
PROBABILISTIC ANALYSIS OF REAL-TIME SCHEDULING OF
SYSTEMS TOLERATING MULTIPLE TRANSIENT FAULTS

Risat Mahmud Pathan
 Department of Computer Science and Engineering, BRAC University, Dhaka, Bangladesh.

Abstract

The influence of computer systems in human life is in-
creasing and thereby increases the need for having re-
liable, robust and real-time services of computer sys-
tems. Avoidance of any catastrophic consequences due
to faults in such systems is the main objective. This pa-
per addresses the problem of finding a probabilistic
measure of schedulability of real-time systems tasks in
the presence of multiple transient faults. The main ap-
proach used in this paper is employing Temporal Error
Masking (TEM) technique to achieve Node Level Fault
Tolerance (NLFT) within the least common multiple of
periods of a set of pre-emptively scheduled periodic
tasks with at most f transient faults. Rate Monotonic
(RM) scheduling is used to observe how the probability
of system success, that is, the probability of meeting
deadlines for all tasks is affected with the worst-case
distribution of f faults
Keywords: Fixed-Priority Scheduling, NLFT, Real-
Time Fault-Tolerant systems, TEM, Transient faults.
1. INTRODUCTION
Real-time systems that are being increasingly used in
several applications are time critical in nature where a
failure can pose a threat to human lives. The ability to
tolerate faults in such hard real-time systems is crucial
since a task can potentially miss its deadline when faults
occur. The use of fault-tolerant computers in avionics
was advanced in 1980s and the early 1990s, when so
called fly-by-wire systems were introduced in military
aircrafts and commercial airlines, such as the Airbus-
320 [1] and Boeing 777 [2]. Real-time systems with
high dependability requirements are traditionally being
built with massive replication and redundancy. In cer-
tain classes of applications, due to space, weight and
cost considerations it may not be feasible to provide
space redundancy. Such systems need to exploit time
redundancy techniques. In this paper, time redundancy
is used to achieve fault tolerance in the presence of at
most f transient faults. Several studies have shown that
transient faults occur at much a higher rate than perma-
nent faults [3]. In [4], measurements showed that tran-
sient faults are 30 times more frequent than permanent
faults. In this paper, time redundant execution of tasks
known as Temporal Error Masking (TEM) is used to
mask at most f transient faults at node level, known as
Node Level Fault Tolerance (NLFT). Moreover, in this
paper, scheduling with probabilistic guarantee for a
hard real-time system is addressed. The term ‘probabil-
istic guarantee’ means a scheduling guarantee with an
associated probability. Hence, a guarantee of 99.95 %
does not mean that 99.95 % of the deadlines of tasks are

met. Rather it implies that the probability of all dead-
lines of all tasks being met during given period of op-
eration is 99.95%.
2. RELATED WORK
One of the first scheduling mechanisms for fault toler-
ance deals with periodic tasks whose periods must be
multiples of one another and the execution time of re-
covery tasks must be shorter than that of the original
execution time was described by Liestman and Camp-
bell [5]. In [6], a framework for light-weight node-level
fault tolerance is presented where it is shown that
NLFT-nodes may provide 55% higher reliability after
one year and 60% higher mean time to failure (MTTF)
compared to systems with fail-silent nodes. The fault
injection experiment in [7] show that the percentage of
correct results increased from 81% to 89% using tempo-
ral error masking. In [8] it is shown that, the percentage
of detected errors increased from 93.9% to 97.2 %. In
[9] Pandya and Malek analyze the schedulability of a
set of periodic tasks that are scheduled using Rate
Monotonic Scheduling and tolerate a single fault. In
[10], the notion of probabilistic guarantee for fault-
tolerant hard real-time systems is introduced. Another
study, presented in [11], provides an exact schedulabil-
ity test. In [12], a temporal-redundancy-based recovery
technique is proposed that tolerates transient task fail-
ures where tasks have timing, resource, and precedence
constraints. In [13], an appropriate schedulability
analysis based on response-time analysis is proposed
where recovery task may be executed at higher priority
levels. In [14], a scheme is proposed that guarantees the
timely recovery from multiple-faults assuming earliest-
deadline-first scheduling (EDF) scheduling for aperi-
odic pre-emptive tasks. In this paper, similar approach
as in [14] is made but for rate monotonic scheduling
(RM) algorithm for a set of pre-emptive periodic tasks.
Many papers have addressed the problem of tolerating
transient faults with some restrictions as follows: only
one fault is possible within some operational time, tasks
periods are multiple of one another, and recovery task
has smaller execution time or higher priority than that
of the original task. In this paper, the response time of a
task instances is found out considering only the worst-
case distribution of f faults using an algorithm RM-FT.
Moreover, a probabilistic measure of system success
denoted by Psuccess is determined using resultant data
from fault injection experiment with 68340 microproc-
essor [6-8, 15].
3. TASK MODEL
The task set consists of n periodic tasks, Γ={τ1, τ2, ….
τn}. Each task τi has a period Ti, and a relative deadline

Di which is equal to its period. Each task τi has the
worst-case execution time Ci and has a priority Pi. The
highest priority task has the lowest period. The length
of the planning cycle (PC) within which the tasks repeat
themselves iteratively is the least common multiple of
all task periods is defined as: PC=lcm(P1, P2….Pn).
Within one PC, one or more instances of task τi will
execute. Each task instance is denoted by τij where j is
the jth instance of task τi. Γall is defined as the set of all
task instances within PC. That is, Γall= {τij⎪i=1,2,…n
and j=1,2,…..⎡

Ti
PC ⎤}.

4. TEMPORAL ERROR MASKING (TEM)
The technique for TEM is, first two copies (primary
copies) of a task instance is run, and if error is detected
either by comparison of results of the two copies, or by
timer monitor or by Error Detection Mechanism (EDM)
a third copy of the task instance is run and then by ma-
jority voting of the three results, the result is either ac-
cepted or omission failure is occurred. In [15], three
different cases in Fig. 1 were considered. According to
[15], whenever two primary copies are faulty, assuming

Fig. 1 Error detection and error recovery using TEM
two faults will not lead to the same error, running the
third copy always leads to omission failure, hence the
error is not masked. The approach in this paper to mask
f errors, assuming multiple faults will not lead to same
error, is first to run two primary copies of the same task
instance. If an error is detected, run f more extra copies
of the task instance. For example, in case f=2, run two
more extra copies (third and fourth) when error is de-
tected. Then the four results are compared. If there are
at least two matching results, the result is accepted. If
we have all four different results, it will lead to omis-
sion failure as shown in Table I.
Table I Masking two errors by running two extra
copies of a task instance.

5. RESPONSE TIME ANALYSIS
Traditional response time analysis for RM scheduling as
in [16] is not suitable when multiple faults are consid-
ered. The response time of task τi depends on the distri-
bution of f faults within PC. If all f faults occur within
the same task instance, the extra f copies are scheduled
only for that task instance. If the f errors are occurred in
many task instances, then for each of the erroneous task
instances f extra copies will be scheduled. For at most f
faults with total m different task copies of different
tasks instances, one has to consider mf different fault
distributions if traditional response time analysis is con-
sidered. Instead of considering all possible distributions
of f faults, in this paper, only the worst-case distribution
of f faults is considered. In section 6, an algorithm RM-
IND to find the response time for individual task in-
stance in fault free environment is developed. By con-
sidering only the worst-case distribution of f faults
within PC and using the result of RM-IND, the feasibil-
ity of a schedule of a task set is checked in another al-
gorithm RM-FT is developed in section 7. At last, a
probabilistic measure of system success for any task set
based on RM-FT is determined in section 8.
6. RESPONSE TIME OF TASK INSTANCES IN
FAULT-FREE ENVIRONMENT
To find the response time of individual task instances in
fault free environment the following functions are de-
fined:
RD(Γ,t): The set of ready task at time t. It represents all
the task instances that are released at time t.
REL_LD(t): The release load in a fault-free environ-
ment at time t. It represents the total execution time re-
quired for the task instances in set RD(Γ,t) at time t.
Ψ(Γ,t): The amount of work still to be done at any time
t in the fault-free environment. This function is defined
recursively as follows:

This binary operator “-- ” with operands a and b is de-
fined as: a--b = 0 if b>a, else a--b=a-b. Using the func-
tion Ψ, the following algorithm RM-IND is developed
that finds the response time of individual task instances.
1.1 Algorithm: RM-IND

Fig. 2 Pseudocode for finding the response-time of each

task instance in fault-free environment
The for loop at line 1 iterates PC times and at each time
it checks in line 3 if there is a task eligible to execute in
the time slot between (t-1) and t in fault free environ-

ment. When any particular task instance finishes execu-
tion in line 4, the finishing time is recorded in line 6.
6.2 EXAMPLE: SIMULATION OF RM-IND
For the following task set in Table II, the start time and
the finishing time of each task instances is found in the
Table III and the corresponding schedule is shown in
Fig. 3 along with the value for ψ.

Table II Task Set

Table III Simulation of RM –IND for task in TableII

Fig. 3 RM Schedule for task set in Table II

The function fin(τij) is defined as the time when task
instance τij completes execution in RM-IND. So,
fin(τ11)=2, fin(τ12)=5 and fin(τ21)=6 as in Fig. 3. In next
section, fault-tolerant algorithm RM-FT is developed
considering the worst possible distribution of f faults.
7. FAULT-TOLERANT ALGORITHM: RM-FT
The algorithm RM-FT in section 7.1 checks the sched-
ulability of a set of tasks in environment where faults
are likely. Inspired by the work in [14], the function
δf(t,Γall) in defined as the amount of extra work that still
need to be done at time t due to f faults in an environ-
ment where faults are likely. For the task set in Table
IV, the amount of extra work that still needs to be done
is calculated in Fig. 4. If f=1, the amount of extra work
when τ11 finishes execution is δ1(2,Γall)=1 since if the
task instance is in error, we need to run one more extra
copy. Note that, δ1(8, Γ) =2, since when task instance
τ12 finishes execution, the only fault if occurs in the task
instance τ21 represents the worst-case distribution of one
fault. Observe that, for f=1, the lowest priority task (τ22)
finishes before deadline since the amount of extra work
at t=15 is δ1(15, Γ)=2 that becomes zero before the
deadline of that task instance. But higher priority task
instance τ21 cannot finish before deadline which is t=9
since at t=9, the extra work still to be done is δ1(9,
Γ)=1. Hence the task set in Table IV is not schedulable.
Theorem 1: Given task set Γall and the lowest priority
task τij in Γall completes by its deadline which is (Ti × j)

in fault tolerant schedule, if and only if, δf(Γ,t)=0 for
some t, fin(τij) ≤ t ≤ Ti ×j.

Table IV Task set

Fig. 4: The schedule with the value of δ at each time t
Corollary 1: A necessary and sufficient condition for
the feasibility of the fault tolerant schedule for a given
task set Γall for any distribution of f or less faults can be
obtained by applying Theorem 1 to N task sets Γj for
j=1,..,N where Γj contains the jth highest priority task
from Γall.

7.1 ALGORITHM: RM-FT

Using Corollary1, the algorithm RM-FT for feasibility
check of a schedule is developed and simulated in 7.2
and 7.3 using the two example task sets in Table V:

Fig. 5 Pseudocode for checking schedulability
Table V: Two task sets with same period but different
execution time.

7.2 RM-FT SCHEDULE WITH δ VALUE For f=1
(EXAMPLE 1):

Fig. 6 Task schedule for Example1 using RM-FT with δ
value. The task set is not schedulable.

7.3 RM-FT SCHEDULE WITH δ VALUE FOR
f=1(EXAMPLE 2):

Fig. 7 Task schedule for Example 2 using RM-FT with δ
value. The task set is schedulable

8. PROBABILITY OF SCHEDULABILITY:
8.1 PARAMETERS OF PROBABILITIES:
In this section, a probabilistic measure of system success in
case of f faults is derived. The result of injecting faults into
applications provides the parameters of certain probabilities
that are given in the following Table VI. The values in the 3rd
column are taken from experiment of injecting faults in a
68340 microprocessor [6-8, 15].

Table VI Parameters for the probabilities from fault
injection experiment in 68340 microprocessor.

8.2 PROBABILITY OF FAULT OCCURRENCE IN
TASK τij:
For a maximum of f faults, the probability of a fault
occurrence in task instance τij is P(Fij) is defined as:

P(Fij)=
PC

Ci*2)(f + ×
PC

ij)Rel(-PC τ

Here,
PC

Ci*2)(f + represents the task utilization of task τij

in case of faults within one PC. Since the probability of

fault occurrence decreases as the tasks’ completion time
within one PC decreases, therefore, we scale the prob-
ability by multiplying

PC
ij)Rel(-PC τ where Rel(τij) is the

release time of task τij.
8.3 PROBABILITY OF SCHEDULABILITY Yij

FOR A TASK τij:
 0 if task τij is not schedulable by RM-FT
 1 if task τij is schedulable by RM-FT
8.4 PROBABILITY OF ERROR MASKING:
In this analysis, the probability of error detection and
masking by any one of the techniques (double execu-
tion, timer monitor, or EDM) is: (PDE × PDE,M) + (PT ×
PT,M) + (PEDM × PEDM,M). When a fault occurs, and the
fault leads to an error and the error is detected, then the
error needs to be masked. Denote the probability error
masking of all task instances by PError is defined as:

Using the probabilities given in Table VI, (Px × PDE ×
PDE,M +PT × PT,M +PEDM × PEDM,M)=0.120122
8.5 PROBABILITY OF NO ERROR MASKING:
Let’s denote the probability of task execution without
the need for error masking by PNoError. This occurs
when: (i) No fault occurs and the probability is 1-
∑P(Fij) for τij∈ Γall (ii) Fault occurs but no error is gen-
erated, and the probability is [P(Fij) ×(1-Px)], and
(iii)Fault occurs and error generated but error is not
detected and the probability is P(Fij) ×Px × PND. So, the
probability when errors don’t need to be masked for all
task instances is:

8.6 PROBABILITY OF SYSTEM SUCCESS:
Let’s denote the probability of the system success by
Psuccess=PNoError+PError … …(III)
9. CALCULATING PSUCCESS WITH EXAMPLE
TASK SETS:
In this section the probability of system success is cal-
culated using different example task sets.
9.1 EXAMPLE 1

Table VII Task set

If f=0, by running algorithm RM-FT, all tasks are
schedulable. Hence, Yij =1 for all task instances. The
probability of fault occurrence in each task instance
within PC is given as follows:
P(F11)=.055555, P(F12)=0.04166, P(F13)=0.027777,
P(F14)=0.01388, P(F21)=0.05555, P(F22) =0.027777,
P(F31)=0.055555

Yij =

 So, ∑ P(Fij) =0.277773
 τij∈ Γall
Using equation (I), (II) and (III) , PError =0.033366,
PNoError=0.952778, Psuccess=0.986145.
If f=1, PError =0.05005, PNoError=0.92916,
Psuccess=0.979219. If f=2, PError =0.07006, PNoEr-

ror=0.90083, Psuccess=0.97088. If f=3, PError =0.083417
and PNoError=0.88195 and Psuccess=0.96536. If f=4,
the task set is not schedulable using RM-FT. To see
why, observe the following schedule in Fig. 8.

Fig. 8 Schedule for f=4 using RM-FT of task set in Ta-
ble VII.
In the schedule, the lowest priority task is τ31 is sched-
ulable. However, task τ12 finishes at time t=11 and the
value of δ=13 (amount of extra work due to faults). It is
not possible to complete the extra work δ before the
deadline of τ12 which is t=18, since δ≠0 for any t such
that fin(τ12)=11 ≤ t ≤ (T1 ×2) =18. So, task set in Table
VII cannot be scheduled. Hence, Y12 =0. And, ∏ Yij
=0. Hence, if f=4, PError=0 and PNoError=0.858336
and Psuccess=0+0.858336=0.858336. Obviously, for
the task set in Table VII, if f>3, Psuccess =Pnoerror.
9.1.1 DISCUSSION (EXAMPLE 1)
The graph in Fig. 9 shows that, as f increases, the prob-
ability of fault occurrence also increases. In Fig. 10, it
can be seen that the probability of masking faults in-
creases (PError) as we increase f since the system now
employs error-masking capabilities to mask errors.
However, in practice, no system is capable of tolerating
an infinite number of faults. So, after a certain value of
f, the fault masking capability will diminish to zero (see
the column in Fig. 10 for f=4). In Fig. 11, the probabil-
ity of system success without fault masking capability
(PNoError) decreases as f increases. This is because as
more faults are likely, the system becomes more vulner-
able to faults and the probability of schedulability de-
creases. Fig. 12 shows that as f increases, there is a de-
crease in the probability of overall system success (Psuc-

cess). As more errors are occurring, there is an increase
in probability of fault masking (PError) and there is also a
decrease in the probability of success without fault
masking (PNoError). However, the sum of these two prob-
abilities has a downward trend. This is because, as the
number of maximum fault f occurrence increases, the
probability of overall system success is more dependent
on the fault masking capability of the system, which is
limited for any practical system. So, for higher number
of f, the probability Psuccess is low.
9.2 EXAMPLE 2: The execution time of task τ1 in Ta-
ble VIII is increased by 1 time-unit in Example 2 than it
is given in Example1 in Table VII.

Probability of fault occurrence increases as f
increases

0.41665
0.58331

0.694408
0.833331

0

0.2

0.4

0.6

0.8

1

Maximum number of faults(f)

P
ro

ba
bi

lit
y

Probability

Probability 0.41665 0.58331 0.694408 0.833331

1 2 3 4

Fig. 9: The probability of fault increases as f increases

Probability of masking faults increases as f increases

0.05005
0.07006

0.08341

0
0

0.05

0.1

1 2 3 4

Number of maximum faults

Pe
rr

or Probability

 Fig. 10: Probability of fault masking increases

probability of success with no faults masking

0.92916

0.90083

0.88195

0.85833

0.82

0.84

0.86

0.88

0.9

0.92

0.94

Maximum number of faults

P
ro

ba
bi

lit
y(
P
no

er
r)

probability

probability 0.92916 0.90083 0.88195 0.85833

1 2 3 4

Fig.11: Probability of system success without fault
masking decreases as f increases

Probability of overall success decreases as f
increases

0.979219 0.97088 0.96536

0.858336

0.75

0.8

0.85

0.9

0.95

1

maximum number of faults

P
ro

ba
bi

lit
y(

Ps
uc

ce
ss

)

Probability

Probability 0.979219 0.97088 0.96536 0.858336

1 2 3 4

Fig. 12: Probability of system success decreases as f
increases

Table VIII Task set

.
Using (I), (II) and (III), it can be derived that, if f=1,
PError =0.07507, P NoError=0.89375, Psuccess=0.96882; if
f=2, PError=0, P NoError=0.858335 and Psuccess=0.858335.
Intuitively, for this task set if f>3, Psuccess =PNoError.
9.2.1 DISCUSSION (EXAMPLE 2):
Observe that, Example 2 has larger execution time for
task τ1 than the execution time of task τ1 given in Exam-
ple 1. For f=1, the probability of Psuccess in Example 2
(Psuccess=0.96882) is lower than the probability of Psuccess
in Example1 (Psuccess=0.979219). This is because with
increased execution time there is less slack in the
schedule and hence task with higher execution time
contributes to the increased value of δ. Similarly, for
f=2, the probability of Psuccess in Example 2 (Psuc-

cess=0.858335) is lower than the probability of Psuccess in
Example1 (Psuccess=0.97088). Consequently, it can be
said that with higher task utilization, the less number of
faults can be masked and thereby having a lower prob-
ability of system success.

9.3 EXAMPLE 3:
 Table IX Task set

9.3.1 DISCUSSION (EXAMPLE 3):
Observe that, Example 3 in Table IX has larger execu-
tion time for task τ3 that the execution time given in
Example 2 but both examples task set have same task
utilization. For f=1, the probability of Psuccess in Example
3 (Psuccess=0.964632) is lower than the probability of
Psuccess in Example 2 (Psuccess=0.96882). This is because,
even if both have same utilization, tasks with large exe-
cution time runs for a long time in a fault tolerant
schedule when extra/recovery copies need to be run.
Hence, less slack is provided in the schedule. So, not
only utilization but also the execution time of individual
task is a major success factor of system schedulability.
10. CONCLUSION:
Meeting task deadlines is the main objective of hard
real-time systems. If faults are likely, mechanisms must
be employed to tolerate the faults if the system has to
avoid catastrophic consequences. Use of redundancy is
the solution for achieving fault tolerance. In this paper,
probabilistic analysis of schedulability shows that, with
increased f, probability of system success increases with
fault masking capability up to a certain value of f, after
which the probability of system success decreases, as
the system can’t tolerate unlimited number of faults.
Moreover, not only higher task utilization but also indi-
vidual task’s execution time determines the probability
of system success.
Running f extra copies requires more slack in the
schedule which may not be available for many task sets
in hard real-time systems. If the number of extra copies
is decreased more slack would be available in the
schedule and more task sets could be schedulable at
node level. However, by running less than f extra cop-
ies, all errors may not be possible to mask at node level.
If error could not be masked at node level, system level
fault tolerance has to be employed. Future work could
be to find a trade-off between system level and node
level fault tolerance.
11. REFERENCES
[1] D. Briere and P. Traverse, “ AIRBUS
A320/A330/A340 electrical flight controls- A family of
fault-tolerant systems”, FTCS-23 The Twenty-Third
International Symposium on Fault-Tolerant Computing,
22-24 June 1993, Toulouse, France, 1993.
[2] L. Andrade and C. Tenning, “Design of Boeing 777
electric system”, IEEE Aerospace and Electronics Sys-
tems Magazine, vol. 7, pp 4-11, 1992.
[3] X. Castillo, S. R. McConnel, and D. P. Siewiorek.
“Derivation and Calibration of a Transient Error Reli-
ability Model”. IEEE Trans. On Computers, C-
31(7):658-671, July 1982.

[4] D. P. Siewiorek, V. Kini, H. Mashburn, S. McCon-
nel, and M. Tsao. “A Case Study of C.mmp, Cm*, and
C.vmp: Part 1: Experiences with Fault Tolerance in
Multiprocessor Systems”. Proceedings of the IEEE,
66(10):1178-1199, Oct. 1978.
 [5] L. Liestman, R. H. Campbell, “A fault-Tolerant
Scheduling Problem,” IEEE Trans. Software Eng.,
vol.12, no.11, pp.1089-1095, 1986.
[6] Joakim Aidemark, Peter Folkesson, and Johan
Karlsson. “A framework for node level fault tolerance
in distributed real time systems,” in Proc. International
Conference on Dependable Systems and Networks
(DSN-2005), Yokohama, Japan, June 2005.
[7] Joakim Aidemark, J. Vinter, Peter Folkesson, and
Johan Karlsson. “Experimental evaluation of time re-
dundant execution for a brake-by-wire application,” in
Proc. International Conference on Dependable Systems
and Networks (DSN-2002), IEEE Computer Society
Press, Washington DC, USA, June 2002, pp. 210-215.
[8] Joakim Aidemark, J. Vinter, Peter Folkesson, and
Johan Karlsson. “Experimental dependability evaluation
of the Artk68-FT real-time kernel,” in Proc. of the In-
ternational Conference on Real-Time and Embedded
Computer Systems and Applications, Göteborg, Swe-
den, August 2004, pp. 625-645.
[9] M. Pandya and M. Malek. “Minimum Achievable
Utilization for Fault-Tolerant Processing of Periodic
tasks”. Technical Report TR 94-07, University of Texas
at Austin, Dept. of Computer Science, 1994.
[10] A. Burns, S. Punnekkat, L. Strigini, and D. R.
Wright. “Probabilistic scheduling guarantees for fault
tolerant real time systems”. Technical report. Depart-
ment of Computer Science, University of York, 1998.
[11] A. Burns, R. Davis, and S. Punnekkat. “Feasibility
Analysis of Fault Tolerant Real time task sets”. In 8th
Euromicro Workshop on Real-Time Systems, Jun 1996.
[12] N. Kandasamy, J. P. Hayes, and B.T. Murray,
“Tolerating Transient Faults in Statically Scheduled
Safety Critical Embedded Systems”. Proc. 18th IEEE
symposium Reliable Distributed System(SRDS), pp.
212-221, 1999.
[13] G. M. de A. Lima, A. Burns, “An optimal fixed-
priority assignment algorithm for supporting fault-
tolerant hard real-time systems”, IEEE trans. On Com-
puters, 52(10):1332-1346, Oct, 2003.
[14] Frank Liberato, Rami Melhem, and Daniel Mosse.
“Tolerance to multiple faults for aperiodic tasks in hard
real time system”. IEEE Trans. Computers 49(9):906-
914, 2000.
[15] Joakim Aidemark. “Node-Level Fault Tolerance
for Embedded Real-Time Systems”. Ph. D. Thesis,
Chalmers University of Technology, 2004.
[16] C. M. Krishna and Kang G. Shin, “Real-Time Sys-
tems”, McGraw-Hill, 1997.

