
Fault-Tolerant Real-Time Scheduling using Chip Multiprocessor

Risat Mahmud Pathan

Department of Computer Science and Engineering

Chalmers University of Technology, SE-412 96, Göteborg, Sweden

risat@chalmers.se

Abstract

Failure to meet task deadline in safety critical real-

time systems can be catastrophic. Moreover, fault

tolerance is a crucial aspect of such systems if faults

are likely. In this work, fault tolerance in real-time

systems is proposed using time redundancy to mask at

most F transient faults. Schedulability of a set of n

preemptive real-time periodic tasks using Rate-

Monotonic(RM) schedule in chip multiprocessor

(CMP) is considered. Chip multiprocessor rather than

uniprocessor is proposed to make more CPU time

available before deadline of tasks. This paper

addresses the issue of finding maximum number of

tasks that can run in parallel at a particular time and

also finds minimum number of processing cores

required in a CMP, denoted by MinC, to make the

real-time system task set schedulable. A real-time

fault-tolerant algorithm FT-RT-CMP for scheduling

tasks using MinC cores is also developed considering

the worst case distribution of F transient faults.

1. Introduction

 System with strict timing requirements are used in

several applications like fly-by-wire, brake-by-wire,

autopilot system and space shuttles, industrial process

control and robots [1-3]. Some of these systems are

considered as hard real-time systems where missing

the deadline of a task can pose threat to human lives or

environment. Moreover, when faults occur, recovery

from the fault must be considered in such system. Time

redundancy rather than space redundancy can be used

due to cost, volume and space considerations. Time

redundancy technique to mask faults at node level

requires re-execution of tasks, known as Temporal

Error Masking (TEM) [3-5]. Enough CPU time may

not be available in the real-time schedule for such re-

execution if the number of faults and task execution

time is large. To make more CPU time available, an

approach is made in this paper to achieve better

schedulability using Rate-Monotonic(RM) scheduling

for a set of n preemptive periodic tasks to tolerate a

maximum of F transient faults using chip multi

processor(CMP). In processor industry, the trend is

now to build single chip multiprocessor(CMP) seeing

the diminishing return from uniprocessor with higher

transistor count [6-8]. In this paper, using such

processor chip, with multiple cores having more

computational power, scheduling of safety critical real-

time application tasks to mask the effect of faults using

time redundancy is proposed.

 This paper in organized as follows: Section 2

provides the related work, section 3 presents the task

model, and the inherent parallelism with such task

model is discussed in Section 4. Task instances that

can run in parallel at different cores of a CMP are

defined formally in section 5. Section 6 presents

algorithm FT-RT-CMP for scheduling tasks using

CMP. Section 7 concludes this paper with a pointer to

future work.

2. Related Work

 In this work, I address the issue of tolerating

transient faults that are temporary malfunctioning of

the computing units. Such temporary malfunction can

lead to an error in the system. The main source of

transient faults is environmental disturbances like

power fluctuations, electromagnetic interference and

ionizing radiation by alpha particles. Several studies

have shown that transient faults occur at much a higher

rate than permanent faults [9-11]. In [9], measurements

showed that transient faults are 30 times more frequent

than permanent faults, while the work in [10] revealed

that 83% of all faults were determined to be transient

or intermittent. In some real-time systems such as

satellites and space shuttles, transient faults occur at a

much higher rate than in general purpose systems [11].

Such high occurrences of transient faults motivated me

to the development of an approach to tolerate transient

faults using time redundancy. Many approaches have

been taken to address the use of time redundancy to

tolerate transient faults [3-5, 12-14]. The work in [3]

evaluates a real-time kernel that employs TEM for

brake-by-wire applications where correct results

increased from 81% to 89%. In [5], Ramos-Thuel

presented an algorithm for fault-recovery based on

concept of slack stealing. The work in [12] presented a

recovery scheme using re-execution in the event of

single or multiple errors. In [13], a temporal-

redundancy-based recovery technique that tolerates

transient task failures where tasks have different

constraints is presented. An appropriate schedulability

analysis for fault tolerant systems is made where

recoveries of tasks may be executed at higher priority

levels [14]. In my work here the execution of recovery

tasks due to errors run as the same priority of the task

in which the error is detected.

 Since time redundant execution requires much CPU

time, the use of multiple cores single chip multi

processor(CMP) is proposed in this work. Building

more powerful uniprocessors with increasing transistor

counts has ceased due to limited instruction level

parallelism, increased wire delay and latency to main

memory access. Now trend is to accommodate many

cores in the same die area, called Chip multi processor

[6-8, 15]. On applications with large grained thread-

level parallelism the multiprocessor microarchitecture

performs 50–100% better than the wide superscalar

microarchitecture [6]. Niagara chip multiprocessor

increases application performance by improving

throughput [7]. To application software, a Niagara

processor will appear as 32 discrete processors with

the OS layer abstracting away the hardware sharing

[7]. If such processor is used for real-time scheduling,

a total of 32 tasks can be scheduled in parallel using

the support from operating system.

 The low use of CMP today is because converting

today’s uniprocessor programs into multiprocessor

ones is difficult. But in Section 4 of this paper we will

see inherent parallelism in the real-time periodic task is

the best target for CMP. For such inherent parallelism,

the CMP is much more promising because it is already

partitioned into individual processing cores [8]. To

harness the benefit of CMP, applications must expose

their thread-level parallelism to the hardware. This can

be done by decomposing a program into parallel

“tasks” and allow an underlying software layer to

schedule these tasks on different threads [15]. Inspired

by this approach, in this work task scheduling in CMP

is addressed considering the potential parallelism

within real-time periodic task set. In Section 6, the

number of minimum cores in a CMP, denoted by

MinC, required to make a task set schedulable is

determined. In the next section, the task model used in

this wok is presented.

3. Task model
 The task set consists of n tasks, Γ ={τ1, τ2,…. τn}.
Each task τi has a period Ti, and a relative deadline Di

is equal to task period Ti, worst case execution time Ci

and priority Pi. The highest priority task has the lowest

period. The length of the Planning Cycle (PC) in which

the tasks repeat themselves iteratively is the least

common multiple of all task periods.

PC= L.C.M.{T1, T2,…., Tn}.
 Within one PC, one or more instances of task τi
will execute. Each task instance is denoted by τij where
j is the jth instance of task τi. The set of tasks that get
ready at time t is denoted by RD(Γ,t) defined as:
RD(Γ,t)={τij¦ τi∈Γ and t=(j-1)Ti for j=1,2… (PC/Ti)}.

Γall is defined as the set of all task instances within PC.

That is, Γall={τiji=1,2,…n and j=1,2,....(PC/Ti)}. All

time units used in this work is integer values.
 In this work, temporal error masking (TEM) for fault

tolerance is used as follows: when a task is released,

two primary copies of the task instance are run first. If

an error is detected by comparison, or by error

detection mechanism, F more extra/recovery copies of

the same task instance are run and a majority voting is

made to mask at most F errors. Figure 1 demonstrate

this for F=2 and for a single task τ1 with period T1=10

and C1=2.

Figure 1. Fault free (left) , Fault Masking (right)
This paper is based on the assumption that, transient

faults in different copies of the same task produce

different outputs. As a result, the probability of having

the same error in two primary copies is very small and

error detection by comparison is possible. In next

section, the inherent parallelism in tasks and how CMP

could exploit such parallelism is discussed.

4. Task Level Parallelism
 In Rate-Monotonic scheduling [16], the critical

instance of the task sets is when all n tasks are released

at time t=0. At time t task τi is released if t=mTi for

some nonnegative integer m. When TEM is used, each

of such primary copies of a task instance run twice in

uniprocessor and can run in parallel in two cores of a

CMP. Moreover, F more extra/recovery copies of a

task instance are ready to run when error is detected.

Each of the F extra/recovery copies can run in parallel

in CMP if enough cores are available. These two

scenarios show the inherent parallelism in application

tasks of real-time system. In next subsection 4.1, how

CMP can exploit such parallelism is demonstrated

using an example.

4.1. Parallelism Exploitation by CMP

 The inherent parallelism that can be exploited by

CMP is demonstrated here using an example. Consider

a real-time system with F=1 and two tasks τ1 and τ2 as
in Figure 2 (left one). Also consider that, one of the

two primary copies of τ1 is in error. The Rate-
Monotonic schedule is in Figure 2 (right one) with

recovery copy running at t=2 to t=3.

Figure 2. Task set (left), RM schedule (right)

The second instance of the first task τ12 (error free
instance) finishes at t=5. The first instance of task τ21
does not have two time units with PC for execution of

its two primary copies. So, the task set is not

schedulable.

 Considering the task level parallelism, the task

model used in this work is an excellent target for CMP.

Figure 3 shows two RM schedules for task set in

Figure 2 for F=1 with two cores and three cores CMPs.

Figure 3: 2-Core (left) and 3-Core (right) rate
monotonic schedule

 In these CMPs schedules, the task τ21 is schedulable
and other tasks have low response time and high slack

is available that can be used to tolerate more faults or

can be used to run other hard or soft aperiodic tasks.

 Next question arises: how to generate such a

schedule using CMP? How many tasks can run in

parallel at any time instance t? In the next section, task

instances that can run in parallel at time t are

determined formally.

5. Parallel Task Instances

In the section 5.1 the set of primary copies of task

instances, denoted by PEX(t), that are ready to execute

at time t in the fault free execution scenario is defined.

In section 5.2 the set of extra/recovery copies of task

instances, denoted by FEXF(t), that are ready to run at

time t due to F faults is determined. In section 5.3 the

set EX is defined combining the sets PEX(t) and

FEXF(t) to find the set of primary and extra task

instances that are ready at to run within PC due to F

faults. The set EX is used to find the minimum number

of cores, denoted by MinC, to schedule all tasks using

CMP with the scheduling algorithm FT-RT-CMP is

defined in section 6.

5.1 Primary Copies of Tasks at time t: PEX(t)

 The set PEX(t) contains triplets (a,τij, b) such that
the at time a task instance τij need b unit of execution
time in the uniprocessor RM schedule in the fault free

case (where only two primary copies of τij run). That
is, PEX(t) ⊆ {t}×Γall×N. For example, PEX(1)

={(0,τ11,1), (0,τ21,2)} for task set in Figure 2.
 Let the function HP(PEX(t))= τlk such thatτlk is the
highest priority task in set PEX(t). For example,

HP(PEX(1))= τ11 for the example task set in Figure 2.

Lets formally define the function PEX(t) as follows:

PEX(t)={(t,τij,2Ci)τij∈RD(Γ,t)} if t=0 or
 if t>0 and t≠PC and PEX(t-1)=∅

 (PEX(t-1) - {(a,τlk, x)}) ∪ {(a,τlk, x-1)}
 if t=PC and τlk=HP(PEX(t-1)) and x>1
 (PEX(t-1) - {(a,τlk, x)})
 if t=PC and τlk=HP(PEX(t-1)) and x=1
 (PEX(t-1) - {(a,τlk, x)})∪{(a,τlk, x-1)} ∪

 {(t,τ ij,2Ci) τ ij ∈ RD(Γ,t)}
 if t<PC and τlk=HP(PEX(t-1)) and x>1
 (PEX(t-1) - {(a,τlk, x)}) ∪

 {(t,τ ij,2Ci) τ ij ∈ RD(Γ,t)}
 if t<PC and τlk=HP(PEX(t-1)) and x=1
Let consider the following task set in Table 1 where

the PC=14. The PEX(t) is shown in Table 2.

From Table 2, it is clear that at time t=0, two primary

copies of each task can run in parallel if four cores are

available. Using set PEX, the execution finishing time

of two primary copies of a task can be determined. For

example, the finishing time of τ11 is 4 in Table 2 since
this is the earliest t at which τ11 disappears from

PEX(t). At t=14, new tasks are released but

PEX(14)={} since only tasks released within PC are

considered. The following functions are defined to deal

with the faulty case in next section:

fin(τij) = The execution finishing time of the primary

two copies of task τij. So, fin(τ11)=4
pre((τij))=τlk such that τlk finished immediately before

τij in fault free execution. So, pre(τ12)= τ21
slack(t1,t2)= k where k is the number of free slots

between time t1 and t2 in a schedule . So, slack(6,7)=1.

5.2 Extra/Recovery Tasks at time t: FEX
F
(t)

 In this section, the worst case fault distribution for a

maximum of F faults as in [4] is considered. Similar to

PEX(t), the set FEXF(t) contains triplets (p, q, r) where

at time p, the extra/recovery copy of task instance q

still needs a of total r units of execution time due to

faults. In the following equations, the constant F is

used for the number of maximum faults and the

variable f is used to signify f number of faults, where f

≤ F, to deal with scenario where less than F faults
occurs. These extra copies, in FEXF(t) at time t, can be

derived from the extra copies that are ready to run at

the finishing time of the primary task copies. When a

task τij finishes execution of both primary copies at

t=fin(τij), there are two cases to consider for worst case
f faults distribution. Case1 (defined by Q1

ij(f)): all f

faults caused f errors have already occurred before

fin(τij). Case2 (defined by Q
2
ij(f): all (f-1) faults and

consequent (f-1) errors have occurred before fin(τij)
and a new fault is detected at t=fin(τij). The proof for
the worst case scenarios based on case 1 and case 2 can

be proved using induction on the number of faults. The

total processing time required for all tasks in set Q1
ij(f)

and Q2
ij(f) are defined using functions W

1
ij(f) and

W2
ij(f) respectively later. Before that, the set of triplets

of extra tasks that are ready to run at t=fin(τij) due to f
faults is defined by FEXf

ij as follows:
 ∅ if f=0

 {(fin(τ11),τ11, F×C1)} if ij=11

 Q1
ij(f) if W

1
ij(f) > W

2
ij(f)

FEXf
ij = Q

2
ij(f) if W

2
ij(f) > W

1
ij(f)

 QK
ij(f) if W

1
ij(f)=W

2
ij(f) and Q

K has higher

 priority task than in QK(mod 2)+1

… … …(I)

 The sets Q1
ij(f) and Q

2
ij(f), and the functions W

1
ij(f)

and W2
ij(f) for case1 and case 2 are defined as follows:

 Case 1: This case deals with scenario where all f

errors have already occurred in tasks that has finished

execution before t=fin(τij). The set Q
1
ij(f) contains

triplets (t, b ,c) such that at time t=fin(τij), the extra
copy of task b with execution time c are ready to

execute. Q1
ij(f) is defined as follows:

Q1
ij(f) = SQ

s
ij (f) where s=slack (fin(pre(τij)), fin(τij))

 … … …(II)

SQs
ij (f) is defined as follows:

 FEXf
pre(τij) if s=0

 SQ(s-1)
ij(f) if SQ

(s-1)
ij(f) =∅

SQs
ij(f)= (SQ

(s-1)
ij(f) -{(a,τlk, x)}) ∪ {(a,τlk, x-1)}

 if τlk=HP(SQ
(s-1)

ij(f)) and x>1

 SQ(s-1)
ij(f) -{(a,τlk, x)}

 if τlk=HP(SQ
(s-1)

ij(f)) and x=1

… … …(III)

The function SQs
ij(f) selects the highest priority extra

copy of tasks in FEXf
pre(τij) and reduces the execution

time based on the slack available between the finishing

time of the current and the previously completed task.

 Case 2: All the (f-1) faults have occurred before

t=fin(τij) and a new fault has occurred in τij at
t=fin(τij)and the triplets in Q

2
ij(f) is defined as follows:

Q2
ij(f)= Q

1
ij(f-1) ∪ {(fin(τij),τij, F × Ci)} … …(IV)

 The amount of extra workload at time t is the sum

of all execution times of the triplets in Q1
ij(f) and

Q2
ij(f) and is defined by W

1
ij(f) and W

2
ij(f):

W1
ij(f)= Σ X such that

(a,τlk, X)∈Q1
ij(f) … …(V)

W2
ij(f)= Σ X such that

(a,τlk, X)∈Q2
ij(f) … …(VI)

 Now, the set of triplets in FEXF(t), as explained at

the beginning of this section, is defined as follows:

FEXF(t)=
 ∅ if t=0

 FEXF
ij if t=fin (τij)

 FEXS
ij(t) if fin(τij) < t < fin(τlk) and

 pre(τlk)= τij and s=slack(fin(τij),t)
 (FEXF(t-1) - {(a,τlk, x)}) ∪ {(a,τlk, x-1)}
 if τlk =HP(FEX

F(t-1)) and x>1 and

 FEXf(t-1)≠∅ and [t-1,t] is a free slot

 FEXF(t-1) - {(a,τlk, x)}
 if τlk =HP(FEX

F(t-1)) and x=1 and

 FEXF(t-1)≠∅ and [t-1,t] is a free slot

 FEXF(t-1) Otherwise

… … …(VII)

The function FEXS
ij(t) selects the highest priority extra

copy of tasks in FEXF
ij and reduces the execution time

based on the slack available between the finishing time

of the current task and the previously completed task.

FEXS
ij (t) is defined as follows:

 FEXF
ij if s=0

 ∅ if FEX(s-1)
ij(t)= ∅

 (FEX(s-1)
ij(t)-{(a,τlk,x)})∪{(a,τlk,x-1)}

FEXS
ij(t)= if τlk=HP(FEXij

s-1(t)) and x>1

 (FEX(s-1)
ij(t)-{(a,τlk,x)}

 if τlk=HP(FEXij
s-1(t)) and x=1

…(VIII)

 Now, for F=2 the extra/recovery task instances that

are ready to execute at time t for the example task set

in Table 1 is determined using equations I-VIII. For

t=0 to t=4 fault occurrence is not detected since two

primary copies has not finished execution. So, using

the first and last conditions of equation (VII),

FEX2(0)= FEX2(1)= FEX2(2) =FEX2(3)=∅. At t=4,

using second condition of (VII), FEX2(4)=FEX2
11 since

fin(τ11)=4. Using the second condition of equation (I),
FEX2

11={(fin(τ11),τ11,F×C1)}={(4,τ11,4)}. At t=5, using
the third condition of (VII), FEX2(5)= FEXS

11(5) as

fin(τ11)=4 <t<fin(τ21)=6 and pre(τ21) =τ11 and

s=slack(fin(τij),t)=0. Now using the first condition of
(VIII), FEX0

11(5)=FEX
2
11. FEX

2
11 is known at t=4 and

we have FEX0
11(5)= {(4, τ11, 4)}. At t=6, using second

condition of VII we have FEX2(6)=FEX2
21 since

fin(τ21)=6. Following the equation (I), the triplets in
FEX2

21 is either Q
1
21(2) or Q

2
21(2). Case 1: All 2 faults

have occurred before. So, Q1
21(2)= SQ

s
21(2)= SQ

0
21(2)

where s = slack(fin(pre(ij)),fin(ij)) =slack(4,6)= 0 using

(II). SQ0
21(2)= FEX

f
pre(τij) since s=0 using the first

condition of (III). So, SQ0
21(2)= FEX

f
pre(τij)=FEX

2
11=

{(4, τ11, 4)} and we have, Q
1
21(2)=SQ

0
21(2)= {(4, τ11,

4)}. The total workload at t=6 is W1
21(2)=4 using (V).

Case 2: One fault occurred before and a new fault has

occurred in τ21. Using (IV), Q
2
21(2)= Q

1
21(1) ∪

{(fin(τ21),τ21,2 ×1)} = Q
1
21(1)∪ {(6,τ21,2)}. Using

equation (II) and (III), we have Q1
21(1)=SQ

0
21(1)since s

=slack(fin(pre(τ21)),fin(τ21)) =slack(fin(τ11),fin(τ21))=
slack(4,6) =0. SQ0

21(1)= FEX
1
11 ={(fin(τ11),τ11, F×C1)}

={(4, τ11, 4)}. So, we have, Q
2
21(2)= Q

1
21(1) ∪

{(fin(τ21),τ21, 2 ×1)}= Q
1
21(1) ∪ {(6,τ21,2)}= SQ

0
21(1)

∪ {(6,τ21,2)} =FEX
1
11 ∪ {(6,τ21,2)}={(4, τ11, 4),

(6,τ21,2)}. And the total work load at t=6 is W
2
21(2)=6.

Since W21
2>W21

1 at t=6, FEX2
21= Q

2
21(2) ={(4, τ11, 4),

(6,τ21,2)} using the fourth condition of (I). At t=6,
FEX2(6)={(4, τ11, 4), (6,τ21,2)}. Other FEX

2(t) are as

follows (can be found using equations I-VIII):
FEX2(7)={(4,τ11,3),(6,τ21,2)} FEX

2(8)={(4, τ11, 3), (6,τ21,2)}
FEX2(9)={(4,τ11,3),(6,τ21,2)} FEX

2(10)={(4,τ11, 3), (6,τ21,2)}
FEX2(11)={(4,τ11,3),(11,τ12,4)}
FEX2(12)={(4,τ11,2),(11,τ12,4)}
FEX2(13)= {(4,τ11,1), (11,τ12,4)} FEX

2(14)= {(11,τ12,4)}
 In the next subsection 5.3 the set EX is defined that

combines tasks from PEX and FEX to find the triplets

when tasks are just released and ready to execute.

5.3 Set EX: Combining PEX(t) and FEXF
(t)

 The set EX contains the triplets when a task

instance is just released as primary copy or recovery

copy in case of worst case distribution of F faults.

Tasks of the triplets in EX have only 2×Ci or F×Ci

execution time whereas triples in PEX or FEX may

have values less than 2×Ci or F×Ci for primary and

extra copies correspondingly. EX is defined as follows:

EX={(t,τij,X)| (X=2×Ci and (a, τij ,X)∈ PEX(t)) or

 (X=F×Ci and (a, τij ,X) ∈FEXF(t)) for t=0,1…PC}

 For the task set in Table 1, the set EX for F=2 is as

follows: EX={(0,τ11, 4), (0,τ21, 2), (4,τ11, 4), (6,τ21, 2),
(7,τ11, 4), (11,τ11, 4). It is not the case that all task
instances have to run additional F copies. If the F=1,

for the task in Table 1, EX={(0,τ11, 4), (0,τ21, 2), (4,τ11,
2), (7,τ12, 4), (11,τ12, 4)} where no extra copy for τ21
needs to run. In next section, the FT-RT-CMP

algorithm is developed using set EX to find the

minimum number of cores, denoted by MinC, to

successfully schedule the task set EX.

6. Scheduling Algorithm in CMP:

The FT-RT-CMP algorithm, using the while loop in

line 3-44 schedules tasks in set EX using NP number of

cores (line 2). If a task is not schedulable using NP

cores, NP is increased by 1 (line 4). The MinC is set at

line 7 each time the while loop (line 3-44) starts. For

each of the NP cores total PC free time slots are

available and simulated using the 2D array Slot at line

10 (initially set to “free”). The while loop at line 12-41,

schedules all the tasks in EX using total NP cores.

Algorithm: FT-RT-CMP(Set of Triplets EX)
1 MAX_NP=Maximum number of cores available in a CMP

2 NP=0

3 While (NP < MAX_NP)

4 Label 1: NP=NP+1

5 Set of Triplets EX_Temp=EX

6 //Minimum Number of cores to start the schedule

7 int MinC=NP

8 // For Each of NP cores total PC time slots are

9 //available and set to “free” slot

10 2D-Array of type Task Slot[NP][PC]= {“Free”}

11 //This loop schedules all individual task τij
12 While (Ex_Temp ≠ ∅)

13 Find the highest priority task τlk in EX_Temp
14 For each (a, τlk ,b)∈EX_Temp

15 Find the number of all copies in TotalCopy

16 Find ReleaseTime and DeadLine for task τlk
17 //All copies of the highest priority task is

18 //scheduled in the following loop

19 Label 2: While (TotalCopy≠0)

20 SeqTimeUnit=Cl

21 Label 3: For i=ReleaseTime to Deadline

22 For P=1 to NP

23 If (Slot[P][i]=”Free”) then

24 Slot[P][i]= τlk
25 SeqTimeUnit= SeqTimeUnit -1

26 If SeqTimeUnit=0 then

27 TotalCopy=TotalCopy-1

28 Goto Label 2

29 Else

30 Goto Label 3 for next i

31 End if

32 End if

33 End For

34 End For

35 If SeqTimeUnit≠0 then

36 Print “τlk is not schedulable in NP cores”
37 If NP=MAX_NP then

38 Print “Task set not schedulable” and Exit

39 Else Goto Label 1 End if

40 End While

41 End while

42 Print “The task set is Scheduleable”

43 Return Slot and MinC

44 End While

Figure 4. Fault tolerant Schedule using CMP

In line 13-15, the highest priority task τlk is extracted
from set EX and total number of this task copies that

can run in parallel is calculated in variable TotalCopy.

The release and deadline of τlk is determined during

which task τlk is scheduled in the while loop at line 19-
40. Note that, each task copy of τl should have
sequential Cl time unit in the schedule, is stored in

SeqTimeUnit variable at line 20. The two nested For

loops at line 21-34 check for Cl units of sequential free

slots in array Slot to schedule the task in single or

multiple cores. If SeqTimeUnit becomes 0, the task

copy is scheduled successfully, TotalCopy is decreased

by 1 and the while loop at line 19 iterates for next copy

of the same task if available, otherwise, the while loop

at line 12 starts with the next priority task in set EX. If

SeqTimeUnit is not 0 when the nested loop in lines 21-

34 is over, the task τlk can not be scheduled using NP
number of cores and NP is increased by one (line 46

and line 4). If the set EX is empty, the task set is

schedulable using MinC cores and the array Slot

representing the schedule is returned from line 43.

Figure 5 is the real-time fault-tolerant schedule for task

in Table 1 for F=2. MinC=2 is determined by the FT-

RT-CMP algorithm.

Figure 5. The FT-RT-CMP Schedule for task
set in Table 1 using two cores (MinC=2)

7. Conclusion

The inherent parallelism within real-time periodic tasks

are exploited by CMP in this paper by scheduling the

tasks in set EX by using the FT-RT-CMP algorithm

that finds the minimum number of cores MinC required

for a feasible rate-monotonic fault-tolerant schedule

while masking a maximum F transient faults. Time

redundant execution for fault masking is addressed

using CMP’s ability to make more CPU time available.

More slack become available in the schedule and real-

time task set not schedulable in uniprocessor becomes

schedulable using CMP even if F faults occur. For

some task set with high task level parallelism the

maximum number of cores can be provided to make

the task set schedulable. But providing more cores

requires more money and may not be available from

CMP industry. In the future, chip microprocessors are

expected to support beyond 100 simultaneous threads

and can run 100 real-time system tasks in parallel. In

future, exact schedulability conditions and other

scheduling algorithm like EDF can be considered for

chip multiprocessor.

REFERENCES

[1] D. Briere and P. Traverse, “AIRBUS A320/A330/A340

electrical flight controls- A family of fault-tolerant systems”,

FTCS-23 The Twenty-Third International Symposium on

Fault-Tolerant Computing, 22-24 June 1993, Toulouse,

France, 1993.

[2] L. Andrade and C. Tenning, “Design of Boeing 777

electric system”, IEEE Aerospace and Electronics Systems

Magazine, vol. 7, pp 4-11, 1992.

 [3] Joakim Aidemark, “Node-Level Fault Tolerance for

Embedded Real-Time Systems” Ph. D. Thesis, Chalmers

University of Technology, 2004.

[4] Frank Liberato, Rami Melhem, and Daniel Mosse.

“Tolerance to multiple faults for aperiodic tasks in hard real

time system”, IEEE Trans. Computers 49(9):906-914, 2000.

[5] S. Ramos-Thuel. “Enhancing Fault tolerance of Real-time

systems through Time redundancy”, Ph. D. Thesis, Carnegie

Mellon University, May 1993.

[6] L. Hammond, B. Hubbert, M. Siu, M. Chen, K.

Olukotum, “The Stanford Hydra CMP”, IEEE MICRO

Magazine, March-April 2000, and presented at Hot Chips 11,

August 1999.

[7] P. Kongetira, K. Aingaran, K. Olukotun, “Niagara: A 32-

Way Multithreaded Sparc Processor” , IEEE Micro, Vol 25,

No 2, Mar.Apr. 2005, pp 21-19

[8] L. Hammond, B. A. Navfeh, K. Olukotun, “A Single-

Chip Multiprocessor”, IEEE Computer Special Issue on

"Billion-Transistor Processors", September 1997.

[9] D. P. Siewiorek, V. Kini, H. Mashburn, S. McConnel,

and M. Tsao, “A Case Study of C.mmp, Cm*, and C.vmp:

Part 1: Experiences with Fault Tolerance in Multiprocessor

Systems”, Proceedings of the IEEE, 66(10):1178-1199, Oct.

1978.

[10] R. K. Iyer, D. J. Rossetti and M. C. Hsueh,

“Measurement and Modelling of Computer Reliability as

Affected by System Activity”, ACM Trans. On Computer

Systems, 4(3): 214-237, Aug. 1986.

[11] A. Campbell, P. McDonald, and K. Ray. “Single Event

Upset Rates in Space”, IEEE Trans. On Nuclear Science,

39(6): 1828-1835, Dec, 1992.

[12] S. Ghosh, R. Mehlem, D. Mosse and J. S. Sarma. “Fault

tolerant rate monotonic scheduling”, Journal of Real-Time

Systems, 15(2), September 1998.

[13] N. Kandasamy, J. P. Hayes, and B.T. Murray,

“Tolerating Transient Faults in Statically Scheduled Safety

Critical Embedded Systems”, Proc. 18th TEEE symposium

Reliable Distributed System(SRDS), pp. 212-221, 1999.

[14] A. Burns, R. Davis, and S. Punnekkat, “Feasibility

Analysis of Fault Tolerant Real Time Task Sets”, In 8th

Euromicro Workshop on Real-Time Systems, Jun 1996.

[15] Kumar, S.; Hughes, C.J.; Nguyen, A.; Kumar, A.

"Architectural Support for Fine-Grained Parallelism on

Multi-core Architectures" Intel Technology Journal. Vol. 11

Issue 03 , August 2007.

[16] C. L. Liu and J. W. Layland, “Scheduling Algorithms

for Multiprogramming in Hard Real-Time Environment”,

Journal of ACM, 20(1): 40-61, 1973.

