+ 8Q

15
+ 8Q

15
= 4Q

3

and we get our forth utilization interval (8Q

15
,2Q

3
].

Next we consider assigning task with utilization less than or equal to 8Q

15
. Three tasks with

utilization less than or equal to 8Q

15
are RM schedulable in one processor without splitting since

3× 8Q

15
< LLB(3). However, for load regulation we need to bound the load of each task utilization

from below by 4Q

9
. In such case, the total utilization (load on a processor) of the two tasks is at

least 3 × 4Q

9
= 4Q

3
and we get our fifth utilization interval (4Q

9
,8Q

15
].

Next we consider assigning task with utilization less than or equal to 4Q

9
without task splitting.

As obvious from discussion in last paragraph, three tasks with utilization less than or equal to
4Q

9
can not have total utilization greater than 4Q

3
on one processor. So, for load regulation we

consider assigning four tasks with utilization less than or equal to 4Q

9
to one processor. Four

tasks with utilization less than or equal to 4Q

9
are RM schedulable in one processor without any

splitting since 4× 4Q

9
< LLB(4). However, for load regulation we need to bound the load of each

task utilization from below by Q

3
. In such case, the total utilization (load on a processor) of the

four tasks is at least 4 × Q

3
= 4Q

3
and we get our sixth utilization interval (Q

3
,4Q

9
].

Next, we consider assigning tasks with utilization less than Q

3
. We observe an important

inequality that is (LLB(∞)− Q

3
) = (ln 2− Q

3
) > 4Q

3
. This inequality suggest that, we can assign

one by one task with utilization less than Q

3
to one processor until the load of that processor

exceed LLB(∞). When no more tasks can be assigned to the processor using Liu and Layland
sufficient test, we must have the load of the processor greater than 4Q

3
. So, we do not need to

bound the utilization of the tasks from below for load regulation in this case. And we obtain our
last utilization interval (0,Q

3
]

In summary, at each stage of task assignment, we bound the utilization of tasks from below
for load regulation by selecting a task from certain utilization interval, split a task in only two
subtasks when task splitting is unavoidable and try to assign minimum number of tasks to one
processor. The consequence is that, we derive the seven utilization intervals I1-I7 in Table 1.

20

B Number of possibilities of residue tasks in I2-I6

Remember that, there is no unassigned task in I1 and the total utilization of the unassigned
tasks in I7 is not greater than 4Q

3
after first phase (see Section 5). After second phase of task

assignment using algorithm OddAssign, we may still have some unassigned odd tasks in I2-I6.
These unassigned odd tasks after second phased are called residue tasks in I2–I6. After the
first phase, I2 has 0–2 odd tasks, I3 has 0–1 odd task, I4 has 0–4 odd tasks, I5 has 0–2 odd
tasks, and I6 has 0–3 odd tasks (see Section 5). Odd tasks thus exist in subintervals I2–I6 as
one of (3 × 2 × 5 × 3 × 4 =)360 possibilities after the first phase. During the second phase,
algorithm OddAssign is able to assign all the odd tasks in subintervals I2–I6 for 316 out of
the 360 possibilities after the first phase. For example, after first phase we might have 1 odd
task in I2 and 1 odd task in I4 and no tasks in other subintervals for a task set. This is one
of the 360 possibilities of odd tasks in I2-I6 after first phase. The first while loop in algorithm
OddAssign5 in Figure 6 would assign both of these unassigned odd tasks from I2 and I4 to one
processor. So, after second phase no task remains unassigned for this possibility of odd task.
Now consider another example where, after first phase, we might have 2 odd task in I2 and 1 odd
task in I4 and no tasks in other subintervals of I2-I6 for a task set. This is another possibility
of odd tasks out of the 360 possibilities of odd tasks after first phase. The first while loop in
algorithm OddAssign in Figure 6 would assign one of the odd tasks in I2 and one odd task
in I4 to one processor. But still one odd task in I2 can not be assigned to any processor using
OddAssign in second phase and has to be considered in third phase as residue task. This is
one of the possibilities of residue tasks after second phase. For any task set, residue tasks thus
exist, in subintervals I2–I6, as one of 44 possibilities after the second phase. In this appendix, we
formally prove that, residue tasks in subintervals I2–I6 that need to be handled in the third phase
exist as one of the remaining 44 different possibilities for any task set. In particular, the number
of unassigned tasks in each subintervals I2-I6 after second phase for each of the 44 possibilities
is determined.

To prove this fact, we would consider five different cases separately where odd tasks may
exist in exactly any one, two, three, four or five of the subintervals I2-I6 after first phase. For
each case, we determine the number of unassigned odd tasks in each subinterval for a possibility
of odd task after second phase that become a possibility of residue tasks in third phase.

B.1 Case 1: Odd tasks exactly in one of the subintervals I2-I6

Remember that, the second phase does not assign tasks from only one subinterval, rather it assign
tasks from more than one subintervals to processors. As a result, if after first phase, exactly one
of the five subintervals I2-I6 has odd tasks and four other subintervals have no odd task, then
second phase does not assign such odd task to processors. Such odd tasks are declared as residue
tasks and are assigned to processors during the third phase. Now consider each subinterval
separately. After first phase, number of tasks in subinterval I2 can be either 1 or 2 (See Policy
1 in Section 5). So there are 2 possibilities when some odd tasks exits only in I2. Similarly,
number of odd task in I3 can be at most 1 after first phase, so we have to consider 1 possibility
when odd tasks exist only in I3. Similarly, for I4, I5 and I6, there are 4, 2, and 3 possibilities
respectively when odd tasks exists only in I4, or only in I5 or only in I6. So, when odd tasks
are from exactly one of the five subintervals after first phase and four other subintervals have no
odd task, such odd tasks are declared as residue tasks. So, when there are residue tasks from

5The algorithm OddAssign is again given in Figure 6 from Figure 2 for better readability

21

Algorithm OddAssign(Odd tasks in subintervals I2-I6):
1. while both I2 and I4 has at least one task
2. Assign τi ∈ I2 and τj ∈ I4 to one processor

3. while both I2 and I5 has at least one task
4. Assign τi ∈ I2 and τj ∈ I5 to one processor

5 while I3 has one task and I6 has two tasks
6. Assign τi ∈ I3, τj ∈ I6 and τk ∈ I6 to one processor

7. while ((I4 has one task and I5 has two tasks)
8. or (I4 has two tasks and I5 has one task))
9. if (I4 has one task and I5 has two tasks) then

10. Assign τi ∈ I4, τj ∈ I5 and τk ∈ I5 to one processor
11. else

12. Assign τi ∈ I4, τj ∈ I4 and τk ∈ I5 to one processor
13. end if

14. while I4 has two tasks and I6 has one task
15. Assign τi ∈ I4, τj ∈ I4 and τk ∈ I6 to one processor

16. while each I3, I5 and I6 has one task
17. Assign τi ∈ I3, τj ∈ I5 and τk ∈ I6 in one processor

Figure 6: Assignment of odd tasks in I2-I6

exactly one of the subintervals I2-I6, the possibility of residue task in third phase is one of the
(2+1+4+2+3=) 12 different possibilities. Each of the 12 possibilities are given in each row of
Table 3. The columns in Table 3 represent the number of residue tasks in each of the utilization
subinterval I2–I6. Observe that, exactly one of the columns in each row of Table 3 is nonzero
(since odd tasks are in exactly one subinterval). The minimum and maximum number of residue
tasks in exactly one subinterval is also considered in this case. Therefore, after second phase if
residue tasks exists in exactly one subinterval I2–I6, the possibility is one of these 12 possibilities
given in Table 3. Each of the 12 possibilities of residue task has to be considered in third phase
of task assignment.

#I2 #I3 #I4 #I5 #I6

1 0 0 0 0
2 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 2 0 0
0 0 3 0 0
0 0 4 0 0
0 0 0 1 0
0 0 0 2 0
0 0 0 0 1
0 0 0 0 2
0 0 0 0 3

Table 3: Total 12 possible residue tasks from exactly one subinterval of I2-I6

22

B.2 Case 2: Odd tasks exactly in two subintervals of I2-I6

When odd tasks exists in exactly two subuintervals I2–I6, there are total 5C2 = 10 different ways
to consider odd tasks from exactly two subintervals of I2-I6. For each of the 10 different ways,
if some odd tasks in exactly two of the subintervals I2-I6 remain unassigned after second phase,
then we consider it as a new possibility of residue tasks. However, if odd tasks remain unassigned
in at most one subinterval after second phase, the possibility is same as one of the possibilities
already considered in Section B.1. Now we consider each of the 10 different ways to consider
odd tasks from any two subintervals I2-I6 to assign to processors during second phase and we
determine the number of odd tasks in the two subintervals not assigned after second phase.

(1) I2 and I3: None of the loops of the algorithm OddAssign in Figure 6 considers assigning
odd tasks from I2 and I3 to processor. Remember that after first phase there are at most 2 tasks
in I2 and at most 1 task in I3. When odd tasks exists in both subintervals I2 and I3 after second
phase, there are (2 × 1=) 2 different possibilities of having residue tasks. First possibility is,
one task from I2 and one from I3. Second possibility is, two tasks from I2 and one task from I3.
These two possibilities of odd tasks from these two subintervals I2 and I3 would be considered
as new possibilities for residue tasks. These two possibilities shown in Table 4.

#I2 #I3 #I4 #I5 #I6

1 1 0 0 0
2 1 0 0 0

Table 4: Total 2 possible residue tasks from two subinterval I2 and I3

(2) I2 and I4: The second phase assigns odd tasks from I2 and I4 in the first while loop
using OddAssign in Figure 6. The loop terminates when at least one of the subintervals I2 or
I4 has no tasks. So, after second phase, odd tasks could exist in at most one of the subintervals,
either in I2 or in I4, but not in both. These unassigned odd tasks in one of the subintervals are
declared as residue tasks. However, this possibility of residue task in at most one subinterval is
already considered in Section B.1. So, no new possibility of residue tasks is found if odd tasks
exists only in I2 and I4.

(3) I2 and I5: The second phase assigns odd tasks from I2 and I5 in the second while loop
using OddAssign in Figure 6. The loop terminates when at least one of the subintervals I2

or I5 has no odd tasks. So, after second phase, odd tasks could exist in at most one of the
subintervals, either in I2 or in I5, but not in both. These unassigned odd tasks in one of the
subintervals are declared as residue tasks. However, this possibility of residue task in at most
one subinterval is already considered in Section B.1. So, no new possibility of residue tasks is
found if odd tasks exists only in I2 and I5.

(4) I2 and I6: None of the loops of the algorithm OddAssign in Figure 6 assign odd tasks
from both I2 and I6 to processors. After first phase, at most 2 odd tasks from I2 and at most
3 tasks from I6 may remain unassigned. When odd tasks exists in both subintervals I2 and I6,
there are total (2 × 3=) 6 new possibilities of residue tasks. These 6 new possibilities of odd
tasks from these two subintervals I2 and I6 would be considered as new possibilities of residue
tasks. The six possibilities are shown in Table 5.

(5) I3 and I4: None of the loops of the algorithm OddAssign in Figure 6 assigns odd tasks
from I3 and I4 to processors. After first phase, at most 1 task from I3, and at most 4 tasks from
I4 may remain unassigned. When odd tasks exists in both subintervals I3 and I4, there are total
(1 × 4=) 4 new possibilities of residue tasks. These 4 new possibilities of odd tasks from these
two subintervals I3 and I4 would be considered as new possibilities of residue tasks. The four
possibilities are shown in Table 6.

23

#I2 #I3 #I4 #I5 #I6

1 0 0 0 1
1 0 0 0 2
1 0 0 0 3
2 0 0 0 1
2 0 0 0 2
2 0 0 0 3

Table 5: Total 6 possible residue tasks from two subintervals I2 and I6

#I2 #I3 #I4 #I5 #I6

0 1 1 0 0
0 1 2 0 0
0 1 3 0 0
0 1 4 0 0

Table 6: Total 4 possible residue tasks from two subintervals I3 and I4

(6) I3 and I5: None of the loops of the algorithm OddAssign in Figure 6 assigns odd
tasks from I3 and I5 to processor. After first phase, at most 1 task from I3, and at most 2 tasks
from I5 may remain unassigned. When odd tasks exists in both subintervals I3 and I5, there are
(1 × 2=) 2 new possibilities of residue tasks. These 2 new possibilities of odd tasks from these
two subintervals would be considered as new possibilities of residue tasks. The two possibilities
are shown in Table 7.

#I2 #I3 #I4 #I5 #I6

0 1 0 1 0
0 1 0 2 0

Table 7: Total 2 possible of residue tasks from two subintervals I3 and I5

(7) I3 and I6: The second phase assigns odd tasks from I3 and I6 in the third while loop using
OddAssign in Figure 6. The loop terminates when, either (i) at least one of the subintervals
I3 or I6 has no tasks, or (ii) there is exactly one task in each subinterval I3 and I6. When
(i) is true, odd tasks could exist in at most one of the subintervals, either in I3 or in I6, but
not in both after second phase. These unassigned tasks in exactly one of the subintervals are
declared as residue tasks. However, these possibility of residue task from at most one subinterval
is already considered in Section B.1. When (ii) is true, exactly one task could exist in each
of the subintervals I3 and I6 after second phase. These unassigned tasks in exactly two of the
subintervals I3 and I6 are declared as a new possibility of residue tasks and this possibility shown
in Table 8.

#I2 #I3 #I4 #I5 #I6

0 1 0 0 1

Table 8: Total 1 possible of residue tasks from two subintervals I3 and I6

24

(8) I4 and I5: The second phase assigns odd tasks from I4 and I5 in the forth while loop using
OddAssign in Figure. 6. The loop terminates when, either (i) at least one of the subintervals
I4 or I5 has no unassigned task , or (ii) there is exactly one task in each subinterval I4 and
I5. When (i) is true, odd tasks could exist in at most one of the subintervals, either in I4 or
in I5, but not in both after second phase. These unassigned tasks in one of the subintervals is
declared as residue tasks. However, these possibility of residue task from at most one subinterval
is already considered in Section B.1. When (ii) is true, exactly one odd task could exist in each
of the subintervals I4 and I5 after second phase. These unassigned tasks in exactly two of the
subintervals I4 and I5 are declared as new possibility of residue tasks and this possibility shown
in Table 9.

#I2 #I3 #I4 #I5 #I6

0 0 1 1 0

Table 9: Total 1 possible of residue tasks from two subintervals I4 and I5

(9) I4 and I6: The second phase assigns odd tasks from I4 and I6 in the fifth while loop using
OddAssign in Figure 6. The loop terminates when, either (i) at least one of the subintervals I4

or I6 has no unassigned task , or (ii) there is 1 odd task in I4 and there is 1–3 tasks in I6. When
(i) is true, odd tasks could exist in at most one of the subintervals, either in I4 or in I6, but
not in both after second phase. These unassigned tasks in one of the subintervals is declared as
residue tasks. However, these possibility of residue task from exactly one subinterval is already
considered in Section B.1. When (ii) is true, one odd task exist in subintervals I4 and one to
three odd tasks exist in I6 after second phase. These unassigned tasks in two of the subintervals
are declared as residue tasks and these (1×3=) 3 possibilities of residue tasks are shown in Table
10.

#I2 #I3 #I4 #I5 #I6

0 0 1 0 1
0 0 1 0 2
0 0 1 0 3

Table 10: Total 3 possible of residue tasks from two subintervals I4 and I6

(10) I5 and I6: None of the loops of the algorithm OddAssign in Figure 6 assigns odd
tasks from I5 and I6 to processors. After first phase, at most 2 tasks in I5 and at most 3 tasks in
I6 may remain unassigned. When odd tasks exists in both subintervals I5 and I6, there are total
(2 × 3=) 6 new possibilities of residue tasks. These 6 new possibilities of odd tasks from these
two subintervals I5 and I6 are considered as new possibilities residue tasks. The six possibilities
are shown in Table 11.

All the 10 ways to select two of the subintervals I2–I6, in which odd tasks may exist after first
phase, are considered. After second phase when odd tasks still remain unassigned in exactly
two subintervals, there are total (2+6+4+2+1+1+3+6)=25 possibilities. These unassigned odd
tasks after second phase are called residue tasks. If residue tasks exist in exactly two subintervals,
the possibility of is one of the 25 possibilities for a task set. Each of the 25 possibilities has to
be considered in third phase of task assignment.

25

#I2 #I3 #I4 #I5 #I6

0 0 0 1 1
0 0 0 1 2
0 0 0 1 3
0 0 0 2 1
0 0 0 2 2
0 0 0 2 3

Table 11: Total 6 possibilities of residue tasks from two subintervals I5 and I6

B.3 Case 3: Odd tasks exactly in three subintervals of I2-I6

When odd tasks exists in exactly three subuintervals I2–I6, there are total 5C2 = 10 different
ways to consider odd tasks from exactly three subintervals of I2-I6. For each of the 10 different
ways, if some odd tasks in exactly three of the subintervals I2-I6 remain unassigned after second
phase, then we consider it as a new possibility of residue tasks. However, if odd tasks remain
unassigned in at most two subintervals after second phase, the possibility is same as one of the
possibilities already considered in Section B.1 or Section B.2. Now we consider each of the 10
different ways to consider odd tasks from any two subintervals I2-I6 to assign to processors during
second phase and we determine the number of odd tasks in the three subintervals not assigned
after second phase.

(1) I2, I3 and I4: When odd tasks exist after first phase in subintervals I2, I3 and I4, the first
while loop of OddAssign in Figure 6 would assign tasks from I2 and I4 to processor during
second phase. When the loop terminates, at least one of the subintervals I2 or I4 has no task.
Since at least one of the subintervals has no task, the unassigned odd tasks (if any) from any
of the two subintervals I2 or I4 (but not both), and odd tasks from I3 is necessarily same as
considering odd tasks in at most two subintervals that is already considered in Section B.1 or
Section B.2. So, after second phase no new possibility of residue task is found if odd task exist
in these three subintervals I2, I3 and I4 after first phase.

(2) I2, I3 and I5: When odd tasks exist after first phase in subintervals I2, I3 and I5, the
second while loop of OddAssign in Figure 6 during second phase would assign tasks from I2

and I5 to processor. When the loop terminates, at least one of the subintervals I2 or I5 has no
task. Since at least one of the subintervals has no task, the unassigned odd tasks (if any) from
any of the subintervals I2 or I5 (but not both), and odd tasks from I3 is necessarily same as
considering odd tasks from at most two subintervals that is already considered in Section B.1 or
Section B.2. So, after second phase no new possibility of residue task is found if odd task exist
in these three subintervals I2, I3 and I5 after first phase.

(3) I2, I3 and I6: When odd tasks exist after first phase in subintervals I2, I3 and I6, the third
while loop of OddAssign in Figure 6 would assign tasks from I3 and I6 to processor during
second phase. When the loop terminates, either (i) at least one of the subintervals I3 or I6 has no
task, or (ii) exactly one task exist in each subinterval I3 and I6. When (i) is true, the unassigned
odd tasks (if any) from any of the two subintervals I3 or I6 (not from both), and odd tasks from
I2 is necessarily same as considering odd tasks from at most two subintervals that is already
considered in Section B.1 or Section B.2. When (ii) is true, that is exactly 1 task exist in each
subinterval I3 and I6, and there are at most 2 tasks in I2. There is no loop of OddAssign in
Figure 6 that assign these odd tasks from these three subintervals. So, there are (1× 2=) 2 new
possibilities of residue tasks that might exist in these three subintervals I2, I3 and I6 as shown
in Table 12.

(4) I2, I4 and I5: When odd tasks exist after first phase in subintervals I2, I4 and I5, the
first while loop of OddAssign in Figure 6 would assign tasks from I2 and I4 to processor

26

#I2 #I3 #I4 #I5 #I6

1 1 0 0 1
2 1 0 0 1

Table 12: Total 2 possible residue tasks from three subintervals I2, I3 and I6

during second phase. When the loop terminates, at least one of the subintervals I2 or I4 has no
task. Since at least one of the subintervals has no task, the unassigned odd tasks (if any) from
any of the subintervals I2 or I4 (but not in both), and odd tasks from I5 is necessarily same as
considering odd tasks from at most two subintervals that is already considered in Section B.1 or
Section B.2.So, after second phase no new possibility of residue task is found if odd task exist in
these three subintervals I2, I4 and I5 after first phase.

(5) I2, I4 and I6: When odd tasks exist after first phase in subintervals I2, I4 and I6, the
first while loop of OddAssign in Figure 6 would assign tasks from I2 and I4 to processor
during second phase. When the loop terminates, at least one of the subintervals I2 or I4 has no
task. Since at least one of the subintervals has no task, the unassigned odd tasks (if any) from
any of the subintervals I2 or I4 (but not in both), and odd tasks from I6 is necessarily same as
considering odd tasks from at most two subintervals that is already considered in Section B.1 or
Section B.2. So, after second phase no new possibility of residue task is found if odd task exist
in these three subintervals I2, I4 and I6 after first phase.

(6) I2, I5 and I6: When odd tasks exist after first phase in subintervals I2, I5 and I6, the
second while loop of OddAssign in Figure 6 during second phase would assign tasks from I2

and I5 to processor. When the loop terminates, at least one of the subintervals I2 or I5 has no
task. Since at least one of the subintervals has no task, the unassigned odd tasks (if any) from
any of the subintervals I2 or I5 (but not in both), and odd tasks from I6 is necessarily same as
considering odd tasks from at most two subintervals already considered in Section B.1 or Section
B.2. So, after second phase no new possibility of residue task is found if odd task exist in these
three subintervals I2, I5 and I6 after first phase.

(7) I3, I4 and I5: When odd tasks exist after first phase in subintervals I3, I4 and I5, the
fourth while loop of OddAssign in Figure 6 would assign tasks from I4 and I5 to processor
during second phase. When the loop terminates, either (i) at least one of the subintervals I4 or
I5 has no task, or (ii) exactly one task exist in each subinterval I4 and I5. When (i) is true, the
unassigned odd tasks (if any) from any of the subintervals I4 or I5 (not from both), and odd
tasks from I3 is necessarily same as considering odd tasks from at most two subintervals that is
already considered in Section B.1 or Section B.2. So, no new possibility of residue task is found
when (i) is true. When (ii) is true, that is exactly one task exist in each I4 and I5, and there
could be at most 1 odd task in I3, there is no loop in OddAssign that assign any of these odd
tasks from these three subintervals. So, there is one new possibility of residue tasks that might
exist in these three subintervals I3, I4 and I5 as shown in Table 13.

#I2 #I3 #I4 #I5 #I6

0 1 1 1 0

Table 13: Total 1 possible residue tasks from three subintervals I3, I4 and I5

(8) I3, I4 and I6: When odd tasks exist after first phase in subintervals I3, I4 and I6, the
third while loop of OddAssign in Figure 6 would assign tasks from I3 and I6 to processor
during second phase. When the loop terminates, either (i) at least one of the subintervals I3 or
I6 has no task, or (ii) exactly one task exist in each subinterval I3 and I6. When (i) is true, the

27

unassigned odd tasks (if any) from any of the subintervals I3 or I6 (not from both), and odd
tasks from I4 is necessarily same as considering odd tasks from at most two subintervals that is
already considered in Section B.1 or Section B.2. So, no new possibility of residue task is found.
When (ii) is true, that is exactly one task exist in each I3 and I6, and there could be at most
1-4 odd tasks in I4. Next, the fifth loop in OddAssign would assign tasks from I4 and I6 to
processor during second phase. When the fifth loop terminates, either (iii) at least one of the
subintervals I4 or I6 has no task, or (iv) exactly one task exist in each subinterval I4 and I6.

When (ii) and (iii) are true, the unassigned odd tasks (if any) from any of the subintervals I4

or I6 (not from both), and the one odd task from I3 is necessarily same as considering odd tasks
from at most two subintervals that is already considered in Section B.1 or Section B.2. So, no
new possibility of residue task is found.

When (ii) and (iv) are true, that is exactly one task exist in each I4 and I6, and there could
be at most 1 task in I3. There is no loop of OddAssign that assign such odd tasks from these
three subintervals I3, I4 and I6. So, there is one possibility of residue tasks that might exist in
these three subintervals as shown in Table 13.

#I2 #I3 #I4 #I5 #I6

0 1 1 0 1

Table 14: Total 1 possible residue tasks from three subintervals I3, I4 and I6

(9) I3, I5 and I6: When odd tasks exist after first phase in subintervals I3, I5 and I6, the sixth
while loop of OddAssign in Figure 6 would assign tasks from I3, I5 and I6 to processor during
second phase. When the loop terminates, at least one of the subintervals I3, I5, or I6 has no task.
Since at least one of the subintervals has no task after the first loop terminates, the unassigned
odd tasks (if any) from any of the subintervals I3, I5 or I6 (but not all three) is necessarily same
as considering odd tasks from at most two subintervals that is already considered in Section B.1
or Section B.2. So, after second phase no new possibility of residue task is found if odd task
exist in these three subintervals I3, I5 and I6 after first phase.

(10) I4, I5 and I6: When odd tasks exist after first phase in subintervals I4, I5 and I6, the
fourth while loop of OddAssign in Figure 6 would assign tasks from I4 and I5 to processor
during second phase. When the loop terminates, either (i) at least one of the subintervals I4 or
I5 has no task, or (ii) exactly one task exist in each subinterval I4 and in I5. When (i) is true,
the unassigned odd tasks (if any) from any of the subintervals I4 or I5 (not from both), and odd
tasks from I6 is necessarily same as considering odd tasks from at most two subintervals that is
already considered in Section B.1 or Section B.2. So, no new possibility of residue task is found.
When (ii) is true, then there is exactly one task exist in each I4 and I5, and there are at most 3
tasks in I6. There is no loop of OddAssign that assign tasks from these three subintervals. So,
there are (1×3=) 3 new possibilities of residue tasks that might exist in these three subintervals
as shown in Table 15.

#I2 #I3 #I4 #I5 #I6

0 0 1 1 1
0 0 1 1 2
0 0 1 1 3

Table 15: Total 3 possible residue tasks from three subintervals I4, I5 and I6

28

All the 10 ways to select three of the subintervals I2–I6, in which odd tasks may exist after
first phase, are considered. After second phase when odd tasks still remain unassigned in exactly
three subintervals, the possibility is one of the (2+1+1+3)=7 possibilities of residue tasks. These
unassigned odd tasks after second phase are called residue tasks. If residue tasks exist in exactly
three subintervals, the possibility of is one of the 7 possibilities for any task set. Each of the 7
possibilities has to be considered in third phase of task assignment.

Next we would consider odd task from exactly four subintervals. We find that, the number
of possibilities of having residue tasks in exactly four subintervals is zero.

B.4 Case 4: Odd tasks exactly in four subintervals of I2-I6

When odd tasks exists in exactly four subuintervals I2–I6, there are total 5C4 = 5 different ways
to consider odd tasks from exactly four subintervals of I2-I6. For each of the 5 different ways,
if some odd tasks in exactly five of the subintervals I2-I6 remain unassigned after second phase,
then we consider it as a new possibility of residue tasks. However, if odd tasks remain unassigned
in at most three subinterval after second phase, the possibility is same as one of the possibilities
already considered in Section B.1 or Section B.2 or or Section B.3. Now we consider each of the
5 different ways to consider odd tasks from any four subintervals I2-I6 to assign to processors
during second phase and we determine the number of tasks in the four subintervals not assigned
after second phase.

(1) I2, I3, I4 and I5: When odd tasks exist after first phase in all four subintervals I2, I3,
I4 and I5, the first while loop of OddAssign in Figure 6 would assign tasks from I2 and I4 to
processor during second phase. When the loop terminates, at least one of the subintervals I2 or
I4 has no task. Since at least one of the subintervals has no task when the first loop terminates,
the unassigned odd tasks (if any) from any of the subintervals I2, I3, I4 and I5 is necessarily
same as considering odd tasks from at most three subintervals as already considered in Section
B.1-B.3. So, after second phase no new possibility of residue task is found if odd task exist in
these four subintervals I2, I3, I4 and I5 after first phase.

So, no new possibility of residue task is found.
I2, I3, I4 and I6: When odd tasks exist after first phase in all four subintervals I2, I3, I4 and

I6, the first while loop in OddAssign in Figure 6 would assign tasks from I2 and I4 to processor
during second phase. When the loop terminates, at least one of the subintervals I2 or I4 has
no task. Since at least one of the subintervals has no task after the first loop terminates, the
unassigned odd tasks (if any) from any of the subintervals I2,I3,I4 and I6 is necessarily same as
considering odd tasks from at most three subintervals as already considered in Section B.1-B.3.
So, after second phase no new possibility of residue task is found if odd task exist in these four
subintervals I2, I3, I4 and I6 after first phase.

I2, I4, I5 and I6: When odd tasks exist after first phase in all four subintervals I2, I4, I5

and I6, the first while loop in OddAssign in Figure 6 would assign tasks from I2 and I4 to
processor during second phase. When the loop terminates, at least one of the subintervals I2 or
I4 has no task. Since at least one of the subintervals has no task after the first loop terminates,
the unassigned odd tasks (if any) from any of the subintervals I2,I4,I5 and I6 is necessarily same
as considering odd tasks from at most three subintervals as as already considered in Section
B.1-B.3. So, after second phase no new possibility of residue task is found if odd task exist in
these four subintervals I2, I4, I5 and I6 after first phase.

I2, I3, I5 and I6: When odd tasks exist after first phase in all four subintervals I2, I3, I5

and I6, the second while loop in OddAssign in Figure 6 would assign tasks from I2 and I5 to
processor during second phase. When the loop terminates, at least one of the subintervals I2 or
I5 has no task. Since at least one of the subintervals has no task after the first loop terminates,
the unassigned odd tasks (if any) from any of the subintervals I2,I3,I5 and I6 is necessarily same
as considering odd tasks from only at most three subintervals as already considered in Section

29

B.1, Section B.2 and Section B.3. So, after second phase no new possibility of residue task is
found if odd task exist in these four subintervals I2, I3, I5 and I6 after first phase.

I3, I4, I5 and I6: When odd tasks exist after first phase in all four subintervals I3, I4,
I5 and I6, at least the sixth while loop in OddAssign in Figure 6 would assign tasks from
I3, I5 and I6 to processor during second phase. When the loop terminates, at least one of the
subintervals I3, I5 or I6 has no task. Since at least one of the subintervals has no task after
the first loop terminates, the unassigned odd tasks (if any) from any of the subintervals I3,I4,I5

and I6 is necessarily same as considering odd tasks from at most three subintervals as as already
considered in Section B.1-B.3. So, after second phase no new possibility of residue task is found
if odd task exist in these four subintervals I3, I4, I5 and I6 after first phase.

All the 5 ways to select four of the subintervals I2–I6, in which odd tasks may exist after first
phase, are considered. When odd tasks exist in exactly four of the five subintervals I2-I6 after
first task assignment phase, no new possibility of residue task is found in exactly four subintervals
since second phase can assign all the odd tasks from at least one of the four subintervals such
that residue tasks can exist in at most three subintervals after second phase.

B.5 Case 5: Odd tasks exactly in five subintervals of I2-I6

It is easy to see that, there would never be residue tasks in all five subintervals I2-I6 since residue
tasks from four subintervals are never possible.

In summary, after second phase if residue tasks exist in exactly one of the subintervals of
I2-I6, there are total 12 possibilities as found in Section B.1. If residue tasks exist in exactly two
of the subintervals of I2-I6, there are total 25 possibilities as found in Section B.2. If residue
tasks exist in exactly three of the subintervals of I2-I6, there are total 7 possibilities as found
in Section B.3. There is no possibility to have residue task exactly in four or five subintervals
of I2-I6. So, when residue tasks exists in I2-I6, there are total (12+25+7=) 44 possibilities after
second phase of task assignment. It is proved that, residue tasks in subintervals I2–I6 that need
to be handled in the third phase exist as one of the 44 different possibilities for any task set after
second phase.

We write a C program to generate all the 44 possibilities of residue tasks in I2–I6 for schedu-
lability analysis. The pseudocode of the program is given in Subsection B.6 for the interested
readers to find all the 44 possibilities of residue tasks.

B.6 Pseudocode to Generate All 44 Possibilities of Residue Tasks

For any task set, after second phase of task assignment in IBPSif some residue task exists, then
the residue tasks in subintervals I2–I6 that need to be handled in the third phase exist as one of
the 44 different possibilities. We present the pseudocode GenResidue-44 that is used to find the
number of residue tasks in each of the subinterval I2-I6 for all the 44 possibilities.

The value of each of the five loop variables in line 2-6 represents the number of odd tasks
after first phase in each iteration. In line 7-11 of GenResidue-44, the number of odd tasks in
each subinterval I2-I6 is determined for one of the 360 possibilities after first phase. For each
such possibility, the algorithm OddAssign is called at line 12. If algorithm OddAssign could
not assign all the odd tasks in I2-I6 for such a possibility of odd tasks, and the remaining such
unassigned odd tasks is not considered as a possibility of residue tasks yet (checked at line 13),
then these unassigned odd tasks are declared as one new possibility of residue tasks that need
to be considered in the third phase. We find that, the condition at line 13 is true for exactly 44
times. Each time the condition at line 13 is true, the content of each R[i] is output to represent
the number of residue tasks in the subinterval Ii for i = 2, 3 . . . 6 as one of the 44 possibilities.
All the 44 possibilities of residue tasks is given in Table 16. The rows of the Table 16 are ordered
in such a way that is used as the first six columns for Table 2 in Section 7. Notice that, all the
rows of the Table 16 are formally determined in Sections B.1-B.5.

30

Pseudocode GenResidue-44

1. Initialize Array R[2..6]={0,0,0,0,0} to represent no odd task in I2-I6
2. For i 2=0 to 2
3. For i 3=0 to 1
4. For i 4=0 to 4
5. For i 5=0 to 2
6. For i 6=0 to 3
7. R[0]=i 1
8. R[1]=i 2
9. R[2]=i 3
10. R[3]=i 4
11. R[4]=i 5

comment: we generate R[i] number of task in each Ii

12. Call OddAssign(I2-I6)
13. if some R[i] is not zero and this possibility is not output before then

14. Print all R[i] for i = 2, 3 . . . 6 as one new possibility of residue task after second phase.

Figure 7: Pseudocode to generate all 44 different possibilities of residue task in I2-I6

31

No. #I2 #I3 #I4 #I5 #I6

1 0 0 0 0 1
2 0 0 0 1 0
3 0 0 1 0 0
4 0 1 0 0 0
5 0 0 0 0 2
6 0 0 0 1 1
7 0 0 0 2 0
8 0 0 1 0 1
9 0 0 1 1 0
10 0 1 0 0 1
11 1 0 0 0 0
12 0 0 0 0 3
13 0 0 2 0 0
14 0 1 0 1 0
15 0 0 0 1 2
16 0 0 0 2 1
17 0 1 1 0 0
18 0 0 1 0 2
19 0 0 1 1 1
20 1 0 0 0 1
21 0 0 0 1 3
22 0 1 0 2 0
23 0 0 0 2 2
24 0 0 1 0 3
25 0 0 3 0 0
26 0 1 1 0 1
27 0 1 1 1 0
28 0 0 1 1 2
29 1 1 0 0 0
30 0 1 2 0 0
31 1 0 0 0 2
32 0 0 0 2 3
33 0 0 1 1 3
34 1 0 0 0 3
35 0 0 4 0 0
36 1 1 0 0 1
37 2 0 0 0 0
38 2 0 0 0 1
39 2 1 0 0 0
40 0 1 3 0 0
41 2 0 0 0 2
42 2 1 0 0 1
43 2 0 0 0 3
44 0 1 4 0 0

Table 16: Total 44 possibilities of residue tasks from subintervals I2-I6

32

C Dispatcher

In this appendix, the dispatcher of IBPS is presented. The run time dispatcher of each processor
is very simple: a dispatcher that considers task offset for Rate-Monotonic scheduling is used for
runtime dispatching of tasks for execution. The high-level overview of the runtime dispatcher
for each processor is given in Figure 8. Whenever a non-split task arrives to a processor Θl it is
stored in ready queue Q[l]. When a split task τi arrives to processor Θl, then the first subtask
is stored is ready queue Q[l] while the second subtask is stored in ready queue Q[l + 1]. Each
processor executes the highest priority task from the ready queue.

Algorithm Dispatcher

1. Let each processor Θl has a local queue Q[l] where ready (or preempted tasks) are stored
2. for processors Θl in l ∈ {1 . . . m}
3. When the system starts do

4. Initialize the ready queue Q[l] as empty
5. end do

6. Comment: assume a split task arrives to a processor to which the first split subtask is assigned
7. When any task τi arrives on processor Θl do

8. if task τi is a split task then

9. Store in Q[l] the subtask τi
′ = (Ci

2 , Ti, 0)

10. Store in Q[l + 1] the subtask τ ′′
i = (Ci

2 , Ti,
Ci

2)
11. else

12. Store in Q[l] task τi = (Ci, Ti, 0)
13. end if

14. end do

15. Execute task from Q[l] in RM priority order considering offset of each task.

Figure 8: High level overview of the Run-Time Dispatcher of IBPS

33

