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Abstract

This report presents a probabilistic analysis of a family of simple synchronous round-based consensus algorithms aimed
at solving the 1-of-n selection problem. In this problem, a set of n nodes are to select one common value among a set of n
proposed values. There are two possible outcomes of each node’s selection process: it can decide either to select a value, or
to abort. Agreement implies that all nodes select the same value, or all nodes decide to abort. We analyse this problem under
the assumption of massive communication failures considering symmetric and asymmetric message losses. Previous research
has shown that it is impossible to guarantee agreement among the nodes in a synchronous system subjected to an unbounded
number of message losses. Our aim is to find algorithms for which the probability of disagreement is as low as possible. To
this end, we study how the probability of disagreement varies for three different decision criteria, the optimistic, pessimistic
and the moderately pessimistic. Our results show that that the probability of disagreement varies significantly with the number
of nodes, the number of rounds, and the probability of message loss. In general, the optimistic decision criterion performs
better (has a lower probability of disagreement) than the pessimistic one when the probability of message loss is less than
30% to 70%. On the other hand, the optimistic decision criterion has in general a higher maximum probability of disagreement
compared to the pessimistic decision criterion. Moreover we show that the outcome of the moderately pessimistic decision
criterion generally lies in between the two other decision criteria.
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I. INTRODUCTION

The problem of reaching consensus on a value among a set of cooperating distributed computing units has been studied
extensively over the last thirty years. Despite this, we still lack definite answers to how consensus is best solved in distributed
systems that rely on wireless communication.

A main challenge in solving the consensus problem in wireless distributed systems is that the communication channel
can be subjected to disturbances of varying duration and magnitude. Consequently, we cannot make any assumptions about
the number of messages that can be lost during the execution of a distributed consensus algorithm in such systems. We
know from previous research [1], [2] that it is impossible to construct an algorithm that guarantees consensus in the face of
unrestricted communication failures.

Design of consensus algorithms that minimize the probability of disagreement in the presence of unrestricted communi-
cation failures is an important emerging problem in the area of cooperative systems. Examples of applications that demand
fast and reliable real-time consensus include autonomous and semi-autonomous cooperative systems for improving traffic
safety and fuel-efficiency of road vehicles, such as vehicle platooning, virtual traffic lights1 and coordinated lane change
[3]. Similar demands also emerge in applications for safe and fuel-efficient autonomous manoeuvring of air vehicles.

We are interested in investigating the possibility of using simple deterministic synchronous algorithms for fast consensus in
safety-critical cooperative systems. To this end, we investigate in this paper a family of synchronous round-based consensus
algorithms to solve the 1-of-n selection problem in the presence of symmetric and asymmetric communication failures.

Since we know that we cannot construct an algorithm that solves this problem perfectly, our aim is to find algorithms for
which the probability of disagreement is as low as possible.

In 1-of-n selection, each node (in a system of n nodes) proposes a value and then all nodes must either select the same
value, which has to be one of the proposed values, or decide to abort. Disagreement occurs if some nodes decide to select

1In a virtual traffic light, road vehicles approaching an intersection interact via wireless communication to form a virtual, or imaginary, traffic light.
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a value, while the remaining nodes decide to abort. (The algorithms we study in this paper is safe in the sense that they
guarantee that the nodes will never decide on different values.) As we will show later, the probability of disagreement for
a given algorithm depends in general on three parameters: i) the number of nodes in the system, ii) the number of rounds
of message exchange, and iii) the probability of message loss. In addition, it also depends on the decision criterion that
determines whether a node should decide to abort or to select a value.

The main contributions of this report are as follows. We investigate three practical decision criteria called the optimistic,
pessimistic and moderately pessimistic decision criterion. For these, we present closed-form expressions for calculating the
probability of disagreement in the presence of symmetric communication failures. For asymmetric communication failures,
we use a probabilistic model checking tool to calculate the probability of disagreement. We use this tool and the closed-form
expressions to illustrate how the probability of disagreement varies for different system configurations.

The remainder of the paper is organized as follows. Section II describes the system model and our failure assumptions. In
addition we present the description of the 1-of-n selection algorithm and the three decision criteria. To provide an intuitive
understanding of the impact of the decision criteria, we present in Section III an analysis of a simple system consisting of
two processes executing a two-round consensus algorithm. We present closed-form expressions for calculating the probability
of disagreement for symmetrical communication failures in Section IV. In Section V we briefly describe PRISM [4] the
probabilistic model checking tool which we used to model the 1-of-n selection algorithm. Section VI presents a number of
diagrams that illustrates how the probability of disagreement varies for different protocol configurations. We discuss related
work in Section VII, and finally in Section VIII we conclude and outline some directions for future research.

II. PROTOCOL DESCRIPTION

A. System Model and Failure Assumptions

Our 1-of-n selection algorithm is based on the classical round-based computational model used by many researchers, such
as in [5], [6] and [7]. We consider a synchronous system consisting of a set of n processes. The processes are indexed
respectively with their identifiers as: Π = {p1, . . . , pn}. We assume that processes are fully connected to one another via
wireless broadcast links and that they execute a deterministic protocol in R rounds of message exchange. Each round consists
of three phases: send, receive and compute.

Failures occur as message losses and can occur on any communication link at any time during the execution of the
algorithm. In other words, there are no restrictions on the number, timing or pattern of the lost messages.

We consider two different scenarios for a lost message: (i) when all the intended receivers of the message fail to receive
the message (symmetric message loss), and (ii) when only a subset of the intended receivers fail to receive the message
(asymmetric message loss).

For simplicity, we assume that the nodes are fault-free. Note, however, that a send omission failure of a node is equivalent
to a symmetric message loss, and that a receive omission failure is equivalent to asymmetric message loss where only one
node fails to receive a message.

B. The Consensus Algorithm

Alg. 1 shows the pseudocode of the 1-of-n selection algorithm executed by each process pi ∈ Π. We assume that all
processes initially constructs a message, denoted as msgi, that contains a proposed value (proposedi) and a bit-vector (vi)
of length n that represents the view of process pi. Initially, vi[j] = 0 for all j (i.e., at this point pi has not received any
message from other processes in the system). We define vi as complete if all elements of this vector are set to 1. Similarly,
we define vi as incomplete if at least one element of vi is 0.

Algorithm 1 Generic algorithm for 1-of-n selection (pi)
msgi ← {vi, proposedi};
for r = 1 to R do

begin round
send to all(msgi);
receive from all();
compute(msgi);
end round

end for
execute decision algorithm();
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After initialization, each process iterates the send, receive and compute phases in each of the R rounds. These phases
work as follows:

Send: Process pi ∈ Π broadcasts msgi to all other processes.
Receive: Process pi receives messages from the other n− 1 processes. If pi does not receive a message from process pj

within a bounded time, it assumes that message to be lost.
Compute: Each process pi performs the computations specified for each decision algorithm and updates its local state

including msgi, if necessary.
After a process finishes the send, receive and compute phases for all R rounds, it executes the decision algorithm. At the

end of the execution of the algorithm each process either decides to select a value or decides to abort.
We consider three different decision criteria for the consensus algorithm given in Alg. 1; namely the optimistic decision

criterion, pessimistic decision criterion and the moderately pessimistic decision criterion. Alg. 2 shows the description of the
optimistic decision criterion. Executing the optimistic decision criterion, if the view of a process pi is complete at the end
of the Rth round it selects its proposedi as the highest value. Indeed a process with complete view optimistically assumes
that all the other processes have also complete views and select a value. A process with incomplete view at the end of the
Rth round decides to abort.

Algorithm 2 Optimistic decision criterion (pi)
if vi is complete then

pi selects proposedi;
else

abort;
end if

Alg. 3 shows the compute phase for a process pi executing the optimistic criterion. pi updates proposedi to proposedj
if proposedj > proposedi.Process pi also updates its vi vector at the end of each round as follows: For all the elements of
vj that are set to 1, process pi sets the corresponding elements in vi to 1 also (If it is not already 1).

Algorithm 3 Compute phase: optimistic decision criterion (pi)
∀pj ∈ Π− {pi}
if pi received msgj then

if proposedi < proposedj then
proposedi = proposedj ;

end if . update proposedi

∀pk ∈ Π− {pi, pj}
if (vj [k] = 1 and vi[k] = 0) then

vi[k] = 1;
end if
vi[j] = 1

. update vi
end if

Alg. 4 shows the description of the pessimistic decision criterion. A process pi with incomplete vi at the end of the
execution of the algorithm decides to abort while a process pi with a complete view pessimistically assumes that other
processes do not have complete views unless they confirmed this at some point during R rounds of execution. If process pi
does not receive such confirmations from all processes it decides to abort. We define a vector Ci of size n for each process
pi in order to keep a record of the processes who have sent a confirmation to pi (to confirm that their view is complete).
Initially, Ci[j] = 0 for all j. When (Ci)j is set to 1, it means that pi has received a message from pj showing that vj is
complete. Ci is complete if all of its elements are set to 1. Alg. 5 shows the compute phase for the pessimistic decision
criterion. At the end of all rounds except for the last round, process pi updates its proposed value and its view vector in
the same way as in the compute phase of the optimistic criterion. In addition at the end of all rounds pi updates its Ci, its
confirmation vector, by definition.

Alg. 6 shows the description of the compute phase defined for the moderately pessimistic decision criterion. When a
process as pi receives a message from a process as pj it updates proposedi to proposedj if proposedj > proposedi.
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Algorithm 4 Pessimistic decision criterion (pi)

if vi is complete then
if Ci is complete then

pi selects proposedi;
else

abort;
end if

else
abort;

end if

Algorithm 5 Compute phase: pessimistic decision criterion (pi)
∀pj ∈ Π− {pi}
if pi received msgj then

if r 6= R then
if proposedi < proposedj then

proposedi = proposedj ;
end if . update proposedi
∀pk ∈ Π− {pi, pj}
if (vj [k] = 1 and vi[k] = 0) then

vi[k] = 1;
end if
vi[j] = 1 . update vi

end if
if vj is complete then

Ci[j] = 1;
end if

end if

Algorithm 6 Compute phase: Moderately pessimistic decision criterion (pi)
1: ∀pj ∈ Π− {pi}
2: if pi received msgj then
3: if r 6= R then
4: if proposedi < proposedj then
5: proposedi = proposedj ;
6: end if
7: ∀pk ∈ Π \ {pi, pj}
8: if (vj [k] = 1 and vi[k] = 0) then
9: vi[k] = 1;

10: end if
11: end if
12: end if

Algorithm 7 Moderately pessimistic decision criterion (pi)

1: if vi is complete then
2: if receives some incomplete view in round R then
3: abort;
4: else
5: pi selects the highest value;
6: end if
7: else
8: abort;
9: end if
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Table I
POSSIBLE EXECUTIONS FOR A n = 2, R = 2 SYSTEM

msgi = { vi , proposedi}

Case
round 1 round 2

T1 T2 msg1 msg2 T1 T2 msg1 msg2

1 OK OK [{0},11] [{0},12] OK OK [{1},12] [{1},12]

2 OK OK [{0},11] [{0},12] OK Fail [{1},12] [–]

3 OK OK [{0},11] [{0},12] Fail OK [–] [{1},12]

4 OK OK [{0},11] [{0},12] Fail Fail [–] [–]

5 OK Fail [{0},11] [–] OK OK [{0},11] [{1},12]

6 OK Fail [{0},11] [–] OK Fail [{0},11] [–]

7 OK Fail [{0},11] [–] Fail OK [–] [{1},12]

8 OK Fail [{0},11] [–] Fail Fail [–] [–]

9 Fail OK [–] [{0},12] OK OK [{1},12] [{0},12]

10 Fail OK [–] [{0},12] OK Fail [{1},12] [–]

11 Fail OK [–] [{0},12] Fail OK [–] [{0},12]

12 Fail OK [–] [{0},12] Fail Fail [–] [–]

13 Fail Fail [–] [–] OK OK [{0},11] [{0},12]

14 Fail Fail [–] [–] OK Fail [{0},11] [–]

15 Fail Fail [–] [–] Fail OK [–] [{0},12]

16 Fail Fail [–] [–] Fail Fail [–] [–]

Process pi also updates its vi vector at the end of each round as follows: for all the elements of vj that are set to 1, pi sets
the corresponding elements in vi to 1 (if it is not already 1). The update of its proposed value and its view vector occurs
at the end of all round except for the last round (i.e., round R).

Alg. 7 shows the description of the moderately pessimistic decision criterion. A process pi executing the moderately
pessimistic decision criterion decides to abort if its view, vi is incomplete. Otherwise it checks the second if statement given
at line 2 (See Alg. 7). If pi at round R, receives a message from a process pj indicating that vj is incomplete, process pi
must abort, otherwise it selects its proposedi as the highest value. Process pi disregards the lost messages in the last round
and optimistically assume a complete view for the senders of lost messages.

III. ANALYSIS OF A SIMPLE SYSTEM

In order to provide an intuitive understanding of how the decision criterion influences the probability of the three possible
outcomes of the decision process, i.e., agreement on a value, disagreement, agreement on abort, we will in this section
compare the outcomes of the optimistic and the pessimistic decision criteria for a 1-of-2 selection algorithm using two
rounds of message exchange (i.e., a 1-of-n selection algorithm with n = 2 and R = 2). We assume that the two processes
(called, p1 and p2) respectively propose 11 and 12 as their initial (ranking) values. The objective of the algorithm is to reach
agreement on the highest value proposed by any of the two processes, i.e., the value 12 in our example.

In this algorithm, each of the two processes sends two messages, one in the the first round and one in second round. Thus,
in total four messages are exchanged during the execution of the algorithm. Since we assume that any number of messages
can be lost due to communication failures, there are 24 = 16 permutations of lost and successful messages, see Table I.

The columns denoted T1 refer to transmissions from p1 to p2, while columns denoted T2 refers to transmissions from p2
to p1. A successful message transmission is marked as ’OK’ while a transmission failure is marked as ’Fail’.
The columns denoted msg1 and msg2 state the contents of the messages received by each process in the corresponding

round. msg1 (resp. msg2) is the message received by p2 (resp. p1) from p1 (resp. p2). As explained before, msgi consists
of vi, the view vector of process pi, and proposedi, the value proposed by pi. The content of a message is given within
square brackets. The view vector is given with curly brackets. As an example, [{0},11] indicates that the view vector2 is
{0} (this shows that the process has not yet received a message from the other process) while the proposed value is 11.
‘[–]’ denotes the loss of a message due to a transmission failure. As a further example consider Case 1 in Table I: msg1

2Note that the view vector actually consists of two bits. However, one of the bits represents the process’s view of its own value and this bit is always
set to 1. For simplicity, we have omitted this bit in the example.
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Table II
RESULTS FOR 1-of-2 SELECTION ALGORITHM

AG:AGREEMENT DG: DISAGREEMENT

Case
Optimistic
decision
criterion

Pessimistic
decision
criterion

1 AG(12) AG(12)
2 AG(12) DG
3 AG(12) DG
4 AG(12) AG(abort)
5 AG(12) AG(abort)
6 DG AG(abort)
7 AG(12) AG(abort)
8 DG AG(abort)
9 AG(12) AG(abort)

10 AG(12) AG(abort)
11 DG AG(abort)
12 DG AG(abort)
13 AG(12) AG(abort)
14 DG AG(abort)
15 DG AG(abort)
16 AG(abort) AG(abort)

Table III
COMPARISON OF DECISION CRITERIA, VIEW OF PROCESS p1

Case

msg1 sent
by p1 to
p2 in
round 2

msg2
received
by p1
from p2
in round
2

State of
msg1
after
compute
phase in
round 2

Optimistic
decision
by p1

Pessimistic
decision
by p1

A [{1},12] [{1},12] [{1},12] 12 12

B [{1},12] [{0},12] [{1},12] 12 abort

C [{1},12] [–] [{1},12] 12 abort

D [{0},11] [{1},12] [{1},12] 12 abort

E [{0},11] [{0},12] [{1},12] 12 abort

F [{0},11] [–] [{0},11] abort abort

in round 2 represents the message received by p2 and consists of [{1}, 12]. 12 is the value that p1 proposes in this round.
(p1 receives 12 from p2 in round one, and since 12 is greater than its own value 11, p1 proposes 12 in the second round.)
{1} is the view vector of p1 and is set to 1 because p1 received a message from p2 in the first round. Table II shows
the outcomes of the decision process for the 16 cases shown in Table I. As we can see in Table II there are 9 cases of
agreement on a value, 6 cases of disagreement, one case of agreement on abort for the optimistic decision criterion. For
the pessimistic decision criterion there are one case of agreement on a value, two cases of disagreement, and 13 cases of
agreement on abort.

We now explain the outcomes shown in Table II. To this end, we refer the reader to Table III and Table IV which describe
the six possible variants of information that process p1 and p2 can have after the execution of round 2. These cases are
denoted A to F for p1 in Table III and A’ to F’ for p2 in Table IV.

We will first look at the outcomes of disagreement for the optimistic decision criterion. We start with Case 6 in Table I
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Table IV
COMPARISON OF DECISION CRITERIA, VIEW OF PROCESS p2

Case

msg2 sent
by p2 to
p1 in
round 2

msg1
received
by p2
from p1
in round
2

State of
msg2
after
compute
phase in
round 2

Optimistic
decision
by p2

Pessimistic
decision
by p2

A’ [{1},12] [{1},12] [{1},12] 12 12

B’ [{1},12] [{0},11] [{1},12] 12 abort

C’ [{1},12] [–] [{1},12] 12 abort

D’ [{0},12] [{1},12] [{1},12] 12 abort

E’ [{0},12] [{0},11] [{1},12] 12 abort

F’ [{0},12] [–] [{0},12] abort abort

and II. In this case, the two messages sent by p2 are both lost, whereas the two messages sent by p1 are received by p2. Since
p1 has not received any information from p2, p1 must abort according to Case F in Table III. p2 receives both messages
from p1 and decides to select the value 12 according to Case B’ in Table IV. Hence, p1 and p2 decides differently, which
leads to disagreement. The same the thing happens in Case 11, where the two messages sent by p1 are both lost, whereas
the two messages sent by p2 are received by p1.

In Case 8, p1 decides to abort according to Case F in Table III, while p2 decides on 12 according to Case C’ in Table IV.
Case 12 is the same as Case 8, with p1 and p2 swapped. In Case 14, p1 decides to abort according to Case F in Table III,
while p2 decides on 12 according to Case E’ in Table IV. In Case 15 p2 decides to abort according to Case F’, while p1
decides on 12 according to Case E. These examples illustrates why the decision criterion is called optimistic. Consider Case
15, where p1 decides on 12 although it knows that p2 did not received the message it sent in round 1: p1 optimistically
assumes that the message it sent in round 2 is successfully received by p2.

We now consider the two cases of disagreement for the pessimistic decision criterion shown in Table II. Using the
pessimistic decision criterion a process pi will not decide on a value unless it has received confirmation that the other
process pj has received the value pi sent in round 1. (In the general case of 1-of-n selection, this is ensured by the second if
statement in Alg. 3, which states that a process must have received complete views for all processes in order to decide on
a value.) Thus, it is only for case A in Table III and case A’ in Table IV that the pessimistic decision criterion decides on
a value. This implies that there is disagreement if one of the messages sent in the last round is lost and all other messages
are successful. Clearly, there are two such cases, namely Case 2 and 3 in Table II.

IV. CLOSED-FORM EXPRESSIONS FOR SYMMETRIC COMMUNICATION FAILURES

In this section, we derive closed-form expressions for calculating the probability of disagreement, PDG, for the optimistic,
pessimistic and moderately pessimistic decision criteria in the presence of symmetric communication failures. The derivation
of closed-form expressions for the case of asymmetric communication failures is left for future work.

A. Sketch of Analysis and Useful Propositions

Safety-critical system that requires consensus needs to be predictable in the sense that appropriate level of assurance
regarding any possible outcome of the consensus algorithm is guaranteed before the system is put in mission. To provide
such assurance, the objective in this section is to efficiently count the number of different possibilities (out of total 2n·R

possibilities) such that all the n processes agree/disagree under the assumption of symmetric communication failure. In
addition, given the probability of a message loss, denoted by q (i.e., the probability that a send operation is unsuccessful
due to symmetric communication failure), the probability of agreement/abort/disagreement among all the n processes is also
computed. Such probabilistic analysis is useful, for example, to verify that the system’s probability of disagreement is not
greater than some tolerable limit.

In this section, the detailed analysis of both the optimistic and pessimistic decision criteria for the 1-of-n selection algorithm
is presented in order to efficiently compute the number of possible ways all the processes select the same value (agreement
on a value) or all the processes decide to abort (agreement on abort) or all the processes can neither select the same value
nor can decide to abort (disagreement). In particular, we compute AG, AB, and DG for some given n and R, where

• AG is the total number of ways all processes select the same value (i.e., agreement on a value)
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• AB is the total number of ways all processes decide to abort (i.e., agreement on abort)
• DG is the total number of ways some processes select a value while others decide to abort (i.e., disagreement).

In addition, by considering the probability of a message loss (q), we also compute
• PAG: the probability of agreement on value;
• PAB: the probability of agreement to abort; and
• PDG: the probability of disagreement

of the system where (PAG + PAB + PDG) = 1.
According to the 1-of-n selection algorithm given in Algorithm 1, each of the n processes executes the send operation

in each of the R rounds. Since each send operation can either be successful (message reaches to every other process) or
unsuccessful (message reaches to no process), there are 2n·R possible combinations of all the views of the n processes at
the end of Rth round. Finding AG, AB and DG by considering the exponential number of possible views of all the processes
(a trivial but exhaustive approach) can be computationally prohibitive when n ·R is very large (e.g., n = 20 cars execute the
consensus algorithm for R = 5 rounds in a road intersection). Finding an efficient way to compute AG, AB, and DG is non-
trivial and challenging problem. Our endeavour in Section IV-B and Section IV-C is to address this challenge to efficiently
compute AG, AB, and DG for optimistic and pessimistic criteria, respectively. It will be evident that AG, AB and DG can be
computed in linear time by conducting elegant analysis of each decision making criterion for the 1-of-n selection algorithm.
The following propositions will be useful in Section IV-B and Section IV-C.

Proposition 1. Two or more processes fail to send during all the 1 . . .K rounds if and only if all the n processes have
incomplete view at the end of Kth round.

Proof: (only if part) Assume a contradiction that there is at least one process, say process px, that has complete view
at the end of Kth round. If process px has complete view at the end of Kth round, then each of the processes in set
{p1, . . . , px−1, px+1, . . . pn} successfully sends during one or more of the K rounds. This contradicts the fact that two or
more processes fail to send in all K rounds since |{p1, . . . , px−1, px+1, . . . pn}| = (n− 1).

(if part) Assume a contradiction that zero or one process fails to send in all K rounds. If zero, i.e., no process fails to
send in all K rounds, then the view of each of the n processes is complete at the end of Kth round. And, if exactly one
process fails to send in all the K rounds, then each of the remaining (n − 1) processes successfully sends during at least
one of the K rounds. This implies that the only process that fails to send during all the K rounds has the complete view.
Therefore, if zero or one process fails to send during all K rounds, then at least one process has complete view at the end
of Kth round (contradiction!).

Proposition 2. Each process successfully sends message during at least one of the K rounds if and only if each of the n
processes has complete view at the end of Kth round.

Proof: (only if part) Assume a contradiction that there is at least one process that has incomplete view at the end of
Kth round. This can happen only if there is at least one process fails to send in all the K rounds (contradiction!).

(if part) Assume a contradiction that there is at least one process that fails to send during all the K rounds. This implies
that the view of all the processes cannot be complete at the end of Kth round (contradiction!).

Proposition 3. Exactly one process fails to send in all K rounds if and only if one process has complete view and the
remaining (n− 1) nodes have incomplete view at the end of Kth round.

Proof: It is evident from the proof of Proposition 1 that at most one process can fail to send in all the K rounds if
and only if at least one process has complete view at the end of Kth round. And, according to Proposition 2, no process
fails to send in all the K rounds if and only if all processes have complete view. Combining these two observations, it is
not difficult to see that exactly one process fails in all K rounds if and only if the view of this process is complete while
the views of the remaining (n− 1) nodes are incomplete.

Proposition 1—3 will be useful to find AG, AB and DG for the optimistic decision criterion of the 1-of-n selection algorithm.
Each process select a value or decided to abort based on the different IF conditions of Algorithm 2 and Algorithm 3
respectively for the optimistic and pessimistic criteria. For ease of presentation, we denote C0, C1, C2 the various IF
conditions present in Algorithm 2 and Algorithm 3. The semantics for the conditions C0, C1 and C2 being true or false for
some process p are given below:

• C0 is true: The view of the process is complete.
• C0 is false: The view of process is incomplete.

The analysis of the optimistic decision criterion to find AG, AB and DG is now presented in Section IV-B.
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B. Analysis of Optimistic Decision Criterion

The optimistic decision criterion (given in Algorithm 2) for each process is simple: if the view of a process is complete
(i.e., C0 is true) at the end of the Rth round, then the process selects a value; otherwise, it decides to abort. We determine
AG, AB and DG for optimistic decision criterion in next three subsections.

1) Finding PAG for Optimistic Criterion: We have to determine the number of ways the view of each of the n processes
can be complete at the end of Rth round (i.e., the condition C0 is true for all processes). According to Proposition 2, the
views of all the n processes are complete if and only if each process successfully sends at least once during R rounds. Since
each send operation can either be successful or unsuccessful, there are

∑R
i=1

(
R
i

)
possible combinations for each of which

at least one of the R send operations by some process could be successful. Consequently, there are n processes, we have

AG =

( R∑
i=1

(
R

i

))n

= (2R − 1)n (1)

Note that i send operations of each process are successful while (R− i) send operations of are unsuccessful for each i in
Eq. (1). If q is the probability of a message loss, then the probability that all the nodes selects the a value (i.e., agreement
on value) is given as follows:

PAG =

( R∑
i=1

(
R

i

)
· (1− q)i · qR−i

)n

= (1− qR)n (2)

2) Finding PAB for Optimistic Criterion: We have to find the number of ways the view of each of the n processes can
be incomplete at the end of Rth round (i.e., the condition C0 is false for all processes). According to Proposition 1, the
views of all the n processes are incomplete if and only if at least two processes fail to send during all R rounds. If there are
i processes that fail to send in all the R rounds, where 2 ≤ i ≤ n, then each of the remaining (n− i) processes successfully
sends in at least one of the R rounds. Given some i, 2 ≤ i ≤ n, there are (

∑R
j=1

(
R
j

)
)n−i = (2R − 1)n−i possibilities for

each of which each of the (n− i) processes successfully sends during at least one of the R rounds for some given i. And,
the i processes from n processes can be selected in

(
n
i

)
ways, where 2 ≤ i ≤ n. Consequently, the number of possibilities

all the processes decide to abort is given as follows:

AB =

n∑
i=2

(
n

i

)
· (2R − 1)n−i (3)

Given that the probability of a message loss is q, the probability that exactly i processes fails to send in all R rounds
is (qR)i while the probability that each of the (n − i) processes successfully sends during at least one of the R rounds is
[
∑R

j=1

(
R
j

)
· (1− q)j · qR−j ]n−i = (1− qR)n−i, where 2 ≤ i ≤ n. Consequently, the probability that all the processes agree

to abort is given as follows:

PAB =

n∑
i=2

(
n

i

)
· (qR)i · (1− qR)n−i (4)

3) Finding PDG for Optimistic Criterion: Since (AG + AB + DG ) = 2n·R, the value of DG is computed as follows:

DG = 2n·R − AG − AB (5)

where AG and AB are computed in Eq. (1) and Eq. (10), respectively. Similarly, the probability of disagreement is given as
follows:

PDG = 1− PAG − PAB (6)

where PAG and PAB are computed in Eq. (2) and Eq. (11), respectively. This completes the analysis of the optimistic decision
criteria. Next sections present the analysis for pessimistic criterion.

C. Analysis of Pessimistic Decision Criterion

In this subsection, the closed-form expressions to compute PDG and PAG are presented by analyzing the pessimistic
decision criterion (Algorithm 4) where the probability of a message loss is q.

1) Finding PDG for Pessimistic Decision Criterion: Disagreement occurs if some processes decide to abort while others
decide on a value. According to the pessimistic decision criterion (given in Algorithm 4), if the view of some process, say
process pi, is not complete by round (R − 1), then pi decides to abort. Notice that if process pi does not have complete
view by round (R − 1), it is also guaranteed that none of the other processes can receive a confirmation from process pi
in any round. Consequently, all other processes (regardless whether their views are complete or not) also decide to abort
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and there is no disagreement. The crucial observation is that having complete view by each of the processes at the end of
round (R− 1) is a necessary condition for disagreement. There are two possible ways the views of all the processes can be
complete at the end of round r, where 1 ≤ r ≤ (R− 1):
• Case (i): all the processes have incomplete views by the end of round (r − 1) and all the processes have complete

views in round r, and
• Case (ii) exactly (n − 1) processes have incomplete views by the end of round (r − 1) and all the processes have

complete views in round r.
Notice that other than these two cases, there is no other case in round r for which disagreement may occur. Given that
the views of all the processes are complete at round r, to compute the probability of disagreement, we have to consider
that exactly one process, say process px, receives confirmation from all other processes while others do not receive all
confirmations3. The probability of disagreement for pessimistic decision criterion is computed by analyzing each of the
above two cases.

Analysis of Case (i): For this case, all n processes have incomplete views during rounds (r − 1) and all n processes have
complete views in round r, where 1 ≤ r ≤ R− 1. We consider two different subcases for this case:
• Subcase (i) all the processors have complete views at round r = 1,
• Subcase (ii) all the processors have incomplete views at round (r − 1) and have complete views at round r, where

2 ≤ r ≤ (R− 1).
Subcase (i): The probability that all the processes have complete views at the end of round 1 is (1− q)n. Disagreement

can occur if during rounds 2 . . . R, there is exactly one process, say px, that does not send confirmation in any round while
the other (n − 1) processes send confirmation in at least one of the rounds 2 . . . R. The probability of not sending any
confirmation by px in any round 2 . . . R is q(R−1) and the probability of sending confirmation by each of the processes in
Π − {px} during at least one of the rounds 2 . . . R is (1 − qR−1)n−1. Since the process px can be selected in n possible
ways, the probability of disagreement when all processes have complete views at the end of 1st round is given as follows:

(1− q)n · q(R−1) · (1− qR−1)n−1 · n

Subcase (ii) If the views of all the processes are incomplete at the end of round (r − 1), where 2 ≤ r ≤ (R − 1), then
at least two or more processes have failed to send in all 1, . . . (r − 1) rounds. For a given round r, the probability that all

the processes has incomplete view at the end of (r − 1) rounds is
∑n

i=2

((
n
i

)
(1− qr−1)n−i · q(r−1)·i

)
where i out of n

processes fail to send in all (r − 1) rounds and (n − i) processes successfully send in at least one of the (r − 1) rounds,
where 2 ≤ i ≤ n. Because the view of all the processes are complete at the end of round r for this case, all these i processes
must successfully send during round r and this has the probability (1 − q)i. Therefore, for some given r, the probability
that all the processes have incomplete views at the end of round (r − 1) and have complete views at the end of round r is∑n

i=2

((
n
i

)
(1− qr−1)n−i · q(r−1)·i · (1− q)i

)
.

After the view of all the processes are complete at round r, disagreement occurs if exactly one process, say px, does not
send confirmation in any of the remaining (R−r) rounds (has probability q(R−r)) while each of the other (n−1) processes
send confirmation in at least one of the remaining (R− r) rounds (has probability (1− qR−r)n−1). The process px can be
selected in n possible ways. For a given r, the probability of disagreement for this subcase is

n∑
i=2

((
n

i

)
(1− qr−1)n−i · q(r−1)·i · (1− q)i·

n · q(R−r) · (1− qR−r)n−1

)
Since r ranges from 2 to R− 1, the probability that disagreement occurs when all the processes have complete view at the

end of any round 2 . . . R− 1 is given as follows:

3Note that more than one process receive confirmation from all other processes if and only if each process receives confirmation from all other processes
(i.e., all processes decide on a value).
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R−1∑
r=2

n∑
i=2

((
n

i

)
(1− qr−1)n−i · q(r−1)·i · (1− q)i·

n · q(R−r) · (1− qR−r)n−1

)
Combining the probabilities for subcase (i) and subcase (ii), we have

(
(1− q)n · q(R−1) · (1− qR−1)n−1 · n

)
+

R−1∑
r=2

n∑
i=2

((
n

i

)
(1− qr−1)n−i · q(r−1)·i · (1− q)i·

n · q(R−r) · (1− qR−r)n−1

)

Analysis of Case (ii): For this case, exactly (n − 1) processes have incomplete views during rounds (r − 1) and all the
processes have complete views in round r, where 2 ≤ r ≤ R − 1. This can happen if exactly one process, say px, fails to
send in all the (r − 1) rounds and other (n − 1) processes send at least in one of the (r − 1) rounds. Given a particular
round r, 2 ≤ r ≤ (R− 1), the probability that any one of the n processes fails to send in all the (r− 1) rounds is n · q(r−1)
and the probability that each of the other (n − 1) processes sends in at least one of the (r − 1) rounds is (1 − qr−1)n−1.
The process px must send successfully at round r (has probability (1 − q)) because the views of all the processes are
complete at the end of round r. The probability that the view of each of the processes is complete at the end of round r

is
(
n · q(r−1) · (1 − qr−1)n−1 · (1 − q)

)
. Since the view of process px is complete at the end of round r − 1, the send

operation by process px in round r is also the confirmation of px to all other processes.
After the view of all the processes are complete in round r, disagreement occurs if exactly one process, say py , where

px 6= py , does not send confirmation in any of the remaining (R − r) rounds (has probability q(R−r)) while each of the
other (n− 2) processes in Π− {px, py} send confirmation in at least one of the remaining (R− r) rounds (has probability
(1 − qR−r)n−2). The process py can be selected in (n − 1) possible ways from set Π − {px} and the probability of
disagreement, given than all processes have complete views at round r, is equal to

n · qr−1 · (1− qr−1)n−1 · (1− q) · (n− 1) · q(R−r) · (1− qR−r)n−2

Since r ranges from 2 to R − 1, the probability of disagreement, given that all the processes have complete views in any
of the 2 . . . R− 1 rounds, is given as follows:

R−1∑
r=2

(
n · qr−1 · (1− qr−1)n−1 · (1− q)·

(n− 1) · q(R−r) · (1− qR−r)n−2

)

Combining the probabilities for case (i) and case (ii), the probability of disagreement for the pessimistic decision criterion
is computed as follows:
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PDG =

(
(1− q)n · q(R−1) · (1− qR−1)n−1 · n

)
+

R−1∑
r=2

n∑
i=2

((
n

i

)
(1− qr−1)n−i · q(r−1)·i · (1− q)i·

n · q(R−r) · (1− qR−r)n−1

)
(7)

+

R−1∑
r=2

(
n · qr−1 · (1− qr−1)n−1 · (1− q)·

(n− 1) · q(R−r) · (1− qR−r)n−2

)

2) Finding PAG for Pessimistic Decision Criterion: Agreement occurs if all processes decide to select a value. According
to the pessimistic decision criterion (given in Algorithm 4), a process pi decides to select a value if its view is complete by
round (R− 1). In addition if pi receives confirmation from all other nodes. The crucial observation is that having complete
view by each of the processes at the end of round (R− 1) is a necessary condition for agreement. There are two possible
ways the views of all the processes can be complete at the end of round r, where 1 ≤ r ≤ (R− 1):
• Case (i): all the processes have incomplete views by the end of round (r − 1) and all the processes have complete

views in round r, and
• Case (ii) exactly (n − 1) processes have incomplete views by the end of round (r − 1) and all the processes have

complete views in round r.
Notice that other than these two cases, there is no other case in round r for which agreement may occur. Given that the
views of all the processes are complete at round r, to compute the probability of agreement, we have to consider that each
process received confirmation from all other processes. The probability of agreement PAG for pessimistic decision criterion
is computed by analyzing each of the above two cases.

Analysis of Case (i): For this case, all n processes have incomplete views during rounds (r − 1) and all n processes have
complete views in round r, where 1 ≤ r ≤ R− 1. We consider two different subcases for this case:
• Subcase (i) all the processors have complete views at round r = 1,
• Subcase (ii) all the processors have incomplete views at round (r − 1) and have complete views at round r, where

2 ≤ r ≤ (R− 1).
Subcase (i): The probability that all the processes have complete views at the end of round 1 is (1 − q)n. Agreement

can occur if during rounds 2 . . . R, each of the n processes successfully sends (confirmation) in at least one of the 2 . . . R
rounds. The probability of sending any confirmation by one process in any round 2 . . . R is (1− q(R−1)) and the probability
of sending confirmation by all the n processes in (1− q(R−1))n. The probability of agreement when all the processes have
complete views at the end of 1st round is given as follows:

(1− q)n · (1− qR−1)n

Subcase (ii) If the views of all the processes are incomplete at the end of round (r − 1), where 2 ≤ r ≤ (R − 1), then
at least two or more processes have failed to send in all 1, . . . (r − 1) rounds. For a given round r, the probability that all

the processes has incomplete view at the end of (r − 1) rounds is
∑n

i=2

((
n
i

)
(1− qr−1)n−i · q(r−1)·i

)
where i out of n

processes fail to send in all (r − 1) rounds and (n − i) processes successfully send in at least one of the (r − 1) rounds,
where 2 ≤ i ≤ n. Because the view of all the processes are complete at the end of round r for this case, all these i processes
must successfully send during round r and this has the probability (1 − q)i. Therefore, for some given r, the probability
that all the processes have incomplete views at the end of round (r − 1) and have complete views at the end of round r is∑n

i=2

((
n
i

)
(1− qr−1)n−i · q(r−1)·i · (1− q)i

)
.

After the view of all the processes are complete at round r, agreement occurs if during rounds (r + 1) . . . R, each of the
n processes successfully sends (confirmation) in at least one of the (r + 1) . . . R rounds. The probability of sending any
confirmation by one process in any round (r + 1) . . . R is (1− q(R−r)) and the probability of sending confirmation by all
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the n processes in (1− q(R−r))n. The probability of agreement when all the processes have complete views at the end of
rth round is given as follows:

n∑
i=2

((
n

i

)
(1− qr−1)n−i · q(r−1)·i · (1− q)i·

(1− q(R−r))n
)

Since r ranges from 2 to R − 1, the probability that disagreement occurs when all the processes have complete view at
the end of any round 2 . . . R− 1 is given as follows:

R−1∑
r=2

n∑
i=2

((
n

i

)
(1− qr−1)n−i · q(r−1)·i · (1− q)i·

(1− q(R−r))n
)

Combining the probabilities for subcase (i) and subcase (ii), we have

(1− q)n · (1− qR−1)n +

R−1∑
r=2

n∑
i=2

((
n

i

)
(1− qr−1)n−i · q(r−1)·i · (1− q)i·

(1− q(R−r))n
)

Analysis of Case (ii): For this case, exactly (n − 1) processes have incomplete views during rounds (r − 1) and all the
processes have complete views in round r, where 2 ≤ r ≤ R − 1. This can happen if exactly one process, say px, fails to
send in all the (r − 1) rounds and other (n − 1) processes send at least in one of the (r − 1) rounds. Given a particular
round r, 2 ≤ r ≤ (R− 1), the probability that any one of the n processes fails to send in all the (r− 1) rounds is n · q(r−1)
and the probability that each of the other (n − 1) processes sends in at least one of the (r − 1) rounds is (1 − qr−1)n−1.
The process px must send successfully at round r (has probability (1 − q)) because the views of all the processes are
complete at the end of round r. The probability that the view of each of the processes is complete at the end of round r

is
(
n · q(r−1) · (1 − qr−1)n−1 · (1 − q)

)
. Since the view of process px is complete at the end of round r − 1, the send

operation by process px in round r is also the confirmation of px to all other processes.
After the view of all the processes are complete in round r, agreement occurs if each of the (n − 1) other processes

in (Π − {px}) successfully sends in at least one of the remaining (R − r) rounds (has probability (1 − qR−r)n−1). The
probability of agreement, given than all processes have complete views at round r, is equal to

n · qr−1 · (1− qr−1)n−1 · (1− q) · (1− qR−r)n−1

Since r ranges from 2 to R− 1, the probability of disagreement, given that all the processes have complete views in any
of the 2 . . . R− 1 rounds, is given as follows:

R−1∑
r=2

(
n · qr−1 · (1− qr−1)n−1 · (1− q) · (1− qR−r)n−1

)

Combining the probabilities for case (i) and case (ii), the probability of disagreement for the pessimistic decision criterion
is computed as follows:
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PAG = (1− q)n · (1− qR−1)n +

R−1∑
r=2

n∑
i=2

((
n

i

)
(1− qr−1)n−i · q(r−1)·i · (1− q)i· (8)

(1− q(R−r))n
)

+

R−1∑
r=2

(
n · qr−1 · (1− qr−1)n−1 · (1− q) · (1− qR−r)n−1

)

It is not difficult to see that the above equation can be computed in polynomial time. It is not difficult to see that the
above equation can be computed in polynomial time. The probability of abort is PAB = 1− PDG − PAG where PDG and
PAG are computed in Eq. (7) and Eq. (8), respectively.

D. Analysis of Moderately Pessimistic Decision Criterion

In this subsection, we present the closed-form expressions to compute PDG and PAB by analyzing the moderately
pessimistic decision criterion (See Alg 7) assuming symmetric message losses with the probability of q.

1) Finding PDG for Moderately Pessimistic Decision Criterion: Same as for other decision criteria, disagreement occurs
if some processes select a value while some other decide to abort. We assume there is a set of processes Πx which decide
to select a value, while all other processes as pk in Π− Πx decide to abort. There are two conditions for a process as px
to decide on selecting a value. First px should have complete view by the end of round R− 1. Second, process px should
not receive any message from any process indicating that their view is incomplete at round R.

We show that the set Πx consists of exactly one process (we call this process as px). We prove this using contradiction.
Our assumptions are as follows:

Assumption 1
There are two processes, px and px′ , in Πx which decide to select a value.

Assumption 2
All processes in Π−Πx decide to abort.

Based on Assumption 1 process px must have complete view at the end of round R− 1 (See Alg. 7). This means that all
messages sent from the n− 2 processes in Π−Πx and px′ are successfully delivered in at least one of the R− 1 rounds.
Also from Assumption 1 we know that process px′ must have complete view at the end of round R−1 and this shows that
all messages sent from the n− 2 processes in Π−Πx and px are successfully delivered in at least one of the R− 1 rounds.
Therefore we can conclude that according to Assumption 1, messages sent from all processes in (Π−Πx)∪ {px} ∪ {px′}
are successfully delivered in at least one of the R − 1 rounds. Obviously (Π− Πx) ∪ {px} ∪ {px′} indicates the set of all
processes (i.e., Π). In other words from Assumption 1 and Proposition 2 we can conclude that all processes have successfully
delivered their messages in at least one of the R− 1 rounds, which results in complete views for all n processes by the end
of round R− 1. This contradicts Assumption 2.

So using proof with contradiction we showed that there is exactly one process in Πx, as px which has a complete view at
the end of round R− 1 while all other processes have incomplete views at this point and in order for px to decide to select
a value it must not receive any message from other n− 1 processes in round R. Eq. (9) shows the closed form solution to
calculate the probability of disagreement for moderately pessimistic decision criterion.

PDG = n · qR−1 · (1− qR−1)n−1 · qn−1 (9)

We explain Eq. (9) as follows. As exactly one process as px has a complete view at round R− 1, none of the other n− 1
processes have received a message from px during R− 1 rounds with the probability of qR−1 · (1− qR−1)n−1. On the other
hand qn−1 refers to the probability that all messages sent from the n− 1 processes in Π−Πx are lost in round R. Finally
the process px can be selected in n possible ways from n processes (See Eq. (9)).

2) Finding PAB for Moderately Pessimistic Decision Criterion: In order to derive the closed form solution to calculate
the probability of abort we consider two cases.

Case (i): All processes have incomplete views by the end of round R− 1.
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Case (ii): Some processes in the set of Πx have complete views by the end of round R − 1 but in round R they
receive incomplete views from all or some of the processes in Π−Πx. As a result they decide to abort.

First we explain how we calculate the probability for Case (i). We have to find the number of ways the view of each of
the n processes can be incomplete at the end of round R − 1. This case is similar to calculate the probability of abort in
Section. IV-B2 for the optimistic approach when the total number of rounds are R− 1. So according to Proposition 1, the
views of all the n processes are incomplete if and only if at least two processes fail to send during all R−1 rounds. If there
are i processes that fail to send in all the R − 1 rounds, where 2 ≤ i ≤ n, then each of the remaining (n − i) processes
successfully sends in at least one of the R− 1 rounds. Given some i, 2 ≤ i ≤ n, there are (

∑R
j=1

(
R
j

)
)n−i = (2R − 1)n−i

possibilities for each of which each of the (n − i) processes successfully sends during at least one of the R − 1 rounds
for some given i. And, the i processes from n processes can be selected in

(
n
i

)
ways, where 2 ≤ i ≤ n. Consequently, the

number of possibilities that all the processes have incomplete views by round R− 1 is given as follows:

Case(i) =

n∑
i=2

(
n

i

)
· (2R − 1)n−i (10)

Given that the probability of a message loss is q, the probability that exactly i processes fail to send in all R− 1 rounds
is (qR−1)i while the probability that each of the (n− i) processes successfully send during at least one of the R− 1 rounds
is [
∑R−1

j=1

(
R−1
j

)
· (1 − q)j · qR−1−j ]n−i = (1 − qR−1)n−i, where 2 ≤ i ≤ n. Consequently, the probability that all the

processes given in Case(i) agree to abort is given as follows:

PCase(i) =

n∑
i=2

(
n

i

)
· (qR−1)i · (1− qR−1)n−i (11)

Now we explain how we calculate the probability of Case(ii). First we prove that the set of Πx consists of exactly one
process as px. We show the proof by contradiction. We consider the following assumptions:

Assumption 1
Process px and px′ in Πx decide to abort. They both have complete views by the end of round R− 1 but in round
R they receive incomplete from some or all processes in Π−Πx.

Assumption 2
All processes in Π−Πx have incomplete views by round R− 1 and as a result they all decide to abort.

Based on Assumption 1 process px must have complete view at the end of round R− 1 (See Alg. 7). This means that all
messages sent from the n−2 processes in Π−Πx and px′ are successfully delivered in at least one of the R−1 rounds. From
Assumption 1 we know that process px′ has also complete view at the end of round R−1 and this shows that all messages
sent from the n−2 processes in Π−Πx and px are successfully delivered in at least one of the R−1 rounds. Therefore we
can conclude that according to Assumption 1, messages sent from all processes in (Π−Πx)∪{px}∪{px′} are successfully
delivered in at least one of the R − 1 rounds. Obviously (Π − Πx) ∪ {px} ∪ {px′} indicates the set of all processes (i.e.,
Π). In other words from Assumption 1 and Proposition 2 we can conclude that all processes have successfully delivered
their messages in at least one of the R− 1 rounds, which results in complete views for all n processes by the end of round
R− 1. This contradicts Assumption 2.

So Πx consists of exactly one process as px which fails to send its message in in all R−1 rounds. This happens with the
probability of qR−1. As a result n−1 processes have incomplete views by the end of round R−1. All other n−1 processes
successfully deliver their message at least once during R−1 rounds of execution, so that the view of px is complete by round
R− 1. In round R, px receives incomplete views from at least one of n− 1 processes with the probability of (1− qn−1).
As a result px decides to abort.

Eq. 12 shows the probability of case(ii). Then in Eq. 13 the probability of reaching to an agreement on abort is given,
which is the sum of the probabilities of two cases, case (i) and (ii).

PCase(ii) = n · (1− qR−1)n−1 · qR−1 · (1− qn−1) (12)

P(AB) = n · (1− qR−1)n−1 · qR−1 · (1− qn−1) +

n∑
i=2

(
n

i

)
(1− qR−1)n−i · (qR−1)i (13)
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Eq. 14 shows how we can calculate the probability of agreement on a value, considering that we have the given closed
form solutions to calculate the probability of disagreement and abort.

PAG = 1− PDG − PAB (14)

V. PROBABILISTIC MODEL CHECKING OF THE 1-of-n SELECTION ALGORITHM

We model the given consensus algorithm in Section II-B using a probabilistic model checking tool, PRISM [4]. We assume
the given system model and failure assumptions in Section II-A.

Model checking is the problem of automatically checking whether a model of a system satisfies it specifications or not. A
model checker receives as an input a state transition model and a specification, and it verifies whether the given model satisfies
the specification. In the case of probabilistic model checking, the state transition model contains stochastic behaviour, such
as the probabilistic choice among enabled transitions. The probabilistic model checker performs the reachability analysis of
the transition system and, in addition, it calculates the likelihoods of reaching the states using numerical methods.

PRISM supports four different classes of models: discrete time Markov chain (dtmc); Markov decision process (mdp),
continuous time Markov chain (ctmc), and probabilistic timed automata (pa). Among these models, we do not use ctmc
and pa since the consensus algorithm does not require the modelling of time intervals. Both dmtc and mdp allow the
specification of the deterministic and probabilistic transitions. For probabilistic transitions, the choice of the next state
is determined by a discrete probability distribution. The difference between mdp and dmtc is that mdp also allows the
specification of non-deterministic transitions (not associated with any probability distribution), while dmtc does not. As
the consensus algorithm does not require the use of non-deterministic transition, we define the models of the consensus
algorithm as dmtc.

Following we describe in detail the PRISM models which we designed in order to verify the correctness of the 1-of-n
selection algorithm under the given failure assumptions in a probabilistic manner. Using PRISM we calculate the probability
of reaching to an agreement on a value, the probability of all processes deciding to abort and finally the probability of
having disagreement among the processes.

We start with explaining the PRISM model we designed for a system consisting of three processes with the assumption
of having symmetric and asymmetric communication failures only. Then in the next sections, we show how the PRISM
models can be modified for systems with more processes.

A. PRISM Model For Three Processes With Symmetric Failure Model

1) Model Overview: Our PRISM model is composed of three parts: declarations, modules and expressions. Declarations
contain the list of constant values and global variables. The modules describe the behaviour of the processes; Each process
is defined as a module. The message exchange among processes is modelled using global variables that are written/read
by the modules. expressions are the expressions that can be used to avoid repetition of code in the module definition.
Synchronization among processes is achieved using a global variable (called token) and the decision criteria are embedded
in expressions.

Before explaining each part in detail we look at an overview of a process module. Modules in general are divided in two
parts: declaration of local variables and description of transitions. Fig. 1 illustrates the module of a process. Table V describes
the transitions defined for a process. There are four states assumed for a process, S0, S1, S2 and S3. The probabilistic
choice occurs between states S1 and S2 and corresponds to the cases where a message is successfully transmitted with the
probability of (1− q) or is lost with the probability of q. S3 refers to the state in which the process is in its last round of
execution. S0 is the final state and a process in this state should decide either to select a value or to abort.

Figure 1. Process model for symmetric failures
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Table V
TRANSITIONS FOR THE SYMMETRIC FAILURE MODEL

Transition From
To

Probability
Description

T1 S1 S2 1-q Process succeed in sending its
message

T1 S1 S2 q Process fails in sending its
message

T2 S2 S1 1

Not last round: process
receives the messages and
computes the round (not last
round)

T3 S2 S3 1

Last round: The process
receives the messages and
computes the round (last
round)

T4 S3 S0 1 Make a decision (agree or
abort)

2) Global Declarations: Constants: The first line of a PRISM model declares its class which in our case is (dtmc).
Then we insert the list of constant values. The given constant values in Listing 2 define the system settings under which the

1 dtmc

Listing 1. Declaring the class of the PRISM Model

1-of-n selection algorithm is run: the number of processes (N), the number of rounds of execution of the algorithm (RN),
the probability of losing a message (q) and finally the decision criterion (DC). Currently, the model supports two different
decision criteria: optimistic (DC=3) and pessimistic (DC=1). Constants N1, N2 and N3 are the processes’ identifiers and

3 const N=3; // Number of processes in the network (N cannot be modified)
4 const RN=2; // Number of rounds in the protocol (RN>=2)
5 const double q; // Probability of losing a message (0<=q<=1)
6 const DC=3; // Decision criterion: OP=1; PS=3;

Listing 2. Declaring the constant variables

are used to define which process has the token and shall fire the next transition (see expression next in Section V-B7).
Constant v_max defines the highest value among the processes’ initial values and is used to limit the range of the variables
that stores processes’ values. Constants v1_ini, v2_ini and v3_ini store the initial value for each process. These
values can be chosen randomly between 1 and v_max. We know that the choice of the initial values does not affect the
results of the algorithm. Regardless of the number of failures, if a process decides to select a value it selects the correct
value. Therefore we leave the choice of defining the initial values to the user instead of implementing them as a probabilistic
choice in the model, which unnecessarily increases the number of states and transitions.
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8 const N1=1; // Identity number of Process 1
9 const N2=2; // Identity number of Process 2

10 const N3=3; // Identity number of Process 3

Listing 3. Declaring the processes’ identities

12 const v_max=2; // Maximum value of a process
13 const v1_ini=1; // Initial value of Process 1
14 const v2_ini=2; // Initial value of Process 2
15 const v3_ini=1; // Initial value of Process 3

Listing 4. Declaring the processes’ initial values

Finally, constants not_last and last are used to define which process receives the token after the current process
(see expression next in Section V-A4).

17 const not_last=1; // Auxiliary constant to define the next process
18 const last=0; // Auxiliary constant to define the next process

Listing 5. Declaring auxiliary constants

3) Global Declarations: Global Variables: We use global variables to model the message exchange among processes.
At each round, each process writes its current value and view in the global variables and reads the values and views of the
other processes.

Variable vi_ext contains the value of Process i and must be defined within the range of [0..v_max]. As the range
of acceptable values is between 1 and v_max, value 0 is used to indicate the loss of a message sent by a process as
Process i.

20 global v1_ext : [0..v_max] init 0; // Message value of Process 1
21 global v2_ext : [0..v_max] init 0; // Message value of Process 2
22 global v3_ext : [0..v_max] init 0; // Message value of Process 3

Listing 6. Declaring auxiliary constants

Variable wi_vj_ext contains the Process i ’s view of Process j. This variable is boolean and indicates whether
or not Process i has received the value of Process j during the previous rounds.

24 global w1_v2_ext : bool init false; // Process 1 view of Process 2
25 global w1_v3_ext : bool init false; // Process 1 view of Process 3
26
27 global w2_v1_ext : bool init false; // Process 2 view of Process 1
28 global w2_v3_ext : bool init false; // Process 2 view of Process 3
29
30 global w3_v1_ext : bool init false; // Process 3 view of Process 1
31 global w3_v2_ext : bool init false; // Process 3 view of Process 2

Listing 7. Declaring auxiliary constants

The global variable token is used to coordinate the processes and is within the range of [1..N]. token’s value indicates
the identifier of a process that must perform the next transition. When token=2, only a transition of Process 2 can
be enabled. When Process 2 performs the enabled transition it passes the token to the next process (Process 3) by
assigning a new value to it token=3, then only a transition of Process 3 can be enabled.

The variable m_lost stores the number of lost messages during an execution of the algorithm. This variable is used for
verification purposes (e.g. to determine the minimum number of lost messages which results in having disagreement among
processes).

33 global token : [1..N] init 1; // Token used to coordinate the processes
34 global m_lost : [0..(RN*N)] init 0; // Number of lost messages

Listing 8. Declaring auxiliary constants
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Table VI
VALUES OF THE VARIABLES FOR THE NEXT EXPRESSION.

Process N1 not_last next

1 1 1 2

2 N2=2 1 3

3 N2=3 last=0 1

Table VII
REPLACEMENT OF VARIABLES OF V1_NEW EXPRESSION.

Process1 v1 v2_ext v3_ext

Process2 v2 v3_ext v1_ext

Process3 v3 v1_ext v2_ext

4) Global Declarations: expressions: The given expressions in the following are defined from the perspective of Process
1, i.e., with the appropriate variables for Process 1. Then, when we define the modules for other processes, we must
indicate how the global and local variables are replaced, so that the same expression can be used by other processes. The

36 formula next = N1*not_last+1; // Define the next process to receive the token

Listing 9. Definition of next expression

first expression (next) determines the next value of the token. Table VI shows how the variables defined for the next
expression vary for each process. In the case of Process 1, the variables are not replaced, as the expression is defined
from the perspective of this process. For Process 2, N1 is replaced by N2 and not_last is not replaced, resulting in
next=3. Finally, for Process 3, N1 is replaced by N3 and not_last is replaced by the constant last (defined as
0), which results in next=1.

The expression v1_new computes the new value of a process after a round by comparing the current value (v1, which
is an internal variable of the module Process 1) with the values received from other processes (v2_ext and v3_ext).
Table VII presents how the variables of this expression are replaced when it is used by Process 2 and Process 3.
Additional explanations about how to redefine variables for other processes are given in Section V-B7.

38 formula v1_new = max(v1,v2_ext,v3_ext); // Process 1 compute new value

Listing 10. Definition of expression v1_new

The boolean expressions w1_v2_new and w1_v3_new compute the view that Process 1 has of Process 2 and
Process 3, respectively. For the case of w1_v2_new the result is true if at least one of the following conditions is
satisfied:

1) It was already true in the previous round (w1_v2 is true, w1_v2 is an internal variable of the module Process 1);
2) Process 1 received the message of Process 2 in the current round (v2_ext!=0); or
3) Process 1 received the message of Process 3 and Process 3 has received the message from Process 2

in a previous round (w3_v2_ext is true).
We observe that, in the case of symmetric failure, the last condition is equal to the first one (when Process 3 receives

the message, Process 1 also receives it). However, we leave this condition on the expression in order to be consistent
with the given algorithm. Table VIII and IX present how the variables of these expressions are replaced when they are used

40 formula w1_v2_new = w1_v2 | (v2_ext!=0) | w3_v2_ext; // Process 1 update its view of Process 2
41 formula w1_v3_new = w1_v3 | (v3_ext!=0) | w2_v3_ext; // Process 1 update its view of Process 3

Listing 11. Processes update their views v1_new

by Process 2 and Process 3. We observe that in the case of Process 2, the expression w1_v2_new determines
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Table VIII
REPLACEMENT OF VARIABLES OF W1_V2_NEW EXPRESSION.

Process1 w1_v2 v2_ext w3_v2_ext

Process2 w2_v3 v3_ext w1_v3_ext

Process3 w3_v1 v1_ext w2_v1_ext

Table IX
REPLACEMENT OF VARIABLES OF W1_V3_NEW EXPRESSION.

Process1 w1_v3 v3_ext w2_v3_ext

Process2 w2_v1 v1_ext w3_v1_ext

Process3 w3_v3 v2_ext w1_v2_ext

the view that Process 2 has of Process 3, and in the case of Process 3, it determines the view that Process 3
has of Process 1.

expression w1_c2_new determines whether or not Process 1 has received confirmation from Process 2 indicating
that its view is complete. The result is a boolean value that is true if at least one of the following conditions is satisfied:

1) It was already true in the previous round (w1_c2 is true, w1_c2 is an internal variable of the module Process 1);
2) The message received from Process 2 in the current round shows that Process 2 has a complete view (w2_v1_ext

and w2_v3_ext are true).
Table X presents how the variables of this expression are replaced when it is used by Process 2 and Process 3.

43 formula w1_c2_new = w1_c2 | (w2_v1_ext & w2_v3_ext); // Process 1 knows that Process 2 view is complete
44 formula w1_c3_new = w1_c3 | (w3_v1_ext & w3_v2_ext); // Process 1 knows that Process 3 view is complete

Listing 12. expressions to verify the completeness of views

The next expressions verify the decision criteria and provide a boolean outcome: true means to decide on a value and
false means decide to abort. For these expressions, the replacement of variables when the expression is called by Process
2 and Process 3 is the same as indicated in the previous tables (see also Section V-B7). The expression decision_OP
verifies whether or not Process 1 has a complete view, i.e, has the view of Process 2 (w1_v2 is true) and Process
3 (w1_v3).

46 // Optimistic Decision
47 formula decision_OP = w1_v2 & w1_v3; // Process 1 has complete view at RN

Listing 13. Optimistic decicion criterion

It returns true if the view of Process 1 is complete and the received messages are also complete. It is important to
observe that the requirement that the view of Process 1 must be complete at RN-1 is not explicitly embedded in the
expression. This requirement is satisfied by not updating the view of Process 1 in the last round (see Section V-A6).

The expression decision_MP verifies whether or not the view of Process 1 is complete (w1_v2 and w1_v3 are
true) and Process 1 has received a confirmation that Process 2 and Process 3 also have complete view (w1_c2
and w1_c3 are true). Finally, the expression decision combines the three decision criteria in a single expression using
the value of the constant DC.

5) Module Description: Internal Variables: In PRISM, the definition of a module starts with the word module, followed
by its name (Process 1). The internal variables of Process 1 are: its current stage in the execution of the algorithm

Table X
REPLACEMENT OF VARIABLES OF W1-V3-NEW EXPRESSION.

Process1 w1_c2 w2_v1_ext w2_v3_ext

Process2 w2_c3 w3_v2_ext w3_v1_ext

Process3 w3_c1 w1_v3_ext w1_v2_ext
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53 formula decision_PS = w1_v2 & w1_v3 & w1_c2 & w1_c3; // Process 1 has complete view at (RN-1) and has received complete view from all processes at RN

Listing 14. Pessimistic decicion criterion

56 formula decision = ((DC=1) & decision_OP) | ((DC=3) & decision_PS); // Combine all decision criterea in a single formula

Listing 15. General decicion expression

(S1), its current round (RN1), its decision (d1), its current value (v1, initiated as v1_ini), its current views of other
processes’ values (w1_v2 and w1_v3), and its current confirmations that other processes view are complete (w1_c2 and
w1_c3).

59 s1 : [0..3] init 1; // Process 1 current state
60 RN1 : [0..RN] init 0; // Current round
61 d1 : bool init false; // Process 1 decision
62 v1 : [0..v_max] init v1_ini; // Process 1 value
63
64 // Process 1 view of other processes
65 w1_v2 : bool init false; // Process 1 has the view of Process 2
66 w1_v3 : bool init false; // Process 1 has the view of Process 3
67
68 // Process 1 has confirmation that other processes have complete view
69 w1_c2 : bool init false; // Process 1 has confirmation from Process 2
70 w1_c3 : bool init false; // Process 1 has confirmation from Process 3

Listing 16. Process 1 module

The variable S1 assumes its value as described in Table V and Fig. 1 (S1=0 is equivalent to S0, and so on). It is important
to observe that S1 is defined in order to help the organization and understanding of the module. The actual state of the
module results from the combination of the value of all its variables, not only S1.

6) Module Description: Transitions: The definition of a transition starts with square brackets. They are used to specify
the synchronisation of transitions between modules. As the models we describe here have no synchronisation of transitions,
all the transitions described here starts with empty brackets [].

A transition is composed of a guard and an action separated by an arrow: ([] guard → action). The guard is a boolean
expression that specifies the condition under which the transition can be executed. The action specifies how internal and
global variables are updated when the transition is performed. The update of each variable must be included in parentheses.
The parentheses are combined with an & operator. Example: [] guard → (update1) & (update2) & (update3).

In the case of probabilistic transitions, the action is composed of a set of possible actions with the corresponding
probabilities, and separated by plus signals. Example: [] guard → p1: action 1 +p2: action 2 +p3: action 3. As for the case
of deterministic transitions, each action may be composed of one or more updates. We observe that here we broke the text
of a transition in many lines to have a better understanding. In PRISM a transition must be specified in a single line.

The first transition of the module performs the message sending. The guard of this transition specifies that the module must
be in the initial state (S1=1), have the token (RN1=1), and must not have complete the last round (RN1<RN). The condition
m_lost<(RN*N) is added to avoid compilation errors, it assures that the update of m_lost (m_lost′ = m_lost+ 1)
will not violate the variable range ([0..(RN*N)]). With probability of (1−q) the message is sent successfully: the global
variables associated with Process 1’s value (v1_ext) and view (w1_v2_ext and w1_v3_ext) are updated with the
current values of the internal variables. With probability of q the message is lost: the global variable v1_ext receives 0,
w1_v2_ext and w1_v3_ext are set to false, and the number of lost messages (m_lost) is incremented.

In both cases, the current round of Process 1 is incremented (RN1’=RN1+1), the token is passed to the next process
(token’=next), and Process 1 moves to state S1=2.

73 [] s1=1 & token=N1 & RN1<RN & m_lost<(RN*N) -> (1-q):(s1’=2) & (token’=next) & (v1_ext’=v1) & (w1_v2_ext’=w1_v2) & (w1_v3_ext’=w1_v3) & (RN1’=RN1+1) + q:(s1’=2) &
(token’=next) & (v1_ext’=0) & (w1_v2_ext’=false) & (w1_v3_ext’=false) & (RN1’=RN1+1) & (m_lost’=m_lost+1) ;

Listing 17. The message sent from Process 1 is either lost or delivered successfully

The following transition describes the computation of the round when Process 1 is not in the last round (RN1<RN).
When this transition is enabled, all processes have already sent their messages and the token has returned to Process 1
(token=N1). The round computation consists of updating the internal variables of Process 1 (value:v1; views: w1_v2
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and w1_v3; and confirmations: w1_c2 and w1_c3), using the corresponding expressions. Then, the token is passed to
the next process and Process 1 returns to S1=1. The following transition describes the computation of the last round

76 [] s1=2 & token=N1 & RN1<RN -> 1: (s1’=1) & (v1’=v1_new) & (w1_v2’=w1_v2_new) & (w1_v3’=w1_v3_new) & (w1_c2’=w1_c2_new) & (w1_c3’=w1_c3_new) & (token’=next);

Listing 18. The message sent from Process 1 is either lost or delivered successfully

(RN1=RN). The main difference between this and the previous transition is that the value and views of Process 1 are
updated if and only if the decision criterion is the optimistic one (DC=1). The expression x′ = (c)?a : b means that if
c is true x = a, otherwise x = b. Also differently from the previous transition, in this case Process 1 goes to S1=3
and does not pass the token. After computing the last round, Process 1 is at S1=3 and makes a decision using the

79 [] s1=2 & token=N1 & RN1=RN -> 1: (s1’=3) & (w1_c2’=w1_c2_new) & (w1_c3’=w1_c3_new) & (v1’=(DC=1)?v1_new:v1) & (w1_v2’=(DC=1)?w1_v2_new:w1_v2) &
(w1_v3’=(DC=1)?w1_v3_new:w1_v3);

Listing 19. The message sent from Process 1 is either lost or delivered successfully

corresponding expression. It then goes to the final state S1=0 and passes the token to the next process. The module is
closed with end_module.

82 [] s1=3 & token=N1 -> 1: (s1’=0) & (token’=next) & (d1’= decision);
83 endmodule

Listing 20. The process makes the decision

7) Modules of other processes: Process 2 and 3 are defined as a copy of Process 1. In this case, PRISM imposes
that all the internal variables must be renamed. The external variables may be replaced or not by other external variables
that have already been defined in the appropriate section.

The basic idea is that, in the definition of Process 1, a reference to Process 2 (which is the next process after
Process 1), shall be replaced by a reference to Process 3 for the case of Process 2 (Process 3 is the next
process after Process 2). Likewise for the case of Process 3 it should be referenced by Process 1 (which is the
next process after Process 3). Similarly, in the definition of Process 1, a reference to Process 3 (second next
process after Process 1), shall be replaced, in the case of Process 2, by a reference to Process 1 (second next
process after Process 2) and, in the case of Process 3 by a reference to Process 2 (second next process after
Process 3).

The general rule adopted in this work for the definition of a new Process i (1 < i <= N) as a copy of Process 1
is:

For each internal variable, global variable or constant used by Process 1 and named Xj or Xj_Y or Xj _Yw, where
X and Y are the variable names and j and w are references to other processes in the interval [1..N]:
• If (j + i− 1 <= n) and/or (w + i− 1 <= n) than replace it with (j + i− 1) and/or (w + i− 1).
• If (j + i− 1 > n) and/or (w + i− 1 > n) than replace it with (j + i− 1− n) and/or (w + i− 1− n).

Only for the definition of Process i, add the replacement not_last=last. The application of the general rule results
in the following definition of Process 2 and 3:

86 module Process_3=Process_1 [N1=N3, s1=s3, v1=v3, d1=d3, RN1=RN3, w1_v2=w3_v1, w1_v3=w3_v2, w1_c2=w3_c1, w1_c3=w3_c2, v1_ext=v3_ext, v2_ext=v1_ext, v3_ext=v2_ext,
w1_v2_ext=w3_v1_ext, w1_v3_ext=w3_v2_ext, w2_v1_ext=w1_v3_ext, w2_v3_ext=w1_v2_ext, w3_v1_ext=w2_v3_ext, w3_v2_ext=w2_v1_ext, v1_ini=v3_ini, not_last=last]
endmodule

Listing 21. The process makes the decision

8) Verification of properties: We specify the verification properties using an extension of probabilistic temporal logic,
which combines temporal relationships between events with probabilistic quantifiers. The specification language used by
PRISM is named the Probabilistic Computation Tree Logic (PCTL), derived from the well-known Computation Tree Logic
(CTL). We used PCTL to calculate the probability that all processes reach the final state in a given condition (agreement,
abort or disagreement). For this purpose, the following properties are specified: To better understand the given properties
we explain Property (1) given in Listing 22. This property refers to the probability (P=?) that eventually (F) the system
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1 P=? [ F (s1=0)&(s2=0)&(s3=0)&((d1!=d2)|(d2!=d3))]

Listing 22. Property (1), Probability of disagreement

1 P= ? [ F(s1=0)&(s2=0)&(s3=0)&(d1=false)&(d2=false)&(d3=false)]

Listing 23. Property (2), Probability of abort

1 P= ? [ F(s1=0)&(s2=0)&(s3=0)&(d1=true)&(d2=true)&(d3=true)]

Listing 24. Property (3), Probability of agreement

1 P= ? [ F(s1=0)&(s2=0)&(s3=0)&((d1!=d2)|(d2!=d3))&(m-lost=1)]

Listing 25. Property (4), Probability of disagreement with a specific number of lost messages

reaches a state where all the processes are in the final state((s1=1)&(s2=1)&(s3=1)&(s4=1)) and have reached
different decisions((d1!=d2)|(d2!=d3)) (disagreement). One limitation of probabilistic model checking is that due
to the problem of state explosion, we are only able to calculate probabilities for a network with 3 processes. For a larger
number of processes, PRISM is can estimate the value of property using simulation, with a given tolerance and interval of
confidence, or with a fixed number of runs.

B. PRISM Model For Three Processes With Asymmetric Failure Model

1) Model overview: In the case of asymmetric failure, each process may receive or lose a message independently from the
other processes. As a consequence, the number of states and transitions of the process’s module depends on the number of
processes in the network. Generally, the process’s module is composed of N+3 transitions and N+3 states. Fig. 2 illustrates
the module of a process for the case of N=3, while Table XI describes its transitions. For larger number of processes, the
probabilistic transition shall be repeated N-1 times.

2) Global Declarations: Constants : The only modification introduced in the constants’ declaration is the replacement
of constant q with constant Q.

5 const double Q=0.5; // Probability of losing a message (0<=q<=1)

Listing 26. Probability of losing a message

3) Global Declarations: Global Variables : The only modification introduced in the declaration of global variables is the
range of m_lost, which is enlarged to [0.. RN*N*(N-1)].

34 global m_lost : [0..(RN*N*(N-1))] init 0; // Number of lost messages

Listing 27. Number of lost messages

4) Global Declarations: expressions: We assume that in the case of having asymmetric failures, all messages are always
sent, which means that their values and views are always copied the global variables. In order to register the occurrence of
a failure, each Process i has a set of internal variables, named ni_nfj, that indicates whether Process i has received
(ni_nfj = true) or not (ni_nfj= true ) the message of Process j in the last round. The expressions are redefined
in order to consider other processes’ values and views only when they have been received by Process 1. The expression
v1_new for computing the new value of Process 1 uses the condition operator ? to replace the value of v2_ext and
v3_ext with 0 when the corresponding message has not been received by Process 1.

38 formula v1_new = max(v1,(n1_nf2?v2_ext:0),(n1_nf3?v3_ext:0)); // Process 1 compute new value

Listing 28. Process 1 computes new value
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Figure 2. Process model for asymmetric failures

The expressions that compute the views of Process 1 (w1_v2_new and w1_v3_new) are also modified. Taking as
an example w1_v2_new, instead of using v2_next to check if the message of Process 2 has been received, n1_nf2
is used. Also, the view of Process 2 can only be acquired through Process 3 (w3_v2_ext), when the message from
Process 3 has been received (n1_nf3 is true).

40 formula w1_v2_new = w1_v2 | n1_nf2 | (n1_nf3 & w3_v2_ext); // Process 1 update its view of Process 2
41 formula w1_v3_new = w1_v3 | n1_nf3 | (n1_nf2 & w2_v3_ext); // Process 1 update its view of Process 3

Listing 29. Process 1 updates its view

Similarly, the expressions that compute the confirmations of Process 1 (w1_c2_new and w1_c3_new) consider
whether or not the messages have been received by checking n1_nf2 and n1_nf3. The expressions associated with the deci-

43 formula w1_c2_new = w1_c2 | (n1_nf2 & (w2_v1_ext & w2_v3_ext)); // Process 1 knows that Process 2 view is complete
44 formula w1_c3_new = w1_c3 | (n1_nf3 & (w3_v1_ext & w3_v2_ext)); // Process 1 knows that Process 3 view is complete

Listing 30. Process 1 updates its view of completeness of other processes’s view

sion criteria are not modified as they use only internal variables. The only exception is for the expression received_message_complete,
where the condition (vi_ext=0) is replaced by n1_nfi.

5) Module Description: Internal Variables: The range of variable s1 is modified to [0..N+2]. Variables n1_nf2 and

60 s1 : [0..N+2] init 1; // Process 1 current state

Listing 31. Process 1 current state

n1_nf3 are added to the list of internal variables.

65 n1_nf3 : bool init true; // Process 1 has not received the message of Process 3

Listing 32. Status of the message from the other processes

6) Module Description: Transitions: The first transition is modified so that Process 1 always sends its message, i.e.,
copies its value and views to the global variables. A set of N-1 probabilistic transitions are added in order to define, at

77 // Process 1 sends its message;
78 [] s1=1 & token=N1 & RN1<RN -> 1:(s1’=2) & (token’=next) & (v1_ext’=v1) & (w1_v2_ext’=w1_v2) & (w1_v3_ext’=w1_v3) & (RN1’=RN1+1);

Listing 33. Process 1 sends its message
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Table XI
TRANSITIONS FOR THE ASYMMETRIC FAILURE MODEL N=3

Transition From
To

Probability
Description

T1 S1 S2 1 Process 1 sends its message

T2 S2 S3 1-q Process succeed in receiving the
message of Process 2

T2 S2 S3 q Process fails in receiving the
message of Process 2

T3 S3 S4 1-q Process succeed in receiving the
message of Process 3

T3 S3 S4 q Process fails in receiving the
message of Process 3

T4 S4 S1 1
Not last round: process receives the
messages and computes the round
(not last round)

T5 S4 S5 1
Last round: process receives the
messages and computes the round
(last round)

T6 S5 S0 1 Make a decision (agree or abort)

each round, whether or not the message of Process i (1<i<=N) has been received by Process 1. When the message
is lost, n1_nfi is set to false and m_lost is incremented. Finally, for the next transitions, the initial and final values of

80 // Process 1 receives or loses the message of Process 2
81 [] s1=2 & token=N1 & RN1<=RN & (m_lost<(RN*N*(N-1))) -> (1-Q): (s1’=3) & (n1_nf2’=true) + Q: (s1’=3) & (n1_nf2’=false) & (m_lost’=m_lost+1);
82 // Process 1 receives or loses the message of Process 3
83 [] s1=3 & token=N1 & RN1<=RN & (m_lost<(RN*N*(N-1))) -> (1-Q): (s1’=4) & (n1_nf3’=true) + Q: (s1’=4) & (n1_nf3’=false) & (m_lost’=m_lost+1);

Listing 34. Process 1 either receives or loses the message sent by other processes

variable s1 are set according to Fig. 2.
7) Modules of other Processes: The variables n1_nfi must be renamed in the definition of Process 2 and 3.
8) Verification of Properties: No modification is introduced in the list of properties.
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85 // Not last round, Process 1 computes the messages of other processes: updates its value, views and confirmations;
86 [] s1=N+1 & token=N1 & RN1<RN -> 1: (s1’=1) & (v1’=v1_new) & (w1_v2’=w1_v2_new) & (w1_v3’=w1_v3_new) & (w1_c2’=w1_c2_new) & (w1_c3’=w1_c3_new) & (token’=next);
87
88 // Last round, Process 1 computes the messages of other processes: updates its confirmations and, only for OP, updates value and views;
89 [] s1=N+1 & token=N1 & RN1=RN -> 1: (s1’=N+2) & (w1_c2’=w1_c2_new) & (w1_c3’=w1_c3_new) & (v1’=(DC=1)?v1_new:v1) & (w1_v2’=(DC=1)?w1_v2_new:w1_v2) &

(w1_v3’=(DC=1)?w1_v3_new:w1_v3);
90
91 // Process 1 decides -> agree or abort
92 [] s1=N+2 & token=N1 -> 1: (s1’=0) & (token’=next) & (d1’= decision);
93 endmodule

Listing 35. Process 1 state transitions

95 module Process_2=Process_1 [N1=N2, s1=s2, v1=v2, d1=d2, RN1=RN2, n1_nf2=n2_nf3, n1_nf3=n2_nf1, w1_v2=w2_v3, w1_v3=w2_v1, w1_c2=w2_c3, w1_c3=w2_c1, v1_ext=v2_ext,
v2_ext=v3_ext, v3_ext=v1_ext, w1_v2_ext=w2_v3_ext, w1_v3_ext=w2_v1_ext, w2_v1_ext=w3_v2_ext, w2_v3_ext=w3_v1_ext, w3_v1_ext=w1_v2_ext, w3_v2_ext=w1_v3_ext,
v1_ini=v2_ini] endmodule

96 module Process_3=Process_1 [N1=N3, s1=s3, v1=v3, d1=d3, RN1=RN3, n1_nf2=n3_nf1, n1_nf3=n3_nf2, w1_v2=w3_v1, w1_v3=w3_v2, w1_c2=w3_c1, w1_c3=w3_c2, v1_ext=v3_ext,
v2_ext=v1_ext, v3_ext=v2_ext, w1_v2_ext=w3_v1_ext, w1_v3_ext=w3_v2_ext, w2_v1_ext=w1_v3_ext, w2_v3_ext=w1_v2_ext, w3_v1_ext=w2_v3_ext, w3_v2_ext=w2_v1_ext,
v1_ini=v3_ini, not_last=last] endmodule

Listing 36. Process 2 and 3

C. PRISM Model For More Than Three Processes With Symmetric Failure Model

This section describes how to expand the consensus algorithm model described in Section V-A for the case of 4 processes.
The same procedure should be repeated to obtain models with more than 4 processes.

1) Model overview: In the case of symmetric failure no additional transition or state is added to the model of a process.
2) Global Declarations: Constants: The following constants are added or modified: number of processes, identity number

of Process 4, initial value of Process 4.

3 const N=4; // Number of processes in the network (N cannot be modified)
4 const RN=2; // Number of rounds in the protocol (RN>=2)
5 const double q; // Probability of losing a message (0<=q<=1)
6 const DC=3; // Decision criterion: OP=1; PS=3;
7
8 const N1=1; // Identity number of Process 1
9 const N2=2; // Identity number of Process 2

10 const N3=3; // Identity number of Process 3
11 const N4=4; // Identity number of Process 4
12
13 const v_max=2; // Maximum value of a process
14 const v1_ini=1; // Initial value of Process 1
15 const v2_ini=2; // Initial value of Process 2
16 const v3_ini=1; // Initial value of Process 3
17 const v4_ini=1; // Initial value of Process 4

Listing 37. Global declarations

3) Global Declarations: Global Variables: The following variables must be added to the list of global variables: the value
of Process 4, the view each other process has of Process 4, and the view Process 4 has of each other process.
The expression for computing the value, views and confirmations of Process 1 are updated to consider the value and

22 global v1_ext : [0..v_max] init 0; // Message value of Process 1
23 global v2_ext : [0..v_max] init 0; // Message value of Process 2
24 global v3_ext : [0..v_max] init 0; // Message value of Process 3
25 global v4_ext : [0..v_max] init 0; // Message value of Process 4
26
27 global w1_v2_ext : bool init false; // Process 1 view of Process 2
28 global w1_v3_ext : bool init false; // Process 1 view of Process 3
29 global w1_v4_ext : bool init false; // Process 1 view of Process 4
30
31 global w2_v1_ext : bool init false; // Process 2 view of Process 1
32 global w2_v3_ext : bool init false; // Process 2 view of Process 3
33 global w2_v4_ext : bool init false; // Process 2 view of Process 4
34
35 global w3_v1_ext : bool init false; // Process 3 view of Process 1
36 global w3_v2_ext : bool init false; // Process 3 view of Process 2
37 global w3_v4_ext : bool init false; // Process 3 view of Process 4
38
39 global w4_v1_ext : bool init false; // Process 4 view of Process 1
40 global w4_v2_ext : bool init false; // Process 4 view of Process 2
41 global w4_v3_ext : bool init false; // Process 4 view of Process 3

Listing 38. Declaring more global variables

views of Process 4. Two new expressions are created for computing Process 1 view and confirmation of Process
4. The decision criteria expressions are also updated to include the view and confirmation of Process 4. In addition,
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48 formula v1_new = max(v1,v2_ext,v3_ext,v4_ext); // Process 1 compute new value
49
50 formula w1_v2_new = w1_v2 | (v2_ext!=0) | w3_v2_ext | w4_v2_ext; // Process 1 update its view of Process 2
51 formula w1_v3_new = w1_v3 | (v3_ext!=0) | w2_v3_ext | w4_v3_ext; // Process 1 update its view of Process 3
52 formula w1_v4_new = w1_v4 | (v4_ext!=0) | w2_v4_ext | w3_v4_ext; // Process 1 update its view of Process 4
53
54 formula w1_c2_new = w1_c2 | (w2_v1_ext & w2_v3_ext & w2_v4_ext); // Process 1 knows that Process 2 view is complete
55 formula w1_c3_new = w1_c3 | (w3_v1_ext & w3_v2_ext & w3_v4_ext); // Process 1 knows that Process 3 view is complete
56 formula w1_c4_new = w1_c4 | (w4_v1_ext & w4_v2_ext & w4_v3_ext); // Process 1 knows that Process 4 view is complete

Listing 39. Updating expressions

the expression received_message_complete must check if all other processes have the view of Process 4 and if
Process 4 has the view of all other processes.

58 // Optimistic Decision
59 formula decision_OP = w1_v2 & w1_v3 & w1_v4; // Process 1 has complete view at RN
60
61
62
63
64
65 // Pessimistic Decision
66 formula decision_PS = w1_v2 & w1_v3 & w1_v4 & w1_c2 & w1_c3 & w1_c4; // Process 1 has complete view at (RN-1) and has received complete view from all processes at RN

Listing 40. Updating expressions for decision criteria

4) Module Description: Internal Variables: Process 1 view and confirmation of Process 4 are added to the list of
internal variables.

77 // Process 1 view of other Processs
78 w1_v2 : bool init false; // Process 1 has the view of Process 2
79 w1_v3 : bool init false; // Process 1 has the view of Process 3
80 w1_v4 : bool init false; // Process 1 has the view of Process 4
81
82 // Process 1 has confirmation that other processes have complete view
83 w1_c2 : bool init false; // Process 1 has confirmation from Process 2
84 w1_c3 : bool init false; // Process 1 has confirmation from Process 3
85 w1_c4 : bool init false; // Process 1 has confirmation from Process 4

Listing 41. Process 1 update the confirmation views

5) Module Description: Transitions: The first transition is modified so that Process 1 also sends or fails to send its
view of Process 4. Furthermore, at the compute phase, Process 1 view and confirmation of Process 4 must be
updated.

87 // Process 1 sends or loses its message;
88 [] s1=1 & token=N1 & RN1<RN & m_lost<(RN*N) -> (1-q):(s1’=2) & (token’=next) & (v1_ext’=v1) & (w1_v2_ext’=w1_v2) & (w1_v3_ext’=w1_v3) & (w1_v4_ext’=w1_v4) &

(RN1’=RN1+1) + q:(s1’=2) & (token’=next) & (v1_ext’=0) & (w1_v2_ext’=false) & (w1_v3_ext’=false) & (w1_v4_ext’=false) & (RN1’=RN1+1) & (m_lost’=m_lost+1) ;
89
90 // Not last round, Process 1 computes the messages of other processes: updates its value, views and confirmations;
91 [] s1=2 & token=N1 & RN1<RN -> 1: (s1’=1) & (v1’=v1_new) & (w1_v2’=w1_v2_new) & (w1_v3’=w1_v3_new) & (w1_v4’=w1_v4_new) & (w1_c2’=w1_c2_new) & (w1_c3’=w1_c3_new) &

(w1_c4’=w1_c4_new) & (token’=next);
92
93 // Last round, Process 1 computes the messages of other processes: updates its confirmations and, only for OP, updates value and views;
94 [] s1=2 & token=N1 & RN1=RN -> 1: (s1’=3) & (w1_c2’=w1_c2_new) & (w1_c3’=w1_c3_new) & (w1_c4’=w1_c4_new) & (v1’=(DC=1)?v1_new:v1) & (w1_v2’=(DC=1)?w1_v2_new:w1_v2) &

(w1_v3’=(DC=1)?w1_v3_new:w1_v3) & (w1_v4’=(DC=1)?w1_v4_new:w1_v4);

Listing 42. Process 1 sends or loses its message

6) Modules of other Processes: In the definition of Process 2 and 3, the new internal and global variables related to
Process 4 are introduced in the list of variables that are renamed or replaced. Moreover, all the renaming and replacing
previously defined for the case of N=3 must be revised in other to follow the general rule defined in Section V-B7. One
example is the variable w1_v3 in the definition of Process 3: in the case of N=3 it is renamed as w2_v1, while for
N=4 it is renamed as w2_v4. Finally, the definition of Process 4 as a copy of Process 1 is added to the model.

7) Verification of properties: The properties are updated to include the final state and the decision of Process 4:

D. PRISM Model For More Than Three Processes With Asymmetric Failure Model

The extension of the asymmetric model for the case of N=4 follows the same steps of the symmetric model. Additionally,
a transition is added to Process 1 in order to include the reception of the message from Process 4 (See Appendix A)
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100 module Process_2=Process_1 [N1=N2, s1=s2, v1=v2, d1=d2, RN1=RN2, w1_v2=w2_v3, w1_v3=w2_v4, w1_v4=w2_v1, w1_c2=w2_c3, w1_c3=w2_c4, w1_c4=w2_c1, v1_ext=v2_ext,
v2_ext=v3_ext, v3_ext=v4_ext, v4_ext=v1_ext, w1_v2_ext=w2_v3_ext, w1_v3_ext=w2_v4_ext, w1_v4_ext=w2_v1_ext, w2_v1_ext=w3_v2_ext, w2_v3_ext=w3_v4_ext,
w2_v4_ext=w3_v1_ext, w3_v1_ext=w4_v2_ext, w3_v2_ext=w4_v3_ext, w3_v4_ext=w4_v1_ext, w4_v1_ext=w1_v2_ext, w4_v2_ext=w1_v3_ext, w4_v3_ext=w1_v4_ext,
v1_ini=v2_ini] endmodule

101 module Process_3=Process_1 [N1=N3, s1=s3, v1=v3, d1=d3, RN1=RN3, w1_v2=w3_v4, w1_v3=w3_v1, w1_v4=w3_v2, w1_c2=w3_c4, w1_c3=w3_c1, w1_c4=w3_c2, v1_ext=v3_ext,
v2_ext=v4_ext, v3_ext=v1_ext, v4_ext=v2_ext, w1_v2_ext=w3_v4_ext, w1_v3_ext=w3_v1_ext, w1_v4_ext=w3_v2_ext, w2_v1_ext=w4_v3_ext, w2_v3_ext=w4_v1_ext,
w2_v4_ext=w4_v2_ext, w3_v1_ext=w1_v3_ext, w3_v2_ext=w1_v4_ext, w3_v4_ext=w1_v2_ext, w4_v1_ext=w2_v3_ext, w4_v2_ext=w2_v4_ext, w4_v3_ext=w2_v1_ext,
v1_ini=v3_ini] endmodule

102 module Process_4=Process_1 [N1=N4, s1=s4, v1=v4, d1=d4, RN1=RN4, w1_v2=w4_v1, w1_v3=w4_v2, w1_v4=w4_v3, w1_c2=w4_c1, w1_c3=w4_c2, w1_c4=w4_c3, v1_ext=v4_ext,
v2_ext=v1_ext, v3_ext=v2_ext, v4_ext=v3_ext, w1_v2_ext=w4_v1_ext, w1_v3_ext=w4_v2_ext, w1_v4_ext=w4_v3_ext, w2_v1_ext=w1_v4_ext, w2_v3_ext=w1_v2_ext,
w2_v4_ext=w1_v3_ext, w3_v1_ext=w2_v4_ext, w3_v2_ext=w2_v1_ext, w3_v4_ext=w2_v3_ext, w4_v1_ext=w3_v4_ext, w4_v2_ext=w3_v1_ext, w4_v3_ext=w3_v2_ext,
v1_ini=v4_ini, not_last=last] endmodule

Listing 43. Processes’ modules

1 $P = ? [F(s1=0)\&(s2=0)&(s3=0)&(s4=0)&((d1!=d2)|(d2!=d3)|(d3!=d4))]$

Listing 44. Property (1), Probability of disagreement

1 $ P = ?[F(s1=0)&(s2=0)&(s3=0)&(s4=0)&(d1=false)&(d2=false)&(d3=false)&(d4=false)]$

Listing 45. Property (2), Probability of abort

1 $ P = ? [F(s1=0)&(s2=0)&(s3=0)&(s4=0)&(d1=true)&(d2=true)&(d3=true)&(d4=true)]$

Listing 46. Property (3), Probability of agreement

1 $ P = ? [F(s1=0)&(s2=0)&(s3=0)&(s4=0)&((d1!=d2)|(d2!=d3)|(d3!=d4))&(m-lost=1)]$

Listing 47. Property (4), Probability of disagreement with a specific number of lost messages

VI. COMPARISON OF THE OPTIMISTIC AND THE PESSIMISTIC DECISION CRITERION

In this section, we present several graphs showing how the probability of disagreement,PDG, varies with respect to the
main system parameters: n the number of nodes involved in the decision process, and R the number of rounds of message
exchange.

For symmetric failures, we assume a fixed probability of message loss, q, for all messages. For asymmetric failures we
assume that all receivers have a fixed probability, Q, of not receiving a message. The results for the symmetric failure model
are obtained using the closed-form expressions derived in Section IV, while the results for the asymmetric failure model
have been calculated by means of the PRISM models described in Section ??.

A. Symmetric versus asymmetric failures

Fig. 3 shows, for symmetric failures, the probability of agreement, disagreement and abort, as a function of q, for a 1-of-3
selection algorithm with two rounds of message exchange (R = 2). Fig. 4 shows the corresponding results for asymmetric
failures, as a function of Q. We see that the probability of agreement on a value drops much more rapidly towards 0 for
the pessimistic decision criterion compared to the optimistic decision criterion as q and Q approach one. Similarly, and as
expected, we see that the probability of agreement to abort increase more rapidly for the pessimistic decision criterion (hence
the name pessimistic!) as q and Q approach one. The probability of disagreement, PDG, shows, as expected, a distinct peak
in all the curves. For both failure models, the maximum probability of disagreement is considerably higher for the optimistic
criterion than for the pessimistic criterion. On the other hand, the peak occurs for much lower values of q and Q for the
pessimistic criterion. These results show that there are pros and cons to both decision criteria. If we compare Fig. 3 and
Fig. 4, we see that the asymmetric failure model have higher peaks for PDG compared to the symmetric failure model. It
is interesting to see that PDG is as high as 68% for the optimistic criterion for asymmetric failures.

B. Observations for Symmetric Failures

In this section, we investigate variations in the probability of disagreement in the presence of symmetric failures only.
Fig. 5 shows PDG for a 1-of-3 consensus algorithm as a function of q. The solid curves show the results for the optimistic

decision criterion with R = 2, 3, 4 and 6. The dotted curves show the corresponding results for the pessimistic criterion. We
see that the peak values of PDG for the optimistic criterion are considerably higher than those for the pessimistic criterion.
We also see, as expected from the results shown in Fig. 3, that the PDG for the optimistic criterion peaks at higher values of
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Figure 3. Probability of agreement (AG), abort (AB) and disagreement (DG) as a function of q for 1-of-3 selection algorithm with symmetric failures
(R = 2), a comparison of optimistic and pessimistic criteria.

Figure 4. Probability of agreement (AG), abort (AB) and disagreement (DG) as a function of Q for 1-of-3 selection algorithm with asymmetric failures
(R = 2), a comparison of optimistic and pessimistic criteria.

q compare to the pessimistic approach. For both decision criteria, the peaks of the curves move to the right if we increase
the number of rounds. This is expected because when the number rounds increases so does the probability that all processes
have a complete view at the last round.

Fig. 6 shows the probability of disagreement for a 1-of-n selection algorithm with R= 3 rounds. The different curves
represent the results for systems with different number of processes (n = 2, 3, 4 and 6). For both decision criteria, with
increasing n, the peak of the curves move to the left. Hence, if the number of processes increase in a system with a fixed
number of rounds, then the peak of PDG moves towards points with lower probabilities of message loss. This implies that

Figure 5. Probability of disagreement (PDG) for a 1-of-3 selection algorithm with (n = 3, R = 2, 3, 4 and 6) for symmetric failures. Comparison of the
optimistic decision criteria (solid curves) and the pessimistic decision criteria (dotted curves).
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Figure 6. Probability of disagreement (PDG) for 1-of-n selection algorithm with (R = 3, n = 2, 3, 4 and 6) for symmetric failures. Comparison of the
optimistic decision criteria (solid curves) and the pessimistic decision criteria (dotted curves).

the probability of agreement to abort increases when the number of processes increases.

Figure 7. Probability of disagreement (PDG) for a 1-of-3 selection algorithm with (n = 3, R = 2, 3, 4 and 6) for asymmetric failures. Comparison of
the optimistic decision criteria (solid curves) and the decision pessimistic criteria (dotted curves).

Figure 8. Probability of disagreement (PDG) for 1-of-n selection algorithm with (R = 3, n = 3, 4, 6 and 8) for asymmetric failures. Comparison of the
optimistic decision criteria (solid curves) and the pessimistic criteria (dotted curves).

1) An analysis and comparison of moderately pessimistic decision criterion: Fig. 9 shows the probabilities of the three
outcomes of the given decision criteria for a 1-of-3 selection algorithm with 2 rounds of execution as a function of the
probability of message loss (Q). As we see in Fig. 9 for any value of Q, the optimistic decision criterion has the highest
probability of agreement while the pessimistic one has the lowest. On the other hand, the pessimistic decision criterion has
the highest probability of abort compare to the other two decision criteria.
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Figure 9. Probability of agreement, disagreement and abort for 1-of-3 selection algorithm for different decision criteria and R = 2 under asymmetric
failures.

For all decision criteria the probability of disagreement shows a distinct peak. The maximum probability of disagreement
varies significantly for different decision criteria. The optimistic decision criterion has the highest maximum probability of
disagreement which is which is on the most right side of the x-axis (a large value of Q). The peak of disagreement for the
pessimistic decision criterion on the other hand is on the most left side of x-axis (small values of Q) and is the smallest
maximum probability of disagreement of all decision criteria, although not much larger than the maximum probability of
disagreement for the moderately pessimistic decision criterion. Fig. 10 illustrates how the probability of disagreement is
affected by varying the number of processes n and rounds R. In this figure the probability of disagreement for three different
system configurations (n = 3, 4, 6) each running the 1-of-n selection algorithm in two, three and four rounds of execution.
The three given sub graphs 10(a), 10(b) and 10(c) correspond to the three decision criteria, optimistic, pessimistic and
moderately pessimistic respectively.

Considering a fixed number of processes, a larger number of rounds means that a process has more chance to complete its
view, therefore the probability of agreement increases for all the decision criteria. Consequently the peak of the probability
of disagreement moves to the right side of the x-axis and is achieved for larger values of Q. For the optimistic decision
criterion, the maximum value of disagreement decreases slightly with increasing R, but for the pessimistic and moderately
pessimistic decision criteria, it increases significantly. An immediate conclusion is that, for all decision criteria, increasing
the number of rounds does not guarantee lower probabilities of disagreement if the probability of message loss Q cannot be
limited. Varying n affects the probability of disagreement in a different way. In the case of the optimistic decision criterion
(Fig. 10(a)), when we increase the number of processes, the maximum probability of disagreement increases significantly
(For n = 6 the probability of disagreement becomes larger than 80%). However, with increasing n the peak of disagreement
does not move to the left or right side of the x-axis unlike the results we get with increasing R.

In the case of the pessimistic and moderately pessimistic decision criteria (Fig. 10(b) and Fig. 10(c)), we distinguish
two different behaviours according to the number of rounds. For R = 2, in order to have an outcome of agreement or
disagreement, all the messages should be successfully transmitted in the first round. When we increase the number of
processes, the agreement region is reduced because it is less likely that a process completes its view in the first round. As
a consequence, with increasing n the curve of disagreement moves to the left w.r.t. the x-axis when we have R = 2. In the
case of the pessimistic decision criterion, when we increase n, the maximum probability of disagreement remains around
the same value, that is 0.25. However, for the moderately pessimistic decision criterion, it declines significantly (not larger
than 10% for n = 6. For R > 2, with increasing n the maximum probability of disagreement increases significantly for
both the pessimistic and moderately pessimistic decision criteria. Fig. 11 shows a comparison of the three decision criteria
for system configurations of three, four and six processes executing the 1-of-n selection algorithm in R = 2 rounds. For
any number of processes, the optimistic decision criterion have the highest peak of the probability of disagreement. For a
given application with fixed n, if Q is unknown, disagreement can be minimized by adopting the moderately pessimistic
decision criterion with R = 2. If the range of Q can be estimated, then we have a threshold and for lower values of Q the
minimum disagreement is achieved by the optimistic decision criterion, while for higher values of Q the pessimistic decision
criterion has the lowest probabilities of disagreement. For example the case of n = 3, this threshold is around Q = 0.24,
while for n = 6 it is around Q = 0.15. Fig. 12 illustrates a comparison of probability of disagreement (PDG) for three
decision criteria, for a system executing the 1-of-n selection algorithm with n = 3, 4 and R = 2, 3 assuming symmetric
failures. As we see in this figure, in most cases the maximum value of PDG is significantly lower when compared with
the corresponding results for asymmetric failure. For the moderately pessimistic decision criterion, when we increase the
number of processes with R = 2, the probability of disagreement is reduced. Furthermore, for all decision criteria, when
we increase the number of rounds, the peak of PDG moves to the right w.r.t. the x-axis but does not decrease, similar to
the case of asymmetric failure.
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(a) Optimistic decision criterion

(b) Pessimistic decision criterion

(c) Moderately pessimistic decision criterion

Figure 10. Probability of disagreement for 1-of-n selection algorithm for (n = 3, 4, 6) with R = 2, 3, 4 under asymmetric failures.

C. Observations for Asymmetric Failures

In this section, we study how the probability of disagreement varies for different values of Q, n and R in the presence
of asymmetric failures. Fig. 7 shows PDG for a 1-of-3 consensus algorithm as a function of Q, the probability of message
loss in the asymmetric failure model.

As for the symmetric failures, we see that the peak values of PDG for the optimistic criterion are considerably higher than
those for the pessimistic criterion, while for the pessimistic criterion the PDG peaks occur at lower values of Q compared
to the PDG peaks for the optimistic criterion. Interestingly, we see that the peak values increase as the number of rounds
increase for pessimistic criterion, while trend for the optimistic criterion is the reverse.

Comparing the results in Fig. 7 with those in Fig. 5, as expected, we see higher probabilities of disagreement for the
asymmetric failure model than for the symmetric failure model. Similar to the results for the symmetric failure model, the
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Figure 11. Probability disagreement for 1-of-n selection algorithm for (n = 3, 4, 6) for different decision criteria and R = 2 under asymmetric failures.

Figure 12. Probability of disagreement 1-of-n selection algorithm (n = 3, 4 and R = 2, 3) for different decision criteria under symmetric failures.

peak of the curves move to the right for both decision criteria when the number of rounds increases.
Fig. 8 shows PDG as a function of Q with R = 3 and n = 3, 4, 6 and 8. We see that with increasing n, we obtain higher

peak values of PDG for both decision criteria. The peak of the curves move to the left with increasing n for the pessimistic
criterion, while they move to the right with increasing n for the optimistic criterion. We also see that the peak values for the
pessimistic criterion is higher than for the optimistic criterion, which is the opposite to what we observed for the symmetric
failures in Fig. 5 . Hence, for systems with many processes, the pessimistic criterion is worse than the optimistic criterion
for asymmetric failures.

VII. RELATED WORK

The problem of reaching agreement among the processes of a fault-tolerant distributed system has been investigated
widely since thirty years ago [8]–[10]. The consensus problem has been proved to be solvable under different failure
assumptions such as in [8], [9], [11]. Most of previous research were based on different classes of process failures only, with
assuming reliable communication links among processes. Some were simply associating communication failures to process
failures rather than investigating them explicitly as an independent phenomenon (e.g., see [12], [13]) which may lead to
incorrect characterization of systems.4 There are also perception-based hybrid failure models proposed in literature such as
in [2] in which the sender-caused link faults are considered as process faults and the term link fault is used to denote the
receiver-caused failures. Such failure models also may lead to undesirable conclusions for a system. Perfect communications
abstraction with retransmission schemes is used in data-link layer protocols [14], but due to the high execution time needed
in these solutions they are only useful for asynchronous systems when real-time properties are not so important.

On the other hand, considering highly unpredictable wireless environments, it is important to consider the communication
failures explicitly in order to assure dependability and safety of critical distributed systems. Therefore our focus is to study
the synchronous consensus problem for systems subject to transient and dynamic communication failures. In such a model,
failures may occur on any communication link at any time when there are no limitations on the number or pattern of the
lost messages. We define our failure model based on the model introduced by Santoro and Widmayer in [1] denoted as
the transmission fault model. We are mainly considering dynamic and transient omission faults. We know from the results
given in [1] and [15] that any non-trivial form of agreement is impossible to solve if n1 or more messages can be lost per
communication round in a system with n processes. The impossibility result given by Santoro and Widmayer is indeed a

4For example attributing the transmission faults to the sending or receiving processes one may reach to incorrect conclusions such as assuming the entire
processes to be faulty due to only a single failure of a message broadcast.
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generalization of the given results by Akkoyulunu et al. in [16] and later in 1978 by Gray [17] in which they show that
there is no deterministic solution to the consensus problem between two processes with unreliable communication links.

Santoro and Widmayer in [15] define a faulty transmission resulting in omission, corruption or addition of a message
and then provide an extensive map of possible and impossible computations in the presence of transmission faults. Later
in [18] they define bounds on the number of dynamic faults with expressing the connectivity requirements to achieve any
non-trivial agreement.

In [14], Afek et al. employed randomization techniques to solve the k-consensus problem in presence of communication
failures. In a k-consensus problem, at least k processes among n processes decide on the same value such that k > n/2.
They show that the safety properties of consensus (i.e., validity and agreement) are ensured in presence of even unrestricted
communication failures, however in order to satisfy the liveness property (i.e., termination) of the consensus algorithm the
number of faults in a round should be restricted.

There are a large number of methods suggested in literature to circumvent the given impossibility result in synchronous
consensus systems with dynamic omission faults such as [18]–[20]. However, most of the suggested methods take a
preventive approach toward this problem, such as restricting the communication failure patterns or limiting the number of
failures in a round.

Nevertheless, it is possible to design protocols that have a low probability of failing to reach consensus, so as to meet
specific requirements on reliability and availability. This intuition has been explored to build protocols that maximize the
probability of correctness by accumulating more information over a larger duration of the execution [21]. Researchers have
also focused on stochastic models of verifying the probability of transition into an incorrect state [22].

Our goal in this paper is to design decision making algorithms to run on top of a simple consensus protocol with the main
purpose of minimizing the probability of failing to reach consensus. We evaluate and compare the effectiveness of different
decision algorithms by means of using probabilistic model checking tools as well as deriving closed form expressions to
calculate the probability of disagreement among processes. Our results may be applied also for on-line verification and
adaptation to cope with variable probabilities of communication failures. Our work focuses on probabilistic analysis of
round-based consensus protocols in which processes communicate in rounds of message exchange in order to decide on a
consistent output [9]. Our system model is inspired by a general computational model named the heard-of model introduced
by Schiper and Charron-Bost [23] and is used to specify systems with any type of benign failures.

VIII. CONCLUSION AND FUTURE WORK

We have presented closed-form expressions for calculating the probability of disagreement in the presence of symmetric
message losses for a family of simple synchronous consensus algorithms. Our work is motivated by the need to develop fast
and reliable consensus algorithm for distributed cooperative systems for the transportation sector. Since it is impossible
to construct an algorithm that solves the consensus problem for a system that uses wireless, and thereby, unreliable
communication, we are interested in exploring the design of adaptive consensus algorithms that are equipped with an on-line
mechanism which can temporarily shut down the algorithm in situations where the likelihood for disagreement becomes
unacceptably high. We are therefore interested in finding computational effective ways of calculating the probability of
disagreement on-line. The next step in our pursuit for such algorithms will be to find closed-form expressions for calculating
the probability of disagreement for simple algorithms under the assumption of asymmetric message losses.
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1 dtmc
2
3 const N=3; // Number of processes in the network (N cannot be modified)
4 const RN=2; // Number of rounds in the protocol (RN>=2)
5 const double q; // Probability of losing a message (0<=q<=1)
6 const DC=3; // Decision criterion: OP=1; PS=3;
7
8 const N1=1; // Identity number of Process 1
9 const N2=2; // Identity number of Process 2

10 const N3=3; // Identity number of Process 3
11
12 const v_max=2; // Maximum value of a process
13 const v1_ini=1; // Initial value of Process 1
14 const v2_ini=2; // Initial value of Process 2
15 const v3_ini=1; // Initial value of Process 3
16
17 const not_last=1; // Auxiliary constant to define the next process
18 const last=0; // Auxiliary constant to define the next process
19
20 global v1_ext : [0..v_max] init 0; // Message value of Process 1
21 global v2_ext : [0..v_max] init 0; // Message value of Process 2
22 global v3_ext : [0..v_max] init 0; // Message value of Process 3
23
24 global w1_v2_ext : bool init false; // Process 1 view of Process 2
25 global w1_v3_ext : bool init false; // Process 1 view of Process 3
26
27 global w2_v1_ext : bool init false; // Process 2 view of Process 1
28 global w2_v3_ext : bool init false; // Process 2 view of Process 3
29
30 global w3_v1_ext : bool init false; // Process 3 view of Process 1
31 global w3_v2_ext : bool init false; // Process 3 view of Process 2
32
33 global token : [1..N] init 1; // Token used to coordinate the processes
34 global m_lost : [0..(RN*N)] init 0; // Number of lost messages
35
36 formula next = N1*not_last+1; // Define the next process to receive the token
37
38 formula v1_new = max(v1,v2_ext,v3_ext); // Process 1 compute new value
39
40 formula w1_v2_new = w1_v2 | (v2_ext!=0) | w3_v2_ext; // Process 1 update its view of Process 2
41 formula w1_v3_new = w1_v3 | (v3_ext!=0) | w2_v3_ext; // Process 1 update its view of Process 3
42
43 formula w1_c2_new = w1_c2 | (w2_v1_ext & w2_v3_ext); // Process 1 knows that Process 2 view is complete
44 formula w1_c3_new = w1_c3 | (w3_v1_ext & w3_v2_ext); // Process 1 knows that Process 3 view is complete
45
46 // Optimistic Decision
47 formula decision_OP = w1_v2 & w1_v3; // Process 1 has complete view at RN
48
49
50
51
52 // Pessimistic Decision
53 formula decision_PS = w1_v2 & w1_v3 & w1_c2 & w1_c3; // Process 1 has complete view at (RN-1) and has received complete view from all processes at RN
54
55 // General Decision Formula
56 formula decision = ((DC=1) & decision_OP) | ((DC=3) & decision_PS); // Combine all decision criterea in a single formula
57
58 module Process_1
59 s1 : [0..3] init 1; // Process 1 current state
60 RN1 : [0..RN] init 0; // Current round
61 d1 : bool init false; // Process 1 decision
62 v1 : [0..v_max] init v1_ini; // Process 1 value
63
64 // Process 1 view of other processes
65 w1_v2 : bool init false; // Process 1 has the view of Process 2
66 w1_v3 : bool init false; // Process 1 has the view of Process 3
67
68 // Process 1 has confirmation that other processes have complete view
69 w1_c2 : bool init false; // Process 1 has confirmation from Process 2
70 w1_c3 : bool init false; // Process 1 has confirmation from Process 3
71
72 // Process 1 sends or loses its message;
73 [] s1=1 & token=N1 & RN1<RN & m_lost<(RN*N) -> (1-q):(s1’=2) & (token’=next) & (v1_ext’=v1) & (w1_v2_ext’=w1_v2) & (w1_v3_ext’=w1_v3) & (RN1’=RN1+1) + q:(s1’=2) &

(token’=next) & (v1_ext’=0) & (w1_v2_ext’=false) & (w1_v3_ext’=false) & (RN1’=RN1+1) & (m_lost’=m_lost+1) ;
74
75 // Not last round, Process 1 computes the messages of other processes: updates its value, views and confirmations;
76 [] s1=2 & token=N1 & RN1<RN -> 1: (s1’=1) & (v1’=v1_new) & (w1_v2’=w1_v2_new) & (w1_v3’=w1_v3_new) & (w1_c2’=w1_c2_new) & (w1_c3’=w1_c3_new) & (token’=next);
77
78 // Last round, Process 1 computes the messages of other processes: updates its confirmations and, only for OP, updates value and views;
79 [] s1=2 & token=N1 & RN1=RN -> 1: (s1’=3) & (w1_c2’=w1_c2_new) & (w1_c3’=w1_c3_new) & (v1’=(DC=1)?v1_new:v1) & (w1_v2’=(DC=1)?w1_v2_new:w1_v2) &

(w1_v3’=(DC=1)?w1_v3_new:w1_v3);
80
81 // Process 1 decides -> agree or abort
82 [] s1=3 & token=N1 -> 1: (s1’=0) & (token’=next) & (d1’= decision);
83 endmodule
84
85 module Process_2=Process_1 [N1=N2, s1=s2, v1=v2, d1=d2, RN1=RN2, w1_v2=w2_v3, w1_v3=w2_v1, w1_c2=w2_c3, w1_c3=w2_c1, v1_ext=v2_ext, v2_ext=v3_ext, v3_ext=v1_ext,

w1_v2_ext=w2_v3_ext, w1_v3_ext=w2_v1_ext, w2_v1_ext=w3_v2_ext, w2_v3_ext=w3_v1_ext, w3_v1_ext=w1_v2_ext, w3_v2_ext=w1_v3_ext, v1_ini=v2_ini] endmodule

Listing 48. N=3 with Symmetric Failures
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1 dtmc
2
3 const N=4; // Number of processes in the network (N cannot be modified)
4 const RN=2; // Number of rounds in the protocol (RN>=2)
5 const double q; // Probability of losing a message (0<=q<=1)
6 const DC=3; // Decision criterion: OP=1; PS=3;
7
8 const N1=1; // Identity number of Process 1
9 const N2=2; // Identity number of Process 2

10 const N3=3; // Identity number of Process 3
11 const N4=4; // Identity number of Process 4
12
13 const v_max=2; // Maximum value of a process
14 const v1_ini=1; // Initial value of Process 1
15 const v2_ini=2; // Initial value of Process 2
16 const v3_ini=1; // Initial value of Process 3
17 const v4_ini=1; // Initial value of Process 4
18
19 const not_last=1; // Auxiliary constant to define the next Process
20 const last=0; // Auxiliary constant to define the next Process
21
22 global v1_ext : [0..v_max] init 0; // Message value of Process 1
23 global v2_ext : [0..v_max] init 0; // Message value of Process 2
24 global v3_ext : [0..v_max] init 0; // Message value of Process 3
25 global v4_ext : [0..v_max] init 0; // Message value of Process 4
26
27 global w1_v2_ext : bool init false; // Process 1 view of Process 2
28 global w1_v3_ext : bool init false; // Process 1 view of Process 3
29 global w1_v4_ext : bool init false; // Process 1 view of Process 4
30
31 global w2_v1_ext : bool init false; // Process 2 view of Process 1
32 global w2_v3_ext : bool init false; // Process 2 view of Process 3
33 global w2_v4_ext : bool init false; // Process 2 view of Process 4
34
35 global w3_v1_ext : bool init false; // Process 3 view of Process 1
36 global w3_v2_ext : bool init false; // Process 3 view of Process 2
37 global w3_v4_ext : bool init false; // Process 3 view of Process 4
38
39 global w4_v1_ext : bool init false; // Process 4 view of Process 1
40 global w4_v2_ext : bool init false; // Process 4 view of Process 2
41 global w4_v3_ext : bool init false; // Process 4 view of Process 3
42
43 global token : [1..N] init 1; // Token used to coordinate the processes
44 global m_lost: [0..(RN*N)] init 0; // Number of lost messages
45
46 formula next = N1*not_last+1; // Define the next process in the network
47
48 formula v1_new = max(v1,v2_ext,v3_ext,v4_ext); // Process 1 compute new value
49
50 formula w1_v2_new = w1_v2 | (v2_ext!=0) | w3_v2_ext | w4_v2_ext; // Process 1 update its view of Process 2
51 formula w1_v3_new = w1_v3 | (v3_ext!=0) | w2_v3_ext | w4_v3_ext; // Process 1 update its view of Process 3
52 formula w1_v4_new = w1_v4 | (v4_ext!=0) | w2_v4_ext | w3_v4_ext; // Process 1 update its view of Process 4
53
54 formula w1_c2_new = w1_c2 | (w2_v1_ext & w2_v3_ext & w2_v4_ext); // Process 1 knows that Process 2 view is complete
55 formula w1_c3_new = w1_c3 | (w3_v1_ext & w3_v2_ext & w3_v4_ext); // Process 1 knows that Process 3 view is complete
56 formula w1_c4_new = w1_c4 | (w4_v1_ext & w4_v2_ext & w4_v3_ext); // Process 1 knows that Process 4 view is complete
57
58 // Optimistic Decision
59 formula decision_OP = w1_v2 & w1_v3 & w1_v4; // Process 1 has complete view at RN
60
61
62
63
64
65 // Pessimistic Decision
66 formula decision_PS = w1_v2 & w1_v3 & w1_v4 & w1_c2 & w1_c3 & w1_c4; // Process 1 has complete view at (RN-1) and has received complete view from all processes at RN
67
68 // General Decision Formula
69 formula decision = ((DC=1) & decision_OP) | ((DC=3) & decision_PS); // Combine all decision criterea in a single formula
70
71 module Process_1
72 s1 : [0..3] init 1; // Process 1 current state
73 RN1 : [0..RN] init 0; // Current round
74 d1 : bool init false; // Process 1 decision
75 v1 : [0..v_max] init v1_ini; // Process 1 value
76
77 // Process 1 view of other Processs
78 w1_v2 : bool init false; // Process 1 has the view of Process 2
79 w1_v3 : bool init false; // Process 1 has the view of Process 3
80 w1_v4 : bool init false; // Process 1 has the view of Process 4
81
82 // Process 1 has confirmation that other processes have complete view
83 w1_c2 : bool init false; // Process 1 has confirmation from Process 2
84 w1_c3 : bool init false; // Process 1 has confirmation from Process 3
85 w1_c4 : bool init false; // Process 1 has confirmation from Process 4
86
87 // Process 1 sends or loses its message;
88 [] s1=1 & token=N1 & RN1<RN & m_lost<(RN*N) -> (1-q):(s1’=2) & (token’=next) & (v1_ext’=v1) & (w1_v2_ext’=w1_v2) & (w1_v3_ext’=w1_v3) & (w1_v4_ext’=w1_v4) &

(RN1’=RN1+1) + q:(s1’=2) & (token’=next) & (v1_ext’=0) & (w1_v2_ext’=false) & (w1_v3_ext’=false) & (w1_v4_ext’=false) & (RN1’=RN1+1) & (m_lost’=m_lost+1) ;
89
90 // Not last round, Process 1 computes the messages of other processes: updates its value, views and confirmations;
91 [] s1=2 & token=N1 & RN1<RN -> 1: (s1’=1) & (v1’=v1_new) & (w1_v2’=w1_v2_new) & (w1_v3’=w1_v3_new) & (w1_v4’=w1_v4_new) & (w1_c2’=w1_c2_new) & (w1_c3’=w1_c3_new) &

(w1_c4’=w1_c4_new) & (token’=next);
92
93 // Last round, Process 1 computes the messages of other processes: updates its confirmations and, only for OP, updates value and views;
94 [] s1=2 & token=N1 & RN1=RN -> 1: (s1’=3) & (w1_c2’=w1_c2_new) & (w1_c3’=w1_c3_new) & (w1_c4’=w1_c4_new) & (v1’=(DC=1)?v1_new:v1) & (w1_v2’=(DC=1)?w1_v2_new:w1_v2) &

(w1_v3’=(DC=1)?w1_v3_new:w1_v3) & (w1_v4’=(DC=1)?w1_v4_new:w1_v4);
95
96 // Process 1 decides -> agree or abort
97 [] s1=3 & token=N1 -> 1: (s1’=0) & (token’=next) & (d1’= decision);
98 endmodule
99

100 module Process_2=Process_1 [N1=N2, s1=s2, v1=v2, d1=d2, RN1=RN2, w1_v2=w2_v3, w1_v3=w2_v4, w1_v4=w2_v1, w1_c2=w2_c3, w1_c3=w2_c4, w1_c4=w2_c1, v1_ext=v2_ext,
v2_ext=v3_ext, v3_ext=v4_ext, v4_ext=v1_ext, w1_v2_ext=w2_v3_ext, w1_v3_ext=w2_v4_ext, w1_v4_ext=w2_v1_ext, w2_v1_ext=w3_v2_ext, w2_v3_ext=w3_v4_ext,
w2_v4_ext=w3_v1_ext, w3_v1_ext=w4_v2_ext, w3_v2_ext=w4_v3_ext, w3_v4_ext=w4_v1_ext, w4_v1_ext=w1_v2_ext, w4_v2_ext=w1_v3_ext, w4_v3_ext=w1_v4_ext,
v1_ini=v2_ini] endmodule

101 module Process_3=Process_1 [N1=N3, s1=s3, v1=v3, d1=d3, RN1=RN3, w1_v2=w3_v4, w1_v3=w3_v1, w1_v4=w3_v2, w1_c2=w3_c4, w1_c3=w3_c1, w1_c4=w3_c2, v1_ext=v3_ext,
v2_ext=v4_ext, v3_ext=v1_ext, v4_ext=v2_ext, w1_v2_ext=w3_v4_ext, w1_v3_ext=w3_v1_ext, w1_v4_ext=w3_v2_ext, w2_v1_ext=w4_v3_ext, w2_v3_ext=w4_v1_ext,
w2_v4_ext=w4_v2_ext, w3_v1_ext=w1_v3_ext, w3_v2_ext=w1_v4_ext, w3_v4_ext=w1_v2_ext, w4_v1_ext=w2_v3_ext, w4_v2_ext=w2_v4_ext, w4_v3_ext=w2_v1_ext,
v1_ini=v3_ini] endmodule

102 module Process_4=Process_1 [N1=N4, s1=s4, v1=v4, d1=d4, RN1=RN4, w1_v2=w4_v1, w1_v3=w4_v2, w1_v4=w4_v3, w1_c2=w4_c1, w1_c3=w4_c2, w1_c4=w4_c3, v1_ext=v4_ext,
v2_ext=v1_ext, v3_ext=v2_ext, v4_ext=v3_ext, w1_v2_ext=w4_v1_ext, w1_v3_ext=w4_v2_ext, w1_v4_ext=w4_v3_ext, w2_v1_ext=w1_v4_ext, w2_v3_ext=w1_v2_ext,
w2_v4_ext=w1_v3_ext, w3_v1_ext=w2_v4_ext, w3_v2_ext=w2_v1_ext, w3_v4_ext=w2_v3_ext, w4_v1_ext=w3_v4_ext, w4_v2_ext=w3_v1_ext, w4_v3_ext=w3_v2_ext,
v1_ini=v4_ini, not_last=last] endmodule

Listing 49. N>3 with Symmetric Failures
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1 dtmc
2
3 const N=3; // Number of processes in the network (N cannot be modified)
4 const RN=2; // Number of rounds in the protocol (RN>=2)
5 const double Q=0.5; // Probability of losing a message (0<=q<=1)
6 const DC=3; // Decision criterion: OP=1; MP=2; PS=3;
7
8 const N1=1; // Identity number of Process 1
9 const N2=2; // Identity number of Process 2

10 const N3=3; // Identity number of Process 3
11
12 const v_max=2; // Maximum value of a process
13 const v1_ini=1; // Initial value of Process 1
14 const v2_ini=2; // Initial value of Process 2
15 const v3_ini=1; // Initial value of Process 3
16
17 const not_last=1; // Auxiliary constant to define the next process
18 const last=0; // Auxiliary constant to define the next process
19
20 global v1_ext : [0..v_max] init 0; // Message value of Process 1
21 global v2_ext : [0..v_max] init 0; // Message value of Process 2
22 global v3_ext : [0..v_max] init 0; // Message value of Process 3
23
24 global w1_v2_ext : bool init false; // Process 1 view of Process 2
25 global w1_v3_ext : bool init false; // Process 1 view of Process 3
26
27 global w2_v1_ext : bool init false; // Process 2 view of Process 1
28 global w2_v3_ext : bool init false; // Process 2 view of Process 3
29
30 global w3_v1_ext : bool init false; // Process 3 view of Process 1
31 global w3_v2_ext : bool init false; // Process 3 view of Process 2
32
33 global token : [1..N] init 1; // Token used to coordinate the processes
34 global m_lost : [0..(RN*N*(N-1))] init 0; // Number of lost messages
35
36 formula next = N1*not_last+1; // Define the next Process in the network
37
38 formula v1_new = max(v1,(n1_nf2?v2_ext:0),(n1_nf3?v3_ext:0)); // Process 1 compute new value
39
40 formula w1_v2_new = w1_v2 | n1_nf2 | (n1_nf3 & w3_v2_ext); // Process 1 update its view of Process 2
41 formula w1_v3_new = w1_v3 | n1_nf3 | (n1_nf2 & w2_v3_ext); // Process 1 update its view of Process 3
42
43 formula w1_c2_new = w1_c2 | (n1_nf2 & (w2_v1_ext & w2_v3_ext)); // Process 1 knows that Process 2 view is complete
44 formula w1_c3_new = w1_c3 | (n1_nf3 & (w3_v1_ext & w3_v2_ext)); // Process 1 knows that Process 3 view is complete
45
46 // Optimistic Decision
47 formula decision_OP = w1_v2 & w1_v3; // Process 1 has complete view at RN
48
49
50
51
52
53 // Pessimistic Decision
54 formula decision_PS = w1_v2 & w1_v3 & w1_c2 & w1_c3; // Process 1 has complete view at (RN-1) and has received complete view from all processes at RN
55
56 // General Decision Formula
57 formula decision = ((DC=1) & decision_OP) | ((DC=3) & decision_PS); // Combine all decision criterea in a single formula
58
59 module Process_1
60 s1 : [0..N+2] init 1; // Process 1 current state
61 RN1 : [0..RN] init 0; // Current round
62 v1 : [0..v_max] init v1_ini; // Process 1 value
63 d1 : bool init false; // Process 1 decision
64
65 // Status of the message from the other processs
66 n1_nf2 : bool init true; // Process 1 has not received the message of Process 2
67 n1_nf3 : bool init true; // Process 1 has not received the message of Process 3
68
69 // Process 1 view of other processes
70 w1_v2 : bool init false; // Process 1 has the view of Process 2
71 w1_v3 : bool init false; // Process 1 has the view of Process 3
72
73 // Process 1 has confirmation that other processes have complete view
74 w1_c2 : bool init false; // Process 1 has confirmation from Process 2
75 w1_c3 : bool init false; // Process 1 has confirmation from Process 3
76
77 // Process 1 sends its message;
78 [] s1=1 & token=N1 & RN1<RN -> 1:(s1’=2) & (token’=next) & (v1_ext’=v1) & (w1_v2_ext’=w1_v2) & (w1_v3_ext’=w1_v3) & (RN1’=RN1+1);
79
80 // Process 1 receives or loses the message of Process 2
81 [] s1=2 & token=N1 & RN1<=RN & (m_lost<(RN*N*(N-1))) -> (1-Q): (s1’=3) & (n1_nf2’=true) + Q: (s1’=3) & (n1_nf2’=false) & (m_lost’=m_lost+1);
82 // Process 1 receives or loses the message of Process 3
83 [] s1=3 & token=N1 & RN1<=RN & (m_lost<(RN*N*(N-1))) -> (1-Q): (s1’=4) & (n1_nf3’=true) + Q: (s1’=4) & (n1_nf3’=false) & (m_lost’=m_lost+1);
84
85 // Not last round, Process 1 computes the messages of other processes: updates its value, views and confirmations;
86 [] s1=N+1 & token=N1 & RN1<RN -> 1: (s1’=1) & (v1’=v1_new) & (w1_v2’=w1_v2_new) & (w1_v3’=w1_v3_new) & (w1_c2’=w1_c2_new) & (w1_c3’=w1_c3_new) & (token’=next);
87
88 // Last round, Process 1 computes the messages of other processes: updates its confirmations and, only for OP, updates value and views;
89 [] s1=N+1 & token=N1 & RN1=RN -> 1: (s1’=N+2) & (w1_c2’=w1_c2_new) & (w1_c3’=w1_c3_new) & (v1’=(DC=1)?v1_new:v1) & (w1_v2’=(DC=1)?w1_v2_new:w1_v2) &

(w1_v3’=(DC=1)?w1_v3_new:w1_v3);
90
91 // Process 1 decides -> agree or abort
92 [] s1=N+2 & token=N1 -> 1: (s1’=0) & (token’=next) & (d1’= decision);
93 endmodule
94
95 module Process_2=Process_1 [N1=N2, s1=s2, v1=v2, d1=d2, RN1=RN2, n1_nf2=n2_nf3, n1_nf3=n2_nf1, w1_v2=w2_v3, w1_v3=w2_v1, w1_c2=w2_c3, w1_c3=w2_c1, v1_ext=v2_ext,

v2_ext=v3_ext, v3_ext=v1_ext, w1_v2_ext=w2_v3_ext, w1_v3_ext=w2_v1_ext, w2_v1_ext=w3_v2_ext, w2_v3_ext=w3_v1_ext, w3_v1_ext=w1_v2_ext, w3_v2_ext=w1_v3_ext,
v1_ini=v2_ini] endmodule

96 module Process_3=Process_1 [N1=N3, s1=s3, v1=v3, d1=d3, RN1=RN3, n1_nf2=n3_nf1, n1_nf3=n3_nf2, w1_v2=w3_v1, w1_v3=w3_v2, w1_c2=w3_c1, w1_c3=w3_c2, v1_ext=v3_ext,
v2_ext=v1_ext, v3_ext=v2_ext, w1_v2_ext=w3_v1_ext, w1_v3_ext=w3_v2_ext, w2_v1_ext=w1_v3_ext, w2_v3_ext=w1_v2_ext, w3_v1_ext=w2_v3_ext, w3_v2_ext=w2_v1_ext,
v1_ini=v3_ini, not_last=last] endmodule
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1 dtmc
2
3 const N=4; // Number of processes in the network (N cannot be modified)
4 const RN=2; // Number of rounds in the protocol (RN>=2)
5 const double Q=0.5; // Probability of losing a message (0<=q<=1)
6 const DC=3; // Decision criterion: OP=1; PS=3;
7
8 const N1=1; // Identity number of Process 1
9 const N2=2; // Identity number of Process 2

10 const N3=3; // Identity number of Process 3
11 const N4=4; // Identity number of Process 4
12
13 const v_max=2; // Maximum value of a process
14 const v1_ini=1; // Initial value of Process 1
15 const v2_ini=2; // Initial value of Process 2
16 const v3_ini=1; // Initial value of Process 3
17 const v4_ini=2; // Initial value of Process 4
18
19 const not_last=1; // Auxiliary constant to define the next process
20 const last=0; // Auxiliary constant to define the next process
21
22 global v1_ext : [0..v_max] init 0; // Message value of Process 1
23 global v2_ext : [0..v_max] init 0; // Message value of Process 2
24 global v3_ext : [0..v_max] init 0; // Message value of Process 3
25 global v4_ext : [0..v_max] init 0; // Message value of Process 4
26
27 global w1_v2_ext : bool init false; // Process 1 view of Process 2
28 global w1_v3_ext : bool init false; // Process 1 view of Process 3
29 global w1_v4_ext : bool init false; // Process 1 view of Process 4
30
31 global w2_v1_ext : bool init false; // Process 2 view of Process 1
32 global w2_v3_ext : bool init false; // Process 2 view of Process 3
33 global w2_v4_ext : bool init false; // Process 2 view of Process 4
34
35 global w3_v1_ext : bool init false; // Process 3 view of Process 1
36 global w3_v2_ext : bool init false; // Process 3 view of Process 2
37 global w3_v4_ext : bool init false; // Process 3 view of Process 4
38
39 global w4_v1_ext : bool init false; // Process 4 view of Process 1
40 global w4_v2_ext : bool init false; // Process 4 view of Process 2
41 global w4_v3_ext : bool init false; // Process 4 view of Process 3
42
43 global token : [1..N] init 1; // Token used to coordinate the Processs
44 global m_lost: [0..RN*N*(N-1)] init 0; // Number of lost messages
45
46 formula next = N1*not_last+1; // Define the next Process in the network
47
48 formula v1_new = max(v1,(n1_nf2?v2_ext:0),(n1_nf3?v3_ext:0),(n1_nf4?v4_ext:0)); // Process 1 compute new value
49 formula w1_v2_new = w1_v2 | n1_nf2 | (n1_nf3 & w3_v2_ext) | (n1_nf4 & w4_v2_ext) ; // Process 1 update its view of Process 2
50 formula w1_v3_new = w1_v3 | n1_nf3 | (n1_nf2 & w2_v3_ext) | (n1_nf4 & w4_v3_ext) ; // Process 1 update its view of Process 3
51 formula w1_v4_new = w1_v4 | n1_nf4 | (n1_nf2 & w2_v4_ext) | (n1_nf3 & w3_v4_ext) ; // Process 1 update its view of Process 4
52
53 formula w1_c2_new = w1_c2 | (n1_nf2 & (w2_v1_ext & w2_v3_ext & w2_v4_ext)); // Process 1 knows that Process 2 view is complete
54 formula w1_c3_new = w1_c3 | (n1_nf3 & (w3_v1_ext & w3_v2_ext & w3_v4_ext)); // Process 1 knows that Process 3 view is complete
55 formula w1_c4_new = w1_c4 | (n1_nf4 & (w4_v1_ext & w4_v2_ext & w4_v3_ext)); // Process 1 knows that Process 4 view is complete
56
57
58 // Optimistic Decision
59 formula decision_OP = w1_v2 & w1_v3 & w1_v4; // Process 1 has complete view at RN

Listing 51. N>3 with Asymmetric Failures- part 1

39



61
62
63
64
65 // Pessimistic Decision
66 formula decision_PS = w1_v2 & w1_v3 & w1_v4 & w1_c2 & w1_c3 & w1_c4; // Process 1 has complete view at (RN-1) and received complete view from all processes at RN
67
68 // General Decision Formula
69 formula decision = ((DC=1) & decision_OP) | ((DC=3) & decision_PS); // Combine all decision criterea in a single formula
70
71 module Process_1
72 s1 : [0..N+2] init 1; // Process 1 current state
73 RN1: [0..RN] init 0; // Current round
74 v1 : [0..v_max] init v1_ini; // Process 1 value
75 d1: bool init false; // Process 1 decision
76
77 // Status of the message of the other Processs
78 n1_nf2: bool init true; // Process 1 has not received the message of Process 2
79 n1_nf3: bool init true; // Process 1 has not received the message of Process 3
80 n1_nf4: bool init true; // Process 1 has not received the message of Process 4
81
82 // Process 1 view of other Processs
83 w1_v2 : bool init false; // Process 1 has the view of Process 2
84 w1_v3 : bool init false; // Process 1 has the view of Process 3
85 w1_v4 : bool init false; // Process 1 has the view of Process 4
86
87 // Process 1 has confirmation that other processes have complete view
88 w1_c2 : bool init false; // Process 1 has confirmation from Process 2
89 w1_c3 : bool init false; // Process 1 has confirmation from Process 3
90 w1_c4 : bool init false; // Process 1 has confirmation from Process 4
91
92 // Process 1 sends its message;
93 [] s1=1 & token=N1 & RN1<RN -> 1:(s1’=2) & (token’=next) & (v1_ext’=v1) & (w1_v2_ext’=w1_v2) & (w1_v3_ext’=w1_v3) & (w1_v4_ext’=w1_v4) & (RN1’=RN1+1);
94
95 // Process 1 receives or loses the message of each other process
96 [] s1=2 & token=N1 & RN1<=RN & (m_lost<(RN*N*(N-1))) -> (1-Q): (s1’=3) & (n1_nf2’=true) + Q: (s1’=3) & (n1_nf2’=false) & (m_lost’=m_lost+1);
97 [] s1=3 & token=N1 & RN1<=RN & (m_lost<(RN*N*(N-1))) -> (1-Q): (s1’=4) & (n1_nf3’=true) + Q: (s1’=4) & (n1_nf3’=false) & (m_lost’=m_lost+1);
98 [] s1=4 & token=N1 & RN1<=RN & (m_lost<(RN*N*(N-1))) -> (1-Q): (s1’=5) & (n1_nf4’=true) + Q: (s1’=5) & (n1_nf4’=false) & (m_lost’=m_lost+1);
99

100 // Not last round, Process 1 computes the messages of other processes: updates its value, views and confirmations;
101 [] s1=N+1 & token=N1 & RN1<RN -> 1: (s1’=1) & (v1’=v1_new) & (w1_v2’=w1_v2_new) & (w1_v3’=w1_v3_new) & (w1_v4’=w1_v4_new) & (w1_c2’=w1_c2_new) & (w1_c3’=w1_c3_new) &

(w1_c4’=w1_c4_new) & (token’=next);
102
103 // Last round, Process 1 computes the messages of other processes: updates its confirmations and, only for OP, updates value and views;
104 [] s1=N+1 & token=N1 & RN1=RN -> 1: (s1’=N+2) & (w1_c2’=w1_c2_new) & (w1_c3’=w1_c3_new) & (w1_c4’=w1_c4_new) & (v1’=(DC=1)?v1_new:v1) & (w1_v2’=(DC=1)?w1_v2_new:w1_v2)

& (w1_v3’=(DC=1)?w1_v3_new:w1_v3) & (w1_v4’=(DC=1)?w1_v4_new:w1_v4);
105
106 // Process 1 decides -> agree or abort
107 [] s1=N+2 & token=N1 -> 1: (s1’=0) & (token’=next) & (d1’= decision);
108
109 endmodule
110
111 module Process_2=Process_1 [N1=N2, s1=s2, v1=v2, d1=d2, RN1=RN2, n1_nf2=n2_nf3, n1_nf3=n2_nf4, n1_nf4=n2_nf1, w1_v2=w2_v3, w1_v3=w2_v4, w1_v4=w2_v1, w1_c2=w2_c3,

w1_c3=w2_c4, w1_c4=w2_c1, v1_ext=v2_ext, v2_ext=v3_ext, v3_ext=v4_ext, v4_ext=v1_ext, w1_v2_ext=w2_v3_ext, w1_v3_ext=w2_v4_ext , w1_v4_ext=w2_v1_ext,
w2_v1_ext=w3_v2_ext, w2_v3_ext=w3_v4_ext, w2_v4_ext=w3_v1_ext, w3_v1_ext=w4_v2_ext, w3_v2_ext=w4_v3_ext, w3_v4_ext=w4_v1_ext, w4_v1_ext=w1_v2_ext,
w4_v2_ext=w1_v3_ext, w4_v3_ext=w1_v4_ext, v1_ini=v2_ini] endmodule

112 module Process_3=Process_1 [N1=N3, s1=s3, v1=v3, d1=d3, RN1=RN3, n1_nf2=n3_nf4, n1_nf3=n3_nf1, n1_nf4=n3_nf2, w1_v2=w3_v4, w1_v3=w3_v1, w1_v4=w3_v2, w1_c2=w3_c4,
w1_c3=w3_c1, w1_c4=w3_c2, v1_ext=v3_ext, v2_ext=v4_ext, v3_ext=v1_ext, v4_ext=v2_ext, w1_v2_ext=w3_v4_ext, w1_v3_ext=w3_v1_ext , w1_v4_ext=w3_v2_ext,
w2_v1_ext=w4_v3_ext, w2_v3_ext=w4_v1_ext, w2_v4_ext=w4_v2_ext, w3_v1_ext=w1_v3_ext, w3_v2_ext=w1_v4_ext, w3_v4_ext=w1_v2_ext, w4_v1_ext=w2_v3_ext,
w4_v2_ext=w2_v4_ext, w4_v3_ext=w2_v1_ext, v1_ini=v3_ini] endmodule

113 module Process_4=Process_1 [N1=N4, s1=s4, v1=v4, d1=d4, RN1=RN4, n1_nf2=n4_nf1, n1_nf3=n4_nf2, n1_nf4=n4_nf3, w1_v2=w4_v1, w1_v3=w4_v2, w1_v4=w4_v3, w1_c2=w4_c1,
w1_c3=w4_c2, w1_c4=w4_c3, v1_ext=v4_ext, v2_ext=v1_ext, v3_ext=v2_ext, v4_ext=v3_ext, w1_v2_ext=w4_v1_ext, w1_v3_ext=w4_v2_ext , w1_v4_ext=w4_v3_ext,
w2_v1_ext=w1_v4_ext, w2_v3_ext=w1_v2_ext, w2_v4_ext=w1_v3_ext, w3_v1_ext=w2_v4_ext, w3_v2_ext=w2_v1_ext, w3_v4_ext=w2_v3_ext, w4_v1_ext=w3_v4_ext,
w4_v2_ext=w3_v1_ext, w4_v3_ext=w3_v2_ext, v1_ini=v4_ini, not_last=last] endmodule
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