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Abstract

The design of real-time systems faces two important chgdéien incorporating more
functions/services on existing hardware to make the systene attractive to the mar-
ket, and deploying existing software on multiprocessoig. (eulticore) to utilize more
processing power. Adding more services on the same hardweads efficient resource
utilization. In addition, satisfying the real-time corahts, while at the same time effi-
ciently utilizing the multiprocessor platform, is a chaligng problem. This thesis deals
with global multiprocessor schedulirfgr real-time systems, that is, tHixed-priority
scheduling of sporadic tasks, where each task is alloweghton any processor.

More specifically, this thesis considdiwee aspects of the design and analysis of
global scheduling algorithms: timeliness, fault toleranand mixed criticality.Timeli-
nessis about meeting the deadlines of the tadksit toleranceis about producing the
correct output within the deadline even in the presenceuffaandmixed criticalityis
about facilitating the certification of systems when taskegiig different criticality (or
importance) are hosted on a common computing platform.

With respect to the timeliness aspect, global multiprogessheduling is analyzed
(by assuming no faults and the same criticality for all thek& in order to propose
new fixed-priority assignment policies and efficient scHabllity tests. The proposed
schedulability tests are shown to not only dominate (frorheotetical point of view)
but also significantly outperform (by using simulation esipents) the state-of-the-art
schedulability tests for global fixed-priority scheduling

To allow for the combination of fault tolerance and timeegnew scheduling al-
gorithms that use time redundancy (i.e., execution of bptksk) to tolerate multiple
hardware and software faults are proposed. To accountégpdtential intrusive effect
of time-redundant execution of backup tasks on the capalbimeet task deadlines,
new efficient schedulability tests for the proposed along are derived. If a task set
satisfies the schedulability tests, then all the task deesllare met even when multiple
faults (restricted by the assumed fault model) are to bedt#d using time redundancy.

To allow mixed-criticality tasks to be hosted on the sametipidcessor platform, a
new algorithm for fixed-priority scheduling is proposed.eTpurpose of the algorithm
is to facilitate certification, while at the same time effidig utilizing the processing
platform. A schedulability test for the algorithm can detere whether the appropriate
level of assurance, according to the requirement of sontiication authority/standard
for meeting the deadlines of the mixed-criticality tasksgilaranteed or not.

Keywords: Real-Time Systems, Sporadic Tasks, Fixed Priority, Global MultipraceSshedul-
ing, Time Redundancy, Fault-Tolerant Scheduling, Mixed-Criticality Syste
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Introduction

The demand for more functionalities and comfort in the usedéy’s prevailing com-
puterized systems is increasing. The types and varietidiffefent functions or services
determine the competitiveness of computerized systemsg—p@rtable devices, cars,
aircrafts — in the market. A modern passenger car, now-a-dgwyipped with dozens of
processors, does not only provide functions related toclelsontrol but also supports
services related to comfort and safety. The developmeniaf somplex computerized
systems with increasingly higher number of functionaditiequires rigorous design and
analysis effort to ensure that the system is “predictable”.

In my opinion, a system is predictable if any possible rumetibehavior and its
consequences are either known or can be tuned to be knowmgdhe design of the
system. One way to characterize a computerized system ésl lmasits functional and
non-functional behaviors. THanctional behavioref a system are the main activities or
services provided by the system, for example, anti-lockibgasystem (ABS) in a car,
online stock trading service, auto-pilot function in arceaft, and so on. The end-users
directly interact with the functional behaviors of a systérhenon-functional behaviors
are the qualitative or quantitative measure of the funetibehaviors. Examples of non-
functional behaviors of computerized systems are throughpmeliness, and energy
consumption (e.g., in portable devices). The users pexteénon-functional behaviors
while interacting with the functional behaviors of the gyt

The aim of the research presented in this thesis is to aidysters designer in en-
suring predictability regarding some important non-fumeal behaviors of a class of
computer systems known eegal-time systemsThe most prominent non-functional be-
havior of a real-time system is the requirement on produthiegoutput within a certain
deadline (also referred to as timeliness). Examples of syskems are automotive,

1



2 CHAPTER 1. INTRODUCTION

avionics, space systems, nuclear power plants, and comslestronics. This thesis
focuses on modeling, analysis, and verification of some napbd non-functional be-
haviors of real-time systems.

The modeling and analysis of key non-functional behavidrseal-time systems
are important to ensure predictability. This is becausepibyularity and success of
a computerized system does not only dependvbatit does but also omow it does
it. Consider the example of withdrawing money from an ATM wéda customer en-
joys the opportunity of getting cash in a remote locatiorhwaitt visiting the bank in
person. However, the client would not be satisfied if the ATdksl not dispense the
cash few seconds after correct credentials are enteredhieatmachine’s keypad. The
ability to withdraw cash at a remote location is a functido@havior of the ATM while
the time it takes in dispensing cash is an important nontfanal behavior. Another
non-functional behavior for an ATM system is its fault-t@ace capability: after with-
drawing cash from an ATM, the account balance of the customest not be updated
incorrectly even if the system encounters some fault. Adde non-functional behav-
iors are crucial to customer satisfaction with the funatidmehaviors of the system.

What is modeling? In the context of this thesisodelingrefers to the act of formally
representing the parameters and assumptions of the syal@ramt to the non-functional
behaviors under study. In particular, the software (eunctional behaviors) and hard-
ware (e.g., number and type of processors) are abstradtegimedeling. In addition,
the constraints needed facceptablanon-functional behavior of the system are formally
captured. Modeling eliminates unnecessary details aniegonly the relevant infor-
mation necessary for analyzing the non-functional belraudler study. For example,
dispensing cash within 5 seconds, after correct credsrdi@ entered, may be an ac-
ceptable non-functional behavior to most of the clientsroR&M. This non-functional
behavior, i.e., time it takes in dispensing cash, can be teddesing a parameter called
“dispenseTime”. And, the acceptable behavior dispenseTime can be modeled as a
constraint such thatdispense Time < 5 seconds”.

What is analysis? In the context of this thesianalysisrefers to evaluating the non-
functional behavior from the worst-case perspective. ysialis about determining the
worst-case situation that might occur at run-time and (tatalely or quantitatively)
evaluating the non-functional behavior during that paittc situation. However, iden-
tifying the worst case may not be trivial or its analysis may be simple or straight-
forward. In the ATM example, finding the worst case of the fometional behavior
dispenseTime means finding the maximum time the ATM takes in dispensindr.cas
And, the analysis oflispense Time requires the consideration of several factors for ex-
ample, hardware, software, network latency, time to chhekcustomer’s account bal-
ance, and so on. Determining the exact worst-case behdiioe system, considering a
particular non-functional behavior, may not be always fadsslue to shortage of time,
limited resources, or due to the complexity of the analyisisuch case, the worst-case
behavior may need to be safely approximated which intraglpessimism in the analy-
sis. The degree of pessimism determines the precisenesalg§s — lower pessimism
(without compromising the correctness) means more precialysis.
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Is the system acceptableAVhether a non-functional behavior is acceptable or not is
determined usingerification While analysis estimates the quality of the non-functional
behavior from the worst-case viewpoint, verification is @bohecking whether this
quality is acceptable to the customers or compliant with es@ertification standard.
For example, if the analysis of non-functional behawidpense Time concludes that
dispenseTime = 20 seconds, then the verification step would conclude that the be-
havior dispense Time is not acceptable becauséispense Time > 5 seconds”. Unac-
ceptable non-functional behaviors may require changeatidvware, software or even a
re-specification of the system. Clearly, such changes apsfisant time and/or money.

Appropriate modeling, effective analysis and efficientifigation of non-functional
behaviors of real-time systems are therefore of utmost itapoe and are also the main
ingredients of this thesis.

1.1 Context of this Research

The non-functional behaviors of a system may not be spedifjetthe end-users, e.g.,
buyers of passenger c#sThe end-users may remain unaware of the important non-
functional behaviors of the system. However, the end-usecesme aware of the exis-
tence and importance of a non-functional behavior if itsligggthecomes unsatisfactory
in some way. The level of acceptability of a particular nansdtional behavior is mod-
eled as one or mordesign constraintsvhich are verified before the system is put in
mission. It is the responsibility of the system designersrtsure that functional behav-
iors are correctly implemented and that the design comssrased to model the accept-
ability of the non-functional behaviors are satisfied. Tthissis addresses the modeling,
analysis, and verification dhreeimportant non-functional behaviors of real-time sys-
tems:timeliness, fault toleranc@ndmixed criticality.

Timelinessis a non-functional behavior which is about meeting the tiees of the
real-time applications deployed on a particular compuptagform. Acceptable time-
liness behaviors of real-time application are specifiedramg) constraints. Thdirst
research question addressed in this thesis considersraag]

Q1 How to guarantee that all the deadlines of a real-time apiiien are
met on a particular computing platform?

Fault tolerance is a non-functional behavior which is about providing cotreervice

even in the presence of faults. Fault-tolerant behaviomiglémented using hardware
(space) or software (time) redundancy in many safetyealisystems, for example, au-
tomotive, aircraft, and space shuttle applications. Thesis considers fault-tolerant

IHowever, the OEM (not an end-user) of a passenger car mayfgpleeinon-functional behaviors when
ordering or buying particular component from an externalpdep Non-functional behaviors of defense
applications are often specified by the corresponding mjlisaganization.
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systems that are also real-time systems. Deviation froradable timeliness or fault-
tolerant behavior of such systems might result in cataktooponsequences, for exam-
ple, loss of human lives, threat to the environment or seseogomic loss.

The timeliness and fault-tolerant behaviors may be depende one another in
a conflicting way. For example, the likelihood of meetingitimconstraints of a fault-
tolerant system may decrease as the amount of space or tinmed@ncy used to achieve
fault-tolerance is increased. In other words, the requér@mon timeliness in such case
is competing with the requirement on fault-tolerant bebavilo that end, theecond
research question addressed in this thesis considersitbisiépendency of timeliness
and fault-tolerance:

Q2 How to guarantee that all the deadlines of a real-time apgticn are
met on a particular computing platform while providing fatsler-
ance using time or space redundancy?

Mixed criticality is a non-functional behavior which is about providing certavel

of assurance regarding the correct behavior (e.g., me#timgleadlines) of different
multi-criticality functions hosted on a common computirigtform. Traditionally, the
design of a non-mixed-criticality system assumesgamecriticality level for all the
functions present in the system. In contrast, an Mixed ity (MC) system hasnul-
tiple criticality levels where each function is assigned one ueigriticality based on its
“importance”. For example, the ABS function in a car is aseitj a safety criticality
level that is relatively higher than that is assigned to tMDplayer function. Higher
criticality level assigned to a function means that highegrée of assurance is needed
regarding the correct behavior of the function.

The design of safety-critical systems considers the iatemr of multiple functions
having different criticality levels on a single, powerfulogessor due to space, weight
and power (SWaP) concerns. The run-time behavior of sudbregsvaries based on the
operating environment, hardware dynamics, input paraisied@d so on. The behavior
of the system at each time instant determinesctiitecality behavior of the system at
that time instant. The criticality behavior of the systenaes from one time instant
to another while the statically-assigned criticality o€lkdunction does not change.

MC systems often need to be certified by a third party, known astification au-
thority (CA). Certification is about ensuring certain lewélconfidence regarding the
acceptable (i.e., correct) behavior of the system. For @k@mertifying an aircraft may
need to verify that standard design guidelines are follodting the development of
the flight-control software. A certified product is consielgérsafe and also promotes
confidence among the end-users in buying that product. Téredef assurance needed
for certifying the behavior of aMC system as “correct” at one criticality level is typi-
cally different from the assurance needed at a differetitatity level. In this thesis, the
correct behavior of aiWC system is modeled using timing constraints (i.e., dead)ine

Whether the deadline of a function is met or not depends on thistwease execution
time (WCET) of the function, which is the maximum CPU time thadtion requires to
complete its execution. The WCET of a function can be apprataéchat varying degrees
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of confidence or assurance, depending on the inaccuracyfioulty in estimating the

true WCET, for example, due to the variability in inputs, adarg environment, hard-
ware dynamics, and so on. The higher degree of assurancecheedstimating the
WCET of a function, the larger (more conservative) the WCETriabtends to be in

practice. The criticality behavior of the system is thenedetined by comparing the
actual execution time of each function with the WCET that inested using different
degrees of assurance.

Conventional real-time scheduling policies for nigB-systems can not address both
deadline and criticality (e.g., multiple WCET of the samedtion). Thethird research
guestion addressed in this thesis considers this intendigpey between timeliness and
mixed-criticality:

Q3 How to guarantee that all the deadlines of a real-time apien are
met while ensuring certification at each criticality level?

In the context of this thesis, timeliness is about meetingdtiees; fault tolerance is
about providing correct service even in the presence offavhile satisfying the timing
constraints; and mixed criticality is about certifying tiiegration of mixed-criticality
functions considering varying degrees of confidence in theBlW@stimation of each
function. The first problem considers the timeliness rezqugnt independent of other
non-functional behaviors while the second and third proisi@eddress the interdepen-
dency of different non-functional behaviors: timeliness Yault-tolerance and timeli-
ness vs. mixed-criticality, respectively.

Application Characteristics. Many real-time applications, e.g., control and monitor-
ing, are modeled as a collection of recurrent tasks withgémt/hard deadlines. A task
is a particular piece of program code that performs some atatipn, e.g., reading sen-
sor data, writing actuator value, executing a control lap, The recurrent task model
considered in this thesis is tlsporadic task modethere the inter-arrival time (period)
of each task has a lower bound and the relative deadline bfteak is not greater than
its period. An instance (also, called job) of the task is daitie released when it be-
comes available for execution. The releases of two conisecjas are separated by
at least the period of the task. The deadline is “relativethia sense that whenever a
job is released, the deadline for that job applies with resfeits release time. Each
task is also characterized by exactly one WCET (i.e., the mamxi CPU time the task
requires to finish its executigh Every job of the task must finish its execution before
its corresponding deadline expires (i.e., the timing camst of the task).
The category of real-time systems having stringent timioigstraints is calletiard

real-time systems. If the timing constraints of a hard teak system are not satis-
fied, then the consequences may be catastrophic, for imstédmeat to human lives.

2The non-functional behavior timeliness, when considerddgpendent of other non-functional behaviors,
is based on the modeling of ndviE systems. So, only one WCET of each task is considered. Differen
WCET of the same task is considered when moddiilBgystems.
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Consequently, it is of utmost importance for designers ofl maal-time systems to en-
sure a priori that all the timing constraints will be met wtha system is in mission.
The timing constraints of hard real-time applications carflifilled using appropriate
scheduling of the tasks on a particular hardware platfagchedulings the policy of
allocating resources (e.g., CPU time, communication bédttivto the tasks of the ap-
plication that are competing for the same resou®eheduling algorithms and their
analysis that can be used to verify the timing constraints ohard real-time systems
are at the heart of the research presented in this thesis.

Computing Platform. The emerging Chip-Multiprocessors (CMPs) technology, nehe
multiple processing cores are placed on the same chiprécave for real-time systems
design due to the computation power provided by such teclygolMajor processor-
chip manufactures have already shifted towards multicorki@cture to overcome the
heat and thermal limitations in the design of single-cokpssors. Multicore proces-
sors are commonplace in both general purpose (e.qg., ldigdls, quad-core processors)
and embedded domains (e.g., ARM's Cortex family of proceysdrhe trend is now
incorporating more and more cores on the same chip. Intetaflbp research chip has
announced the design of an 80 core platform. The currerittsiifirds multicores by
prominent chip vendors indicates that the commerciallylabke off-the-shelf proces-
sors in near future would be only multicores. To this end; thesis considers real-time
scheduling on a computing platform having multiple ideaitjgrocessors/cores.

Scheduling Policy. The dominating scheduling approach in industry for meetirey
hard deadlines of application tasks is the fixed-prioriti?YEcheduling policy, due to its
flexibility, ease of debugging, and predictability. Undee &P scheduling strategy, each
task is assigned a priority that never changes during theugioa of the task. This thesis
addresses preemptigdobal FP schedulingof sporadic tasks on a platform consists of
identical processors or cores. In preemptive global FPcddhey, at each time instant,
the highest-priority runnalifetask is dispatched for execution if a processor is idle. If
all the processors are busy and a relatively lower-pridiak is executing on some
processor, then the highest-priority runnable task isadidped for execution on that
processor by preempting the lower-priority task. The pretech task may later resume
its execution on any processor (i.e., the assumed exeauiaie! allows migration).
Given the trend of widespread diffusion of multicore platficfor real-time systems,
there are several challenges in global scheduling on mottgssors. It has already
been shown by the researchers in the real-time systems coityntiniat the relatively
mature theories and techniques applicable to analyzeitiessl on uniprocessor plat-
form are not applicable (i.e., perform poorly) to global tjrocessor scheduling. For
example, while the best fixed-priority ordering of sporadisks is known for unipro-
cessor FP scheduling, the best priority ordering for gldbal scheduling is not cur-
rently known. In addition, when the non-functional behavimeliness is considered
in addition to other non-functional behaviors like faultei@nce or mixed criticality,
the schedulability analysis becomes even more difficultis Thesis addresses such

3A task is runnable if it has been released but has not compistesecution
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challenges by proposing new techniques to analyze globélpracessor scheduling
in order to answer the three research questions mentiorme ab

Why global multiprocessor scheduling? There are two main paradigms for multi-
processor FP scheduling of real-time tasks: the globalcgmbr and the partitioned
approach. In the partitioned approach, each of the taske@spigned to exactly one
processor and allowed to execute only on that processarr{oemigration is allowed).
Each processor can execute the assigned tasks using sopmecessor FP schedul-
ing algorithm, for example, Deadline-Monotonic (DM) schidg in which task with
shorter relative deadline is given higher fixed priority. the real-time research com-
munity, there is no clear evidence that one scheduling jgrai superior to another:
one task set that is deemed schedulable using global FPudiigechay be not schedu-
lable using partitioned FP scheduling, and conversely. é@w global scheduling is
advocated in this thesis for several reasons. First, the mmearch problems related to
global FP scheduling are very challenging. Second, thetamopf global scheduling in
actual multicore systems is becoming more likely as varirmeshanisms (e.g., locked
cache) are being proposed to reduce migration overheadd, ghobal scheduling does
not require an a priori assignment of tasks to the procegfioding an optimal task
assignment to processors is known as an NP-hard problenpraxiles the flexibility
to execute a task on any processor by allowing migrationsallyi global scheduling
does not require reassignment of the tasks if a new task Heesaocepted in the system,
for example, due to function or component upgrade (suctsig@ment is needed for
partitioned scheduling when tasks are presorted priordigamg them to processors).

1.2 Contribution Areas

What follows in this section are the major challenges and treributions in dealing
with each of the research questions mentioned above.

1.2.1 Timeliness

The most important non-functional behavior ofe@l-time systens timeliness. In this
thesis, timeliness meamseeting the deadlinexf a set of real-time sporadic tasks. The
output of a task corresponds to the functional behaviorenthi¢ time at which the output
is generated is related to the non-functional behaviorltirass. The deadline by which
the output has to be generated is modeledtasiag constraint

The means to satisfy the timing constraints is to approglsisgchedule the tasks
on the processors. Whereas the uniprocessor real-timedeietheory is considered
very mature, a comprehensive multiprocessor schedulgmyrythas yet to be developed.
Many of the well-understood traditional uniprocessor sietieg algorithms perform
poorly (in terms of hard real-time schedulability) on mpitdicessors. There is conse-
guently a need for the design and analysis of multiprocessoduling algorithms. This
thesis considers global FP scheduling and its analysisrify wehether all the deadlines
of the tasks are met or not.
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Research Challenges.The two major research challenges for global FP scheduling
are: (i) priority assignment problepand (ii) schedulability testing problenin global
FP scheduling of sporadic tasks, whether a particular tgktask-, meets its deadline
or not depends on the tasks having priorities higher thanothask . This is because
the set of higher priority tasks determine the length of tinawalative time interval dur-
ing which all the processors are busy executing these hgimity tasks while the task
7 is awaiting execution (called theterferenceon taskr due to the higher priority tasks).
Since the priority ordering of the tasks determines the B&tsis having higher priori-
ties than the priority of each task, the interference thedréiqular task suffers depends
entirely on the priority ordering. Therefore, deriving aogdfixed-priority assignment
policy for global FP scheduling is important to guaranteedthedulability of each task.
A priority assignment is said to kEptimalif given some priority ordering for which all
the deadlines of the tasks are met, then the optimal priagsygnment also guarantees
the same. While the optimal fixed-priority ordering of spacaesks scheduled preemp-
tively on a uniprocessor is knofinthe optimal fixed-priority ordering for preemptive
global multiprocessor scheduling is still unknown.

Whether the deadlines of the hard real-time tasks are mettonesds to be de-
termined offline based on a schedulability test. A schedlitialtest of a scheduling
algorithm is a condition that, when satisfied for a given tesk guarantees that all the
deadlines of the tasks are met using that scheduling abgeriDeriving a schedulability
test involves analyzing the worst-case behavior of thedwdiveg algorithm. The worst-
case behavior for global FP scheduling of sporadic task#fisudt to determiné] To
circumvent this problem, the worst-case behavior of glétfalscheduling algorithm is
approximated by introducing some degree of pessimism ghia schedulability anal-
ysis. The challenge is to introduce as little pessimism asipte during the analysis in
order to derive a more effective schedulability test baged more precise analysis.

Contributions. In order to address the two problems just discussed, new-fikedty
assignment policies and effective schedulability testgfobal FP scheduling of spo-
radic tasks are proposed in this thesis. Two different fenadrglobal FP schedulabil-
ity tests are proposediensity-bound testanditerative tests One of the most simple
schedulability tests is the density-bound test in which drily required to check exactly
one condition: if the total densityof a sporadic task set is not greater than a threshold
(called thedensity bouny then all the tasks meet their deadlines. A larger density
bound means a better schedulability test. Moreover, theityebound test relates the
sum of the densities of all the tasks in a task set to the twtalable processing capac-

4Deadline-monotonic priority ordering is optimal for unipessor FP scheduling where each task’s rela-
tive deadline is less than or equal to its period.

5The worst-case scenario in analyzing a FP scheduling #hgoris called a critical-instant (formally
defined later). While the critical instant for uniprocessd@ &cheduling is known, the critical instant for
global FP scheduling is not known.

6The densityof a task is the execution time required per unit of time witltia telative deadline of the
task. The total density of a task set is the sum of densitiedl tfie tasks in that task set. Thélization of a
task is the execution time required per unit of time within tleeiqd of the task. Formal definitions of these
concepts will be presented shortly.
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ity. Consequently, a density-bound-based test can be wugezhty to verify the timing
constraints for some given processing capacity but cankmsosed to determine the
sufficient processing capacity needed for satisfying argset of timing constraints.

A new fixed-priority assignment policy, calldthproved Slack-Monotonic Density
Separatior(l SM DS), is proposed in this thesis and the corresponding densitgdbfor
global FP scheduling is derived. This thesis will show thatproposed density-bound-
based test dominates the state-of-the-art density-bastddr global FP scheduling of
sporadic tasks where the relative deadline of each task igreater than its period. By
domination it means that there are schedulable task sestisfy the proposed density-
bound test fof SM DS but do not satisfy the state-of-the-art density-based aest that
the converse does not apply. The density-bound test becthmesilization-bound test
when the relative deadline of each task is equal to its period

Unlike the density-bound test, an iterative schedulabtlitst requires one condi-
tion to be tested for each task: if the schedulability caadits satisfied for each task
(checked iteratively), then the entire task set is schddielldn this thesis, a new iterative
test, callednterference-Aware Response-Tihé\- RT) test, is proposed. The deriva-
tion of this iterative test is based on reducing differentrses of pessimism identified
in the state-of-the-art schedulability analysis of gloBBl scheduling. As shown in this
thesis, thd A- RT test dominates the state-of-the-art iterative test fobgléP schedul-
ing. In addition, empirical investigation using randombngrated task sets shows that
thel A- RT test significantly outperforms the state-of-the-art itigeatest.

Determining the fixed-priority assignment of the tasks flmbgl FP scheduling is
a challenging problem and the optimal priority orderingicts case is not known. An
important property of thé A- RT test is that it checks the schedulability of each task
while assigning the fixed priorities to the tasks. If all tlsks are assigned priorities
based on thé A- RT test, then it is also true that the task set is schedulabieywgobal
FP scheduling according to the assigned priorities. This\gry important property
since determining the fixed-priority assignment of the $afgk global FP scheduling
is a challenging problem and the optimal priority orderingsuch case is not known.
Notice that this result does not imply that priority orderiiound using thé A- RT test
is also the optimal priority ordering for global FP schedgli Optimality can only be
claimed with respect to theA- RT test.

Apart from being able to verify the timing constraints, thhegosed density-bound-
based and iterative schedulability tests for global FP delveg approximate the worst-
case behavior by reducing the pessimism in comparison tgteaent in the state-of-
the-art iterative schedulability tests. Reducing suclsipgism has several advantages.
First, it reduces the demand on computing resources whitlrinreduces the cost of
the system for mass production. Second, lower computingures means less space,
weight and power consumption which are desirable in manyureg-constrained em-
bedded systems. Finally, efficient use of system resourmasles incorporating more
functionalities on the same computing platform withoutibgyadditional hardware. All
these advantages provide better competitiveness of a grodihe market.
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1.2.2 Timeliness vs. Fault-Tolerance

Real-time systems with fault-tolerance requirements mustide correct service even
in the presence of faults. In addition to satisfying the tigrconstraints, the functional
correctness of the application must be guaranteed; oteenthie consequence may be
disastrous. For example, after the computer system failtebiLondon Stock Exchange
on September 8, 2008, the stock trading halted for severashapsetting clients who
trade an average $17.5 billion a day. The cause of such extobehavior of com-
puter system is the occurrences of faults in the system. Betimanent and transient
faults in hardware may occur due to, for example, hardwafectle electromagnetic
interferences, or cosmic ray radiation. In addition, safevfaults (bugs) may remain
undetected even after months of software testing and détigg

A systemfailure occurs when a system deviates from the correct specifieitserv
Such deviation from correct service is due to some incosett in the system which
is called arerror, i.e., an error is liable for a failure. The source or causamoérror is a
fault. To better understand these concepts, consider the foigpatample.

Example 1.1(Faults, Errors, Failures). Consider a safety-critical system that must
invoke a function, callediction(), to avoid catastrophic consequence (failure) if the
temperature of the system’s environment, measured usiegperature sensor, i&°
Celsius(C). Assume that the sensor only reads temperatuaits of Fahrenheit(F).
The conversion rul€ = (F — 32) x 1.8 can be used to convert F to C. Therefore, when
the sensor reading i82°F, which is equivalent t6°C, thenaction() must be invoked to
avoid system failure.

Algorithm sonme_control _functi on()

Il The system fails ifzction() is not invoked when temperature(8C
1. F + <read from temperature sensor>
C=(F—-32)%1.8; /l'instead of 32 in the rule, 3.2 is used (a fault)
If C ==0Then
action();

End If

arwn

Figure 1.1: A simple program to understand fault, error, and failure

This service of the system is implemented in Figure 1.1 wthereonstans.2 in line 2
is mistakenly used instead of constaptfor the conversion rule. Coding the rule using
constant3.2 is an example of &ault. This fault causes incorrect computation@©@fin
line 2 (an incorrect state of the system), which isearor. When the read (input) value
from the sensor i$" = 32, the converted valu€’ = (32 — 3.2) x 1.8 = 51.84 in line 2
is erroneous which results in a systéailure becausexction() in line 4 is not invoked
although the actual temperature of the environmesid== 0°C.

Not every error leads to a system failure. When the input tfegrsensor is ndi2°F
(i.e., actual temperature of the environment is 6¢€), the converted value in line 2 is
erroneous; however, the system does not fail because dmnetiion () is not needed to
be invoked in such case anyway.
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Similarly, every fault does not cause an error. To see whysicker that the sensor is
not working properly and read%.2°F when the “true” temperature of the environment
is 32°F. Although the conversion rule in line 2 is faulty, the stafdhe system is not
incorrect (no error) since the converted val0&C is correct for the actual temperature
of 32°F. In such case, the fault in the conversion rule is maskeatetis no error, and
functionaction() is invoked. O

The faults that are manifested as errors must be tolera@vent system failures with-
out its effect being adversely perceived by the end-useragaeptable non-functional
behavior). However, no fault-tolerant system can tolegatenfinite numbers and ar-
bitrary types of faults. The nature and frequency of fautinsidered for the design
of a particular fault-tolerant system are specified usirfigudt model The fault model
used for analyzing the predictability of different computgstems varies. For example,
the fault model considered during the design of a spacelshsittlifferent from that of
personal computers.

The level of protection needed against failures is modetadlbility constraints
For example, the reliability constraint for the design ohalf-tolerant system may be to
withstand a total of transient errors (as caused by hardware transient faSksisfying
the reliability constraints ensures that the functiondlaweor of the system is acceptable
even in the presence of faults. Acceptable timeliness autitidlerance behaviors can
be achieved by means fault-tolerant schedulingwhich is the focus of this thesis.

Research ChallengesAchieving fault-tolerance in computer systems requirepleys
ing redundancy either in space or in time. Space redundangsovided by additional
hardware, for example, using extra processors. Spacedadayis used to achieve tol-
erance against permanent hardware failure. For exampken alprocessor chip ceases
functioning, the tasks can be executed on redundant prarseddowever, due to cost,
volume and weight considerations implementing space @ahcy for all the function-
alities may not be always viable, for example, in space,raative or avionics applica-
tions. To achieve fault-tolerance in such systems, timemddncy is used in the form
of executingoackuptasks.

Fault-tolerance using time redundancy in real-time systeam not be addressed in-
dependently of the task-scheduling issues. This is bedauseredundant execution as
a means for tolerating faults may have a negative impact ers¢hedule of the tasks
in the sense that it might lead to missed deadlines for oneave rof the tasks. Con-
sequently, there is a need for fault-tolerant scheduliggrhms that minimize such
intrusive impact resulting from time-redundant executiotolerate faults.

Contributions. This thesis presents fault-tolerant FP scheduling algast for both

uni- and multiprocessor platforms considering a certaitt faodel. The proposed fault
model is very powerful in the sense that multiple faults cacun in any task and at any
time, even during the execution of a recovery operationnJiemt hardware faults that
cause transient task errors is considered in the fault motreinsient hardware faults
are short lived and generally cause no permanent error tbatware. Therefore, re-
executing the original task as backup is a cost-efficientsamghle means for tolerating
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such faults. Although software faults are permanent, timeinifestation (i.e., the cor-

responding error) might be of transient nature due to, fangxe, changes in input or
executing a different path during re-execution. Such saféfaults which result in tran-

sient errors are considered in the fault model and can beatekkthrough re-execution.
Software faults, which result in permanent task errors (aatefore can not be tolerated
using re-execution), are also considered in the fault modadiverse implementation

of the task needs to be executed as backup to recover frompsuntanent error due
to software faults. A diverse implementation of the samé& tagxpected not to have
the same software fault, and therefore, does not cause iihe garmanent error upon
execution of the backup.

The types of faults considered in the fault model can caiusedror (i.e., incorrect
output generated by the task) or permanent processorddiler., some processors in
the multiprocessor platform are not working). The conceptask error and processor
failure are distinguished in this thesis. tAsk error corresponds to a situation where
the output of a task is not correct but the processor on wiiiehtdask is executing is
non-faulty. Aprocessor failurds caused by a fault that is permanent in hardware and
the output of the task executing on that faulty processaoiisiclered as erroneous. Mit-
igating the effect of a processor failure does not mean Heatdiled processor becomes
functional again; instead, it means the task that was exgron the failed processor
still meets its deadline by executing its backup on a noiiyfgurocessor. The fault-
tolerant scheduling algorithms proposed in this thesisictan original-task re-execution
or diverse-implementation execution as backup in ordeolerate both task errors and
processor failures. Any instance of a task when first exadatealled thgprimary while
the original-task re-execution or diverse-implementatgecution is called thieackup

This thesis proposes a preemptive FP uniprocessor fdahata algorithm, called
Fault-Tolerant Deadline-Monotoni€ DM scheduling, where at mogttask errors can
be tolerated within all possible time intervals, each ofathis not longer than the max-
imum relative deadline of any task in the task set. FAi®Malgorithm is designed not
to consider permanent processor failure in its fault mddBhe FTDMscheduling con-
siders tolerating task errors caused by hardware or sadtfaaitts. The errors affecting
the tasks are tolerated using time redundancy where bajinaktask re-execution or
diverse-implementation execution as backup is possibleenAdm error is detected, the
backup of the task becomes ready for execution. An exactsitdality condition of
theFTDMalgorithm is derived, for which it applies that all task dixaek are met if, and
only if, this condition is satisfied.

While processor chip failures requires that redundant chiipsavailable to tolerate
permanent hardware failures, permanent core failure in €EM& be tolerated without
having additional backup processor chip. The task that wesuting on a faulty core
can be migrated to a non-faulty core on the same chip and dsupacan be executed
on this non-faulty core. Such time-redundant executionhensame chip is possible
if the task set is still schedulable on the remaining avé&ldhon-faulty) processing

"However, the exact schedulability condition for tREDMalgorithm is directly applicable to partitioned
multiprocessor scheduling where tasks are preassignedt¢egsors and never migrate.
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cores. Luckily, contemporary CMPs offer such high progegsiapacity that they may
be exploited to tolerate core failures. Therefore, timaurgthncy in combination with
space redundancy can mitigate the effect of permanent aibueefs in CMPs where the
scheduling algorithm allows task migration.

Most of the previous work on fault-tolerant scheduling foultiprocessors, based
on partitioned method, do not distinguish between tolegatask error and processor
failure. Previous work considered tolerating task erropbgsimistically assuming that
the processor on which the faulty task was executing habedeend execute the backup
task on a different processor to which the backup is preasdigSuch pessimism unnec-
essarily increases the number of processors requiredexateltask errors even though
it could be possible to execute the backup on the same (ndtyffgrocessor on which
the task error is detected. Moreover, increasing the numbprocessors is costly in
terms of SWaP for many embedded real-time systems and alssases the probability
of having more faults as more chips are deployed.

To this end, this thesis proposes a multiprocessor FP falgltant scheduling algo-
rithm, called Fault-Tolerant Global Scheduliffgl(GS), which tolerates both task errors
and processor failures. The design of HHEGS algorithm is based on two crucial ob-
servations: (i) in case of task error, the global schedwarsimply dispatch the backup
of a faulty task to any processor (even to the processor onhathie task encountered
the error), and (ii) mitigating the effect of processordad is same as tolerating a task
error by dispatching the backup of the task to a non-faulbcessor. Th&TGS algo-
rithm considers tolerating task errors within all possible intervals not larger thaa th
maximum relative deadline of any task and tolerates (i.&igate the effect of) total
p permanent processor failures during the entire lifetimthefsystem.

The schedulability analysis for the& GS algorithm derives a schedulability test that,
when satisfied, guarantees that all the deadlines of the gaskmet even in the presence
of task errors and processor failures. The novelty of thg@sed schedulability test
is that the resilience in terms of tolerating different canabons of task errors and
processor failures can be efficiently determined for resmwaonstrained embedded real-
time systems. Moreover, if the given priority ordering of tiask set does not satisfy the
proposed test, then a priority ordering for which the tagknsay satisfy the proposed
test can be searched efficiently. Finding such a priorityeong) is important since it
avoids unnecessary upgrading of the hardware or even wfispgon of the software.

The proposed schedulability tests for th€DM and FTGS scheduling algorithms
can be used to verify the reliability and timing constraifusder the assumed task and
fault models) for uni- and multiprocessors, respectivélye mathematical expressions
of these schedulability tests include parameters relataétd task, fault and resource
models. The system designer can play around with these pseesito determine, for
example, the resource requirement for a given task set aitchiadel, or the maximum
number of task errors that can be tolerated on a given primgeptatform. Such ca-
pability enables the designer to make a trade-off betweswuree requirement and the
level of redundancy necessary for an acceptable faultaitdehavior of the system.
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1.2.3 Timeliness vs. Mixed-Criticality

SWaP concerns drive the design of safety-critical systemvarids integrating multiple
functionalities having multiple criticality levels on tleame computing platform. The
computation power of CMPs also encourages such integrati@s to incorporate more
functionalities on the same platform. For example, aviatiwustry is contemplating
“Integrated Modular Avionics” (IMA) to achieve economic\ahtage by hosting multi-
ple avionics functions on a single platform.

Traditionally real-time scheduling of safety-criticalsstgms assumes that all the
tasks in the system have the same level of criticality (ordrtgnce). In contrast, an
MC system is one in which theriticality levelsof different real-time tasks may be dif-
ferent. For example, in the RTCA DO-178B standard, therefimeedifferent Design
Assurance Levels (DAL A to DAL E) for software in avionics $g®s, and in 1ISO
26262 standard, safety functions in automotive systemshesa four different Auto-
motive Safety Integrity Levels (ASIL A to ASIL D). In this tlses, it is assumed that
assigning a criticality level to a task in &C system means the degree of assurance
required for the correct behavior (i.e., meeting deadlofehat task.

In order to certify anMC system as being correct, the CAs make certain assump-
tions about the worst-case run-time behavior of the systeéawever, the assumptions
made by the system designers may be different from that oChe For example,
the CA generally makes very conservative assumptions degathe WCET of a task
in comparison to the assumptions made by the system desigihés well-known that
the accuracy in estimating the WCET of a particular piece diecs problematic: the
WCET used for the schedulability analysis of each task is igdigea conservative upper
bound that exceeds the true WCET. The higher level of asse@nmonfidence needed
in estimating the WCET of a piece of code, the larger the WCEg¢a be in practice.

Different upper bounds on WCET for a piece of code can be cersitlbased on
the level of assurance needed for certification at diffeceititality levels. Whether the
deadline of a task is met depends on the WCET of the task, amefdie, the level
of assurance needed for certification in meeting the dezsllifepends on the level of
assurance used in deriving the WCET of that task. When certgjfiiie system at a
lower criticality level than the criticality assigned torse task, the WCET of that task
estimated according to the level of assurance requirechatdtver criticality level can
be considered during the schedulability analysisoiystem.

Research ChallengesOne of the challenges regarding the desigiMBfsystems is to
ensure thésolationproperty, i.e., that functions, tasks or components at atanitical-

ity level do not interfere adversely with those at a highéiaality level. Such level of
isolations can be provided by dedicating the system ressiufor each criticality level.
For example, all the high critical functions may be integdabn a separate processor.
However, providing a dedicated resource at each criticlditel may not be cost- and
resource-efficient. Therefore, sharing the computinguess among the tasks having
multiple criticality levels has to be considered. Unfortely, such sharing requires
special design considerations to avoid issues such asritfoality inversion problem
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where a high critical task may miss its deadline when the dulee assigns CPU time
to meet the deadline of a low criticality task.

Although the isolation property is not explicitly addredsiea this thesis, global
FP scheduling can achieve this property as follows. Whenipheltasks having dif-
ferent criticality levels are integrated on the same maiticchip, all the tasks having
the same criticality can be globally FP scheduled on a (@¢elit) subset of the pro-
cessing cores. This scheduling approach requires no éxpk& assignment algorithm,
and more importantly, the temporal behavior of each fumctian be restricted only to
its dedicated cores to ensure isolation. Such restricarecessary and beneficial for
function/component upgrade, modification and incremerggification.

Another challenge in the design of mixed-criticality schkuly is the priority assign-
ment problem for thé/C tasks. The priority and criticality of a task are not necagsa
positively correlated in the sense that always assignigbéhipriority to a higher criti-
cality task may not yield the best performance. The critigédvel of a task is statically
assigned based on the degree of assurance needed regerdimmgect behavior (which
in this thesis is about meeting its deadline). In case of Fieduling, a task with higher
criticality level may sometimes be assigned higher fixednyi to ensure, for example,
the isolation property or to avoid the criticality inversiproblem. However, a task with
higher criticality level may sometimes need to be assigneslaively lower fixed pri-
ority to allow the deadlines of all the tasks to be met. Assigmigher fixed priority to
higher criticality task is known as the Criticality-As-Brity-Assignment (CAPA) pol-
icy. It will be evident later that CAPA is not an optimal pritgrassignment policy for
FP scheduling offCtasks. In fact, the optimal FP orderingME tasks is still unknown
for multiprocessors. Therefore, determining a good FPrityi@ssignment policy is
very important folMC systems and this problem is addressed in this thesis.

A third aspect in the design &fC systems istatic verification which is related to
the certification of safety-critical systems. The design ME systems is often subject
to certification at each criticality level by a certificatianthority (CA), for example, by
Federal Aviation Authority in the US or the European Aviat®afety Agency in Europe
for avionics systems. Certification is about verifying thatappropriate level of assur-
ance in meeting the deadlines of the tasks at each critidaliel is guaranteed. The
level of assurance needed in meeting the deadlines of tke t@ay be different at each
criticality level. Conventional scheduling strategidsattaddress both the “criticality”
(i.e., multiple WCET of the same task) and “deadline” aspettslC systems, are not
cost- and resource-efficient. Yet another major challengtaé design oMC system
is devising a multiprocessors FP scheduling strategy tthdite@ses both the criticality
and deadline aspects of the tasks while facilitating cedatiion and efficient resource
usage. This challenge is addressed in this thesis alongtétibhallenge of assigning
fixed-priorities to the tasks.

Contribution. This thesis proposes a preemptive FP multiprocessor sthgduigo-
rithm, called Mixed-criticality Scheduling algorithm onuWMiprocessorsNSM. The
MSMalgorithm is based on traditional global FP scheduling hith the additional fea-
ture of runtime monitoring of the mixed-criticality behaviof the system. The actual
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execution time of the tasks at any time instant defines thedncxiticality behavior of
the system at that time instant. When the actual executiom ¢ifany task exceeds the
WCET estimated for certain criticality level, the systemtsies to a higher critical-
ity behavior. The system monitors the mixed-criticalityhbeior at each time instant
and dispatches tasks relevant to that criticality behavawed on global FP schedul-
ing strategy. The schedulability analysis of tkBM algorithm derives response-time
based schedulability tests to verify the timing constsatteach criticality level. The
response-time test of the tasks at each criticality levallwa used by the system de-
signers to ensure that the timing constraints for differeixed-criticality behaviors are
guaranteed, which facilitates certification.

The proposed response-time based tests are not only dppliceany given fixed-
priority ordering of the tasks, they can also be used to fiegtiority ordering of a given
task set. Finding such a priority ordering is required iftésgt fails for the given priority
ordering of the tasks. Simulation results show significargriovement in guaranteeing
schedulability of randomly-generated task sets usingtbpgsed searching mechanism
for priority assignment over that of using sirﬂ%h&iority assignment policy. In contrast
to other works on mixed-criticality scheduling, where otvip criticality levels are con-
sidered, the proposédMalgorithm and its analysis is applicable for arbitraryicaitity
levels. This makes theBMalgorithm relevant since many safety-critical systems-typ
cally have more than two criticality levels. While a majoritfthe earlier work consider
uniprocessors and dynamic-priority schedulingtftasks, theMSMalgorithm consid-
ers a multiprocessor platform, making it applicable for ¢éimeerging CMP technology
and the industry-preferred FP scheduling policy.

1.3 Applicability of this Research

The non-functional properties — timeliness, fault-tolera and mixed-criticality —
considered in this thesis are common to many safety-dritgzd-time systems. While
the functional behaviors of different systems are gengeuifferent, the modeling and
analysis principle of common non-functional behaviors iffedent systems can be the
same. Consequently, the research results presented ithdsis are applicable to a
variety of safety-critical real-time systems. For examphbe braking function in an au-
tomotive system and adjusting the trajectory of a shutttb@space are completely two
different functional behaviors. However, the same schindyrinciple might be used
for dispatching the control tasks of both functions if th#iné analysis and verification
of the scheduling algorithm guarantees the timelinessireapent for both functions.
The real-time scheduling algorithms and their analysisgméed in this thesis can be
used to ensure predictability (in terms of timeliness, tfanlerance and mixed critical-
ity) for safety-critical systems. The approaches propasélis thesis can help the sys-
tem designers to efficiently determine offline whether th&gieconstraints needed for

8By simple priority assignment it means that the priorities aednined based on heuristics, for example,
decreasing periods or decreasing deadlines of the tasks.
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acceptable non-functional behaviors of the system are nr&ito The proposed schedu-
lability tests can also be used to estimate the resourceresgents to satisfy a given
set of design constraints. The designers can change thegi@s of the mathematical
expressions used to represent the schedulability testparinent with “what-if” sce-
narios. This capability enables the designer to make a-néfdeetween the resource
requirement and the rigidity of the design constraints.

All iterative schedulability tests proposed in this thesssume an arbitrary fixed-
priority ordering of the tasks. However, when a task set da¢satisfy the schedulabil-
ity test for a given priority ordering of the tasks, findingoéimer priority ordering (which
could make the task set to satisfy the schedulability testhportant since it would not
require any changes in hardware, software or specificalibe.iterative schedulability
tests proposed in this thesis can be used to search for sutbrigdypordering in case
the given priority ordering is deemed to be infeasible. Tigarticularly important for
multiprocessors where the optimal priority ordering isreatly not known. In sum-
mary, the scheduling algorithms and their analysis preseint this thesis have wide
applicability for verifying the timing, reliability and med-criticality constraints for a
variety of safety-critical systems.

Organization of the thesis. The rest of the thesis is organized as follows: Chapter
presents the necessary background for real-time compdigink-tolerance, and mixed-
criticality. ChaptefB presents the system (i.e., tasloua=e, and fault) model. Chap-
ter[4 outlines the major contributions of the thesis in detafhe density-bound-based
test and the iterative test for global FP scheduling aregmtesl in Chaptér5 and Chap-
ter(@, respectively. The fault-tolerant scheduling algponis for uni- and multiprocessors
are presented in Chapfér 7 and Chapter 8, respectively., Tleaptef P presents the
multiprocessor schedulability analysis and response-tast forMC systems. Finally,
ChaptefID concludes the thesis.






Preliminaries

In this chapter, the related background and basic concépmsletime scheduling, fault-
tolerance, and mixed-criticality systems are presented.

2.1 Real-Time Systems

Real-time systems are computerized systems with timingtcaints. Real-time systems
can be classified dsard real-time systemandsoft real-time systemsn hard real-time
systems, the consequences of missing a task’s deadlineeretdstrophic. In soft real-
time systems, the consequences of missing a deadline atel milder. Examples
of hard real-time systems are space applications, fly-lvg-aircraft, radar for track-
ing missiles, etc. Examples of soft real-time systems arénentransactions used in
airline reservation systems, multimedia systems, etcs asis deals with scheduling
algorithms and their analysis for hard real-time systemise most relevant real-time
scheduling concepts are: sporadic task system, tasktgripreemptive scheduling al-
gorithm, schedulability test, density bound, and so on.

2.1.1 Sporadic Task Systems

The basic component of real-time scheduling imsk The functional behavior of an
application is implemented by executing a collection oksasThe model of a task set
captures the workload requirement of an application andd¢hktime constraints that
need to be satisfied for acceptable non-functional beha¥isporadic task systeis
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a set of tasks in which each task is characterized by thresgers:minimum inter-
arrival time, relative deadlineandworst-case execution time (WCET)

Minimum inter-arrival time: Each task in a sporadic task system has a minimum inter-
arrival time of occurrence, called thperiod, of the task. The release time of any two
consecutive instances, callgabs of a task are separated by at least the period of the
task. Therelease timeof a job is the instant in time when the job becomes availate f
execution. A job of a task iadyto execute when it is released and remaicisveuntil

it completes its execution. A job of a task is released naaratan the period plus the
release time of the previous job.

Relative Deadline: Each job of a task hasrelative deadlinghat is the time by which

the job must finish its execution relative to its release tirmbe relative deadlines of
all the jobs of a particular task are the same. @heolute deadlinef a job is the time

instant equal to release time plus the relative deadline.

WCET: Each sporadic task has a worst-case execution time (WCETighvid the
maximum CPU time that each job of the task requires in ordeotoplete its execution
between its release time and absolute deadline. Detergiiheexact WCET of a piece
of code is challenging and also an active research area [BEELYY12,[LNBCG11,
CKR™12,[YKS11]. The methodology used to determine the WCET of agpif code
is outside the scope of this thesis. It is assumed that the Wi E#&ch task is known.

If the relative deadline of each task in a task set is lessdhanual to its period, then
the task set is called@nstrained-deadlingask system. If the relative deadline of each
task is exactly equal to its period, then the task set is @aleimplicit-deadlinetask
system. If a sporadic task system is neither constrainedhmlicit, then it is called an
arbitrary-deadlinetask system. In this thesis, scheduling of constrainedHadeaspo-
radic task system is considered. Since the relative demdfirach task in a constrained-
deadline task set is also allowed to be equal to its pericarebkults presented in this
thesis for constrained-deadline task system are alsocaybdi to implicit-deadline spo-
radic task systems. And, because the jobs of a sporadic tasklawed to be released
as quickly as possible, i.e., strictly periodically, theults of this thesis for sporadic task
system are also applicable to periodic task systems wheoessive releases of the jobs
are exactly separated by its period.

Task Independence The execution of the tasks of a real-time application maydped-
dent on one another, for example, due to resource or precedenstraints. If aresource
is shared among multiple tasks, then some tasks may be bldak®a being executed
until the shared resource is free. Designing better regahraring protocol for both uni-
and multiprocessors is an ongoing research area [EA10,"BIBBGESY11H, NSBS09].
Similarly, if tasks have precedence constraints, then ask may need to wait until
another task finishes its execution. There are many workctivaider precedence con-
straints [SEGY 11, SS94, BCGM99]. In this thesis, all tagikesessumed to be indepen-
dent, that is, there exists no dependency of one tasks ohendthe only resource the
tasks share is the processor platform.
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2.1.2 Task Priority

When two or more ready tasks compete for the use of the pragessome rules must

be applied to allocate the use of processor(s). This seti@s is often governed by the
priority discipline for many real-time scheduling algbrits. The selection of the ready
task for execution is determined based on the prioritieheftasks. The priority of a

task can betaticor dynamic

Static Priority: In static (fixed) priority discipline, each task has a ptipthat never
changes during run time. The different jobs of the same tasie the same prior-
ity relative to any other tasks. For example, according to &nd Layland, the well
known Rate-Monotonic (RM) scheduling algorithm assigasispriorities to tasks such
thatthe shorter the period of the task, the higher the priofltlz73]. In preemptive
RM scheduling, the task with the shortest period is alwagpatiched for execution.
This thesis considers fixed task priority for all the schadpblgorithms.

Dynamic Priority: In dynamic priority discipline, different jobs of a task magve
different priorities relative to the priorities of otheistes in the system. In other words,
if the priorities of different jobs of the same task changarfrone execution to another,
then the priority discipline is dynanEIcFor example, the well known Earliest-Deadline-
First (EDF) scheduling algorithm assigns dynamic priestio tasks such thatready
job whose absolute deadline is the nearest has the highiesitp{LL73]. In preemptive
EDF scheduling, the ready job with the shortest absolutdlatesais always dispatched
for execution. While EDF is a job-level static priority schenthe priority assignment
scheme governed by pFair scheduling, proposed by Baruah [BIGPV9€], is a non
job-level static priority scheme.

2.1.3 Preemptive Scheduling

A scheduling algorithm ipreemptivef the release of a new job of a higher priority task
can preempt the currently running job of a lower prioritykta®uring runtime, task
scheduling is essentially determining the highest pscaittive job(s) and executing
them on the processor(s), possibly by preempting some Ipvierity job(s).

Under non-preemptive scheme, the job of a currently exegutisk always com-
pletes its execution before another ready job starts exagcuf\ higher priority ready
job may need to wait in the ready queue until the currentlyceting job (may be of
lower priority) completes its execution. This will resuttworse schedulability perfor-
mance than for the preemptive case. In this thesis, preeengtheduling is considered.

2.1.4 Work-Conserving Scheduling

A scheduling algorithm is work conserving if it never idlegracessor whenever there is
a ready task awaiting execution on that processor. A workeaing scheduler guaran-

1In this thesis, static priority means task-level static ptyoand dynamic priority means job-level static
priority. In non job-level static-priority, the same job magMe different priorities at different time instants.
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tees that whenever a job is ready and the processor for éxgdhe job is free, the job
will be dispatched for execution. For example, scheduliggrithms RM and EDF are
work-conserving by definition. A non work-conserving aligom may decide not to
execute any task even if there is a ready task awaiting executn this thesis, the
work-conserving scheduling algorithms are considered.

2.1.5 Schedulability and Optimality

If scheduling algorithm4 can generate a schedule for a given set of tasks such that
all the tasks meet their deadlines, then the task set is gdid¢chedulablausing that
scheduling algorithrmA. If a task set is schedulable using scheduling algorigthen
the task set isA-schedulable

A scheduling algorithm is said to lmgtimal if it can successfully schedule a task set
whenever some other algorithm can schedule the same taskdmtthe same schedul-
ing policy (with respect to, for example, priority assigmmneiscipline, preemptivity,
etc.). For example, Liu and Layland [LL73] showed that the B\ EDF are the opti-
mal uniprocessor scheduling algorithms for implicit-d@asitasks under the static and
dynamic priority assignment policy, respectively.

While the optimal scheduling algorithm on uniprocessor isvin for sporadic task
sets, the optimal static or dynamic priority schedulingoaitipm for multiprocessors is
currently unknown[[DB11a]. Optimal multiprocessor schedypare only known for
non-job level static priority discipline (known as pFainfdy of algorithms [BCPV95,
AS04,[ZMMO03, CRDOB]). However, such algorithms suffersnfirsignificant number
of context-switch and scheduling overheads which makeethlggorithms impractical to
implement without sacrificing some schedulability [HAO05].

The notion of optimality is also applicable to a prioritysagnment policy under
specific scheduling algorithm and processor platform. Adigeority assignment pol-
icy is said to be optimal if given some fixed-priority assigemh policy using which
a task set is fixed-priority schedulable on a given platfottnen the optimal priority
assignment also guarantees the same. For example, the REMMrate the optimal
fixed-priority assignment policies for uniprocessor fixgibrity scheduling of implicit-
and constrained-deadline tasks, respectively [[LL73].

2.1.6 Schedulability Test

For a given task set, it is computationally impractical tmglate the execution of the
tasks at all time instants to see offline whether the task 8ebe/schedulable during
runtime. However, the designers of hard real-time systezad to ensure a priori that all
the timing constraints are met. To address this problengdidhbility tests for schedul-
ing algorithms are used. Achedulability tesbf a scheduling algorithrd is a (set of)
condition(s) that is (are) used to determine whether a tetsis sl-schedulable on a par-
ticular platform. A schedulability test can Ipecessary and sufficient (exaob)it can
be sufficientonly.
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Necessary and Sufficient (Exact) Schedulability TestA task set will meet all its
deadlines if, and only if, it passes the exact test. If thecesahedulability test of a
scheduling algorithn is satisfied, then the task setisschedulable. Conversely, if
the task set isA-schedulable, then the exact schedulability conditionlg@é@thm A is
satisfied. Therefore, if the exact schedulability test @fsktset is not satisfied, then it is
also true that the scheduling algorithm can sist¢cessfully schedule the task set.

Deriving an exact test for a scheduling algorithm is alwaysyiting as it guarantees
either schedulability or unschedulability of a task sehgshe corresponding scheduling
algorithm. However, deriving an exact test requires peesthedulability analysis con-
sidering the worst-case behavior of the algorithm in scheda task set. Determining
the actual worst case, and then performing precise schaltitylanalysis, may not be
always possible due to lack of time or complexity of the asisly Therefore, the worst
case may need to be safely approximated by introducing sageed of pessimism
when analyzing a scheduling algorithm. Introducing sucksjeism often results in
simpler but sufficient schedulability test.

Sufficient Schedulability Test: A task set will meet all its deadlines if it passes the
sufficient test. If the sufficient test of a scheduling altjon A is satisfied, then the
task set isA-schedulable. However, the converse is not necessariy titherefore,

if the sufficient schedulability condition of a task set i¢ satisfied, then the task set
may or may nobe schedulable using the scheduling algorithm.

Domination. To compare different scheduling algorithms and schediithalpésts, the
concept ofdominationis useful. Scheduling algorithmd dominates scheduling algo-
rithm B, if any task set schedulable using algorittnis also schedulable using al-
gorithm 4, and not conversely. In other words, if scheduling algonitd dominates
scheduling algorithnB, then all the task sets schedulable using algorithm@re also
schedulable using algorithtd and there is at least one task set that is not schedulable
using algorithm’3 but schedulable using algorithpd. Similarly, a schedulability test
P dominates schedulability tegl, if any task set that satisfies tagtalso satisfies test
P, and not conversely. In other words, if schedulability fstominates schedulability
testQ, then all the task sets that satisfy t€salso satisfy tesP and there is at least one
task set that does not satisfy t€sbut satisfies tesp.

2.1.7 Minimum Achievable Density

A processor platform is said to be fully utilized when an &ase in the density of any of
the tasks in an arbitrary constrained-deadline task sénveike the task set unschedu-
lable on the platform. Theinimum achievable densitf a scheduling algorithm is the
minimum over all total densities of all task sets that fultilize the processor platform.
A scheduling algorithm can successfully schedule any seboétrained-deadline
tasks on a processor platform if the total density of the ttkis less than or equal to
the minimum achievable density of the scheduling algoritiime higher the minimum
achievable density of a scheduling algorithm, the bettéinésscheduling algorithm in
terms of utilizing the processing resources while meetirgdeadlines of the tasks.
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Deriving the minimum achievable density may not be alwayssfime due to the pes-
simism introduced during the schedulability analysis otlesluling algorithm. How-
ever, a bound that is lower than the actual minimum achievdéhsity of a scheduling
algorithm can be derived. Such a lower bound on the actuahmim achievable den-
sity is simply called adensity boundf the scheduling algorithm. Since the density
bound of a scheduling algorithm is not greater than the mininachievable density,
any task set having total density not greater than the delnsiind is schedulable using
that scheduling algorithm.

Schedulability tests using density bound is called the itheb®und-based test. The
density-bound-based test compares the total density ohstr@ined-deadline task set
with the density bound to determine whether all the deadlare met. If the density
bound of scheduling algorithid is greater than the density bound of scheduling algo-
rithm B, then the density-bound test for scheduling algoritArdominates the density-
bound test for scheduling algorithh In this thesis, a density bound for global FP mul-
tiprocessor scheduling is proposed. This proposed testrdwes the state-of-the-art
density bound for FP scheduling of constrained-deadlineasiic tasks.

If the deadline of each task is equal to its period, then thesithe bound is called
theutilization boundand the corresponding schedulability test is given asviolibthe
total utilization of a task set is not greater than the wifian bound of a scheduling
algorithm, then all the deadlines are met using that sclveglalgorithm.

Iterative Schedulability Tests: The density bound test requires exactly one condition
to be tested for the entire task set: the total density of lagasis compared with the
density bound. On the other hand,igerative testrequires one condition to be tested for
each task in a task set. The well known response-time_tesR[ZAB,[LSD89[ JP86] for
uniprocessor fixed-priority scheduling is an example atitige test where the response
time of each task is computed and compared against itsueldtiadline. Theesponse
time of a task is the largest time interval between the complédtioe and release time
of any job of the task. Therefore, if the response time of & tassmaller than its
relative deadline, then all the jobs of the task meet theadtiees. This thesis proposes
new iterative schedulability tests which dominate theestdtthe-art iterative test for
constrained-deadline sporadic task sets for global FPdsiing.

2.1.8 Scheduling Algorithms

Scheduling algorithm is a method / policy used to dispatehjdbs of tasks that share
some resource, for instance, CPU time on a particular phatfdn this thesis, the only

resource assumed to be shared among the tasks is the pngaalséform. Depending

on the computing platform, a scheduling algorithms can begeaized as either unipro-
cessor scheduling or multiprocessor scheduling. In thisaction, the basic principle
of preemptive FP scheduling is presented.

Uniprocessor Scheduling. Uniprocessor scheduling algorithm dispatches tasks on a
single processor. A uniprocessor FP scheduling algoritlways executes the highest
priority active task. If a new job of some task arrives sudt tts priority is higher than
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that of the task currently executing on the processor, thehawer priority (executing)
task is preempted and the job of the higher priority task spaliched for execution.
The preempted job may later resume its execution when itrbesdhe highest priority
active job.

Whether the deadlines of a task are met or not depends on énteneince caused by
the higher priority tasks. Thiaterferenceon a job of a particular task is the cumulative
length of intervals during which the job is ready but can n@elzecuted due to the ex-
ecution of its higher priority tasks. Evidently, the set atrer priority tasks determines
the amount of interference on a lower priority task. Congsedjy, the fixed-priority or-
dering of the tasks plays an important role in determiniregsthedulability of each task
in a task set. Whether a task set is schedulable under a céffaassignment can be
determined using appropriate schedulability test. Liu bagland in [LL73] derived a
sufficient utilization-bound test for RM scheduling of irgit-deadline tasks on unipro-
cessors: if the total utilization of a task set is not grestann (2= — 1), then all the
tasks meets their deadlines, wheras the number of tasks in a task set. Necessary
and sufficient (exact) schedulability test for uniprocedsB scheduling have been de-
rived in [LSD89/JP86. ABR93,[ABRWI1]. The exact test proposed|in [ABB3] for
uniprocessor DM scheduling is presented in SubseEfiodl {p2gd 1117).

Multiprocessor Scheduling. In multiprocessor scheduling, tasks can be scheduled us-
ing one of the two basic multiprocessor scheduling prirspltheglobal scheduling

and thepartitionedscheduling. In global scheduling, a task is allowed to eteeon any
processor (even when it is resumed after preemption). Shiemne by keeping all the
ready tasks in a global queue from which the highest pridaisks are dispatched to the
processors, possibly by preempting some lower prioritkgabased on fixed priority
assigned to each task.

In partitioned scheduling, the task set is grouped in diffiétask partitions and each
partition has a fixed processor onto which all the tasks df plaatition are assigned.
A task assignment algorithipartitions the task set and decides the mapping of each
task to a particular processor. In partitioned scheduliegdy tasks assigned in one
processor are not allowed to execute in another processaritthe other processor is
idle. Evidently, tasks can migrate in global schedulinglehio migration is allowed in
partitioned scheduling. The advantage of partitioned dglieg is that once tasks are
assigned to processors, each processor can execute taskisdamature uniprocessor
scheduling algorithms. Many static-priority scheduliraiigies for both global[ABJO1,
Lun02,Bak06| BG0O3h, BCL0OS5, And08a, DB11b, DB09] and panied [DL78] AJ03,
FBBO06,[LMM98a, LBOS95, LDG04, LGDG03. OB98, OS95b] appitues have been
studied to derive appropriate schedulability tests.

The main goal of schedulability analysis for many global paditioned FP schedul-
ing algorithms is to derive schedulability testhat — when satisfied for a given task set
— implies that all the deadlines are met. It has already bemrepl that there exists some
implicit-deadline task set with utilization slightly grea than 50% of the capacity of a
multiprocessor platform on which a deadline miss must oéauboth global and par-
titioned static-priority scheduling [ABJOL, OB98]. Thé&ee, the minimum achievable
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utilization for both global and partitioned multiprocessaheduling can not be greater
than 50%. Moreover, it is also well-known that applying thepuocessor RM scheme
to multiprocessor global scheduling can lead to missedlofescdof tasks even when the
utilization of a task set is close to 0% of the capacity of thdtiprocessor platform.
This effect is known a®hall’s effect[DL78}, [Dha77]: some task with large utilization
is assigned lower RM priority and misses its deadline.

Technique to avoid Dhall's effect for static-priority isdirproposed in[[ABJ01]
which is further improved in [Lun02, BCL05, And08a]. LuckilDhall's effectis ab-
sent in partitioned scheduling. The main challenge forifianed scheduling is instead
to develop an efficient task assignment algorithm for partihg a task set. However,
since the problem of determining whether a schedulabletiparexists is an NP-hard
problem [GJ78], different heuristics have been proposeds$signing tasks to multi-
processors using partitioned scheduling. The majorityhefhieuristics for partitioned
scheduling are based on different bin-packing algorithsuglf as First-Fit or Next-
Fit [LDGO04]). One such bin-packing heuristic is First-HF), which is described next.

First-Fit (FF) Heuristic. With the FF heuristic, all the processors (e.g. processer on
processor two, and so on) and tasks (task one, task two and) soeindexed. Tasks
may be indexed based on some ordering of the task paramfieexémple, sort the
task set based on increasing/decreasing periods or titiligd or can simply follow
any arbitrary ordering for indexing. For example, Dhall drd in [DL78] proposed
FF partitioned scheduling using the sufficient RM schedlitgliest where tasks are
first sorted based on increasing periods. Starting withdklk with lowest index, tasks
are assigned to the lowest-indexed processor, alwaysnstavith the first processor
(processor one). To determine if an unassigned task wilchedulable on a particu-
lar processor, when assigned along with the already-assditasks on that processor, a
uniprocessor schedulability test is used. If a task can eatdsigned to the first proces-
sor based on that schedulability test, then the task is deresi to assign in the second
processor, and so on. If all the tasks are assigned, therattiggning of the task set is
successful. If some task can not be assigned to any procéssoithe task set can not
be partitioned using FF.

Task-Splitting Algorithms. The different degrees of migration freedom for tasks in
the global and partitioned scheduling can be consideredi@a®xtremes of multipro-
cessor scheduling. While in global scheduling no restnictfoplaced for task migra-
tion from one processor to another, partitioned scheduliisgllows migration com-
pletely. This strict non-migratory characteristic of p@whed multiprocessor schedul-
ing is relaxed using a promising concept calkagk-splittingin which some tasks,
called split-tasks are allowed to migrate to a different processor. Tasktsmditdoes
not mean dividing the code of the tasks; rather it is migratid execution of the
split tasks from one processor to another. Recent reseaistiown that task split-
ting can provide better performance in terms of schedutglahd can overcome the
limitations of minimum achievable utilization of 50% for gu partitioned schedul-
ing [AT06,/AB0O8,ABB08,KY08] KY09| GSYY10, LRLOC, BBAT1, AD].
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2.2 Fault-Tolerant Systems

A fault-tolerant system is one that continues to perfornsjitscified service in the pres-
ence of hardware and/or software faults. In designing fmldrant systems, mecha-
nisms must be provided to ensure the correctness of the texpeervice even in the

presence of faults. Due to the real-time nature of many-algrant systems, it is es-

sential that the fault-tolerance mechanisms providedc¢h systems do not compromise
the timing constraints of the real-time applications. lis #ection, the basic concepts of
fault-tolerant systems under the umbrella of real-timeesys are discussed.

2.2.1 Failure, Error, and Fault

AviZienis and others define the terrfaslure, error andfaultsin [ALRLO4].

Failure A systemfailure occurs when the service provided by the system deviates from
the specified service. For example, when a user can not readned file from
computer memory, then the expected service is not provigiedeosystem.

Error An error is a perturbation of internal state of the system that may tedailure.
A failure occurs when the erroneous state causes an intsgadce to be deliv-
ered, for example, when certain portion of the computer mgrisocorrupted or
broken and the stored files therefore can not be read by tine use

Fault The cause of the error is calledault. An active fault leads to an error; otherwise
the fault is dormant. For example, impurities in the seméttator devices may
cause computer memory in the long run to behave unpredjctabl

If a fault remains dormant during system operation, thenetlieno error. If the fault
leads to an error, then it must be tolerated so that the eges dot lead to system
failur?. Identifying the characteristics of the faults and the esponding errors is an
important issue for the design of an effective fault-totgraystem. Faults in systems
may be introduced during development (for example, desighproduction faults) or
due to the interaction with the external environment (foaraple, faults entering via
user interface or due to natural process such as radia8aged on persistence, faults
can further be classified as permanent, intermittent, aatsient[Joh88]. Faults can
occur in hardware or/and software.

Hardware Faults: A permanent failure of the hardware is an erroneous stateigha
continuous and stable. Such erroneous state is caused lBymEmanent fault in the

hardware. On the other hand, transient hardware faultseanpdrary malfunctioning

of the computing unit or any other associated componentshwtauses incorrect state
in the system. Intermittent faults are repeated occurenté&ansient faults. Transient
faults and intermittent faults manifest themselves in alainmanner. They happen for
a short time and then disappear without causing a permanerdgke. If the error caused

2Exampld L1 (pade10) demonstrates the terms — faults, errdrfaéures — using an example.
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by such transient faults are recovered, then it is expebigdiie same error will not re-
appear since transient faults are short lived. To tolergteremnanent processor failure,
either the processor is repaired / replaced or its effecftigated by executing the task
on a redundant processor.

e Sources of Hardware Transient Faults: The main sources of transient faults in
hardware are environmental disturbances like power fltictos, electromagnetic
interference and ionization particles. Transient faulesthe most common, and
their number is continuously increasing due to high coniptegsmaller transistor
sizes and low operating voltage for computer electronicaiE].

e Rate of Transient Faults: It has been shown that transient faults are significantly
more frequent than permanent faults [SKFVB,[CMS82| IRH85, CMR92, Bau05,
SABROZ]. Siewiorek and others in [SKIW 8] observed that transient faults are
30 times more frequent than permanent faults. Similar tésulso observed
by Castillo, McConnel and Siewiorek ih [CMS82]. In an expegnt, lyer and
others found that 83% of all faults were determined to besiran or intermittent
[IRH886]. The results of these studies show the need to déaigttolerant system
to tolerate transient faults.

Experiments by Campbell, McDonald, and Ray using an oupisiatellite con-
taining a microelectronics test system found that, withamall time interval £
15 minutes), the number of errors due to transient faultsiitednigh [CMR92].
The result of this study shows that in space applicatiomstdte of transient faults
could be quite high and a mechanism is needed to toleratégpheutansient faults
within a particular time interval. It was shown in [SKK02] that the error rate in
processors due to transient faults is likely to increasesosach as eight orders
of magnitude in the next decade. Moreover, given the fadttthasistor size and
operating voltage are shrinking for recent computer ebmits, the number of
transient faults is expected to rise in future within a gitieme interval.

Software Faults: All software faults, known as software bugs, are permangioiv-
ever, the way software faults are manifested as errors keaclstegorize the effect as:
permanent and transient errors. If the effect of a softwaudt is alwaysmanifested,
then the error is categorized as permanent. For exampllizing some global vari-
able with incorrect value which is always used to computeothiput is an example of
a permanent software error. On the other hand, if the effeataoftware fault is not
always manifested, then the error is categorized as tnatnsBich transient error may
be manifested in one particular execution of the softwackraay not manifest at all
in another execution. For example, when the execution fladhsoftware varies based
on the input (for example, sensor values) or the environpeefdult that is present in
one particular execution path may manifest itself as arstesut error only when certain
input values are used. This fault may remain dormant whefferelnt execution path is
taken, for example, due to a change in the input values or@mvient.
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The fault-tolerant scheduling algorithms proposed in thissis considers tolerat-
ing multiple task errors within a time interval equal to tlaegdest relative deadline of
the tasks in a sporadic task set. Such task errors may becchysoftware faults or
transient hardware faults. In addition, the fault-tolerscheduling algorithm proposed
for multiprocessors also considers tolereﬁim@rmanent processor failures. The fault
model considered for processor failures is permanent relfaults that are contin-
uous and stable. Processors are assumed tailbstop processors: each processor is
either working correctly or ceases functioning [SS83, Ith8

2.2.2 Error Detection Techniques

In order to tolerate a fault that leads to an error, fauletaht systems rely on effective
error detection mechanisms. The design of many faultdokescheduling algorithm

relies on effective mechanisms to detect errors. Erroratiete mechanisms and their
coverage (e.g., percentage of errors that are detectesthiat the effectiveness of the
fault-tolerant scheduling algorithms.

Error detection can be implemented in hardware or softwdtardware imple-
mented error detection can be achieved by executing the t@sken two processors
and compare their outputs for discrepancihgpfication and comparison technique us-
ing hardware redundangy Another cost-efficient approach based on hardware isdo us
a watchdog processor that monitors the control flow or perforeasonableness checks
on the output of the main processor [MC$91]. Control flow &isesre done by verify-
ing the stored signature of the program control flow with ttieial program control flow
during runtime. In addition, today’s modern microprocesdwave many built-in error
detection capabilities like, error detection in memoryhes registers, illegal op-code
detection, and so o [MBS07, WEMR(4, SKR8,[KSSFI10].

There are many software-implemented error-detection am@sms: for example,
executable assertions, time or information redundansgdahecks, timing and control
flow checks, and etc. Executable assertions are small calde program that checks the
reasonableness of the output or value of the variables gipriogram execution based
on the system specification [JHCS02]. In time redundancynstnuction, a function
or a task is executed twice and the results are comparedoiw alrors to be detected
(duplication and comparison technique used in softywp&&KO05]. Additional data (for
example, error-detecting codes or duplicated variables)laed to detect occurrences
of an error using information redundancy [Pra07].

In summary, there are numerous ways to detect the errors @milete discussion
is beyond the scope of this thesis. The fault-tolerant saleglalgorithms proposed in
this thesis rely on effective error-detection mechanisms.

3By “tolerating” it does not mean preventing/stopping theuia in some way; rather, it means that the
effect of permanent processor failure is mitigated by exagutie tasks on other non-faulty processors.
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2.3 Mixed-Criticality Systems
An MC system is defined as follows in [BBH:

“A mixed-critical system is an integrated suite of hardwamgerating sys-
tem and middleware services and application software thgiarts the ex-
ecution of safety-critical, mission-critical, and nontical software within
a single, secure compute platform.”

In short, anMC system is one in which the functionalities hosted on a compiatfiorm
have different criticality levels. For example, in the RTCX0-178B standard, there
are five different Design Assurance Levels (DAL A to DAL E) &oftware in avionics
systems (please see Tablel2.1). The “criticality” of a fiorcbr task specifies its “im-
portance”. The consequence for not meeting the specificafia high critical function
could be severe. The criticality assigned to a function $igsche level of assurance or
confidence needed regarding the correct behavior of theifumc

Level | Failure Condition| Interpretation

A Catastrophic | Software that could cause or contribute to the
failure of the system resulting in the loss of abil-
ity to continue safe flight and landing. Failures
may cause a crash. An example of such system
is an engine controller software.

B Hazardous Software that could cause or contribute to the
failure of the system resulting in serious or fa-
tal injuries to the aircraft occupants. Examples
is pressurization system software.

C Major Software that could result in a major failure
condition or discomfort to the occupants of the
aircraft.

D Minor Failures results in some inconvenience to the pc-

cupants of the aircraft. Example is failure caus-
ing a routine flight plan change.

E No Effect Software that could cause or contribute to the
failure of the system resulting in no effect on the
system. Examples are entertainment system| In-
ternet access.

Table 2.1: RTCA published the DO-178B software development process stanBaftivare Con-
siderations in Airborne Systems and Equipment Certification”. The UnitattSFederal Avia-
tion Authority (FAA) accepts the use of DO-178B as a means of certifyiigage in avionics
application. The five DO-178B levels describe the consequences témtipbfailure of the soft-
ware: catastrophic, hazardous, major, minor, or no-effect.
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The need for research in the domairMi systems is motivated in [BBE] using an
example of Unmanned Aerial Vehicle (UAV) which is expecteaperate over or close
to civilian airspace. Such a system has Htihht-critical andmission-criticalfunction-
alities that require safety, reliability and timelinessgantee. In addition, such a system
must pass the mandatory certification from standard civdtaon authority. Certifica-
tion of MC system is challenging and costly approach since such syisteefatively
complex due to the integration of functionalities with dint criticality levels.

The objective of designing aviC systems is to combine previously independent sys-
tem applications into a single computation platform whisoansuring that the system
is predictable. In other words, the integration of mixeifical functions on a common
computing platform aims to save cost while at the same tinpe hoimprove the overall
performance in terms of, for example, safety, reliabilingdimeliness. Research in the
real-time community has recently received consideralitbn considering two im-
portant factors oMC systems: (i) run-time robustness, and (ii) design-fotiftestion.

Run-time Robustness.One of the most important requirement for designing mixed-
criticality systems is in ensuring the non-interferencésotation property among func-
tions of different criticality levels. In particular, a Higcritical function must not be
adversely affected by a low-critical function. In the codtef real-time scheduling,
temporal isolation is achieved by ensuring that if the sysi® not capable of meeting
some deadline (e.g., due to overload situation), then ndlishesof a high-criticality task

is missed before all the low-critical tasks.

Physical separation of resources is one option to achievsdtation property where
the functionalities including all logic and processor ahggically separated. For exam-
ple, the safety-critical functions, e.g., flight contraigéne control, electrical power sys-
tem control in an UAV may have their own hardware, softwarel standard interfaces
to communicate with other functions.

Due to the space, weight, and power considerations, prayigiich dedicated re-
sources is costly or may even impractical for many resouorestrained systems. To
solve this problem, integration of multiple functionadii on the same platform is con-
sidered where the isolation property is achieved by paniitig the system resources.
For example, according to ARINC 653 standard, the systent proside space and
temporal partitioning of all resources — e.g., memory, pssing time, communica-
tion bus — for all the hosted functionalities. In such an aagh, a partition allo-
cated to a low-critical function can not be used by a highieai function. Therefore,
a high-critical task may miss the deadline in its time pantitwhile a low-critical task
meet the deadline in another time partition (known as eliti¢ inversion [NLRO9]).
Moreover, resources are not utilized efficiently since fiomcin one partition is not
allowed to execute on a different partition. To avoid thdicality inversion prob-
lem and to efficiently use the processing resources, “trhatisg of the platform is
considered while providing run-time robustness. New resmallocation and schedul-
ing algorithms are being designed such that the system gesviun-time robustness
[NLROY,[LdNRM10,/TSP11, YYP12].
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Design-for-Certification: Another important aspect &fiC system, which is addressed
in this thesis, is design-for-certification. For examples tlesign and development of an
UAV needs to be certified by standard statutory certificagiotiority (CA), for example,
by Federal Aviation Authority in the US or the European Aidat Safety Agency in
Europe for avionics systems. The CA certifies a system asddfrthe assumptions of
the CA regarding the system behavior hold at run-time.

Traditionally, when functions having different criticglilevels are hosted on the
same computing platform, then the system is certified byragguthe highest criti-
cality level for all the functions. Such assumption is pessiic because certifying at
the highest criticality level implies the highest degre@ssurance regarding the correct
behavior of all the functions which in turn could be guaradtdy over-provisioning
the required resources. Therefore, it is necessary to alevedw design and analysis
techniques that addresses certificatiodofsystems while efficiently utilizing the pro-
cessing resources. This thesis proposes fixed-prioritydiding algorithms considering
this design-for-certification issue dC systems.



Models

The design and analysis of hard real-time scheduling dlgus is based on appropriate
modeling of the target system. This is because a priori kedgé of the workload and
available resources is necessary to analyze and ensuietphbélity of the system. The
task resourceandfault models are presented in this chapter. A task model specifies
the workload and timing constraints of the real-time agglan. A resource model
specifies the type and capacity of the available resourcgs eocessors) for executing
the tasks. A fault model specifies the nature and frequendgudfs that the system
needs to tolerate.

3.1 Task Model

The formal notations and important concepts of sporadicstase now presented.

Sporadic task set. In this thesis, real-time scheduling afconstrained-deadline spo-
radic tasks in sdf = {7 ... 7,} is considered. Each of the tasksc I is characterized
by a triple C;, D;, T;), where

e (; represents the worst-case execution time (WCET) of eachfjttedask;
e D, is the relative deadline;

e T; is the period which is minimum inter-arrival time of the jobisthe task.

Jobs of Tasks. Successive arrivals of the instances or jobs of taskre separated by
at leastT; time units. Thej*" job of taskr; is denoted byJ?. The release time of job

33
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J7 is denoted by~. A job of a taskr; is released no earlier than the release time of the
previous job plus.the period;, i.e., rf.“ > (r! 4+ T;). The absolute deadline of job
J! is denoted byl/ and given as follows:

& = 1] + D; (3.1)

A job J{ requires at mos€’; units of execution time between its release tinfieand
deadlined!. If task7; is periodic and first released at time 0, thén= (j — 1) - T;.

Density and Utilization. Thedensitys; andutilization «; of a taskr; are denoted by
6; = C;/D;

Thetotal density (resp. utilization)f task setdis > 4 d; (resp.> 4 i)

Fixed-Priority. For a given fixed-priority ordering of the tasks, the set ektawith a
priority higher than the priority of task; is denoted byHP;. There are many policies
for assigning the fixed-priorities to the tasks. Some exanfigkd-priority assignment
policies are the following:

e Rate-Monotonic (RM) priority: The priority of taskr; is greater than the pri-
ority of task7; if 7; < Tj;. This is the priority assignment governed by the
RM scheduling policy: a task with smaller period has highéony.

e Deadline-Monotonic (DM) priority: The priority of taskr; is greater than the
priority of task; if D; < D;. This is the priority assignment governed by the
DM scheduling policy: a task with smaller relative deadlivas higher priority.

e Slack-Monotonic (SM) priority: The priority of taskr; is greater than the prior-
ity of task; if (D; —C;) < (D; —C};). This is the priority assignment governed
by the SM scheduling policy: a task with smalackhas higher priority.

e Audsley’s Optimal Priority Assignment Algorithm: While the optimal fixed-
priority ordering for some system mofletan be given using simple heuristic
(e.g., the DM priority ordering is the optimal for constraihdeadline tasks on
uniprocessol [LW82]), the optimal priority ordering for ettsystem model is not
necessarily based on simple heuristic. For example, thmappriority ordering
of constrained-deadline tasks having arbitrary start sirffudfsets) is not neces-
sarily the DM priority assignment policy for uniprocessdio assign the fixed
priorities to such task sets with offsets, an optimal ptjoaissignment (OPA) al-
gorithm, known as Audsley’s OPA algorithm, is proposed ind@1 [ Aud9l]. Al-
though the OPA algorithm is first proposed for uniprocesdbras been adapted
by Davis and Burns [DBQ9] for priority assignment on multipessors. The basic

1The system model consists of the task, resource, and schedodels.
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idea of Audsley’s OPA algorithm to assign the priorities &séd on a schedula-
bility test S and involves the following steps:

— Initially, no task is assigned any priority (each task islezhla priority-
unassigned task);

— The fixed priorities are assigned starting from the loweistrity level to the
highest priority level, i.e., the task which is first assigreepriority is the
lowest priority task and the task which is assigned the fimiaripy is the
highest priority task;

— For a particular priority level (staring from the lowest)),ainy one of the
priority-unassigned tasks, sat tasks deemed schedulable using the schedu-
lability testS at that priority level, by assuming all other priority-usamed
tasks having higher priorities, then taslks assigned that priority level;

— If no priority-unassigned task can be assigned the priteitgl then priority
assignment fails. If each task is assigned one priorityl /ékien the priority
assignment succeeds.

While many work consider the priority assignment problem aokedulability
testing problem as two independent problems, the Auds@lA algorithm com-
bines the problem of finding the priority assignment with sisbedulability test
of each task. Consequently, if all the tasks are assignedtpgs according to the
OPA algorithm using schedulability teSt then the task set is also schedulable.

In order to find a priority ordering for which a task set paghesschedulability
test.S, a naive and exhaustive approach is to consider athtrdfferent priority
orderings of the tasks. In contrast, Audsley’s OPA algaonitheeds to check at
most(n? + n)/2 different priority orderings. Details on OPA algorithm aitsl
applicability to multiprocessor scheduling are preseime@haptef 5.

Time Division. Even though length of time intervals, time instants areroftedeled
using real numbers, time is not infinitely divisible in adtiraplementation of a system.
The difference in time between occurrence of different &vean not be determined
more precisely than one tick of the system clock. In thisithedl time values (e.g,
WCET, deadline, and interval length) are assumed to be pesitiegers.

Critical Instant. The critical instant of a task is the release time at whichitier-
ference on the task from the higher priority tasks is maxédizConsequently, the re-
sponse time of the job released at critical instant is thestuosse response time of the
task. Therefore, a job released at a critical instant ischdiadle if and only if the task
set is schedulable. Liu and Layland have proved that thigakrinstant for uniproces-
sor FP scheduling of any task occurs when the task is relesisrdtaneously with the
release of all its higher priority tasks [LL73].

The analysis of the proposed fault-tolerant schedulingrétlym FTDMin this thesis
for uniprocessor platform also considers the criticalanstof each task to derive an
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exact schedulability test. Under fault-tolerant FP scliaguwon uniprocessors, where
time redundancy is used to recover from task error, theraésjab of each task during
execution of which the occurrence of faults have the gréatgzact. In such case, the
errors may occur in that particular job of the task and/ommiy jab of its higher priority
tasks. To recover from the errors in such situation, the @@t of the backups causes
the response-time of that particular job to be the maximum.

Ghoshet al. showed that, when faults occur and time redundancy is ustdciate
faults in uniprocessor RM scheduling, the critical instisnivhen all tasks are released
simultaneously[[GMMS98]. This result can be easily extehfite FTDM scheduling
(i.e., DM fault-tolerant scheduling on uniprocessor) dbfes: if the completion of job
J of a task is delayed byA time units due to the occurrence of some faultg/ior in
its higher-priority jobs, then some other lower prioritypjd’ of some other task will be
delayed by at mosA time unit if both.J and.J’ are released simultaneously. Therefore,
the exact schedulability test for the propod€DM scheduling considers that all the
tasks are released at the same time and without loss of dignéres assumed that all
the tasks are released at time zero.

Unfortunately, the critical instant which is known for umgessor FP scheduling is
not applicable to global FP scheduling. Lauzac et. al shawatla task does not have
its worst-case response time when released simultanewitslyall the higher priority
tasks under the global FP schedulihg [LMM98b]. In multiprssor scheduling, the
response time of a job that is released simultaneously Witlteer higher priority tasks
may not be the largest because this scenario may not cautiee gtkocessors to be
busy executing the higher priority tasks for the largesetimterval (i.e., interference)
over which a lower priority task is awaiting execution. Thisdemonstrated using the
following example.

Example 3.1. Consider four sporadic tasks with parametégrs;, D;, T;) as follows:
71(1,1,4), 2(1,2,5), 73(2, 3,4), and74(1, 4, 4). Assume that tasks are given deadline-
monotonic priorities and scheduled @am = 2 processors using glob& P scheduling.
Also assume that all tasks are simultaneously releasechatzero and all jobs arrive as
quickly as possible (i.e., strictly periodically). The g&d FP scheduling of these tasks
is shown in Figuré_3]1.

The first job.J} of the lowest priority task, completes its execution at tintie= 2
(response-time is 2 time units). However, the second fobf taskr, is released at time
t = 4 and completes its executiontat 7 (response-time is 3 time units). Consequently,
the worst-case response time of tagks not necessarily equal to the response time of
its first job. In other words, the critical instant of a taskriet the time instant when all
the higher priority tasks are released at the same time ibajlé P scheduling. O

Given the sporadic nature of the tasks, finding the job thii¢suthe maximum inter-
ference due to the execution of the higher priority jobs aairbe determined easily for
global FP scheduling. Not knowing the critical instant foalyzing global FP schedu-
lability of a task requires some pessimism to be introdunelle schedulability analysis.
As will be evident later, introduction of such pessimismidgrschedulability analysis
results in sufficient schedulability test for global FP stililng.
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o 1 2 3 4 5

Figure 3.1: The release time and deadline of each job is shown using upward andadod/n
arrow, respectively. The second job of tagkhas larger response time than its first job. Critical
instant for globalFP scheduling is not the instant when all the tasks are released at the same time

3.2 Resource Model

In this thesis, the only resource the tasks are assumedmmistibe computing platform.
Scheduling on multiprocessors considers the availahifityn identical unit-capacity
processors. In this thesis, multiprocessors and multicare synonymous since the
proposed schedulability analysis and theory for multipesors is also applicable to
multicores havingn identical cores hosted on the same chip.

Task preemptions, migrations, context-switches, sclimglulecisions incurs over-
head and are extrinsic to the task model at hand. The costgbfdifferent kinds of
overhead are assumed to be included in the WCET of each tadk.isThecause, at
least for now, there is no analytical method available towate the cost of such over-
heads for sporadic task systems considering differentgssmr architectures, operating
systems, and so on. There have been effort to calculate siecheads for specific ar-
chitecture and operating system basedeampirical study using strictly periodic task
systems[[BCAQO8, BBA1I0]. Moreover, the preemption and ntigraoverhead due to
the loss of cache affinity is dependent on the working setdfizedividual task. And,
the working set size of different tasks of different apgiicas are different. Although
such issues are not addressed in this thesis, one can rekperiraental studies (sim-
ilar to [BCAQ8,[BBA10]) to measure these overhead costs idenisg the application,
operating system, and the target hardware platform. Thgmsof a real-time system
can inflate the WCET of each task after experimentally meaguhie cost of different
overheads by executing the tasks on the target platform.
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3.3 Fault Model

Designing fault-tolerant scheduling algorithm needs targntee that all the tasks dead-
lines are met when faults occur even under the worst-cagedoadition. No fault-
tolerant system, however, can tolerate an infinite numbdraahitrary types of faults
within a particular time interval based on time redundafitye scheduling guarantee in
fault-tolerant system is thus given under the assumptianaartain fault model.

This thesis considers (i) tolerating task errors for unigssor scheduling, and (ii)
tolerating both task errors and processor failures foripnatessor scheduling. The pro-
posed uniprocessor fault-tolerant scheduling algorififdMconsiders tolerating task
errors within all possible time intervals of lengih,, .. whereD,,,.. is the maximum
relative deadline of any task in the task set. The proposdtipracessor fault-tolerant
scheduling algorithnTGS considers tolerating task errors within all possible time
intervals of lengthD,, ... and also considers tolerating at mgspermanent processor
failures during the lifetime of the system.

In this thesis, the fault model considered is very stronghm sense that multiple
faults (that cause errors) can occur at any time, in any taskeven during the execution
of the backups. The faults can also occur in bursts; how#ivemumber of task errors
that can be recovered is bounded pwithin any possible interval of length,,, 4.

The fault model considers tolerating transient hardwanédalue to which the task
error is also transient. Transient errors are short livethaould not reappear upon re-
executing the task. This is a reasonable assumption sicea ibe implemented simply
by resetting the processor before re-execution. The faodtehalso considers software
fault due to which the task error is transient. When a soft/andt is manifested as
a transient error, then such error can be recovered usingesire-execution. In such
case, it is expected that the same error would not occur i§diftevare (task) is simply
re-executed. Software faults that result in permanenteasks are also considered in
the fault model. If the effect of a software fault is manifgbtas a permanent error,
then simple re-execution of the same task can not mitigat permanent erroneous
behavior. In such case, a diverse implementation of theltasko be executed as backup
to recover from the error and such backup may have differenEWan the primary.

Tolerating permanent processor failure is also consideréae fault model for the
proposed fault-tolerant scheduling on multiprocessorhe &ffect of such failures is
mitigated by executing the backup of the task that was ekggoh the faulty processor
on a different (non-faulty) processor. The fault model ferrpanent processor failures
covers those hardware faults that are continuous/stallleaarses permanent error. Each
of the processors in a multiprocessor system is assumedftolistop processors: it is
either working correctly or ceases functioning.

If a system is designed to tolerate transient error or peemiaprocessor failures,
then either re-execution or diverse backup is effective.wéler, if the system also
needs to tolerate permanent error due to software fauks, &l the backups must be
different (i.e., implemented diversely) and we have to paytfiis costly approach for
tolerating such software faults using time redundancy.
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Time redundancy is considered for tolerating multiple teulWhen fault occurs
during execution of a task and an error is detected, eithefablty task is simply re-
executed or a diverse implementation of the same task isiecThe diverse imple-
mentation of the same task is considered to achieve diyersits used in N-version pro-
gramming[[Avi85]. A backup of a task, which is a diverse impéntation, has the same
period, priority, and deadline as the original task but mayeha different WCET than
the primary. The schedulability analysis of the fault-takg algorithms has to consider
such different WCETS for different backups of the same task.

In order to tolerate task errors even during the recoveryatjpns (i.e., when a
backup is executing) multiple backups are considered foin &sk. The multiple back-
ups of the same task are ordered based on some design décesiathe first backup is
executed whenever the primary fails, the second backupeisutead whenever the first
backup fails, and so on). For example, the system designgipneder to run a partic-
ular implementation of a task as the primary, and then anatiy@ementation (e.g., an
exception handler) as the backup if an error is detecteckeiptimary, and so on.

An error is assumed to be detected at the end of execution adksstprimary or
backup. This is required for the worst-case schedulaklitglysis since the detection of
an error at the end of execution corresponds to larger wa&Rtdi time in comparison
to the situation when the error is detected in the middle efgkecution. There is no
fault propagation: one fault is assumed to affect at mostjongeither its primary or
one of its backups. It is also assumed that, during the eixecof each primary or
backup of a task, at most one fault could affect this exeautichis assumption is also
essential for the worst-case schedulability analysis ime#he overhead for executing
the backup, after an error is detected, does not depend amthker of errors affecting
that particular primary or backup. If more than one erroectffa task’s primary or
backup, then only one additional backup is activated tovecfsom those task errors.

Both the proposeBTDMandFTGS scheduling algorithms consider toleratifigask
errors in each of the all possible intervals of length,.... Within any time interval of
length D,,..., the f task errors may occur in the same job of a task — affecting that
job’s primary and backups. Therefore, the task model iseldd to considef different
backups for each task. The WCET of the primary copy of taskC; and the WCET of
each of thef backup copies of task; is denoted byE* for k = 1,2,... f. All the
jobs of the same task have the same WCET for the primary copitshe WCET of
the k*" backup copy of different jobs of the same task are equat ferl,2,... f. If a
task errors are detected in joB (one error in the primary copy arid — 1) errors in the
backup copies), the total execution requirement for.jplis C; + >¢_, E¥ . Note that
for a maximum ofs task errors affecting a particular JQK;? thea'” backup copy is the
non-faulty execution of joly/ under the assumed fault model. Moreover, the following
must hold for each constrained-deadline task I forall: = 1,2,...n:

f
Ci+» Ef <D, (3.2)
k=1
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It is assumed that a combination of software and hardwace-datection mechanisms
are available to detect task error. There are many softwattéhardware based error-
detection mechanisms as is discussed in Secfion| 2.2.2dPerfor detection coverage
is assumed for simplicity of the schedulability analysiswéver, a probabilistic anal-
ysis of fault-tolerant schedulability with imperfect ermetection coverage can be ad-
dressed similar ta [BPSW99] and such an analysis is not theeasied in this thesis. It
is also assumed that the error-detection and fault-toberamechanisms are themselves
fault-tolerant. The error detection overhead is considia® part of the WCET of the
task. In summary, the fault model considered in this thesésreasonable representativ-
ity and very general to tolerate a variety of faults in hardwsoftware.



Goals and Contributions

The complexity of hardware and software in computerizedesyds increasing due to
the “push-pull” effect between the development of new saftwfor existing hardware
and the advancement in hardware technology for forthcorsaftyvare. On one hand,
high-speed processors pull the development of new softwidhemore functionalities

(possibly with added complexities), and on the other hapglieation software with

new functionalities push the industry to come up with morevgxdul processors (with
added complexities).

Due to the increased complexity of real-time systems botarims of hardware and
software, the design of such systems is becoming more cigitig. One of the main
challenges is to utilize the processing platform efficigmthile satisfying all the timing
constraints of real-time systems. The increasing frequefithe occurrences of tran-
sient faults in increasingly-complex hardware and thedasing likelihood of having
more bugs in complex software require effective and cdtieft fault-tolerant mecha-
nisms in today’s computerized systems. Due to the size,hwaigd power constraints in
many safety-critical embedded systems, the integratianufiple functionalities hav-
ing different criticality levels on the same hardware patf requires developing new
criticality- and certification-cognizant scheduling aligoms. In order to ensure that the
non-functional behaviors of real-time systems are actéptéhe design of the system
requires appropriate modeling, effective analysis, ang@r verification.

The overall goal of this thesis, considering the researdsiipnsQ1, Q2 andQ3in
Sectior 1.1l (pagdel 3), is to design and analyze resourcéeeffischeduling algorithms
that can be used to satisfy the timing, reliability and cality constraints. The major
contributions to achieve this goal in this thesis are listeldw (contribution€1 andC2
addres$)1; contributionsC3 andC4 addres$)2, and contributiorC5 addresse®3):
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C1 Density-Bound-Based Test (Chaptel]5) -A new fixed-priority assignment pol-
icy, calledl SM DS, for constrained-deadline sporadic tasks is proposed pity@osed
priority assignment policy addresses the problem of deéténgy the fixed-priority or-
dering of the sporadic tasks to be scheduled using globalch@dsiling. According to
thel SM DS policy, a subset of the tasks (referred to as heavy taskgsigred the
highest fixed priority and the remaining tasks (referredgdight tasks) are assigned
slack-monotonic priorities. The density threshold, basegvhich a task is classified as
being either heavy or light, is calculated based on the nurabprocessors. In order
to address the schedulability testing problem, a suffiaiemisity-bound-based schedu-
lability test is derived by analyzing global FP schedulirging thel SM DS priority
assignment policy. This test is shown to dominate the dehsitind-based state-of-the-
art schedulability test for global FP scheduling of coriatrd-deadline tasks.

Based on schedulability analysis of th8M DS policy, another priority assignment
policy, calledl SM DS[¢], is proposed. Policy SM DS[¢] assigns fixed-priorities to the
tasks in a way that is similar to theSM DS policy, but using a threshold densgyvhich
is selected from the set of all the densities of the tasks. diivess the schedulability
testing problem, the threshold densitis selected in such a way that the task set become
schedulable using global FP scheduling. It is also provatittie schedulability test for
global FP scheduling based on th&M DS[¢] priority assignment policy dominates
the density-bound test for tHeSM: DS priority assignment policy. Simulation results
show that the fraction of randomly-generated task sets ddesnhedulable using the
schedulability test for thé SM DS[¢] priority-assignment policy is significantly higher
than that of the density-bound test for th&M DS priority assignment policy.

C2 lterative Test (Chapter[d) —A new response-time-based iterative test, called the
| A- RT test, is proposed for global FP scheduling of constrairestitine sporadic
tasks. Thel A- RT test addresses the schedulability testing problem whiteraten-
ing the priorities of the tasks using a multiprocessor esitamof the Audsley’s optimal
priority assignment scheme. Finding such a priority omgis important since many
of the traditional priority-assignment policies (e.g g theadline-monotonic policy) per-
form poorly for global FP scheduling of constrained-deaalliasks, and also because
the optimal priority assignment for such task systems iknotvn at present time.

Thel A- RT test also deals with the challenge of reducing the pessinnisspprox-
imating the worst-case (i.e., critical instant) for glol& scheduling. TheA- RT test
is derived based on a crucial observation (regarding thedaghbility analysis) which
is used to derive an improvement in order to reduce the péssinm the interference
computation as caused by the higher priority tasks on eagbrlriority task. The
observation is that, if a number af’ tasks andn’ processors) < m’ < m, are not
considered during the schedulability analysis of a lowérrfiy task ;, then the pes-
simism of the interference computation due to the higheartyi tasks can be reduced.
Based on this observation, a novel criterion is proposedhvinds a set ofn’ tasks and
m/ processors that will not be considered during the globaldfiedulability analysis of
a lower priority taskr;. By computing an upper bound on the interference of eachrlowe
priority taskr; € I', the response-time-baséd- RT test is derived. Thé A- RT test
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does not only dominates but also empirically outperfornesdtate-of-the-art iterative
test for global FP scheduling of constrained-deadlineagtiortasks.

C3 Uniprocessor Fault-Tolerant Scheduling (Chaptef¥) —A fault-tolerant schedul-
ing algorithm for uniprocessors, calldefrDM based on the DM priority assignment
policy is proposed. The proposed scheduling algorithm idens a very general fault
model such that multiple faults can occur in any task andtiare (even during recov-
ery). TheFTDMalgorithm considers time-redundant execution of the tasksackup to
recover from occurrences of maximufrtask errors within each of all possible time in-
tervals of lengthD,,, ... In order to resolve the interdependency between meetimggi
constraints and achieving fault-tolerance using time neldncy, precise schedulability
analysis ofFTDMalgorithm is conducted. An exact schedulability test isvésl based
on the maximum total workload requested within the relese and absolute deadline
of the job of each task released at the critical instant. Toutate this maximum total
workload, assuming occurrences of multiple faults, a neeehnique to compose the
execution time of the higher priority jobs is used.

The only work that deals with a similar fault model as thEDMalgorithm is pro-
posed by Aydin|[[Ayd0J7], but considers EDF priority and theeixtest in[[Ayd07] has
an exponential run-time complexity. On the other hand, the trme-complexity to
evaluate the exact schedulability test of the propdSEBMalgorithm isO(n - N - £2),
where N is the maximum number of jobs (generated by theeriodic tasks) released
within any time interval of lengttD,,,.... No previous work has derived an exact fault-
tolerant uniprocessor schedulability test that has a |dimee complexity than that is
presented in this thesis for the assumed fault model. Theosexl schedulability test
can be applied to partitioned multiprocessor schedulininguassignment of the tasks
to the processors so that a maximunydfsk errors can be tolerated on each processor.

C4 Multiprocessor Fault-Tolerant Scheduling (Chaptef8) -A fault-tolerant FP sche-
duling algorithm for multiprocessors, calléd GS, based on global scheduling paradigm
assuming an arbitrary fixed-priority ordering of the taskgplioposed. The fault model
of FTGS algorithm is as general as tifDMalgorithm. In addition, thé&TGS algo-
rithm also considers tolerating permanent processorréslin its fault model. More
specifically, theFTGS scheduling considers toleratingpermanent processor failures
within the lifetime of the system, in addition to toleratingnaximum off task errors
that can occur within any interval equal 19,,,... No other work considers a powerful
fault model for multiprocessor scheduling as is assumethfF TGS algorithm.

The schedulability analysis of thel GS algorithm does not only resolve the interde-
pendency between timeliness and achieving fault tolerasoegy time redundancy, but
also addresses the priority assignment problem, whichrisnoan even for traditional
(non-fault-tolerant) global FP scheduling. To that endu#iident schedulability test
for FTGS scheduling with a time-complexity @(n? - f2 - maz{N,m - f, f?}) is de-
rived. The schedulability test for tHeTGS algorithm can be combined with Audsley’s
optimal priority assignment algorithm to search for a ptjoordering in case the test is
not satisfied for the given priority ordering of the tasks.



44 CHAPTER 4. GOALS AND CONTRIBUTIONS

The mathematical expression of tRéGS schedulability test incorporates different
parameters from the system modefsinumber of task errorsy (number of processor
failures) andn (number of available processors) along with the paramefettse task
set. The system designers can play around with differeniegabf these parameters to
make trade-off between fault resilience and resource remgnt of the system. While
most of the previous work consider tolerating a task errorgugechniques intended for
tolerating processor failures (a wasteful approach in sesfmesources), theTGS algo-
rithm distinguishes between task errors and processdwsdaito efficiently utilize the
computing resources while at the same time achieving faldtance.

C5 Multiprocessor Scheduling of Mixed-Criticality Systems Chapter[d) — A certifi-
cation-cognizant FP multiprocessor scheduling algorjtbatiedMSM for constrained-
deadline sporadic tasks having different criticality levis proposed. The proposed
MM scheduling algorithm is based on a global FP schedulingdigarawith an addi-
tional feature — runtime monitoring of the criticality betar — that determines when
the system switches to a higher criticality beha@!.idwpon detection of criticality switch
to a higher criticality behavior, tasks relevant only totthaticality behavior are dis-
patched for execution. The run-time monitoring capabéityables thé/SMalgorithm to
address both the deadline and criticality aspectditfasks. A sufficient response-time-
based schedulability test of thSMalgorithm is proposed. This schedulability test can
be used to verify whether the timing constraints of the tagleach criticality levels are
met, or not, thereby facilitating certification.

The main objective for deriving the schedulability test fbe MSM scheduling is
to make the test applicable with Audsley’s OPA algorithmisat the fixed priority as-
signment of theMC tasks can be determined. Finding such a priority orderirignjsor-
tant because many of the heuristic priority-assignmerntiesl, for example, criticality-
as-priority-assignment (CAPA), perform poorly for FP sdhkéng of mixed criticality
tasks. While many other earlier work consider only two défarcriticality levels, the
MBM algorithm considers an arbitrary number of criticalityéés/ (which is important
since the tasks in many practical systems have more thanriticatity levels). This
is the first published work, on global FP schedulingMg tasks on multiprocessors.
Although this work considers FP scheduling, it can be easilgnded for any other
work-conserving scheduling algorithm. The time completd evaluate the schedu-
lability test for MSMalgorithm, combined with the OPA algorithm for a task sethwit
L criticality levels, isO(n? - £ - T%,..), which is pseudo-polynomial for any fixed value
of L that is reasonable for practical mixed-criticality systenfror example, the time
complexity for dual-criticality system (i.eMC system with only two criticality levels) is
O(n? -T2 ,.) which is pseudo-polynomial in the representation of thk s&t. Simula-
tion result shows that the schedulability testf@Malgorithm combined with Audsley’s
OPA algorithm significantly outperforms the schedulapitést forMSMscheduling us-
ing other traditional priority assignment (e.g., deadiimenotonic, CAPA) policies.

1The criticality behavior of the system at each time instardeitermined based on the actual execution
time of the active job of each task at that time instant.



Density-Bound-Based Test

A new fixed-priority assignment policy, calléohproved Slack-Monotonic Density Sep-
aration (I SM DS), for global FP scheduling of a set of constrained-deadip@radic
tasks is presented in this chapter. Based on a thresholihygehat only depends on the
number of processors, the priority assignment pdli&jt DS assigns slack-monotonic
priority to a subset of the tasks while each of the other tasksssigned the highest
fixed-priority. A sufficient density-bound-based schedility test is derived for global
FP scheduling where the priorities are assigned accordingplicy | SM DS. The
derived density-bound test dominates the state-of-thdearsity-bound test for global
FP scheduling of constrained-deadline sporadic tasks.

Based on the schedulability analysis of priority assigninpeficy | SM DS, another
priority assignment policy, calledSM DS[¢], is proposed. Policy SM DS[¢] assigns
the priorities similar to policy SM DS except that the threshold densftys searched
from the set of densities of all the tasks. Considering threedalability testing prob-
lem, the aim for searching the threshold densiig to guarantee the schedulability of
the tasks for thé SM DS[¢] priority assignment policy. It is proved that the schedula-
bility test of global FP scheduling usingSM DS[¢] as the priority assignment policy
dominates that of using tHeSM DS priority assignment policy. Empirical investigation
using randomly generated task sets shows surprising irepremt of the schedulability
test for policyl SM DS[¢] over that of using policy SM DS.
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5.1 Introduction

It has become obvious that continuously increasing thekcépeeds of uniprocessors
to provide more performance is impossible due to power aopsion and heat dissipa-
tion limits. The processor industry has adopted multicoohitectures to provide the
growing demand of computation power. While real-time scliadwf sporadic tasks
on uniprocessors is considered to be mature enough, mealgcheduling theory for
multiprocessors is still young and has recently receivatsickerable attention.

The main design goal of many global [ABJ0O1, Bak06, BCLIO5, @8l BCLOY,
BCO7,[GSYY09, DB11b] and partitioned [DL78. LBOS95, LDG(AJ03, FBBO6,
LMM98a, [LGDG03,[OB98| OS95b] fixed-priority scheduling atdghms is to derive
a schedulability testhat when satisfied implies that all the deadlines are mete Th
global scheduling approach is being seriously considevedriany practical systems
since different techniques, e.g., inter-core prefetcfi&ir11], locked-cache [SMR11],
push-assisted migration [SMRMO09], have been proposedieceethe overhead due to
migration. The FP scheduling policy is the preferred schiegwolicy in the industry
due to its flexibility, ease of implementation and debugdABB96, ISG90, SLR86,
XP00,[AS06]. Almost all commercial real-time kernel / ogerg systems (e.g. Vx-
Works, RT-Linux, RT-Mach), languages (e.g. Ada95) supfired-priority scheduling.
These observations motivate the design and analysis o&lgiab scheduling algorithms
in this thesis. The following real-time scheduling problenaddressed in this chapter:

Given a collection ofn constrained-deadline sporadic tasks, is it possi-
ble to meet all the task deadlines when the tasks are FP schddd on
m identical, unit-capacity processors?

Challenges.As already pointed out in Chapf@r 1 that there are two mag®aech chal-
lenges in the context of global FP scheduling:pijority assignment probleprand (ii)
schedulability testing problenT.he optimal FP ordering for constrained-deadline tasks
scheduled on uniprocessors is known [LW82]: deadline-mmmiotpriority ordering is
the optimal FP ordering in such case. However, the optimabielering of global mul-
tiprocessor scheduling of constrained-deadline tasksllisisknown [DB11a]. More-
over, it has already been shown by Dhall and Liu [DL78] that diilization bound of
global FP scheduling of implicit-deadline task based oa-rabnotonic priority order-
ing is 0%. This result can easily be extended to show that émsity bound of global
FP scheduling of constrained-deadline tasks according#allthe-monotonic priority
assignment policy is also 0%. To achieve higher utilizatiensity bound, researchers
have proposed new fixed-priority assignment policy with-zero utilization/density
bound [ABJO1 Bak06, BCL0S, AndO8a, Lur02].

Deriving an effective schedulability test is equally imfaot as deriving a “good”
fixed-priority ordering since hard real-time system needsaply schedulability test be-
fore the system is in mission. The challenge during the adaédity analysis of global
FP scheduling in order to derive a schedulability test meslcorrectly predicting the
worst-case runtime behavior and analyzing this worst-babavior. Unfortunately, the
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worst-case (known as critical instant, see Sedtioh 3.1ylmral FP scheduling of spo-
radic tasks is not known [LMM98b]. However, several intéireg schedulability anal-
ysis techniques have been proposed by researchers to amggdjozal FP scheduling to
derive sufficient schedulability test. The amount of pessimused during such schedu-
lability analysis determines the utilization/density hddor different fixed-priority as-
signment policies proposed in [ABJO1, Lun02, BCLIO5, Bak®6d08a].

Contributions. One of the most expressive ways to derive a schedulabildty fter
implicit- and constrained-deadline tasks is in terms ofuiitization boundand den-
sity bound respectively. It has already been proved that neitherajlobr partitioned
FP scheduling can have a utilization bound greater th&m on m processors for
implicit-deadline task systems [ABJ01, CFB4]. There exists a partitioned FP schedul-
ing algorithm, calledRr- BOUND- MP- NFR, having utilization bound 06.5m [AJ03].
However, the state-of-the-art utilization bound of glotbd@ scheduling is”%1 for
m <6 (RM US[1] .sche.d.ullng [BQLO!:]) an% form > 6 (SM US| 3+2\/g] schedu!—
ing [AndQ8a]) for implicit-deadline sporadic task systeri$ie state-of-the-art density
bound of global FP multiprocessor scheduling of constiiteadline tasks i§%1
where priorities are assigned basedih DS[ %] priority assignment policy [BCL05].

This chapter presents a new priority assignment policyeddlSM DS, and de-
rives a corresponding density bound for global FP schegdulit is also proved that
the density bound of global FP scheduling using poli§MW DS is higher than that
of DM DS][ %] for constrained-deadline task sets. The density boundeopthposed
priority assignment policy SM DS becomes the utilization bound for implicit-deadline
task sets. It will be shown that the utilization bound usimprity assignment pol-
icy | SM DS is higher than that of botRM US[1] and SM US| 3+2\/5] for implicit-
deadline task systems for any finite > 2.

Thel SM DS priority assignment policy assigns priorities to the tdsksed on some
threshold density: each task having density greater thathtieshold density is assigned
the highest fixed-priority and the remaining tasks are assidower, slack-monotonic
priorities. The threshold density for poli¢ysM DS depends only on the number of pro-
cessors and does not consider the parameters (e.g. derighg)tasks in a task set. By
considering density of the tasks in addition to the numbeasrotessors, the threshold
density can be searched from the set of densities of all 8iestalo this end, another
priority assignment policy, calledSM DS[¢], is proposed where the threshold density
¢ is searched from the set of densities of the tasks in a givekseet. If such a threshold
density¢ can be found, then the task set is schedulable using globstkétluling based
on priority assignment policy SM DS[¢]. It is shown that, the schedulability test for
global FP scheduling using priority assignment poli§M DS[¢] dominates that of the
density-bound test derived foiISM DS policy.

Organization. Sectior 5.P presents related work. Then, some importaanpeters of
the task model is presented in Secfiod 5.3. The prioritygasséent policy SM DS and
its corresponding density bound for global FP schedulingoofstrained-deadline spo-
radic tasks is proposed in Sectlonl5.4. Then, the priorisjgasnent policy SM DS[¢]
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is proposed in Sectidn §.5. Empirical investigation usimgdomly generated task sets
to compare the derived schedulability tests for prioritgigsment policyl SM DS[¢]
and| SM DS is presented in Sectidn 5.6. Then, a utilization based tesiniplicit-
deadline tasks based on priority assignment pdligit DS is presented in Sectién%.7.
The schedulability analysis of global FP scheduling usiBiyt DS priority assignment
policy enables the derivation of a utilization bound forpmoicessor slack-monotonic
scheduling in Section 5.8. Finally, Sectién 15.9 summariheschapter.

5.2 Related Work

While the well-known RM priority assignment is optimal foriprocessor FP schedul-
ing of implicit-deadline tasks [LL73], it is is not optimabf global FP scheduling on
multiprocessors due to so called the “Dhall’s effeCt” [DI.7Bhall and Liu showed that
global multiprocessor scheduling of implicit-deadlineks under RM priority assign-
ment has system utilization 0% as — oo. The problem due to Dhall’s effect is the
existence of a task with high utilization but having a refally lower RM priority.

In order to circumvent Dhall’s effect, many of the work arduglobal scheduling
have considered intelligent fixed-priority assignmentqabased on hybrid-priority as-
signment (HPA) scheme. In HPA scheme, each task in a subsleé désks is given
the highest fixed priorities while the remaining tasks arsigmed some other, lower
fixed priorities. The HPA policy has been used in the develapnof numerous global
FP scheduling algorithms and their corresponding scheditjeests, the first being the
RM US[ 3.*—] algorithm proposed by Andersson, Baruah and Jonsson [ABJhat
algorithm was shown to have a utilization boundggi—? onm processors for implicit-
deadline tasks. ThBM US[4-™-] algorithm manages to avoid the Dhall’'s effect by
assigning the highest fixed priority to the tasks havingaaflon greater than_ -
while the rest of the tasks are assigned priorities accgrttirthe traditional RM pol-
icy. Lundberg[[LunOP] later showed that using RM hybrid pitipassignment scheme,
RM US can achieve a utilization bound of approximatelg74m.

In [BakQ€], Baker presented an analysis of global FP sclimgluBaker’s analysis
is general for any fixed-priority scheduling and arbitragadline task systems. Based
on a derivation of the minimum amount of interference in aerival that can cause a
task’s deadline to be missed, Baker showed that, for intalieadline sporadic task sets,
the utilization bound of RM scheduling i@w + Umin, WNEreu,,q, and, i,
are the maximum and minimum utilization of any task in thétset, respectively. The
RM scheduling is studied for uniform multiprocessors (iprocessors having different
speeds) by Baruah and Goossens in [BG03a], and it is showthtnatilization bound
is % for implicit-deadline tasks om unit-capacity processors if no task has utilization
greater thari /3.

Bertogna et al.[[BCLO5] proposed an algorithm, calkRd US| %] , which is an
improvement of the algorithnRM US[ -] in [ABJOI] for implicit-deadline spo-
radic task systems. Based on schedulability analysis ofidalline-monotonic pri-
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ority assignment, Bertogna et al. proved that the utilmatiound of the a HPA-based
RM US[ 3] algorithm |serl for implicit-deadline tasks. ThBM US[%] algorithm as-
signs the highest priority to the tasks having utilizatioeajer thari /3 while the rest of
the tasks are given the traditional RM priority. The authads® showed that if the total
density of a constrained-deadline task set is not greaﬂmﬂ% (i.e., density-bound),
then all deadlines are met usimi#t DS[ ] priority assignment policy. According to
DV DS[ ], if a task’s density is greater th%n then it is given the highest fixed-priority,
otherW|se it is given the traditional DM priority.

AnderssonJAnd08a] proposed tB&t US| 3+2 ﬁ] priority assignment policy based

on a slack-monotonic HPA scheme that has a utilization b(m‘ngi2L for global
FP scheduling of implicit-deadline sporadic task systeftstsording toSM US| s+f]

each task having utilization greater th% is given the highest fixed priority while
the rest of the tasks are assigned slack-monotonic pasriti

The state-of-the-art utilization bound for global FP rrm‘nicessor scheduling of
implicit-deadline sporadic tasks i@ form < 6 (RM US[ ] scheduling [BCLO5])
f] scheduling [And08a]) The state-of-the-art den-
Sity bound for global FP multlprocessor scheduling of carised-deadline sporadic
tasks is% (DMV+ DS[ %] scheduling[[BCLOB]). In this thesis, a new slack-monotonic
HPA policy, calledl SM DS, for constrained-deadline sporadic task sets is proposed.
It is proved that the density bound for global FP schedulihganstrained-deadline
sporadic tasks using polidySM DS is m-min{ 3, 3m=2=yom_=8m+4} ‘\which is higher
than the density bound @M DS[ %] scheduling for constrained-deadline sporadic task
sets. The density bound of global FP scheduling using pbli&y DS becomes the uti-
lization bound for implicit-deadline task sets. The boundhin{}, 3m=2=y5m—8m-t1}
for global FP scheduling of implicit-deadline task systemgher than that of both the
RV US[ ] and SM US| 3+\[] scheduling for any finiten > 2.

5.3 Parameters of Task Model

The task model considered in this chapter is constrainediohe sporadic task system
where each task; € I' is characterized by a triplg”;, D;, T;). Please see SectibnB.1
(pagd_3B) for details of the task model.

Theslackof each task; is defined to be equal taD; — C;). Note that slack of an
implicit-deadline task; is (T; — C;). Taskr; has higher Slack-Monotonic (SM) priority
than taskr; only if the following conditiofl is satisfied:

(Di — C;) < (Dj = Cj)

Without any loss of generality, the tasks in $efre assumed to be sorted based on
decreasing priority order (i.er; is the highest priority task and, is the lowest priority

Ties, i.e.(D; — C;) = (D; — C;), can be broken arbitrarily.
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task). For a given priority ordering of the tasks, the exigcuof a taskr;, can only be
interfered by the higher-priority tasks in global FP scHidu In other words, whether
taskr, meets its deadline or not depends only on the tasks iHRBgU {7 }. The task
setl'* is defined as follows:

Fk déf HP;, U {Tk}

wherer;, is the lowest priority task ii* andHP;, = {7y,..., 71} fork =1,2...n.
Note thatl¥ C T'* for1 < j < k < n. Thetotal densitys®  of the task sef’” is

defined as follows: o o
koo - =i
6sum - Z 62 Z Dz

T, €Lk T, €Tk

fork = 1,2...n. Themaximum densitgndminimum densitpf a sporadic task system
I'* are denoted respectively &%, andd” . such thats®. < ¢; < ¢k for all
7, € 'k, Formally,

(Sk

mazx :Tzlné'i%; {61}
k _ . )
5min _T,',WLEZIZ% {61}

Thetotal utilizationU*of the task sef'* is given as follows:
C.
E _ - ]
=Y =Y g
T, €k T, €k

fork = 1,2...n. Themaximum densitgndminimum densitgf a sporadic task system

I'* are denoted respectively a§,,, andu”,, such that’ , < 6; < uk for all
7; € 'k, Formally,
koo
Umaz _Tfne%_‘% {ul}
uk = min {u;}
min Cerk Qg
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5.4 Constrained-Deadline Tasks: Density-Bound

In this section, the priority assignment politysM DS and a corresponding density-
bound-based schedulability test for constrained-deadfisk systems are presented.
The proposed priority-assignment policgM DS is based on alack-monotonidi PA
policy that works as follows: if the density of a task is no¢ater than ghreshold den-
sity, sayd,,, then the task is assigned a priority according to the stacketonic policy;
otherwise, the task is given the highest fixed priority.

The main challenge for such HPA policy is to find the threstdddsityd,s which
determines the two subsets of the task set such that taskeisubset are given the
slack-monotonic priorities and each of the tasks in theraghbset is given the highest
fixed-priority, where ties are broken arbitrarily at runéinThe threshold density for
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policy | SM DSis determined based on the schedulability analysis of & dfimsk sets,
called “special” task sets. A task set is said to be “speaiahoprocessors” based on
two particular properties (defined shortly in subsecfion %.4.2

The threshold density used for poli¢ysM DS is 2m=2=y>m —8m+d wheren is
the number of processors, > 2. Thus, given the number of processetsthe thresh-
old density forl SM DS is computed and all the tasks are assigned the fixed pri®ritie
according to the slack-monotonic HPA policy. It is provedttthe density bound of
global FP scheduling of constrained-deadline sporadkstasing policyl SM DS is
m-min{}, 3m=2=yom'—8m+d} "t j5 easy to see that this density bound is larger than
that of the state-of-the-aBivt DS[ 3] scheduling proposed i [BCLO5].

The proof strategy to derive the density bound is as folldwisst, it will be shown
that a “special” task sdt* (which is a subset of the original task $9tis schedulable by
global FP scheduling based on slack-monotonic prioritigassent (subsectidn 5.4.2).
Second, two general conditions are derived when satisfiptyithat the entire task set
T is schedulable using a slack-monotonic HPA policy usingestimeshold density;
(subsectiof 5.413). Finally, the value of the thresholdsitgnd; ; for policy | SM DS and
the corresponding density bound for global FP schedulinigeéntire task set is derived
(subsectiof 5.414). The following results and definitionstibsection 5.41 1 will be used
in the remainder of this section.

5.4.1 Prior Results and Useful Definitions

When analyzing the schedulability of a lower priority taskising any global FP schedul-
ing within the intervalt,, t2), its schedulability depends on the amount of work done by
the higher priority tasks withif¢;, ¢3). By assuming that a job of an implicit-deadline
sporadic task; arrives att; and misses its deadline (which is the first missed deadline
in the schedule) at, such that, = t; + 7}, the analysis by Andersson in [And08a]
proved that the maximum amount of execution required withine) by a higher pri-

ority taskr; € HP; is C; + (T — C) Y whenevens? < M andU < m?

mar — 2m—1 2m—1"

This result by Andersson [And08a] is given in Lemimd 5.1.

Lemma 5.1(Based on[AndO8al)Consider globaFPscheduling of an implicit- deadline
sporadic task systeli¥ onm processors by assuming thaf, ,, < 5T LU < 2’”

and that all the tasks itlP; are schedulable. When analyzing the schedulablllty of the
lowest priority taskr; Wlthm [t1,t2), the maximum amount of execution by all the higher
priority tasks during[tl, t2) is at most:

> Cit(L- C)C (5.1)

i EHP; T

whereL = t, — t; =1Tj.

Proof. Eq. (5.1) is derived by Andersson in [And08a] (please see(Eg). in reference
[And08a] for this derivation). O
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By considering the constrained relative deadline instefanplicit relative deadline
and considering density instead of utilization, the prood aesult of Lemma5l1 are
directly applicable to constrained-deadline task systé@asollary(5.2 is the adaptation
of Lemmd®5.1 for constrained-deadline task systems andwilised later in this section
to upper bound the work of the tasksH?; within an intervalt,, t2).

Corollary 5.2 (Based on Lemniag.1)Consider globaFP scheduling of a constrained-
deadline sporadic task systef on m processors by assuming th&f,,, < 52

— 2m-—1"
8om < 2;’;: and that all the tasks ikP; are schedulable. When analyzing the schedu-
lability of the lowest priority task; within [t;,¢2), the maximum amount of execution

by all the higher priority tasks durinf;, t2) is at most:

> Ci+(L- Oi)% (5.2)

T €HP; ¢

whereL = to —t1 = Dj.

Proof. Eq. (5.2) can be derived similar to the derivation of Eq. (% considering
constrained relative deadline instead of implicit relatieadline. O

Function F,,,(z) : The following function in Eq.[(5]3) is used in the remaindéthos
chapter:

m(l —x)
2—x
wherem € Z* and0 < = < 3. Two important features of the function in EQ.(5.3)

are given in Lemmpa35]3.

Fn(z) = +x (5.3)

Lemma 5.3. Considera, b, z, candd suchthat) < a <b <z <c < d < 5 for
any integerm > 0. The following two inequalities hold:

min{Fn, (0),Fn(c)} < F(x) (5.4)
min{ Fy,(a),Fn(d)} < min{F,,(b),Fn(c)} (5.5)
Proof. Proof is given in Appendik /A (pade 2119). O

Corollary[5.2 and Lemmd 5.3 are used in the remainder of thégter. The global
FP schedulability analysis of task depresented in this section is based on the schedu-
lability analysis of a class of task sets called “speciatktaets. A task set is said to be
“special onm processors” based dawo particular properties defined in Definition b.1.

It will be shown in Theorerh 511 that a task set that is speciah@rocessors is schedu-
lable using global slack-monotonic scheduling, denote@®y, onm processors. The
GSgsyscheduling is global FP scheduling where all the tasks aigraed fixed priorities
based on slack-monotonic priority assignment policy.
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5.4.2 *“Special’ Task Set and its Schedulability

In this subsection, the two properties of a sporadic tastesyE* that is “special” onn
processors are formally presented. It will be proved tHahal deadlines of the special
task systeni'* are met using algorithr@Sgy on m processors.

Definition 5.1 (Special Task System)A constrained-deadline sporadic task system
I'* is special onm processor if it satisfies the following two properties:

Property 1: 6% T

maxr — 2m—1
Property 2: 6,,,, < min{ F,,, (6% . ), F, (6% .0}

According to Property 1, the maximum density of any task'in that is special omn
processors, is not greater thaff—~. According to Property 2, the total density of the

special task systedi® is not greater than the minimum &f,,(6%,,.) andF,,(5%,,.).

Before the global slack-monotonic schedulability anaysi a special task sdt* is
presented, the following Lemnab.4 (proof is in Apperidix Agd22D) is required.

Lemma 5.4. Consider sporadic task systelii that is special onn processors. The
following inequality holds fofmn > 1

m2

min{ £, (6%,,) s Frn(0%,.)} < om —1

(5.6)

Slack-Monotonic Global Schedulability Analysis of Speciallask System

It will be proved that a sporadic task syst&that is special om: processors is schedu-
lable usingGSsy on m processors. First, by assuming that all the taskisRn meet
their deadlines, it is shown in Lemriab.5 that all the jobshef lowest priority task

; of task sefl, which is special omn processors, complete by their deadlines using
GSsy scheduling of™ onm processors. Then, by inductively applying Lemimd 5.5 on
special task sef’ for j = 1,2,...k, it is proved that special task systdmi is also
schedulable om processors using global scheduling algoritG8x.

Lemma 5.5. Consider sporadic task s&¥ that is special onm processors. If all the
tasks inHP; meet deadlines usin@Ssyonm processors, then all the jobs of taskalso
meet their deadlines whdi = HP; U {7} is scheduled usinGSsy onm processors.

Proof. This Lemma is proved using induction. Let's assume thathedl(t — 1) jobs
of 7; have met their deadlines usi@psy scheduling algorithm. It will be proved that
the " job of 7; also meets the deadline. Using induction/on 1, the correctness of

LemmdE.b then immediately follows. For a speC|aI tasksetve havey? ,, < 57~

(from Property 1 of Definition 5]1) and{,,,,, < 52— (from Property 2 of DefinitiofL. 511
and Eq.[(5b) of Lemmia’.4). Remember that all the taskiPinare schedulable using
GSsyonm processors (premise of this lemma).
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Let thelt" job of taskr; be released at time This job require€’; units of execution
time before its deadline(+ D;). Therefore, when considering the schedulability of the
It job within the interval[r,r + D;), Corollary[5.2 can be applied by settidg =
(r+D;)—r = D,. And, according to Eq[{512) of Corollaly 5.2, the maximumnmoamt
of execution required by the higher priority taskHR; during [r, + D;) is at most:

> it (D - C) T (5.7)

T €HP; v

The amount of processor capacity left unused by the taskiPjnduring the interval
[r,r + Dj) onm processors is therefore at least

m-D;— Y (C; +(Dj —Ci)d) (5.8)

TiEHPj

In the worst case (i.e., all thew processors are available at the same tinnl;eyaf this
unused capacity can be usedy Consequently, the amount of processing capacity
available to thé*" job of 7; during the interva[r, » + D;) onm processors is at least

1{m.pj Z (Ci +(D; —C; )51‘)}

m
7; €HP;

To guarantee that thi" job of 7; meets its deadline, this capacity needs to be at least
as large as the execution timef that is, we must have,

C; < ;[m Dj— > (Ci +(D; - C; )51‘)} (5.9)

7 €HP;

In the remaining part of this proof, it is shown that Hg. [3:®@)ds; which guarantees
that thel'” job of 7; meets its deadline. Since task $dtis special onn processors,
according to Property 2 of special task set we have

8 e < M, (57 0) 3 Fin (69,00} (5.10)

For taskr; € IV, we haves’ = < §; <67 Thus, according to Property 1 of special

min J max* )
task systeni”, we also have < ¢/ . < §; <67 .. < 72~. And using Eq.[[(EHK) of
Lemmd®’.3, it follows that

min{Fm(cS,ﬂ”n) ' Fm((;fnaa:)} < Fm@j) (5-11)
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From Eq. [5.ID) and Eq_{5.11), we haike,,, < F,,(,) which is equivalent to

= Y ac< @ +46;  [fromEq. (53)]

T €HP;U{7;} 5J
= Z 0; < 6)

T €EHP; 0;
= Z 3i( i) <m(1—6;)

7; €HP;
= §; <17— Z i (

TLEHP
= (53- < i |:m— Z [51 +51(]— — (sj)]:|
m TriEHPj

_ G 1 _ Q Q D;-Cj
- H =m [m T%;p [Di +Di( D; )]}

= (According to slack-monotonic priorities
Vie HP;: (D; — C;) < (D; —Cy))

gﬁ < ;{m— > [% - Q(Dil;ci)]]

J

D
1[m'Dj— > [071) C—Cz]]

= Cj S -
m i EHP; D; D;
1
= (;< - [m-Dj — Z [C’i + (D — Oi)di]:| = Eq.(5.9)
TiGHP]'

Since the inequality in Eq[{5.9) is true, it can be conclutteat thel” job of taskr;
meets its deadline usir@Ssy. O

Based on Lemnial.5, now it will be proved in Theoken 5.1 thattnstrained-deadline
sporadic task sef* that is special onn processors is schedulable usi@§sy on
m Processors.

Theorem 5.1. A constrained-deadline sporadic task systéfrthat is special on total
m processors is schedulable usi@§sy scheduling onn processors.

Proof. Remember thaf’ C I'* for j < k. Thus, it follows thats?, < 6%

sum — sum d
6 0w < OF ... Therefore, from Property 1 and Property 2 of special tasinsBeflnl—

tion[5.1, it is evident that i’ is special onn processors, thel¥’ is also special om:
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processors fof < k. Therefore, using induction gh= 1,2, ... k and applying Lemma
to special task sé&V, it is easy to see that the special task sysénis schedulable
onm processors usinGSsy scheduling. O

According to Theoreri 511, a special task set is schedulabiey ESsy algorithm on
m processors. The ultimate objective is to find the thresheftsdy for slack-monotonic
HPA policy for an arbitrary task set to be schedulednoprocessors based on global
FP scheduling algorithm. Two general conditions that cgplyrthe global FP schedu-
lability of an arbitrary constrained-deadline sporadisktgetI’ for slack-monotonic
HPA policyl| SM US, based on some threshold density, are now proposed.

5.4.3 Slack-Monotonic Hybrid Priority Assignment

According to the slack-monotonic HPA polidySM DS, the priorities to the tasks are
assigned based on some threshold demgitguch that each of the tasks having density
not greater than,; are given the slack-monotonic priorities and each taskigggénsity
greater than,, is given the highest fixed priority. Using such hybrid pojithe sporadic
task sefl" is visualized as the union of two sdts= I';, U 'y such that the tasks in set
I';, have the slack-monotonic priorities and each task infsethas the highest fixed
prioriQE. No task in sef’;, has higher priority than that of any task in $&i.

The main challenge for slack-monotonic HPA policy is to fiheé value ofd;, to
determine the set§; andT'y. It will be evident shortly that the value @§ for pri-
ority assignment policy SM DS depends only on the number of processors. Before
the threshold density,, for the priority assignment policySM DS is determined, two
general conditions, denoted@4 andC2, in Lemmd5.6 that can imply the schedulabil-
ity of a task set based on HPA-based priority assignmentybbM DS are presented.
The proof strategy in Lemnia3.6 is based on the notiooredictable scheduling algo-
rithm proposed by Ha and Liu in [HL94] and used in [And08a] as folow

Predictability (from [HL94,/And08a]): A job is characterized by its arrival time, its
deadline, its minimum execution time and its maximum exeocuime. The execution
time of a job is unknown but it is no less than and greater ttmminimum and maxi-
mum execution time, respectively. A scheduling algoritArs predictableif for every
set.J of jobs, the following fact

scheduling all jobs i/ by A with execution times equal to their maximum
execution times causes all the deadlines to be met

implies that

scheduling all jobs inJ by A with execution times being within at least
their minimum execution times and at most their maximum eken times
causes all the deadlines to be met.

2The subscripts ‘L’ and ‘H’ are used to refer to light and hetasks, respectively.
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This notion of predictable scheduling algorithm implieatth is only needed to analyze
the schedulability of the jobs considering the WCET of thesjo8ince a sporadic task
set generates a set of jobs, the notion of predictabilitylmaextended in a straightfor-
ward manner to algorithms for scheduling sporadic taskesyst Ha and Liu’s work
also implies that global static-priority scheduling of spdic tasks on multiprocessors
is predictable [And0&a].

Lemma 5.6. Letd;, be the threshold density that is used to determine thelsetnd
T'y such thatl’ = T'p, U I'y for the HPA policyl SM DS. The sporadic task sét is
schedulable using globd P scheduling if the following two conditiorgl and C2 are
satisfied

(Cl) |FH| <m
(C2 'y, is special on'm — |T'g|) processors

Proof. It will be shown that if condition€1 andC2 are true for HPA policy SM DS that
usesy;s as the threshold density, then the tasksistschedulable using global FP schedul-
ing. Consider the following task s&t; such that

Note that each task’ € I'}; has density 1 and™;| = [T'k|. We letk = [T, | = |Tx|.

Now consider the task s& = I';, U I"; that is to be scheduled on processors
using global FP scheduling wher&M DS is used for priority assignment. According
to policy | SM DS that uses the threshold dens#y;, each of the tasks ifi’; is given
the highest priority and the tasksliiy, are given the slack-monotonic priorities.

When scheduling the task sBt, then at most = |I';| processors are busy to
execute the tasks in sEf; at any time instant since these are the highest prioritystask
each with density 1. All these taskslify; are schedulable ohprocessors (one task will
get one processor whenever it arrives) sifitg| = |I'y| = k& < m according toC1.
Therefore, the number of processors thataveaysavailable for executing the tasks in
setl';, is at leas{m — k) = (m — [Ty|).

According toC2, the tasks in sef';, are special orfm — [I'y|) processors. Since
Ty | = k and at leastm — k) processor are always available for executing the tasks
in setl'y, the task set';, is schedulable usinGSsy on (m — k) processors according
to Theoren{ 5J1. Consequently, the task Beis schedulable on totah processors
using global FP scheduling where priorities are assignegdan policyl SM DS if
conditionsC1 andC2 are satisfied.

The predictability of global FP scheduling has the follogvdonsequence: if the jobs
of a taskr; in a constrained-deadline task set are schedulable usihgldgFP scheduling
algorithm A on m processors considering WCET equaldpsuch thatC; = D;, then
the jobs ofr; are also schedulable considering its WCET equdl;tasing algorithmA
onm processors. Since the jobs of the taskB'in= I';, UT"}; (where each task/ € T';
hasC/ = D;) is global FP schedulable om processors using priority assignment
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policy | SM DS, the predictability of global FP scheduling implies thas fbbs of the
tasks in* = I';, U 'y are also global FP scheduling using priority assignmenityol
| SM DS whenevelC1 andC2 are true. O

Guided by the two conditions3{l andC2) of Lemmd5.6, the following general and an
important observation regarding the HPA policy can be made.

Observation 5.1. The HPA policy can guarantee the schedulability of a tasksitg
global FP scheduling if tasks are given the highest fixed priority and the remaining
(n—k) tasks are globaF P schedulable on at mostn — k) processors using some other
fixed-priority assignment, for sonie0 < k& < m.

This observation will be used in this and other chapters. Nmged on the two
general conditions1 andC2) of Lemmd5.6, the threshold density for priority as-
signment policyl SM DS and its corresponding density bound of global FP scheduling
of an constrained-deadline sporadic taskis&t presented in subsectibn 514.4.

5.4.4 Density Bound for Policyl SM DS

In this section, the threshold density used @M DS priority assignment policy is
proposed and the corresponding density bound for globachedsiling of constrained-
deadline sporadic tasks is derived. The valué;pfis defined based on the solution of
the equationF,, (d;s)= m - d;s wherem is some integer constant; > 1. One of the

. . _ _\/_7
solutions ofF,, (8;5)= m - 64, is 0y = 3m=2=yom-—8mi4 for 4 > 1. The value off;,

for policy | SM DS, wherem > 0, is é;s = B(m) andB(m) is defined as follows:

1 ifm=1
B(m) = {3m—2—W ifm > 1 (5.12)

Note that the threshold densify(m) can be determined based on the number of pro-
cessorsn. The two following inequalities in Eq(5.13) and EQ. (3. 1)d for B(m)
andB(m') wherel < m’ < m:

/

m m
B(m) < <
(m) < 5 T S 1

(5.13)

B(m) < B(m/) (5.14)

The proofs that Eq[{5.13) and Ef.(5.14) hold are given into@fA.1 and LemmBA]2
in the AppendiX’A (page 221, 2P2). Based on the thresholdiye®gm), the priority
assignment policy SM DS is given as follows:

I SM DS Priority Assignment Policy: Given the number of processors the threshold
densityd;s = B(m) is calculated based on Eq.(5112). The priorities to thestaislset
I" are assigned as follows:
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If ; > B(m), then taskr; has the highest fixed priority (ties broken ar-
bitrarily), otherwise, ifé; < B(m), then taskr; is given slack-monotonic
priority.

Example 5.1. As an example of the way fixed priorities are assigned usiagtlority
assignment policy SM DS, consider the following constrained-deadline task system
be scheduled om = 3 processors based on global FP scheduling where the paramete
of each task; (C;, D;, T;) are as follows:
r “ (m=0,23 7w=(235) 7 =/(7,100100)
7 = (1,25,50) 75 = (2,9,10)}

The threshold density; is equal toB(3) = 0.5 for m = 3. The densities of the five
tasks ared; = 0.5, d5 ~ 0.67, 65 = 0.07, 4, = 0.04, andds =~ 0.23. Sinceds > B(3),
task 7, is assigned the highest fixed priority and each of the remgitésks having
density not greater thaB(3) is assigned the slack-monotonic priorities. The slack, i.e
(D; — C;), of the remaining tasks;, 73, 74 and7s are respectively 1, 93, 24, and 7.
Therefore, the final fixed priority ordering of all the tasksarding tol SM DS is given
as (highest-priority task listed first}yy, 7, 75, 74, 73 O

The global FP scheduler dispatches the tasks based on tréypsassignment given
by policy | SM DS. Now the schedulability test in terms density boundf global
FP scheduling for the priority assignment policgM DS is given in Theorerh 5]2.

Theorem 5.2(Density-Bound-Based Testjn constrained-deadline sporadic task set
T" is schedulable using glob&P scheduling that assigns the priorities based on policy
| SM DS if the following condition, form > 2, holds:

6"7,

sum

<m-min{l/2, B(m)}

whered”

sum

is the total density of the task dét

Proof. Given the task sef' and the number of processors the two subset§';, and
I’y based on the threshold density = B(m) are determined such thBt=T';, UT .
Remember that based on policgM DS the tasks in sdf ;, andI' 5 are given the slack-
monotonic and the highest fixed priorities, respectivelyill be shown that if the total
densityo”,,., < m-min{1/2, B(m)}, then the two general conditiorl and C2 of

Sum

Lemmd5.6 hold; which guarantee the schedulability efsing global FP scheduling.

(C1 holds) It is easy to see thaB(m) > min{1/2, B(m)}. Then it follows that each
task inT';; has density greater thanin{1/2, B(m)} since each task ifiz has density
greater thai,; = B(m) for priority assignment policy SM DS. Since the total density
(i.e., o7,,,) of task sefl’ is not greater thamn - min{1/2, B(m)} according to the
premise, the number of tasks that are given the highesityristess thann (C1 holds).

(C2 holds) To show thatC2 of Lemma[5.6 holds, it will be shown that, is special
onm' processors where’ = (m — |I'y|). Let DL be the total density of all the tasks
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inT'z. Also letd,,qzr. andd,,r, be the maximum and minimum density of any task
in setl';, respectively. To show thdt; is special onn’ processors, it will be shown
that Property 1 and Property 2 (given in Definitlon]5.1, pjaged special task set are
satisfied. In other words, we have to show that the followimg inequalities hold:

m/

Property 1 0marr < ————
2m’/ — 1
Property 2 DL < mln{Fm’ (6minL)v Fm’((smaa:L)}

(Property 1 holds for I';) According to the priority assignment polidySM DS, no
task inT';, has density greater than the threshold density= ( ). So, we have
dmazz < B(m). Moreover, from Eq.[(5.13), we havé(m) < 57— . Consequently,

Smart, < 52, and thus, Property 1 is satisfied for.

(Property 2 holds for I';,) The total density of the tasks iny is greater than|Uy| -
min{1/2, B(m)}) because each task Ity; has density greater thap, = B(m) and
B(m) > min{1/2,B(m)}. Since the total density of task sEtis not greater than
m - min{1/2, B(m)} according to the premise, the total density of the taskstif'se
is at mostn’ - min{1/2, B(m)} wherem’ = (m — |T'g|). Therefore, Eq[{5.15) holds.

DL <m'-min{l1/2,B(m)} (5.15)

Based on the threshold dens#ty, = B(m) of priority assignment policy SM DS, we
haved,..... < B(m) since the density of any task in et is not greater thai3(m).
Moreover, from Eq.[(5.14), we hav@(m) < B( "). Thus,6pmaer, < B(m/).

It follows from Eq. [5.1B) thatB(m — (by replacingm by m' in the left-

) — 2m

hand side inequality in EqL_(5.113)). Therefotg,,., < B(m') < 27:};1. Because
0 < dmint < dmazr, the inequality in Eq[(5.16) holds.
m/
< < <B - A
0 >~ 5m1nL 6TVLGLL ( ) =9/ — 1 (5 6)

Based on Eq[{5.16) and from EQ.(5.5) of Lenimd 5.3, the falligvinequality holds:

mln{ m’ ( ) » P! ( ( ))} < mln{ m’ ( man) ! ‘Fm' (5771!11/’[4)} (517)

From the function definition given in Eq.(5.3), we have

/ J—
m/(O):m;%OO)JrO:m'/Q:m'J/Z (5.18)
It follows from Eq. [5.12) that3(m/)
in Eq. (53) whenn’ = 1, we haveF,,

(m

And for m’ > 1, we haveF,, (B

= 1 whenm’ = 1. Thus, by settingg = B(m/)
v (B(m )) R)=1=
)

)= B(m/) because one of the solutions
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of function F,:(z) = m/z in terms ofz is x = B(m'). Thus, for anym’ > 1, the
following inequality holds:

F,(B(m'))>m'-min{l, B(m')} (5.19)
It follows from Eq. [5.18) and Eq[{5.19) that
min{F,,(0), F,, (B(m'))} >m’-min{1/2, B(m')} (5.20)

Then it follows from Eq.[(5.20) and the fact thB(m) < B(m') in Eq. (5.14) that
m’ - min{1/2, B(m)} < min{F,,/(0), F, (B(m’))} (5.21)

Thus, it now follows from Eq[({5.15) and Eq.(5121) that

DL < min{E,,(0), F,,(B(m')) } (5.22)
Finally, from Eq. [5.1V) and Eq_(5.22), we have
DL < min{F,, (dminL), Frn’ (Omaxr) } (5.23)

Therefore, Property 2 is satisfied for task $gt (i.e., C2 holds). Consequently, if
0%m < m-min{l1/2, B(m)}, then the task sétis schedulable using global FP schedul-

sum

ing where priorities are assigned based @w DS policy. O

The density bouneh - min{1/2, B(m)} of global FP scheduling of constrained-deadline
sporadic tasks, for any finite > 2, using policyl SM DS is greater than or equal to the
state-of-the-art density bouni@; for DM DS[ 1] scheduling. Figur&5l1 illustrates
the density bounds ddvt DS[ %] andl SM DS for m = 2,...16. The x-axis in Fig-
ure[5.1 represents the number of processors and the y-gxesents the density bound
normalized by number of processors.

" ISM-DS <
DM-DS
50 % oo

40% R

Density bound / m

30%

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Number of processors (m)

Figure 5.1: Density bounds ddM DS[ é] andl SM DS.
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The total density of the task set in Example]5.1 (padge 5%y i$.499. The density

boundm - min{1/2, B(m)} usingl SM DS policy for m = 3 is 1.5. Therefore, the

task set in Example 8.1 is global FP schedulable usilyt DS priority assignment
policy. TheDM DS[ ] scheduling can not guarantee the schedulability of thegask
in Example5.1L since the density bouf#g! for DM DS 1] is~ 1.33.

5.5 Policyl SM DS[¢]: Searching the Threshold

The threshold density used for priority assignment poli&vt DS depends only on
the number of processors and does not use any informatign density) of individual
task of the given task set. Using the density informatiomadividual task in addition

to the information about the number of processors, a bditeshold density can be
searched from the set of densities of the tasks for assighengriorities based on slack-
monotonic HPA policy. This new priority assignment polisycalled SM DS[¢] where
the threshold density is searched among the densities of the tasks in a task satl It w
be shown that the schedulability test of global FP scheduling policyl SM DS[¢]
dominates and empirically performs much better than thasofgl SM DS.

Remember that based on the Observdiioh 5.1 (pajge 58), thepdR4 can guar-
antee the schedulability of a task set using global FP sdimed « tasks are given the
highest fixed priorities and the remainitig — %) tasks are global FP schedulable on
(m — k) processors using some other fixed priority assignmentgoimes;, 0 < k < m.
The proposed priority assignment polieysM DS[¢] is based on a similar technique
used for priority assignment in priority-driven schedglircalledEDF*), proposed by
Goossens et al. [GFBD3] for implicit-deadline tasks EDF(*) scheduling, the jobs of
the k highest utilization tasks are given the highest prioritg #ime jobs of the remain-
ing (n — k) lowest utilization tasks are given the EDF priorities fomeappropriate
selection ofk, 0 < k < m. Inspired by the priority assignment scheme EF(*)
scheduling, the slack-monotonic HPA polic$M DS[¢] for constrained-deadline spo-
radic tasks is defined as follows:

1. Each of thet highest density tasks is given the highest fixed priority,
and

2. the remaining—k) lowest density tasks are given the slack-monotonic
priorities for somek such tha) < k£ < m.

The challenge fot SM DS[¢] priority assignment policy is to find an appropridte
where0 < k < m, to guarantee the schedulability. Note that after the valuk is
known, the density of thék + 1) highest density task is the threshold densitipr
priority assignment policy SM DS[{]. For example, ifc = 0, then the largest den-
sity of any tasks in the task set is used as the thresholdtgdnsi, all tasks are given
SM priority). If £ = 1, then the second largest density of the tasks in a task seed u
as the threshold density (i.e., only the largest density imassigned the highest-fixed
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priority and the remaining tasks are given the slack-mamotgriorities). The chal-
lenge is how to find suclk, if exists, that would guarantee the schedulability of the
entire task set. The pseudocode to search sueterek < m, for the priority assign-
ment policyl SM DS[¢] is presented in algorithri nd( £) in Figure[5.2. Algorithm

Fi nd( &) determines if there is somie 0 < k& < m, such that entire task set is schedu-
lable using the priority assignment politygM DS[¢]. The search for th& in algorithm

Fi nd( &) is guided by the following schedulability condition givenTheoreni 5.13.

Theorem 5.3. A constrained-deadline sporadic task $ets schedulable using global
FP scheduling algorithm according to the priority assignmpaticy | SM DS[¢] if the
set of(n — k) lowest density tasks of task deis special on(m — k) processors for
somek, where0 < k < m.

Proof. Using policyl SM DS[¢], the (k + 1)th highest density task in task deis used
as the threshold density, for somek, 0 < k < m. The threshold density,, decides
the tasks in set';, andI'y that are respectively given the slack-monotonic and the
highest fixed priorities such that=T';, UT'y.

Note that, using policy SM DS[¢], the number of tasks having the highest fixed
priority is |I'yy| = k for somek where0 < k < m. Consequently, conditio€1
of Lemma[5.6 is satisfied for policySM DS[¢]. According to Lemm&35l6, the value
of k has to be chosen such that the condit@hof Lemmd5.6 holds to guarantee the
schedulability of task sdt using global FP scheduling. In other words, taskise&n be
guaranteed to be schedulable using global FP schedulingdiag to policyl SM DS[¢]
whenever;, is special or(m — k) processors, whetie;, contains all thén — k) lowest
density tasks from sdt. O

Deriving ak, if one exists, that satisfies Theorém]5.3 is straightfodwa®ne such
example algorithm (calleBi nd( &) ) that searches (if exists) the valuekois presented
in Figure[5.2. The algorithr¥i nd( €) returnsTrue if it can find somek such that the
set of(n — k) lowest density tasks from sEtis special or(m — k) processors such that
0 < k < m, otherwise, it returnfalse

In line 1-2, algorithmFi nd( €) in Figure[5.2 initializes local variablds; andI'y
asT; = T"'andT'y = 0 to consider first whether all the tasks hare special on
m processors (checked during the first iteration offbeloop in line 3—12).

The For loop in line 3-12 iterates at most times for the iterative variablg that
iterates fornD to (m — 1). In each iteration of th€or loop, it is checked that whether
the (n — k) lowest density tasks in séY, are special ot — k) processors. Note that
in order to determine whethél;, is special on# — k) processors, both Property 1 and
Property 2 (Definitio 5]1, pade53) of special task systewe ha be satisfied. If the
task sefl';, is special on(m — k) processors (condition at line 4 is true), then slack-
monotonic priorities are assigned to the task§ jn(line 5), each of the tasks iy is
assigned the highest fixed priority (line 6) and the algonitieturnsTrue (line 7).

During a particular iteration of th€or loop, if the task sel';, is not special on
(m — k) processors (condition at line 4 is false), then the highesisitly task, say
s € I'p, is extracted fronT', (line 9) and is included in sdty (line 10). Note that at



64 CHAPTER 5. DENSITY-BOUND-BASED TEST

Algorithm Fi nd( &)

'yp=20
I'y ="
Fork=0to(m—1)
If T'z, is special on(m — k) processor§hen
Print “All tasks inT';, are assigned slack-monotonic priority”
Print “All tasks in 'y are assigned the highest fixed priority”
Return True
End If
. Findr;, such that,, is the largest density in sét;,
10. Ty =T U {Tts}
11. Ty =T —-Tygy
12.End For
13.Print “Priority Assignment Fails”
14.Return False

©CoNoOrwWDN R

Figure 5.2: Slack-monotoni¢iPA by searching the threshold

the beginning of th&!” iteration of theFor loop, the largest density of the taskdp is
the (k+1)*" largest density of the tasks in the entire taskseAt the beginning of each
iteration of theFor loop, totalk largest density tasks are in dét; and the remaining
(n — k) lowest density tasks are in sét. If the task sel', is not special orfm — k)
processors for ang, such thad < k& < m, then policyl SM DS[¢] fails to assign the
fixed priorities to the tasks ifi (line 13) and the algorithm returisalse (line 14). By
sorting the tasks in sétin order of increasing densities of the tasks, it is not diffi¢o
see that algorithn¥i nd( &) can be implemented using at ma@sr - log n) operations.

The schedulability test in Theordm b.3 for global FP schiedulising priority as-
signment policyl SM DS[¢] dominates that of the density-bound test in Thedrerh 5.2.
Now it will be shown that any task set deemed schedulabledoas& heorer 512 is also
deemed schedulable using Theofen 5.3, and not conversely.

Assume a contradiction where a task Bds not guaranteed schedulable based on
Theoreni 5B for priority assignment polieysM DS[¢] but schedulable using Theorem
5.2 for | SM DS priority assignment policy. IT" is not guaranteed to be schedulable
underl SM DS[¢] based on schedulability test in TheorEml 5.3, then therd arig
such that the set df. — k) lowest density tasks is special 6m — k) processors for any
k < m (according to the contrapositive of Theoreml 5.3).

WhenT is schedulable unddrSM DS based on Theorein 5.2, the proof of the
schedulability condition in Theoreim 5.2 guarantees thetitlexists a task s€ty that is
special on(m — |I"|) processors anfl’;7| < m. So, there exists somesuch that the
set of(n — k) lowest density tasks is special ¢m — k) processors for some < m
(contradiction!). Therefore, any task set schedulablegisEM DS based on Theorem
is also schedulable usihgM DS[¢] based on Theorem5.3.

It will be shown using the following Example 5.2 that the cerse is not true; that
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is, there is a task set that is global FP schedulable basekeoschedulability test in
Theoreni 5B fot SM DS[¢] policy but is not guaranteed to be schedulable based on the
density-bound test in Theordm b.2 fo8M DS priority assignment policy.

Example 5.2. Considern = 11 tasks in sef” = {ry,...71} such that; = ... =

d10 = 0.40 andé;; = 0.15. Thus, the total density of task setis 67,,, = 4.15. The

task sef’ is to be scheduled using global FP schedulingroe- 10 processors.
Notice that Property 1 of special task system is satisfiedtdek setl" because

=04 < m/(2m — 1) for m = 10. Sincem = 10, ¢}, ,,=0.40 andy??,; =0.15,

' Ymax min

)~ 4.745 and F,,(d7,,..) = 4.150. Consequently, it is true that
mzn{Fm(dgnn)> Fm((sﬁla:p)} = 4.150 and(s?um S mln{Fm((SZnn)> Fm((sﬁlam)} holds.
So, the entire task sét is special onm = 10 processors and global FP schedulable
based on Theorem 5.3 fbiSM DS[¢] priority assignment policy.

However, the schedulability test in TheorEml5.2 is not fiatisfor I" (i.e., den-
sity boundm - min{1/2, B(m)} = 4.116 < 6%,,,,). Consequently, the schedulability

of I" usingl SM DS policy can not be guaranteed. So, the schedulability tegidbcy
| SM DS[¢] in Theoren 5.8 dominates that of in Theorlem 5.21f6M DS. O

677,

max

we haveF,, ("

min

5.6 Empirical Investigation

In this section, empirical investigation into the two prepd schedulability tests for pri-
ority assignment policiesSM DS andl SM DS[¢] is presented. In order to measure the
improvement of these proposed tests over the state-cdistiiavt DS[ %] test, simula-
tion using randomly generated task sets is conducted. Thekm@vn metric, called
acceptance ratipis used to evaluate the effectiveness (in terms of deténgpschedu-
lability of randomly generated task sets) of the three fsiassignment policies and
schedulability tests given in Tadle b.1.

| Priority Assignment Policy| Schedulability Test Used \
DM DS 3] The density bound™* (proved in [BCLO5]) is
used as the schedulability test.
| SM DS The density boundn - min{1/2, B(m)} proved
in Theorem 5.R is used as the schedulability test.
| SM DS[¢] Algorithm Fi nd( €) in Figure[5.2 is used as the
schedulability test.

Table 5.1: Different priority assignment policies and the associated schedulability. tests

The acceptance ratio of a schedulability test is the peagendf the randomly generated
task sets that are deemed schedulable using that schditlylsit at a particular uti-
lization level. All the randomly generated task sets geteerat a particular utilization
level have the same total utilization. The acceptancegatidhe three priority assign-
ment policies and schedulability tests in Tablg 5.1 arequriesl in this section. Before
presenting the experimental results, the task set geapralgjorithm is presented next.
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5.6.1 Task Sets Generation Algorithm

TheUUni f ast algorithm (given in Figurg5]3), which was originally praggal by Bini
and Buttazza [BB05] to generate utilizations of a task setudy uniprocessor schedul-
ing, is adapted by Davis and Burns [n [DB09] to generateaaiions of a task set to
study multiprocessor scheduling.

Algorithm Uuni fast (n, U)

1. Sum= U

2. For (i=0 to n-1)

3. nextSumJ = SurmlJ * pow(rand(),1/(n-i));
4,  Ui]=SumJ next Suni;

5. SumlJ=next Suml;

6. End For

7. U n] =Sunl;

Figure 5.3: The UUni f ast algorithm [BBO%]. The functiorpow X, y) returns z¥ and
rand() returns a random number in the range [0,1].

Based on th&uni f ast algorithm, Davis and Burns proposed the following threpste
(called theUUni f ast - Di scar d algorithm) to generate a task set with cardinality
and total utilizationJ to study scheduling on multiprocessors:

e Step 1: TheUUni f ast algorithm with parameters andU is used to generate
task utilization values in the rande, U].

e Step 2: If the utilization of a task is greater than 1, then the udifian values
produced so far are discarded. If the total number of suatadied partial task
sets exceeds some limit, saySCARD;;,,, then the algorithm exits by reporting
failure, otherwise, Step 1 is re-executed.

e Step 3:If the utilization of no task is greater than 1, then a set @élid utilization
values are generated and the algorithm exits by reposticgess

The derivation of this task set generation algorithm to wtodiltiprocessor scheduling
is motived by the following reason as pointed out by Davis Baths in [DB11b]:

“Atask set generation algorithm should be unbiased ... and should
allow task sets to be generated that comply with a specifieahpater set-
ting. That way the dependency of priority assignment pdkchedulability
test effectiveness on each task set parameter can be exhbynearying
that parameter, while holding all other parameters constawoiding any
confounding effects.

It is proved in [DB09| DB11b] that th&lUni f ast - Di scar d algorithm generates an
unbiased (i.e., uniformly distributed [BBD5]) task set lwitardinalityn where each
task’s utilization is in the rang®, min{U, 1}] and total utilization of the task setis.



5.6. EMPIRICAL INVESTIGATION 67

In this thesis, thaJUni f ast - Di scar d algorithm is used to generateutiliza-
tion values of a task set usimSCARD;;,,, = 1000. Once a set o utilizations
{u1,us,...u,} oOf a task set is generated, the other parameters of eachtasithe
task set are generated as follows:

e The minimum inter-arrival timg; of each task; is generated from the uniform
random distribution within the rang&0ms, 1000ms].

e The WCET of task; is set toC; = u; - T;.

e The relative deadlind®; of taskr; is generated from the uniform random distri-
bution within the rangéC;, T;].

Each of the experiments is characterized by a fpairn) wherem is the number of
processors and is the cardinality of task set. For each experimént n), task sets

are generated at 40 different utilization leve]8:025m, 0.5m, ... 0.975m, m}. A total

of 1000 task sets at each of the 40 utilization levels usiregAbni f ast - Di scar d
algorithm with parameters andU are generated. Each of the 1000 task sets generated
at a particular utilization level, sal/, has cardinalityr and total utilization equal to

U. The schedulability of each of the 1000 task sets generatedch utilization level

are determined based on the schedulability test for eadiedhtee priority assignment
policies in Table[5J1 and the acceptance ratio for eachsestmputed.

5.6.2 Result Analysis

A series of experiments are conducted using randomly gegtetask sets for different
pairs of (m,n) wherem € {2,4,8 16} andn € {2.5m,5m,10m}. The acceptance
ratios of three experiments with parametérs = 4,n = 10), (m = 4,n = 20), and
(m = 4,n = 40) are given in Figur¢ 5]4=5.6. And, the acceptance ratios refeth
experimentym = 8,n = 20), (m = 8,n = 40), and(m = 8,n = 80) are given in
Figure[5.YEGP. The important trends and observationsthaisehese experiments are
presented in this section; and the results of other expeaitsrfellow a similar trend.

Observation 1: The schedulability test of theSM DS[¢] priority assignment policy
significantly outperforms that of botbMvt DS[ %] and | SM DS priority assignment
policies. In the experimentn = 4,n = 20) in Figure[5.5, the acceptance ratio at
utilization level 0.275m is approximately 0% using the schedulability tests for both
DMt DS[ %] andl SM DS priority assignment policies while the acceptance ratithef
schedulebality test for SM DS[¢] poiority assignment policy is more than 70%. This
is due to the improved priority assignment policgM DS[¢] that searches the thresh-
old density by taking into consideration of the densitieshaf tasks in addition to the
number of processors.

Observation 2: The acceptance ratios for all the tests decreases as thesnoffrtasks
in a task set increases where is constant. This is because the total density of the
task set at each utilization level generally increases astimber of tasks in a task set
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Figure 5.4: Acceptance ratios for experiments witthh = 4, n = 10).
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Figure 5.5: Acceptance ratios for experiments witth = 4, n = 20).
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Figure 5.6: Acceptance ratios for experiments witth = 4, n = 40).



5.6. EMPIRICAL INVESTIGATION

m=8, n=20 (Constrained-Deadline)

ISMDS
100 % ®=¢ ISMD[ES] -e-
DMDS -a-
) 1
Z
o
Q
% ]
c
=
o
g ]
Q
Q
<C
0.4 0.6 0.8 1

Utilization / m

Figure 5.7: Acceptance ratios for experiments with, = 8, n = 20).
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Figure 5.8: Acceptance ratios for experiments with, = 8, n = 40).
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Figure 5.9: Acceptance ratios for experiments with, = 8, n = 80).
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increases. This conclusion is made based on another sghefiments that verifies that
the fact the total density of task set at each utilizatioelgenerally increases due to the
increase in cardinality of the task set. Ti@rmalized average densitf 1000 task sets
at each utilization level is computed for experimepts= 8, n) for five different values
of n = 10, 20,40, 60, 80. The normalized average density is calculated as follohes: t
total density of 1000 task sets at each utilization levels flivided by 1000 to compute
the average density which is then dividedry

Figure[5.10 plots the normalized average density on theiyyand the normalized
utilization level on the x-axis for experiments with = 8 andn = 10, 20, 40, 60, 80.
Similar result is also shown in Figute 5111 for experimentthwn = 4 andn =
8, 10, 20, 30, 40.
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Figure 5.10: Increase in normalized average density with the increase in task sehaditg for
experiments withn = 8 andn = 10, 20, 40, 60, 80.
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Figure 5.11: Increase in normalized average density with the increase in task sehadtg for
experiments withn = 4 andn = §, 10, 20, 30, 40.
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It is evident that the average density of a task set increaséise number of tasks
in a task set increases for each utilization level and fixedber of processors. Since
the three schedulability tests in Table_]5.1 highly dependhertotal density of a task
set and because a constrained-deadline task set withvedyatiigher density is more
difficult to schedule, the acceptance ratio decreases asithber of tasks in a task set
increases for a given number of processors.

Observation 3: The acceptance ratios of the two schedulability testBkérDS[ %] and

I SM DS priority assignment policies increase slightly due to theréase in number of
processors while the task set cardinality does not chamgeare the acceptance ratios
for experimentgm = 4,n = 20) and(m = 8,n = 20) in Figure[5.5 and Figurle 3.7,
respectively). This is because the normalized averagdtgerisx task set decreases as
the number of processors increases while keeping the taskigénality constant. Fig-
ure[5.12 plots the normalized average density against tirealized utilization level for
experiments witm = 40 andm = 2,4, 8,16. It is evident that for a given cardinality
of the task set, the normalized average density of a taskesetdses at each utilization
level with the increase in number of processors. Consety ¢ acceptance ratio of
the density-based tests for policiglst DS[ 3] andl SM DSincreases with the increase
in number of processors for some fixed cardinality of the k.

n=40 (Constrained-Deadline)

Average Density/m

0.2 0.4 0.6 0.8 1
Utilization / m

Figure 5.12: Decrease in normalized average density with the increase in numbeocégsors
for experiments with task set cardinality= 40 andm = 2,4, 8, 16.

Observation 4: The acceptance ratios of schedulability testIf8M DS[¢] priority as-
signment policy decreases noticeably with the increaseisinber of processors while
keeping the task set cardinality constant (compare theptacee ratios of SM DS[¢] pri-
ority assignment policy for experiments: = 4,n = 40) and(m = 8,n = 40) in
Figure[5.6 and Figuile 8.8, respectively). If the number otpssors increases from one
experiment to another, the total utilization of the tasls ggtnerated at each normalized
utilization level also increases. Task set with relatielger total utilization also has
relatively larger total density. Consequently, the nunmdfaiasks with relatively larger
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individual density in a task set increases as the total tep$ithe task set increases
while the task set cardinality remains constant. If thevittlial density of each task in
a task set is relatively larger, then the algoritRrmd( £) in Figurel5.2 often fail to find
anyk, 0 < k < m, such that the set ¢h — k) lowest density tasks is special om — k)
processors. In other words, task set having higher numbleighfdensity tasks suffers
from Dhall’s effect and can not be guaranteed schedulalig ulke schedulability test
for | SM DS[¢] priority assignment policy.

5.7 Implicit-Deadline Tasks: Utilization Bound

The priority assignment polidySM DS is also applicable to implicit-deadline task sets.
Note that the density and utilization of implicit-deadlitask systems are the same. The
schedulability test for implicit-deadline tasks is calkbe utilization-bound test which
is given in Theorerii5]4 (proof is obvious by considering= T; in Theoreni5.B).

Theorem 5.4. An implicit-deadline sporadic task systéhis schedulable using global
FP scheduling that assigns the priorities based on pali®§w DS if the following con-
dition, form > 2, holds:

U" <m-min{1/2,B(m)}
whereU™"is the total utilization of the task s&t

Example 5.3. As an example of the way fixed priorities are assigned usiagtiority
assignment policy SM DS, consider the following implicit-deadline task system & b
scheduled om» = 3 processors based on global FP scheduling where the pararoéte
each task;(C;,T;) are as follows:
r € {n=(12 mn=(23 7=/(7100
T4:(1,25) 7'5:(2,9)}

The threshold density or utilizatiof; is equal toB(3) = 0.5. The utilizations of the
five tasks arai;; = 0.5, us =~ 0.67, uz = 0.07, uy = 0.04, andus ~ 0.23. Since
ug > B(3), taskr, is assigned the highest fixed priority. The slack of tasksrs, 74
andrs are respectively 1, 93, 24, and 7. Therefore, the final fixaatipy ordering of all
the tasks are as follows (highest-priority task listed Yirst, 71, 75, 74, 73. O

The utilization boundn - min{1/2, B(m)} of global FP scheduling, for any finite
m > 2, using policyl SM DS is higher than the state-of-the-art utilization bou#&

and 3?/5 of RM US [£] and SM US| 3+2ﬁ] scheduling, respectively. Figure 5113

illustrates the utilization bounds & US[ 1], SM US[ 3+2ﬁ] andl SM DS for m =

2,...16. The x-axis in Figuré 513 represents the number of processwd the y-
axis represents the utilization bound normalized by nunab@rocessors for different
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Figure 5.13: Utilization bounds oRM US][ £], SM- US| ﬁ] andl SM DS.
priority assignments. Notice that the proposed bound isesasrforRM US [%] when

m = 2 and the same as f@W US| 3+2\/5] whenm = oo.

The total utilization of the task set in Example]5.3xis1.499. The utilization bound
m - min{1/2, B(m)} using| SM DS policy for m = 3 is 1.5. Therefore, the task
set in Exampl€X5]3 is global FP schedulable usigyt DS priority assignment policy.
NeitherRW US [ ] nor SM US| 2__] can guarantee the schedulability of this task set

3+V5
since the utilization bound for these policies ard.33 and1.14, respectively.

5.7.1 Independent and Scale Invariant Priority Assignment

In this subsection, the best achievable utilization bouhdlobal FP scheduling of
implicit-deadline task sets, where no task’s utilizatisimithe rang¢1 — %, V2—1] =
(0.293,0.414], is proposed for the class of fixed-priority assignmentqiet that are in-
dependent and scale invariant. A priority assignment sehisimdependenfAJO3] if
the priority of a taskr; depends only on its own parameters, i.e., the prioritiessifg
are assigned according to the functiorio; = f(T;, C;). A priority assignment scheme
is scale-invarianfAJO3] if the relative priority order of the tasks does noanlge when
the T; and C; of all the tasks are multiplied by the same positive constdntother
words, f(T;, C;) is scale invariant if and only if the following holds for &l > 0:

(T, Ci) < f(15,C5) & f(A-T;,A-C;) < f(A-Tj, A-Cy)

Andersson and Jonsson showed in [AJ03] that the utilizdttamd for global FP schedul-
ing of implicit-deadline task set using an independent aadksinvariant priority assign-
ment scheme can not be greater thg®—1)m ~ 0.414m. The problem of determining
such an independent and scale-invariant priority assighseheme with a utilization
bound of(v/2 — 1)m for global FP scheduling is still open.
In the First International Real-Time Scheduling Open Problemmi@ar held in

conjunction with the 22nd Euromicro Conference on Realelfaystems (ECRTS) in
Belgium, 2010, Andersson presented a conjecture regatiisigpen problem [And10]:
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the utilization bound of slack-monotonic HPA policy usifig2 — 1) as the threshold
utilization is (v/2 — 1)m for implicit-deadline task systems (called, t8&+ US[v/2 — 1]
priority assignment scheme). T8 US[v/2 — 1] priority assignment policy assigns
the highest fixed priority to each task having utilizatioeager thar{/2 — 1) and each
of the remaining tasks is assigned lower, slack-monotorarifes. While the problem
of proving this conjecture is still open for arbitrary tasks this problem is closed in
this thesis for task sets in which no task has utilizatiominithe rangé1 — %, V2-1].

Theorem 5.5. An implicit-deadline sporadic task sétis schedulable using global
FPscheduling undeBM US[v/2 — 1] priority assignment policy, if the following condi-
tion, form > 2, holds:

Ur<m-(vV2-1)
whereu; < (1 - Z5) oru; > (v/2 —1) foreachr; € T
Proof. The proof is given in Appendix]A (page 223). O

If the utilization-bound test in Theoreim 5.4 can not guagarthe global FP schedula-
bility of an implicit-deadline task set where no task’s iagltion is in the ranggl —
5, V2 — 1] ~ (0.293,0.414], then Theoren Bl5 can be used to test the schedula-
bility of the task set. For such task sets, where no tasklgzation is in the range
(1- %, V2 — 1], we have at our disposal a priority-assignment scheme ttaihs
the best utilization bound possible for the class of indepahand scale invariant fixed-
priority assignment schemes for global FP scheduling.

The utilization bound of SM DS priority assignment policy for arbitrary task sets is
greater thamn-(v/2—1) whenevern < 9. Therefore, the utilization bound of - (v/2—
1) for SM US[v/2 — 1] priority assignment policy is useful to test the scheduitgtinly
for task set where no task’s utilization is in the rarige- %, V2 — 1] andm > 10. No

task sets with total utilizatiom - (v/2 — 1) for m > 10 passes the utilization bound test
for thel SM DS priority assignment policy. However, such task set witlltatilization
m-(v/2— 1) passes the utilization bound test of & US[v/2 — 1] priority assignment
policy if no task’s utilization is in the rang@ — %, V2 —1].

y | m=16 [ m=32|
n=3m 2.8% 0%

n=>5m 13.1% 1.9%
n=38m 67.6% 43.4%
n = 10m 89.5% 79.4%
n = 15m 99.6% 98.4%

Table 5.2: Acceptance ratios, based on the schedulability test in Thelordm 5.5, b0€teran-
domly generated task sets each with total utilizatiofy/2 — 1).

The acceptance ratios using the schedulability test in fl#ma&.% of 1000 randomly
generated task sets, each with total utilization (v/2 — 1) for m = 16,32 andn =
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3m, 5m, 8m, 10m, 15m, are computed and presented in Table] 5.2. As the number of
tasks in a task set, each having a total utilizatief/2 — 1) increases, the possibility

of having a task with utilization greater than- % decreases and the acceptance ratio
increases.

5.8 Uniprocessor Slack-Monotonic Scheduling

It has been proved by Andersson(in [AndD8b] that the utilimabound foruniprocessor
slack-monotonic scheduling of implicit-deadline task se50%. The schedulability
analysis of “special”’ task system on multiprocessors psepan this thesis (Section
(.42, pagé 33) enables the derivation of a higher utitimabound for uniprocessor
slack-monotonic scheduling compared to that of the sthteesart result in[[And08b].

First, it will be shown below that the density bound for slamknotonic scheduling
of constrained-deadline tasks on uniprocessafi§.,). Then, the corresponding
utilization boundF; (u},;,,) for implicit-deadline tasks is shown to dominate the state-
of-the-art bound of 50% for slack-monotonic uniprocesstiesluling.

Consider a task systeinthat is special on uniprocessor (i.e. = 1). According
to Property 1 of special task systdm(Definition[5.1, pag€33), we havwe . <
becausen/(2m — 1) = 1 for m = 1. Therefore, special task systdmis in fact an
arbitrary task system for uniprocessor slack-monotoniedaling whenevern = 1
since there is no restriction on the maximum density of iitiial task. Note that we
have0 < d7,, < 7. < 1 whered” . andd} . arethe minimum and maximum

density of any task i, respectively.

Form = 1, the functionF;(x) is increasing within[0, 1] since Fj(z) = 1 —
(2 @z > 0within (0,1). Consequentlymin{ £ (67,;,,).F1(04.)} = F1(07,4,) SinCE
or . < or . Itisobvious from Property 2 of special task systErhat form = 1 that

dg, min{Fl (571 Fy (6:;(1.1,)} Fl( mzn) (524)

sum — min)
Using Theorermi 511, the special task Bé$ schedulable usinGSsy (i.e., uniproces-
sor slack-monotonic scheduling when= 1). Therefore, the density bound for unipro-
cessor slack-monotonic scheduling of constrained-deadisk isF; (07,;,,). Evidently,

the utilization bound for uniprocessor slack-monotonicegiuling of implicit-deadline
task sets iy (ul,..)-

The current state-of-the-art utilization bound for SM upigessor scheduling of
implicit-deadline tasks is 50% which is proposed[in [AndpP8h will now be shown
that 3 (ul...) > 50%. Since the functiorF} (x) is increasing within0, 1], we have
Fi(ul,) > Fi(0) sinceul;, > 0. Note thatF (0) = X0=2 1+ 0 = 1/2 = 50%.
Therefore Fy (u}:,;,,) > 50%. The proposed utilization bourfg, (u7,;,,) for the unipro-
cessor slack-monotonic scheduling is higher than that efsthte-of-the-art result in
[And08K].
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5.9 Summary

The preciseness of schedulability analysis for global Fe@aling is important in order
to reduce the resource requirement by applying the correipg schedulability test.
Moreover, the efficiency of a schedulability test is also amgant in order to quickly
determine if a task set is schedulable on a particular platfd=fficiency in evaluating
a test enables the system designers to quickly apply théotedifferent choices of the
parameters, e.g., different periods of each task, numhamaessors, and so on.

The density bound test for global FP scheduling based oh S\ DS priority as-
signment policy is efficient: the total density can be coregut linear time and can be
compared against the density bound in constant time. Thist@bles the designer to
quickly determine, for a given number of processors, whetietiming constraints of
a set of constrained-deadline sporadic tasks are met ohmatldition, the test also can
be used to find the sufficient number of processors for me#timgiming constraints of
a sporadic task set. The schedulability test usind i DS priority assignment policy
is proved to dominate the state-of-the-art density-boest The utilization bound test
based on the priority assignment policgM DS is also higher than other existing uti-
lization bounds for global FP scheduling of implicit-daadlsporadic tasks. Itis proved
that the best possible utilization bound for scale invar&ard independent priority as-
signment policy is achievable f@Ww US[v/2 — 1] priority assignment policy if no task’s
utilization is in the rangél — %, v/2—1]. This test is highly effective for task sets with
m > 9 and higher cardinality. The uniprocessor slack monotoch®duling is shown
to have a utilization bound higher that the state-of-theb@%6 untilization bound.

The priority assignment policy SM DS[¢] is derived based on the schedulability
analysis of the global FP scheduling for th&M DS priority assignment policy. The
schedulability test proposed for theSM DS[¢] priority assignment policy dominates
the density-bound test proposed for global FP schedulinghisl SM DS priority as-
signment policy. Searching the threshold denéitsom the set of densities of the tasks
in a task set using algorithffi nd( &) is efficient and can be done M(n - logn) time.

The simulation result shows significant improvement of tbleeslulability test for
thel SM DS[¢] priority assignment policy over the density-bound testpps®ed in this
chapter. However, the performance of all the considerdsd tiexreases as the cardinality
increases for a given number of processors. This is bechadetal density of a task set
increases with the increase in cardinality while the nundfgrocessors is fixed. The
performance of the schedulability test for th&M DS[¢] priority assignment policy
decreases if the number of processors increases for sordecéixdinality due to Dhall’s
effect. This is because the number of tasks having relgtieeyer individual density
increases with the increase in number of processors whélatmber of tasks in a task
set is fixed. In contrast, the density bound tests perforatively better if the number
of processors increases for a given cardinality of the taslsisce the average density
of task set decreases in such case.



lterative Tests

This chapter presents three niggrative schedulability tester global FP scheduling of
constrained-deadline sporadic task systems. Iterathvedsdability test involves testing
oneschedulability condition for each task in a task set to aetee whether its deadlines
are met. One of the main challenges in deriving an iteratibeegulability test is iden-
tifying the worst-case runtime behavior, i.e., called théaal instant. A job released
at the critical instant suffers the maximum interferenafrthe higher priority tasks.
However, the critical instant is not yet known for global Féheduling. To overcome
this limitation, pessimism is introduced during the scHalility analysis to safely ap-
proximate the worst-case. The endeavor in this chapterediace the different sources
of pessimism in the state-of-the-art schedulability asialyand propose better iterative
schedulability tests for global FP scheduling.

Another challenge for global FP scheduling is the problenagsfigning the fixed
priorities to the tasks since the optimal priority orderingsuch case is still unknown.
Each of the new schedulability tests proposed in this chhaptabines the schedulability
test for each task with finding its fixed priority using thermmiple of Audsley’s priority
assignment policy. Finding the priority assignments fortla tasks implies that the
task set is schedulable using global FP scheduling. It issttbat the proposed tests
dominate and empirically perform better than the statéiefart iterative schedulability
test for constrained-deadline sporadic tasks.

77
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6.1 Introduction

In many real-time systems, e.g., avionics, spacecraft amohtive, it is important
to efficiently use the processing resources due to size,hiveigd power constraints.
Reducing the resource requirement (e.g., number of procgssf such systems would
significantly cut costs for mass production, for examplecaifs, trucks or aircrafts.
However, if the pessimism in the schedulability analysissiach systems is large, then
a relatively higher number of processors is required to rteetieadlines. The endeavor
in this chapter is to reduce such pessimism by proposingigtrative schedulability
tests for global FP scheduling.

Global FP scheduling of constrained-deadline sporadkstagstems is important
not only for CPU scheduling but also in other domains, fomegke, scheduling real-
time flows in WirelessHART networks designed for industpdcess control and moni-
toring. WirelessHART is an open wireless sensor-actuatwaork standard specifically
designed for industrial process control to avoid severe@cuc loss or environmen-
tal threats, reduce production inefficiency, enhance enei monitoring and mainte-
nance [WHA]. The analysis of global FP scheduling has beetiegbto the end-to-
end delay analysis and priority assignment of the pericetit-time flow scheduling on
multiple communication channels of WirelessHART netwd&XLC11a,SXLC11Db].
Improvement of global FP schedulability analysis and therjty assignment policy
would result in less pessimistic end-to-end delay calaaaand would enhance the
schedulability of the real-time flows transmitted over riplét communication channels
in WirelessHART networks; and consequently, better corana monitoring of indus-
trial processes can be attained.

Since the optimal priority assignment for global FP schisdubn a multiprocessor
system (at present time) is unknown, the quality (e.g., mimm number of processors
required) of many previously proposed global FP schediitialbests depends on the
actual priority ordering of the tasks. Therefore, deteingra good priority ordering
is as important as deriving a good schedulability test. Ia thapter, novel priority
assignment schemes and the corresponding schedulagdis/for scheduling such task
systems on multiprocessors are proposed and demonstrabeg proof and simulation,
that the schemes are superior to prior schemes.

Three new iterative schedulability tests for global FP ditiag are proposed: each
test combines schedulability analysis of each task witbrityi assignment using Auds-
ley’s approach such that successful priority assignmeplié® the schedulability of the
task. In other words, if all the tasks are assigned priagritising this combination, then
the task set is also schedulable. Each of these iteratitedeminates the state-of-the-
art iterative test for global FP scheduling of constraideddline sporadic tasks.

State-of-the-art Iterative Test. The basic idea of iterative schedulability test is thia¢
condition is tested for each lower-priority task € I'. The schedulability analysis of
each task; is performed within an interval, called thoblem windowsuch that one
job of the task; is assumed to be released at the beginning of the problermowir@ne
flavor of iterative test is based on computing the upper bamtheresponse-timef
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taskr;: the problem window size is initially set 10;, then the response-time of task
within the problem window is calculated; and, if the complitesponse-time of task

is greater than the length of the problem window, then the sfzhe problem window

is reset to the response-time just computed, and the prixesgeated until the length
of the problem window is not greater than the relative deadbf taskr;. The itera-
tive schedulability test proposed by Guan et allin [GSYYf@®]global FP scheduling,
called theRTA- LCtest, is the state-of-the-art response-time based kersthedulabil-
ity tesfl. TheRTA- LCtest derives an upper bound on the response time of each;task
using the response time of each higher priority tasks iiBgt

Another flavor of iterative test is based deadline-analysisvhere the length of the
problem window of task; is set equal to its relative-deadlidg and the schedulability
analysis of task; with this problem window is considered. In deadline-basealysis,
an upper bound on the interference due to all the higherityritasks on task; in an
interval of lengthD; is computed. Then, based on the interference within thel@mob
window, the minimum available time to execute taskn the problem window is cal-
culated. The iterative schedulability test proposed byi®awnd Burns in[[DB11b] for
global FP scheduling, called tiz&- LCtest, is the state-of-the-art iterative schedulabil-
ity test based on deadline-analysis.

It has been shown irl_[DB11b] that, for amyven FP ordering of the tasks, the
RTA- LC test dominates thBA- LC test. Nevertheless, the work in [DB11b] derives
an effective joint priority assignment policy and schedility test by combining the
DA- LC test with multiprocessor extension of Audsley’s optimailbpty assignment
(OPA) algorithrﬁ [Aud01]. However, theRTA- LC test can not be combined with
the OPA algorithm to findanother priority ordering when the task set does not sat-
isfy theRTA- LCtest for thegivenpriority assignmen{[DB11b]. It is empirically shown
in [DB11K] that the combination of OPA amdh- LCtest, called th€DA- LCtest in this
thesis, outperforms thBTA- LC test regardless of what heuristic priority assignment
policy (e.g., deadline-monotonic) the latter uses. DB&- LCtest is the state-of-the-art
iterative schedulability test for global FP scheduling ofstrained-deadline sporadic
tasks.

Contributions. The main contribution in this chapter is to identify the sms of pes-
simism in the analysis of state-of-the-@@A- L Ctest and applying techniques to reduce
such pessimism. In this chapter, three new iterative sdhbility tests (each domi-
nates theODA- LC test) are proposed by increasingly improving @BA- LCtest. The
overview of the main techniques for deriving the three tesksiefly presented below.

e The H ODA- LCTest: This test combines the HPA policy with tigbA- LCtest.
Regarding the optimality of th@DA- LC test (as claimed i [DB11b]), it is ob-
served that (i) optimality is only claimed under the assuampthat the entire task
set and all the processors are involved when@bé- LC test is applied for de-
termining the fixed-priority ordering of all the tasks, anij the details of the

1The name RTA- LC’ test (response-time analysis with limited carry-in taskshiroduced in[DB11b].
2The Audsley’s OPA algorithm, adapted for multiprocessorprésented in Sectidn 6.2.1.
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schedulability analysis of theDA- LCtest in [DB11b] imply that, if not all tasks
and processors are included in the analysis, the upper bamutite interference
due to the higher priority tasks on a lower priority task mayldwered. Based
on this finding, the first new iterative schedulability tesslled HPA-applied
ODA- LC (H ODA- LC) test, which dominates thHeDA- LCtest is proposed.

In H ODA- LC test, at mosin’ largest-density tasks are given the highest fixed
priorities and the remaining. — m’) tasks are given other, lower, fixed prior-
ities for somem’, 0 < m/ < m. While the OPA algorithm is not (as shown
in [DB11b]) applicable to thé&kTA- LC test, the HPA policy is indeed applicable
to theRTA- LCtest. The HPA policy combined with tH€TA- LCtest resulted in
HPA-appliedRTA- LC (H RTA- LC) test which dominates theTA- LCtest.

Thel A- DA Test: The second contribution is proposing a novel idea to fuiither
prove theH ODA- LCtest. The purpose of assigning the highest fixed priorities
to them' largest-density tasks in thé ODA- LC test is to reduce the pessimism
involved in the interference computation of the higher ptyotasks on a lower
priority task. However, Observatign 5.1 (pdgé 58, Chdptetdes not necessar-
ily imply that the highest-density tasks are the best caatdil for assigning the
highest fixed priorities for the HPA-based priority assigmipolicy.

It will be shown that it is not necessarily the highest-dgntsisks that may cause
the maximum interference on a lower priority task. This @lobservation
motivates the design of a new deadline-analysis-baseatiitertest, called the
Interference-Aware Deadline-AnalygisA- DA) test, for global FP scheduling of
constrained—deadline sporadic tasks. A meiterion for identifying the tasks that
are mostly responsible for pessimistic computation ofrfetence on each lower-
priority task is proposed. Based on this criterion, a novérjy-assignment
technique, based on the principle of Audsley’s OPA algaritis proposed. It is
proved that if all the tasks are successfully assignedifigsmusing the proposed
priority-assignment policy, then all deadlines of the taake met. Itis also proved
that thel A- DA test dominates thie- ODA- LCtest.

The | A- RT Test: It will be evident later that thé A- DA test essentially applies
the deadline-based analysis to determine whether arfasin be assigned (based
on Audsley’s algorithm) a particular priority level. Whiledeadline-based anal-
ysis considers a problem window of length, a response-time based schedula-
bility analysis considers a problem window smaller tlan And, the way the
interference on a lower priority task is approximated favkgll FP scheduling
(e.g., inDA- LCtest) implies that a problem window larger than the resptinse

of a the analyzed task is more pessimistic for interferencepitation.

Thel A- DA test is improved by considering a response-time basétittedeter-
mine whether a lower priority task can be assigned a particular priority level

3The response-time based test that will be used forRT test isnotthe OPA-incompatibl&TA- LCtest;

rather an OPA-compatible response-time-based test propofeB10] is used.
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based on the OPA algorithm. This new test is caligdrference-Aware Response-
Time(l A- RT) test which dominates tHeA- DA test and significantly outperforms
the state-of-the a®DA- LCtest in simulation.

Organization. The rest of the chapter is organized as follows: Sedfioh 62gmts
a schedulability analysis framework, an overview of Aug'si®©PA algorithm and its
applicability to multiprocessors. Sectidn_6.3 presentsridated works and the two
state-of-the-arRTA- LC and ODA- LC iterative schedulability tests. The ODA- LC,

| A- DA, | A- RT tests are presented in Sectibnsg .43 6.6, respectivelyl&iion results
are presented in Sectibn 6.7 before summarizing the reaulisctior 6.B.

6.2 An Analysis Framework

In this section, an overview of the schedulability analysasnework to derive an itera-
tive schedulability test of global FP scheduling is presdniThe schedulability analysis
of a generic job of a lower priority task in the problem window of task; is considered.
The iterative schedulability test of taskis derived by computing thevorkload inter-
fering workload total interfering workloadandinterferenceof the higher priority tasks
within the problem window. Before techniques to computes¢hierms are presented,
their definitions are formally presented.

Workload. Theworkloadof a higher priority task;, within the problem window of task
7; is the cumulative length of intervals during which taskexecutes in that window.
In [BCLOY, [BCO7,,GSYY09], the work done by a job of a higherepity task 7, is
considered as “carry-in” work within the problem window ofoaver-priority taskr; if

a job of taskry is released before the beginning of the window and execptatiglly

or fully) within the window. If a higher-priority task is caidered to constitute carry-in
work, then its worst-case interference on the lower-piydesk is higher than that of its
non-carry-in counterpart. In the remainder of this chapter higher priority task; is
called a “carry-in task”Cl ) if it is considered to have carry-in work within the problem
window of a lower priority tasky; otherwiser; is called a “non-carry-in task’NC).

Interfering Workload. Theinterfering workloadof a higher priority tasky, is the cu-
mulative length of the intervals during which jobs of tagkexecute and job of task is
ready but not executing within the problem window of tagkTheCl andNC interfer-

ing workloads of each higher priority task are determined based on the upper bound
on theCl andNC workloads of task;, within the problem window, respectively.

Total Interfering Workload. Thetotal interfering workloadis the sum of interfering
workload of all the higher priority tasks within the problemindow. It is proved by
Guan et al. iN[GSYY09] that there are at mést— 1) carry-in tasks within the problem
window of any lower priority task for global FP scheduling @dnstrained-deadline
sporadic tasks. The total interfering workload is caleddby adding th€l interfering
workloads of(m — 1) carry-in tasks and theC interfering workloads of the remaining
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higher priority tasks. Thém — 1) carry-in tasks from the set of higher priority tasks are
selected such that the total interfering workload is mazéadi

Interference. The interferenceon a job of taskr; within the problem window is the
cumulative length of the intervals during which the job ofka; within its problem
window is ready but not executing. The interference of tighér priority tasks on task
7; within the problem window is calculated based on total iieteéng workload. Once
the interference of the higher priority tasks within a peshlwindow calculated, the
amount of available execution time for the lower prioritgKkar; within the problem
window can be determined. Finally, based on the availabtegion time of a lower
priority taskr;, sufficient schedulability test for task is derived.

In deadline-based analysis (e.BA- LCtest), the length of the problem window is
equal toD; (i.e., the relative deadline of task). If the difference betwee®; and the
interference within a problem window of lengib; is not smaller than the execution
time C; of taskr;, then taskr; meets its deadline. On the other hand, the response-time
based analysis (e.qRTA- LCtest) initially sets the length of the problem windowg
Then based on the interference within the current problendow, the response-time
of taskr; is calculated. If the response-time is greater than thetteafythe current
problem window, the length of the problem window is incremeein(a new problem
window is considered), and this process continues untihé)computed response time
is greater than the deadline (deadline may be missed)) thi¢icomputed response time
is exactly equal to the length of the current problem winddeadline is met).

The iterative schedulability tests proposed(in [BCL09, BCGSYY09] assumes
that the priority ordering of the tasks is known before apmythe test. However, there
is a class of iterative schedulability test, called OPA-patible tests, that are applicable
not only for task sets with known priority ordering but alsmde used to search for pri-
ority ordering combined with Audsley’s OPA algorithm [AutlO Finding a priority or-
dering using OPA algorithm is important because the optfimat-priority ordering for
global FP scheduling is not known. If a task set is not guasahto be schedulable for a
given priority ordering, then to ensure the schedulabditthe tasks for that given prior-
ity ordering it may require to increase the number of processsr even re-specification
of the parameters of the tasks. Applying Audsley’s OPA athor, combined with a
schedulability test, could avoid such costly approach bgifig another priority order-
ing for which the task set passes the schedulability tese détails of the Audsley’s
OPA algorithm and the conditions for a schedulability tesbeé OPA-compatible are
presented next.

6.2.1 Audsley’s OPA Algorithm

Audsley’'s OPA algorithm, originally proposed for uniprgsers in [[AudO1], is ex-
tended by Davis and Burns for priority assignment in gloRlrRultiprocessor schedul-
ing [DBOZ]. All the proposed iterative schedulability tegH CDA- LC, | A- DA and

| A- RT) in this chapter use the principle of Audsley’s OPA alganitfor priority assign-
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ment. In this subsection, the necessary conditions that beusatisfied for a schedu-
lability test to be OPA-compatible are presented. Thenpwido-code for OPA algo-
rithm is formally presented in Figufe ®.1.

Andersson and Jonssdn |AJ] concluded that Audsley’'s OPArifgn can not be
applied to determine the optimal priority ordering for ghbl-P scheduling even if an
exact schedulability test (e.g., exact feasibility tesperiodic tasks is proposed by Cucu
and Goossens ih [CGG11]) were known. The basis for this csiah by Andersson and
Jonsson is the following observation for implicit-deadltasks[[AJ]:

“For fixed priority preemptive global multiprocessor schiuly, there exist
task sets for which the response time of a task depends nobaofil; and
C; of its higher priority tasks, but also on the relative prityriordering of
those tasks

However, this observation does not exclude the possilufitysing Audsley’s OPA al-
gorithm for sufficient schedulability test of global multizessor scheduling as is first
pointed out in[[DB0Y]. With respect to the applicability ofidsley’s OPA algorithm,
Davis and Burns [DB09, DB11b] categorize a global FP scledlliy testS as being
either OPA-compatible or OPA-incompatible. An OPA-conilglattest.S implies that
Audsley’s OPA algorithm can be applied to find priority assigent using test. The
clause “using tes$” in the last sentence is very critical and also the basis f@ining
the optimality of the priority assignment according to tlwenbination of the schedu-
lability test.S and the OPA algorithmIf an OPA-compatible test.S can not find a
priority ordering using the combination of OPA algorithm an d the schedulability
test .S for a task set, it does not necessarily imply that there is no fpority ordering
for which the task set is global FP schedulableThe adjective “optimal” in finding a
priority ordering of a task set, based on the OPA algorithih@m OPA-compatible test
S, must not lead to the following confusion:

The optimal fixed-priority assignment for global multipessor scheduling
(an exciting and important result) is now known.

Applying the OPA algorithm using an OPA-compatible t8stssentially finds an opti-
mal priority ordering only with respect to teSt if a task set satisfies an OPA-compatible
schedulability testS for some priority ordering, then that OPA-compatible t&stan
find such a priority ordering using the OPA algorithm.

Conditions for OPA-Compatibility (from [[DB09,/[DB11b])

A schedulability testS for global FP scheduling is OPA-compatible if the following
three conditions are satisfied:

e Condition 1: The schedulability of a task; may, according to test S, be depen-
dent on the set of higher priority tasks, but not on the redgpiriority ordering of
those tasks.



84 CHAPTER 6. ITERATIVE TESTS

e Condition 2: The schedulability of a task may, according to test S, be depen-
dent on the set of lower priority tasks, but not on the retafiviority ordering of
those tasks.

e Condition 3: When the priorities of any two tasks of adjacent priority avagped,
the task being assigned the higher priority can not becorsehauulable accord-
ing to test S, if it was previously schedulable at the lowéonity. (As a corollary,
the task being assigned the lower priority can not becomedsdable according
to test S, if it was previously unschedulable at the high&nripy).

Audsley’s OPA Algorithm for Multiprocessors

The OPA algorithm given in Figurfle 8.1 assigns fixed pricsitie the tasks in sed to
be scheduled or processors based on some global FP schedulabilityStekat is
OPA-compatible. Unlike the representation(in [DB09, DBJl the parameters (task set
A, number of processord and the OPA-compatible tesf) of the OPA algorithm are
made explicit here.

Algorithm OPA(Task set A, number of processorsm, Test S)

1. for each priority levePL, lowest first

2. for each priority-unassigned taske A

3 If 7 is schedulable o, processors at priority levélL

4 according to schedulability teStwith all other priority-

5. unassigned tasks assumed to have higher priorities, Then
6. assignr to priority PL

7 break (continue outer loop)

8 return “failure”

9. return “success”

Figure 6.1: Audsley’s OPA algorithm for multiprocessors.

The OPA algorithm assigns priority to each task in dedtarting from the lowest-
priority level. In order to be used, the FP schedulabilist #has to be OPA-compatible
(i.e., needs to satisfy Conditions 1-3 given above). If tecfion call OPAL, m, S)
returns “success”, then all deadlines of the tasks &me met onn processors according
to the priorities assigned by the OPA algorithm in Figuré @ritially, all the tasks in
setA are priority-unassigned. The objective of the OPA alganith to assign priority to
each of the tasks in set starting from the lowest priority level (i.e., the lowestqity
task is determine first and the highest priority task is daeteed last).

The for loop in line 1 iterates for each of the priority levéénoted byPL, starting
from the lowest priority level. For each priority level imé 1, one priority-unassigned
task is searched using the inner loop in line 2 for assigriegprriority at that priority
level. Whether or not a (priority-unassigned) task, say tagtan be assigned the par-
ticular priority levelPL is determined in line 3-5 by applying the tesand assuming
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the higher priorities for all other (priority-unassigned¥ks. If such a task is found,
then that task is assigned the current priority level andptimity assignment for next
higher priority level starts (starting from the outer loop)

If no task can be assigned the current priority level, thesirlnop terminates and
line 8 returns “failure”. If the outer loop terminates aftessigning priorities for each of
the tasks in setl, then the algorithm returns “success”. The OPA algorithmiguens
at mostn(n + 1)/2 schedulability tests in contrast to exhaustively applyimgtest for
n! different fixed-priority orderings of the tasks. The follimg theorem guarantees that
algorithm OPA in Figuré_6l1 always finds a priority assignimehthe tasks if there
exists some priority ordering that makes the task set tefgatie schedulability tesf.

Theorem 6.1(from [DBQO9]). The Optimal Priority Assignment (OPA) algorithm is an
optimal priority assignment policy for any glob&P schedulability test S compliant
with Conditions 1-3.

While Theoreni 611 is undoubtedly true, itrist correct to say that if algorithm OPA in
Figure[6.1 can not find a priority ordering using the OPA-catiige schedulability test
S, then there is no other priority ordering that can make thk st schedulable.

6.3 Related Work

Several iterative tests are already been proposed in #ratlire for global FP schedul-
ing of constrained-deadline sporadic tasks [Bak06, BCTL®,[GSYY09, DB11b]. A
recent survey by Davis and Burns of different schedulattiists for global FP schedul-
ing can be found i [DB11a]. Empirical investigations/in KB&, BCLO9/ DB11b] show
that such tests are highly effective in determining the dalability of task sets having
a total density / utilization beyond the state-of-the-amtihd for implicit- / constrained-
deadline tasks.

The basis of the schedulability analysis in many iteratestd is determining the
interference on each lower priority task due to its high&rmiy tasks within a problem
window. However, unlike the uniprocessor FP scheduling gkact interference calcu-
lation for multiprocessor FP scheduling is difficult sinbe tcritical instant for global
FP scheduling of sporadic tasks is not known (please sei@esgcl). Consequently, an
upper bound on the interference of the higher priority tamkgach lower priority task
with the problem window is calculated to derive a sufficiectiexdulability test. Based
on Baker’s seminal work in [Bak06], several works [BCIL09,B;GSYY09] have pro-
posed iterative schedulability tests for constraineddtiea sporadic task systems based
on bounding the amount of interference due to each of theehighority tasks within
the problem window of a lower priority task.

Many global FP schedulability analysis of a lower-priorigsk 7; considers that
all the higher-priority tasks to have carry-in work withimet problem window [BCL09,
BCO7]. Baruah’s global EDF schedulability analysis[in_[@2F limits the number of
higher-priority tasks considered to have carry-in workiio— 1), wherem is the num-
ber of processors. THRTA- LC test proposed by Guan et dl. [GSYY09] employs the
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same carry-in task limitation as the analysis|in [BarO7]rtgpiiove the response-time
analysis proposed in [BC07] for global FP scheduling of t@ised-deadline sporadic
tasks. The test in [GSYY09] computes the upper bound on theorese time of a task
based on the response time of the higher priority tasks. ikgcespired by the works
in [BCO7,Bar07[ GSYYO09], Davis and Burns [DB11b] proposettst that also con-
siders(m — 1) tasks having carry-in work to improve the deadline-baséeédualability
analysis in[[BCLO9] for global FP scheduling of constrairteghdline sporadic tasks.
This improved test proposed by Davis et al.[in [DBI1b] isedDA- LC test (deadline-
analysis with limited carry-in).

The RTA- LC test dominates thBA- LC test for any given fixed-priority ordering
of the constrained-deadline tasks [DBIL1b]. However, Davial. [DB09, DB11b] ad-
dressed the problem of finding an effective priority assigntrusing Audsley’s OPA
algorithm [Aud01] for the class of schedulability teststthee OPA-compatible. To that
end,RTA- LCis proved not to be OPA-compatible whiB&- LC is proved to be OPA-
compatible [DB11b]. It is empirically shown that OPA coméihwith DA- LC tests
(i.e., theODA- LC test) is currently the best combination of priority-assigamt policy
and schedulability test for global FP scheduling [DBJ11l4je Btate-of-the-art response-
time basedRTA- LCtest and deadline-bas€@DA- LCtest are now presented in Subsec-
tion[6.3.1 in details to identify the pessimism in their sthlability analysis and to
propose thé+ CDA- LC, | A- DA andl A- RT tests in Sections 6.4= 6.6, respectively.

6.3.1 State-of-the-art Iterative Tests

TheRTA- LCis the response-time-based test anddAelL Ctest is a deadline-analysis-
based test. Th&TA- LCtest calculates an upper bound on the response time of each
task. The response time of taskdetermined using thBTA- LCtest is denoted by;.
Remember thatP; is the set of all the higher-priority tasks of task In order to un-
derstand th&®TA- LCandDA- LCtests, we need to know how the workload, interfering
workload, total interfering work, and interference wittthre problem window of any

job of a lower priority taskr; are calculated in [GSYY09] and [DB11b], respectively.
The following equations Eq[.{6.1) E(6.9) are presented iiffardnt form than that are
used in[[GSYY09, DB11b] in order to show the similarities aliiferences between the
DA- LCandRTA- LCtests.

Workload. There are at mostn — 1) tasks with carry-in workload within the problem
window of each lower priority task; in global FP scheduling [GSYY09]. Whether task
T € HP; is aCl task or aNC task depends on th@ andNC workload of that task in
the problem window. The upper bound on the workloads of task HP; within any
interval of lengttt is denoted by\(¢) andWf' (¢) wheneverr, is aNCtask andC! task,
respectively. The\C workloadW(¢) of taskr;, for bothRTA- LC andDA- LC tests is
given as follows[[GSYYQ9, DB11b]:

W) = |t/Tx| - O +min(C,t — |t/Tx| - Ti) (6.1)
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However, theCl workload for theRTA- LC test and theDA- LC tests are computed
differently. The value ofl workloadWf' (¢) of taskr;, in an interval of length for the
RTA- LCtest is given as follows [GSYY09]:

W' (t) = A¥ - Cp + min(Cy,t + Ry, — C), — A¥ - Ty) (6.2)

whereA¥ = | (t + Ry, — C) /T |. Note thatRy, is an upper bound on the response time
of the higher priority task; € HP; and R, has to be calculated befofg is calculated.
The dependence on the response time of the higher priosiky-tavhen calculating the
Cl workloadW (t) for analyzing the schedulability of lower-priority taskmakes the
RTA- LC test OPA-incompatible. This is because the response-tinhégher priority
taskr, depends on the relative priority ordering of the tasklif) (violates Condition 1
given in pag€83). The value &1 workloadW¥ (¢) of taskr;, in an interval of lengttt

for the DA- LCtest is given as follows [DB11b]:

W (t) = AF - Cy + min(Cy,t + Dy, — Cy — AF - Ty,) (6.3)

whereA¥ = |(t + Dy, — C) /T |. Given the length of the problem windawthe value
of WY (¢) for the DA- LCtest is calculated only using the static paramBtefsaskr,.

Interfering Workload: Similar to workload) ¢, (¢) and! {5 (#) denote the upper bounds
on the interfering workload of task, on any job of task; within the problem window
of lengtht wheneverr; is aCl task and\C task, respectively. An upper bound on the
interfering workload of a higher priority task within thegimem window is the work-
load of the higher priority task within that problem windoWowever, it is pointed out
in [BCO7,/[GSYY09/ DB11b] that it is sufficient to consider timerfering workload of

a higher priority task limited to at mogt — C; + 1) within the problem window size
Thus,| £;(t) andl )(t) for bothDA- LCandRTA- LCtests are given as follows:

| 5i(t) =min(W' (t),t—C; +1) (6.4)
125 (t) = min(WC(t),t — C; + 1) (6.5)
TheCl interfering workload of higher priority task; is never smaller than itSC inter-
fering workload. In other wordg,{!, (t) > 1 }(¢). The difference between ti@ and
NC interfering workload of task; within the problem window of lengthis denoted by
| 2FF(t) and given as follows:
IR =17, —135) (6.6)

The value of ! 7 (t) determines whether the higher priority tagkhas to be considered
as aCl task orNCtask within the problem window of length

Total Interfering Workload. The upper bound on total interfering workload on task
due to all the higher priority tasks in sgtis denoted as$ ;(t, v, m); wherey C HP;,

4The static parameters describe characteristics of a taskjply independent of other tasks.
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the length of the problem window is and the tasks are scheduled :anprocessors.
Total interfering workload ; (¢, ¢, m) is the sum of the interfering workload of all tasks
in sety where at mostm — 1) tasks are considered &6 tasks. The&m — 1) carry-in
tasks from set) are those tasks that have the largest valueft(¢). The value of

| ;(t,, m) is calculated as follows for both tfi2A- LC andRTA- LCtests:

it o,m) = > 1S (1) + > | PR (t) (6.7)

TREY ThEMaxz(p,m—1)

whereMazx (1, m — 1) is the set of m — 1) tasks from set) that have the largest values
of I PFF(2).

Interference. The term interference is an integer and all theprocessors are busy
executing tasks fromp while taskr; is interfered by the higher priority tasksgnC HP;.
Thus, based on the schedulability analysis in [BC07, GSYARL1K], an upper bound
on interference due to the tasksyiron any job of task; within the problem window of
lengtht is | L) |

The RTA- LCtest: The RTA- LCtest [GSYY09], which computes an upper bound on
the response time of each lower priority taske T', is recursively given as follows:

Rz(h—‘rl) . CZ + \‘l 'L(RZ ;:;IP“m)J (68)

This can be solved by searching iteratively the least fixddtmtarting withR? = C;

for the right-hand side of Eq[{8.8). Thus, this recursicartstwith RY = C; and
stops when either (iREh“) > D, (i.e., taskr; can not be guaranteed schedulable) or
(i) RM = R! (i.e., taskr; is schedulable with response tinfs = R"*'). Note
that in order compute the response time of taskising Eq. [6.B), the response time
of each higher priority task, € HP; must be known. It is not difficult to see that the
computational complexity of theTA- LCtest is pseudo-polynomial and the dependency
on knowing the response time of the higher priority tagke HP; to compute the
response time of task makes thdrTA- LC test OPA-incompatible.

DA- LC Test: TheDA- LCtest [DB11b] for each lower priority task € I' with relative
deadlineD; < T; is given as follows:

m
This can be solved by calculating the interference of thadngriority tasks irHP; within
the problem window of lengtt®;. It is not difficult to see that the computational com-
plexity of theDA- LCtest is polynomial and the test is OPA-compatible.

ODA- LC Test: The DA- LCtest is OPA-compatible and can be used to find the FP or-
dering of the tasks using the Audsley’s OPA algorithm pres@in Figurd 6.11. The
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ODA- LCtest (combination of OPA anibA- LCtest) works as follows [DB11b:

If the call OPA([, m, DA- LC) in Figure[6.1 returns “success”, then all the
tasks meet deadlines using global FP schedulingrgrocessors based on
the priority assignment determined by the OPA algorithm.

According to theODA- LC test, the OPA algorithm in Figufe 6.1 essentially applies th
DA- LCtest in Eq.[(6.B) to determine whether a priority-unassigask can be assigned
a particular priority level by assuming the higher pri@difor all the other priority-
unassigned tasks. It will be evident shortly that, HhéODA- LC test (proposed in next
section) is based on applying the HPA policy where not alhtigier priority tasks and
all the m processors are considered when determining the prionsl kef a priority-
unassigned task based on i LCtest.

6.4 TheH ODA- LC Test

In this section, the HPA policy is applied to improve the ptypassignment policies
for two state-of-the-art iterative schedulability teSBRA- L C test proposed by Davis et
al. [DB11b] and OPA-incompatiblBTA- LCtest proposed by Guan et al. [GSYY09].

The OPA algorithm in Figure @l 1 reveals an interesting few: priority-assignment
determined by the combination of the OPA algorithm and an -©&#hpatible schedu-
lability test.S only claims to be optimal under the assumption that this déoatlon is
applied to theentiretask set and tall processors (Theorem 3 in [DB11b]). An intuitive
guestion to ask is then whether it would be possible to olaaimore effective priority
assignment for an OPA-compatible test if the combinatiothef OPA algorithm and
the OPA-compatible test was applied to find the prioritiea slibset of the entire task
set to be scheduled on a lower number of processors whilethaining tasks are as-
signed fixed priorities using some other mechanism (e.g.htghest fixed priority as
is proposed fot SM DS policy in Chaptefb). By carefully studying the equations of
the OPA-compatibl®A- LCtest presented in subsectlon 613.1, it is realized thattiser
indeed room for improvement.

In this section, the HPA policy is considered to improve thenty assignment
policy for the ODA- LC test. This is based on a crucial observatidhhe amount of
interference calculated based on théA- LC test on a lower priority task can be
reduced by not including all the tasks and all the processorin the schedulability
test. The HPA policy combined with th@DA- LC test is called thé+ ODA- LC test.
Moreover, the HPA policy can also be applied to the OPA-ingatible RTA- LC test.
The HPA policy combined with th&TA- LC test is called thé+ RTA- LC test which
dominates th&kTA- LCtest.

6.4.1 Applying HPA Policy to ODA- LC Test

In this subsection, by applying the HPA policy to tBBA- LC test an improved fixed-
priority assignment policy and the schedulability testjechH ODA- LC test, is pro-
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posed. When computing the total interfering worklog¢D;, HP,, m) in Eq. (€.9),
for testing the schedulability of the lower priority taskon m processors using the
DA- LCtest, the higher priority tasks areli#i?; and the number ofl tasks considered
is (m — 1). The improved priority-assignment polity ODA- LC is based on the fol-
lowing observation of Eq(619): if one task, say, is removed fromHP; and also the
number of processors is reduced framto (m — 1), and apply théA- LCtest on this
smaller task set and reduced number of processors, thentéréerence on task; de-
pends on the the higher priority tasks in 8el?; — {7 }) and on(m — 2) carry-in tasks.
To understand the importance of this observation, consiigefollowing example.

Example 6.1. Consider four tasks ifi = {7, ... 74} to be scheduled om = 3 proces-
sors using global FP scheduling. The paramet€rsD;, T;) of the four tasks are as fol-
lows: (23,33, 33), (106,210,214), (58,216, 217), and(46, 60, 64). The ODA- LC test
by calling algorithm OPAL,3,DA- LC) returns “failure” because no task In can be
assigned the lowest priority level. This is because, whenstthedulability of each
7; € T' is checked for priority assignment as the lowest priorigelgline 3-5 of OPA
algorithm in Figurd 6]1), the calculation &f(D;, HP; ,m) using Eq. [[(6&]7) considers
(m — 1) = 2 tasks inHP; asCl tasks and the remaining tasklhi; asNC tasks. The
value of[;(D;, HP;, m) for each of the four tasks was large (pessimistic) enougloto v
late theDA- LCtest in Eq.[(6.P), and no task is decided to be assigned thestqwiority
and the OPA algorithm returns “failure”.

Now consider hybrid-priority assignment in which the highdensity task is
given the highest fixed priority. The call OP&(, 72,73}, 2, DA- LC) by removing
74 from I" and reducing the number of processors frem= 3 to m = 2 returns “suc-
cess” (taskrs is assigned the lowest priority, tasks and » are assigned the highest
fixed priorities). Therefore, the task deis schedulable om = 3 processors (follows
from Observatio 5]1 following Lemnia5.6). This is becawseen OPA{7;, 72, 73},

2, DA- LQO) is called, the calculation of;(Ds, {71, 2}, m = 2) in Eq. (&) considers
only (m — 1) = 1 task in{r, 72} asCl task and one task ifir;, =} asNC task.

In this case,l3(Ds,{m,72},m = 2) was small enough to satisfy tHeA- LC test

in Eq. (69) andrs is assigned the lowest priority. The other two tasks.and 7,
are trivially assigned the highest fixed priority since &hare two processors. Hence,
OPA({r1, 2,73}, 2, DA- LC) returns “success”. Since is assigned the highest fixed
priority and OPA{r, 7273}, 2, DA- LC) returns “success”, this instance of HPA guar-
antees thar' is schedulable om = 3 processors (from Observatibnb.1). O

The important conclusion from this example is thidtthe schedulability of I" can
not be decided onm processors by applying theODA- LC test to the entire task set

I" and to all m processors, it does not necessarily mean that there is no fdhle
priority assignment for I" based on theDA- LC test. The lesson learned is that the
upper bound on interferendg D;, HP;, m), calculated based dPA- LCusing Eq.[(6.7),
may be lowered by not including all the tasks and all the pgsoes in the corresponding
schedulability test. The HPA policy can exploit this be@itgprovides “separation of
concerns” in the sense that (i) tBA- LCtest can be applied (due to the predictability
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of global FP scheduling) only to theg: — m') lowest-density tasks to be scheduled
on (m — m’) processors, and (ii) the remainimg highest-density tasks are assigned
(without any concern) the highest fixed priorities for some0 < m’ < m. This is the
main principle in developing the imprové#i ODA- LCtest.

Based on Observatidn 5.1, the entire task3és global FP schedulable if the
(n —m') lowest-density tasks are schedulable usingdba- LCtest on(m — m') pro-
cessors. Note that tHé ODA- LC test dominates th€DA- LCtest (i.e., whenn’ = 0,
H ODA- LC is equivalent to theODA- LC test; and Example 1 shows the superior-
ity of H ODA- LC to the ODA- LC test). Figurd_6J2 shows the pseudocode for the
H ODA- LC test. Each of then’ highest density tasks is assigned the highest fixed
priority in line 4 of Figurd 6.2 and the remainirig — m’) tasks are tested for schedu-
lability using theCDA- LC test on(m — m’) processors in line 6. If the OPA returns
“success” (in line 6) for somen’, 0 < m’ < m, then the task sdf is decided to be
FP schedulable.

Algorithm H QDA- LC(I", m)

1. form’=0to(m—1)

2. if(m’ > 0) then

3 7, < the highest-density task in

4 assignr, the highest fixed priority

5. =r"-{mn} /I one task is removed

6 if OPA(", m — m/, DA- LC) returns “success” then

7 return “schedulable”

8. return “schedulability can not be determined” /l whenftirdoop ends

Figure 6.2: TheH ODA- LCtest

Remember that the OPA algorithm can not be applied toRh&- LC test since it is
OPA-incompatible[[DB11b]. However, HPA policy is applidalio theRTA- LC test
as follows (called, thét+ RTA- LCtest):assign then’ highest-density tasks the highest
fixed priorities and the fixed-priority ordering of the remaig (n — m’) lowest-density
tasks remains the same as the original fixed-priority ondgihat is given for the entire
task sefl’. Using Observation 51 following Lemnia b.6, the entire task’ is global
FP schedulable if thén — m') lowest-density tasks are feasible using RiéA- LC test
on (m —m') processors for some’, 0 < m’ < m. For a given priority assignment for
T, itis not hard to see that thé RTA- LCtest dominates thBRTA- LCtest.

It is empirically shown in[[DB11b] that th€®DA- LC test significantly performs
better that theRTA- LC test. Therefore, it is expected that thie ODA- LC test also
guarantees such improvement over thd&RTA- LCtest. The A- DA schedulability test
proposed in next section further improves HteODA- LCtest.
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6.5 Thel A- DA Test

A new priority assignment policy and schedulability test)exd thel A- DA test, is pro-
posed in this section. THe ODA- LCtest in Sectiofi 614 is developed by observing that
if not all the higher-priority tasks and all the processarsiacluded when applying the
DA- LCtest to a lower-priority task, the pessimism in the estioratf the upper bound
on interference due to the higher-priority tasks on a lowarjy task can be reduced.
The basic idea for applying the HPA policylih ODA- LCtest is to keep some tasks and
processors “separate” from the schedulability analysia lofver priority task. Notice
that theH ODA- LC test “separates” a total ofi’ highest-density tasks, here referred
to as ‘separated tasks, and “separates” a total of:’ processors, here referred to as
“separated processors from the schedulability analysis of the remainifig — m’)
lowest-density tasks. The separated tasks and procesearstaconsidered while eval-
uating theDA- L Ctest for a lower-priority task. Thereforthe number o€l tasks when
applying theDA- LCtest to each of thén —m’) lower-priority tasks in theéDDA- L Ctest

is limited to at mos{m — m’ — 1) rather than(m — 1) for somem/, 0 < m’ < m.

In this section, a new and novel criterion is proposed tordatee the set of tasks that
are separated when analyzing the schedulability of a Igsierity task. The proposed
criterion for separating tasks is special in the sense thshot based on “highest den-
sity” and separatedifferent set of tasks for each lower priority tasks. The “separation”
of tasks and processors has nothing to do with partitiondtipmcessor scheduling —
the separation only exists as a means for reducing the psssiof interference due to
the higher-priority tasks on a lower-priority task.

Based on this new criterion, a new priority-assignment lgon and the corre-
spondingl A- DA test for global FP scheduling is presented. First, an ogendaf the
proposed priority-assignment policy is presented in sctim®6.5.1. Then, in subsec-
tion[6.5.2, the elegant criterion for finding the set of sapedt tasks for a lower-priority
task is proposed. Finally, the algorithmic details of thiefity-assignment policy and
thel A- DA test based on this new criterion is proposed in subsectng.6.

6.5.1 Overview of thel A- DA Test

In this subsection, an overview of the priority assignmeamtthe| A- DA test is pre-
sented. Thé A- DA test checks whether all the tasks are successfully assgyiwdies
while at the same time also verifies the schedulability oftdsis. If all the tasks are
assigned priority, then it is also guaranteed that all teksaneet their deadlines.

The proposed priority-assignment policy applies the pplecof Audsley’s OPA
algorithm: it assigns priorities to the tasks stautifigpom lowest-priority levelPL=1
to the highest priority levelPL=n. At each priority levelPL, all tasks that are not yet
assigned any priority are called thgority-unassigned tasks'he objective is to assign

5In this chapter, it is assumed without loss of generality #haisk having priority level 1 (n) has the lowest
(highest) fixed priority. This simplifies the mathematical @@Rg in proving the correctness and domination
of thel A- DAtest.
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fixed priority to one of the priority-unassigned tasks athepdority level. Each of the
priority-unassigned tasks at each priority level is chéldke priority assignment using
the DA- LCtest until one such task satisfying tba- LCtest is found.

Each of the priority-unassigned tasks when selected asdidzda for priority as-
signment is called thiarget task. Given a target task at priority levell, thel A- DA test
temporarilyseparates:’ processors and separatestasks from the set of other priority-
unassigned tasks whee< m’ < m. Unlike the previously proposed CDA- LCtest,
them’ separated tasks armt assigned any priority when separated, and more impor-
tantly, the criterion for selecting the separated taskei®ased on the “highest density”.
A new criterion for selecting the tasks for separation fahe@rget task at each priority
level is proposed (the criterion will be presented in Sutisr®.5.2).

After separatingn’ tasks for a particular target task at priority lefl, it is checked
(using theDA- LC test in Eq.[(6.B)) whether or not the target task can be asdigni-
ority level PL. The separated tasks and separated processors are natecedsivhile
evaluating thédDA- LCtest for the target task. If the target task passe®thd_Ctest at
priority level PL, then the task is assigned priority lewll. If the target task does not
pass théA- LCtest at priority levePL, then another priority-unassigned task is selected
as the target for priority assignment at priority lefdl. If no priority-unassigned task
can be assigned priority leveL, the priority assignmerfails. If all tasks are assigned
priorities, then the priority assignmesiicceeds

When a target task can not be assigned priority IBkekhe corresponding separated
tasks and separated processors are no more consideredateepaThese tasks along
with other priority-unassigned tasks are considered adidates for selecting the next
target task at priority levePL. Similarly, if a target task is assigned priority levell,
then the corresponding separated tasks and separatedgorxare no more considered
“separated”. And, these tasks are also considered as eaeslitbr target task at next
priority level. Thus, the separated tasks and separateggsors for each target task are
temporary in the sense thatiority assignment for each new target task always starts
with all them processors and all the priority-unassigned tasks

6.5.2 New Criterion for Separation

In this subsection, the elegant criterion for separatirgtétsks for each target task
is designed. Remember thigt ODA- LC test separates:’ highest-densityasks from
T’ and then applies th€DA- LC test to the remainingn — m’) lowest density tasks
using (m — m’) processors for some’, 0 < m’ < m. Note that thesameset ofm/’
highest-density tasks having the highest fixed prioritiesadways kept separated from
all the (n — m') lowest-density tasks ia- ODA- LCtest. These separated highest-
density tasks are “constant” in the sense that the same séthifhest density tasks are
kept separated when determining the priorities of(the- m’) lowest-density tasks on
(m —m’) processors based on tBBA- LCtest.

The reason for separating the highest density tasks @DA- LCtest is the feelings
that the tasks that are responsible the most, for the pessiinivolved in the interfer-
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ence calculation using tH@A- LC test applied to task;, are the highest-density tasks.
However, by studying the details of the propod¢dODA- LC test, a very interesting
fact is observedit is not necessarily the pessimism of the interference estiation
due to the highest-density tasks that may cause some loweriprity task 7; to fail
the DA- LCtest To see why, consider the following example:

Example 6.2. Consider four tasks if' = {r,...74} to be scheduled om = 3
processors using global FP scheduling. The paramétérd,, T;) of the four tasks
are as follows:(26, 51,54), (11,14, 25), (32,33,37), and(19, 25,29). The densities
ared; = 0.509, o = 0.785, /3 = 0.967, anddy = 0.760. The task sef” does not
pass thé+ ODA- LCtest. In particular, none of the taskslircan be assigned the lowest
priority level by separating:’ highest-density tasks for amy’ = 0, 1, 2.

However, there exits a valid fixed priority assignment thatld make task sdf
global FP schedulable. Consider that the two talgksty} are separated along with
m’ = 2 processors. The other two tasks,, 72} are schedulable ofm — m’) = 1
processor by assigning the two lowest priority levls=1 andPL=2 to tasksr; andrs,
respectively. Then, the two separated taskandr, are assigned the highest priority
levels PL=3 and PL=4, respectively. These two highest priority tasksand =, are
trivially schedulable since we have = 3 processors; and these two highest priority
tasks uses at most two processors at any time. Evidentastt bne processor is always
available for executing the two lowest priority tagksandr,. Consequently, the entire
task set is global FP schedulable based on obsenlatibiNbté that the two separated
tasks 73 and 74 are not the two highest density tasks. O

The lesson learned is that “separation” based on the HPAypwlieffective; how-
ever, the best criterion to separate the tasks from the stddtity analysis of the lower
priority tasks is not necessarily should be based on “higihessity”. Another important
fact is that the §onstan} set ofm’ highest-density tasks may not be thestset of sep-
arated tasks when checking the schedulability for eacheofdtiver-priority tasks using
the DA- LCtest. A new criterion for separating the tasks when congidehe priority
assignment of a target task using & LC test is proposed for this purpose. As will
be evident nowthe proposed criterion separates different sets of taskedoh possible
target task at each priority level

Proposed Separation Criterion

Consider a target task at priority level PL whereHP; is the set of all the higher-
priority tasks ofr;. Assume that task; does not pass thBA- LC test when applying
the DA- LC test by considering all the tasks froHP; and all them processors. So,
according to Eq[{619), the upper bound on interference, |2 | | that taskr;
suffers due to the tasks HP; is greater thatD; — C;).

Now, separatingn’ tasks from seHP; and separatingn’ processors may able
taskr; to pass theDA- LC test. The objective is to separate thesétasks fromHP;
such that the interferencg/«2=".) | is maximallyreduced. Andgn’ processors
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are also kept separated in such caseSHP is the set ofm’ separated tasks selected

from setHP;, then the value of (new) interference on any job of tasKafter sep-
aration) is| Z:(2HPi—SEP.m—m) | \yhere the computation of total interfering workload
I;(D;, HP; — SEP, m —m’) considergm —m’ — 1) carry-in tasks from se¢HP; — SEP).

The challenge is to find s&EP such that the value of (new) interference, which is

| LlDe B —SEP(m—m))) | hecomes as small as possible WHBE® is the set ofin’ sep-
arated tasks selected from $4R;. In other words, the problem to solve is the follow-
ing: What is the best way to separaten’ tasks from setHP; such that the value of
I;(D;, HP;, m) is maximally reduced for somem’ > 0?

Note that when task; fails to pass thdA- LC test before separation of any task
from HP;, the value ofl;(D;, HP;, m) depends orim — 1) carry-in tasks from setP;.
Let ci s andncs respectively denote the sets @f tasks and\C tasks from seHP;
such thatHP; = (ci s U ncs). According to Eq.[(6]7)ci s = Maxz(HP;,m — 1),
and then obviousiycs = (HP;, — ci s). Separating each of the’ tasks fromHP; is
equivalent to separating that task either frons orncs.

First, the criterion for separating exactipetask fromHP;, particularly, separating
one task either from seti s or ncs is considered. Then, based on this criterion of
separating one task, the criteria for separating subseétpsks is presented.

(Separation of one task)\Whenm' = 1, either oneCl -task or oneNC-task is sep-
arated and this task is selected either fromcdet or ncs, respectively. Remember
that it is also needed to separaté = 1 processor. Thus, the number@f tasks after
separation is at mogtn —m’ — 1) = (m — 2) when applying théA- LCtest to task;
considering the non-separated tasks fidf and(m — m’) processors.

When separating @l -taskry, wherer,, € ci s C HP;, the value off;(D;, HP;, m)
is reduced by Ei(Di) (i.e., the carry-in interfering workload of task) according to
Eq. (6.T). In order to maximally reduce the valuggfD;, HP;, m) by separating exactly
oneCl task fromci s, the best criterion is to select the task frans that has the
largestvalue of carry-in interfering workload. The largest valdardgerfering carry-in
workload of any task iri s is given as follows:

o]
maz {1 5i(Di)}

Separating aNC-task 7;, wherer; € ncs C HP;, hastwo effects. First, separating
the NC taskr; from ncs reduces the value df (D;, HP;, m) by | ﬁ(Di) (i.e., the non
interfering carry-in workload of;). Second, one of th€l tasks fromci s becomes a
newNCtask since, after separation, there are at riast 2) carry-in tasks. Th€l task
from ci s that becomes BIC task is the one with theninimumvalue of the difference
between its carry-in and non carry-in interfering workl@adong all the tasks ini s.
This is because, after separation, i@z function in Eq. [(6.F) would considérm — 2)
carry-in tasks that have the largest values of the diffexdrtween the carry-in and non
carry-in interfering workload. Thus, separatinbl@taskr; fromncs reduces the value
of I;(D;,HP;,m) by the following amount:
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I ;\K{\(D )+ min {12 FF(DZ)}

T4ECI S
where min_ {I D FF(D;)} is theminimumvalue of the difference between the carry-
T4ECI S 4

in and non carry-in interfering workload for any taskdns. Note that the value of

ﬂézn {1 377 (Ds)} is completelyindependenbf the NC task 7; that is selected for
T4ECI S

separation fronmcs. Thus, in order to maximally redude(D;, HP;, m) by separating
exactly oneNC task fromncs, the best criterion is to select tINE task fromncs that
has thelargestvalue of non carry-in interfering workload. The largestuglof non
carry-in interfering workload of any task imcs is given as follows:

gz, {1 53(D9)
The criterion to determine whether to separa@ gask or aNC task, whenn’ = 1, is
determined as follows.

Criterion For Separating One Task: Whenm' = 1, the taskr, € ci s that satisfies
19.(D;) = maz. {1 ¢.(D;)} is selected for separation if
; rheci ;

maz {l ,“( i)} > ( maz {1 7 N(Dy) Y+ min {I D'FF(DZ) }) (6.10)

TR ECI S jENCcs TqgECI S

otherwise, task;, € ncs satisfyingl ¥(D;) = =maz {175 ( ;) } is selected for
> T;€NCS

separation. O

(Separation of more than one task)f m’ > 1, then one task from séf?;, = (ci s U
ncs) is first separated using the criterion in Hg. (6.10). Theis, $eparated task, say
taskr,, is removedfrom eitherci s or ncs depending on whethet, € ci s or 7, €
ncs, respectively. Now separating the next task is the samepasating one new task
from the updated séti s Uncs) = HP; — {75} using the criterion in Eq[{6.10). The
pseudocode for selecting the tasks from seHP; for separation is given in Figure 6.3.
The algorithmSel ect (4, m’, 7;,t) in Figure[6.8 returnsn’ separated tasks selected
from sety considering the target task and a problem window of size

The algorithm in Figure 613 has four parameters. The firsipatery is the set of
higher priority tasks of the target task the second parameter’ is the number of tasks
that need to be separated from gethe third parameter; is the target task, and finally,
the fourth parameteris the length of the problem window. It will be evident latbat
the proposed priority assignment assignment policy forlthAeDA test separates:’
higher priority tasks from sétP; by callingSel ect ( HP;, m’, 7;, D;) before applying
the DA- LCtest for the target task considering the problem window of lengih,.

The set ofCl tasks andNCtasks from set) are determined in line 1-2 of Figure 6.3
where sef\/ax (1), m’ — 1) is defined in Eq[{€]4). Each iteration of the loop in line 3—-13
selects one task frotfti s U ncs) for separation. The task to be separated during each
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Algorithm Sel ect (v, m/, 7, t)

Il is the set of higher priority tasks of

/I m’ tasks needs to be separated fromyset
/I The target task is;

/I The problem window is of length

1. cis =Max(p,m —1)
2. ncs=¢y—cis
3. Forg=1tom’ [/l each iteration separates one task

4.  Findthe task, € ci s wherel ¢,(t) = mag | a.(t)
’ TLECl S ’

i NC _ NC
5. Find the task;, € ncs wherel ;%(¢) = max I 5i(t)

6.  Find the task, € ci s wherel 2.FF(¢) = min_ | DFE(t)
’ T4E€CI S ’

7. 09,0 >1 l’}‘f;f(t) + 1 2FF(t) ) Then
8. cis=cis—{r}

9. Else

10. cis=cis—{r.}

11. ncs = (ncs U{r.}) — {m}

12. EndIf

13. End For

14. Returny — (ncs U ci s)

Figure 6.3: Algorithm for selecting the tasks for separation

iteration is either &l task fromci s or aNC task fromncs. TheCl taskr, € ci s
having thelargestcarry-in interfering workload is determined in line 4. TNE task
7, € ncs having thelargestnon carry-in interfering workload is determined in line 5.
TheCl taskr. € ci s having thesmallestvalue of the difference between its carry-in
and non carry-in interfering workload is determined in lthe

The condition in line 7 (based on the criterion in Hg. (6.1@)ermines whether
separation of th€l taskr, or separation of thBIC taskr, would maximally reduce the
value of I;(¢,4, m). If the Cl taskr, is separated, i.e., condition in line 7 is true, then
7, iIsremoved from sati s in line 8. If theNCtaskr, is separated, i.e., condition in line
7 is false, then th€l taskr. determined in line 6 becomes\& task, and thus task. is
first removed from seti s in line 10. Then, task, is included in setics, and finally,
theNCtaskr, is removed from seatcs in line 11. Separation of the subsequent task in
next iteration uses these updated set€loindNC tasks. When the for loop exits, the
set of totalm’ separated tasks ih — (ci s Uncs) is returned in line 14.
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Lemma6.1 now shows that the proposed separation critefialgorithm Sel ect in
Figure[6.3B isbetterin terms of reducing the pessimism in interference estionafor
the DA- LC test in comparison to that of the separation criterion teatdsed on the
“highest-density” policy as proposed for thie ODA- LC test.

Lemma 6.1. If task 7; passes th®A- LC test by separatingn’ highest-density tasks
from setHP; of higher priority tasks, then; also passes thBA- LC test by separat-
ing the tasks returned by algorithi®el ect ( HP;, m/, 7;, D;) from setHP;, where
DA- LC test in both cases after separation uges — m’) processors and the non-
separated tasks from seP; .

Proof. Let SEPye,,sity iS the set ofn’ highest-density tasks from 96®; andH gey,sity =
(HP; — SEPgensity). Let SEP,.,, is the set ofm’ tasks returned by the algorithm
Sel ect (HP;,m/, 7y, D;) andH e, = (HP; — SEP,,,,). If 7; passes th®A- LCtest
by separating the tasks BEP ..., from HP;, then according to th®A- LC test in
Eg. (6.9), the following holds:

Ii(D;, Hiensity, m —m')
m—m’

J < (Di — Ch)

Note that the interfering workload of each task e HP; for the DA- LC test is calcu-
lated based on static parameters of the tasi.e., independent of other tasksHh®;).
Algorithm Sel ect at each stage separates fromtdetthe task that maximally reduces
I;(D;,HP;,m). Since the total interfering workload is the sum of interfgrworkload
of the non-separated tasks, algoriti8al ect maximally reduced;(D;, HP;,m) by
separatingn’ tasks from seHP;, and we must have

Iz(Dza Hnew7m - m/) S Iz(Dza Hdensity7m - m/)

Consequently, the following also holds

LIZ(D“ Hnewa m — m/)

m—m/

Jg(chw

which implies that task; also passes thA- LCtest. O

The two tasks (i.e.r3 andty), separation of which makes the task set in Exarhple 6.2
(pagd 94) schedulable, can be determined using the sepacaitierion of theSel ect
algorithm presented in Figure ®.3; but can not be determisety the “highest-density”
based separation criterion. Thus, the proposed separait@nion is betterin terms

of reducing the amount of pessimism in calculating the fetence due to the higher
priority tasks on a lower priority task. Now the details oétpriority assignment pol-
icy for global FP scheduling based on this new separatidern is presented. The

| A- DA test, presented in Subsectlon 615.3, essentially comitfireeschedulability test
and priority assignment of the tasks. And, successful pyiassignment of all the tasks
implies that the task set is schedulable using global FPdsdimg).
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6.5.3 Priority Assignment Algorithm: the | A- DA Test

The development of the priority assignment algorithm farltid- DA test takes the ad-
vantage of the HPA policy based on the elegant separatiterion proposed in last
subsection, applies tHeA- LC test to each target task, and uses the basic idea of OPA
algorithm for assigning the fixed priorities to the tasks.ehmiority assignment to the
tasks inI" starts from the lowest priority levéiL = 1 ends at the highest priority level

PL = n. The pseudocode of the priority assignment policy of ltie DA test is pre-
sented in Figurg6l4.

Algorithm | A- DA(T', m)

1. Ty=T

2. ForPL=1to(n—m)

3. Foreach; e I'y lla new task is selected as target task
4. HPZ = FU_{Ti}

5. Form’ =0to (m — 1) /Im’ tasks fromHP; will be separated
6. H=HP; — Sel ect (HPZ-,m',TZ-, Dz)

7. If ( {WJ +C; < D;) Then

8. Taskr; is assigned priority levePL

9. 'y =Ty —{n}

10. If (PL=n — m) Then

11. /lthere aren tasks left in[';y

12. Each task i’y is assigned one unique
13. priority level betweetin — m + 1) ton

14. Return “Schedulable”

15. Else

16. Break and go to next priority level (line 2)
17. End If

18. End If

19. End For

20. End For

21. Return “Failure”

22. End For

Figure 6.4: Thel A- DA test

Initially, all tasks are considered as potential targeksder priority assignment at
the lowest priority levePL=1. All the tasks in sel” are stored in variabl& (set of
priority-unassigned tasks) in line 1. Each iteration of ib@p in line 2—22 represents
one priority level starting from the lowest priority levBL=1 to the highest priority
level PL=( n- m) . Note that priority assignment of the final priority-unassigned tasks
is trivial since these tasks are assignedithbighest priority levels. Therefore, the loop
in line 2-22 runs from 1 tgn — m) and tries to assign one priority-unassigned task one
priority level.
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At each priority levelPL, the inner loop in line 3—20 considers one-by-one priority-
unassigned task from sBt; until one such task is assigned the priority leRel During
each iteration of the loop in line 3—20, a new taske I'y; is selected as a target task in
line 3. The set of other priority-unassigned tass = (I'y — {r;}) is determined in
line 4. If the target task; is eventually assigned the priority level, then the tasks in
setHP; will have higher priorities than task.

For a given target task, the algorithm (temporarily) separates tasks from setiP;
and it also separates’ processors. During each iteration (using the iterativéaisde
m’ = 0,...(m — 1)) of the loop in line 5-19, a total ofx’ tasks from seHP; are
separated in line 6 by calling algorith®el ect (HP;,m/, 7;, D;) . The other non-
separated, priority-unassigned tasks fromH#t are stored in setl in line 6 where
H = (HP;, — Sel ect (HP;,m’, 7;, D;) ). Notice that the set of separated tasks for each
target task may bdifferent Next theDA- LCtest is applied in line 7 to determine if the
target taskr; can be assigned priority levEL by assuming the higher priorities of the
tasks in setd. In such case, thBA- LC test usegm — m’) processors and only the
higher priority tasks in sef{.

If the DA- LCtestin line 7 is satisfied, then taskis assigned priority levé?L in line

8 and removed from the set of priority-unassigned tasksm 9. If the current priority
level PL is equal to(n — m), i.e., condition in line 10 is true, then there are exaetly
(priority-unassigned) tasks iy afterr; is removed fronT'y in line 9. And, each of
thesem priority-unassigned tasks iy is assigned one unique priority level between
PL=(n-m+1) andPL=n in line 12-13 (note that these are thehighest priority tasks
and are always schedulable). At this point, all tasks ar@masd priorities and the
algorithm returns “schedulable” in line 14. If the curremiopity level PL is less than
(n — m), i.e., the condition in line 10 is false, then the prioritysigmment for next
priority level starts (jumping from line 16 to line 2).

If the DA- LC test for taskr; in line 7 is never satisfied for any’, 0 < m’ < m,
then the for loop in line 5-19 exits; and the loop in line 3—2sts another new target
task. If nonewtask can be selected as a target task at line 3, then the foindne
3-20 exits. Since at this stage theredstask that is assigned the current priority level
PL, the algorithm returns “Failure” in line 21.

Notice that if a target task can not be assigned prioritylI&te the correspond-
ing separated processors and separated taskeanere considered “separated”. And,
these tasks along with other priority-unassigned tasksamsidered as candidates for
selecting the next target task at the current priority levBImilarly, if a target task
is assigned priority levelPL, the separated tasks along with other priority-unassigned
tasks are considered as candidates for selecting the taglstat next priority level. In
other wordsthe priority assignment for each new target task starts waitlthe priority-
unassigned tasks, i.e., d&t, and all them processorslt is not difficult to see that the
time complexity of algorithm A- DA is polynomial.

Correctness of thel A- DA Test: The correctness of the priority assignment policy of
the | A- DA test is proved in Theorefn .2 by showing that if th& DA test in Fig-
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ure[6.4 successfully assigns the priorities, then all trazllilees are met. The following
Lemmd®&.2 will be used in Theordm 6.2.

Lemma 6.2. Consider four positive integetrs, =, y, and z. The following holds:

VUJ +y<zifandonlyifw<z-(z—y+1)—1

X

Proof. (if part) It will be shown that, ifw < z-(z —y +1) — 1, then[%j Yy <oz
Sincew < x - (2 —y + 1) — 1, then the following (due to integer assumption) is true

w<z-(z—y+1)= %<(z—y+1)

= (since {wJ < E)
X X

V;J <(z—y+1)

= (since VUJ and(z —y + 1) are integers
T

V’J <(z-y) = EJWSZ

T

(only if part) It will be shown that, if( % | +y < 2, thenw < x- (2 —y + 1) — 1 holds.
Since,| ¥ | +y < zand(% — 1) < [ %], the following is true

(Efl)+y<zz w<z-(z—y+1)
x

= (sincez - (z —y + 1) is an integey
w<z-(z—y+1)—1

O

Theorem 6.2. If algorithm | A- DA in Figure[6.4 returns “schedulable”, then all the
tasks in sef’ meet deadlines using globBP scheduling onn processors according to
the priorities assigned byA- DA.

Proof. If algorithm | A- DA in Figure[6.4 returns “schedulable”, then each of the tasks
in I" is assigned a unique priority level betwekto n. It will be proved that each task
that is assigned a priority level using algorithmA- DA meets all the deadlines.

If a taskr; is assigned any priority levé?L between(n — m + 1) andn in line
12-13 of Figuré 614, then task is one of them highest-priority tasks. Since we have
m processors, each task assigned any priority level betdweenm + 1) andn meets
all its deadlines. Now consider a taskthat is assigned priority leve?L such that
1 <PL < (n—m+1). Itwill be shown that task; meets all the deadlines.
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SincePL < (n—m+1), taskr; is assigned priority in line 8 of theA- DA algorithm
in Figure[6.4. This implies that the condition in line 7 isd@rand the following holds:

\\Ii(Dia Ham B m/)

m —m/

J L <D (6.11)

whereH = [HP; — Sel ect (HP;, m/, ;, D;)] and the seHP; (determined in line 4) is
the set of all tasks having higher priorities than that ok tgs

Since Eq.[(6.111) holds, the maximum interference that abyojotaskr; suffers
due to the higher priority tasks iff is LW%H%WJ. According to Lemma 612,
Eq. (6.11) holds, if and only if,

L(Di,Hm-m')<(m—-m')-(D; —C; +1) — 1 (6.12)

Thereforethe upper bound on the total interfering workload due to teks inf within
the problem window of any job of taskis [(m —m/) - (D; — C; + 1) — 1].

Notice that after task; is assigned priority levePL, the corresponding separated
tasks (i.e., tasks in s@tP, — H]) are considered as target tasks at next higher priority
levels and are ultimately assigned higher priority levelnttaskr;. Thus, taskr; suf-
fers interference not only from the tasks in $étbut also from the “separated” tasks
returned by the algorithr®el ect (HP;,m’, 7;, D;). The upper bound on interfering
workload due to each of the tasks returned by the algorBeMmect (HP;, m/, r;, D;)
is (D; — C; + 1) according to Eq.[(6]4) and EJ.(6.5) as given in page 87. Thus,
the total interfering workload due to all the’ separated tasks, determined by calling
Sel ect (HP;, m/, 7, D;), is at mostim’ - (Dy, — Cj, + 1)]. Thus, the total interfering
workload due to all the higher priority tasksht®; = HU Sel ect (HP;, m/, ;, D;) on
any job of taskr; is at most:

[(m—=m') - (Dy—Cx+1) =1+ [m' - (D, — Cx + 1)]
=m-(Dr—Ck)+ (m—1)

Because interference is an integer and all thgrocessors are simultaneously busy

executing the tasks iklP; when taskr; is interfered, the interference that any job of

task ; suffers (based on similar reasoning in [BCO7, GSYV09, DE)Y1b at most

L%J = (D — C%). Consequently, any job of task meets its deadline.
O

If I A- DA in Figure[6.4 returns “schedulable”, then all the task$'imeet deadlines
using global FP scheduling am processors according to the priorities assigned by
| A- DA. Thel A- DA test dominates thiee ODA- LCtest as is given in next theorem.

Theorem 6.3. If task setl" is schedulable using thie- ODA- LC test, thenl" is also
schedulable using thieA- DA test, and not conversely.

Proof. Proof in given in Appendik’A (pade 2P4). O
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6.6 Thel A- RT Test

The algorithm for the A- DA test in Figurd 64 applies theA- LC test in line 7 for
target taskr; by considering the higher priorities of the tasks in Betising(m — m/)
processors and a problem window of lendih. Remember that the response-time-
basedRTA- LC test dominates the deadline-analysis-ba3adL C test. However, the
RTA- LCtest can not be applied in line 7. This is because the respgionse?;, for each
taskr, € H has to be known before applying tREA- LCtest for taskr; in line 7. This
way theRTA- LC test being OPA-incompatible can not be used in linia Figure[6.4

for the | A- DA test. However, there is another response-time test prdpmgdavis
and Burns in[[DB1D], called th® RTA- LC test, which uses the same schedulability
analysis as th®A- LC test but uses a problem window that is never larger than that
of considered for th®A- LC test. TheD- RTA- LC test is OPA-compatible and domi-
nates théDA- LC test. Based on these observations,ItAe DA test is further improved
by using theD- RTA- LC test and the proposed criterion for separating the taskeiwhe
determining the schedulability and priority of each targskr;.

In this chapter, the A- DA test is improved by incorporating tHe RTA- LC test
rather than using thBA- LC test to determine whether a target task can be assigned
a particular priority level. First, th® RTA- LC test is presented in subsection 616.1.
Then, thd A- RT test and its priority assignment policy are proposed inscilis6.6.2.

6.6.1 TheD- RTA- LCTest

The D- RTA- LC test [DB10] is similar to theRTA- LC test except that it uses the
Cl workload computation of th®A- LC test (given in Eq.[(6]3)) instead that of the
RTA- LCtest (given in Eq.(6]2)). The details of the RTA- LCtest are given below:

Workload. The NC workloadW<(¢) of 7, in an interval of lengttt is given as follows:
WC(t) = [t/Tk] - Cx + min(Cy, t — [t/Th] - Ti) (6.13)

TheCl workloadW (t) of 7, in an interval of lengtlt is given as follows:
W (t) = AY . Cp + min(Cy,t + Dy, — Cr — AF - T) (6.14)

whereA¥ = |(t + Dy, — Cy,) /T |.

Interfering Workload: The CI and NC interfering workloadl S’i(t) and| ,Q‘S(t) are
given as follows:

1 9.(t) = min(W (¢),t — C; + 1) (6.15)
135 () = min(WC(t),t — C; + 1) (6.16)
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The difference between th@ andNC interfering workload of task;, within the prob-
lem window of lengtht is denoted by ? F¥(¢) such that:

IR =18.0) =150 (6.17)

Total Interfering Workload. The upper bound on total interfering workload due to all
the tasks in sep C HP; is denoted by ;(t, ¢, m). The value of ;(¢, v, m) is calculated

as follows:
(t,m) =Y 135 > | PRt (6.18)

TEEY TkEMax(w,m—l)

whereMax (¢, m — 1) is the set of m — 1) tasks from set) that have the largest values
of I 2 FF ().

Interference. An upper bound on interference due to the tasks ion any job of task
7; within the problem window of lengthis |1 ;(¢, ¢, m)/m].

The D- RTA- LC Test: The D- RTA- LC test [DB10], which involves computing the
upper bound on the response time of each task T', is recursively given as follows
for finding the response timg; of taskr;:

—h

— | (RS HP:

BV o+ V(R“ “m)J (6.19)
m

?

Note that, in contrast to tHeTA- LCtest that computeR; using Eq.[(6.B), the response-

time R; of taskr; based on Eq[{6.19) does not need to know the response tirhe of t
higher priority tasksr, € HP;. It is not difficult to see that the three conditions for

OPA-compatibility (pagé83) are satisfied for theRTA- LCtest.

6.6.2 Priority Assignment Algorithm: the | A- RT Test

Thel A- RT test is presented in Figute 6.5. The algorith#+ RT in Figure[6.5 has

two parameters: the task détand the number of processors It determines whether

the task set is schedulable am processors by finding appropriate priority ordering
of the tasks in. The algorithml A- RT in Figure[6.5 is similar to the algorithm

| A- DA in Figure[6.4 with two major difference: (i) the OPA-comédi response time
testD- RTA- LCin Eq. (6.19) is used to determine whether a target task castigned
certain priority level, and (ii) then’ separated tasks are redetermined each time the size
of the problem window changes.

Initially, all tasks are considered as potential targekddsr priority assignment at
the lowest priority levePL=1. All the tasks in sel” are stored in variabl& (set of
priority-unassigned tasks) in line 1. Each iteration of lib@p in line 2—29 represents
one priority level starting from the lowest priority levBL=1 to the highest priority
levelPL=(n-n).

At each priority levelPL, the loop in line 3—27 considers priority-unassigned task
from I'; until one such task is assigned the priority leRel During each iteration of
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Algorithm | A- RT(T" , m)

1. Ty="T
2. ForPL =1to(n—m)

3. Foreachr; e T'y

4, HPZ‘:FU—{TZ‘}

5. Form’ =0to(m — 1)

6. R =C;

7. Forh =0to

8. H=HP; — Sel ect (HP; ,m’,;, R})

0. R e 04 |LELHEmom)

10. it B = R” Then

11. Taskr; is assigned priority levePL

12. FU = FU — {Ti}

13. If (PL= n — m) Then

14.

15. Each task if'y is assigned one unique

16. priority level betweetin — m + 1) ton

17. Return “Schedulable”

18. Else

19. Break and Go to next priority level (line 2)
20. End If

21. End If

22. if """ > D;Then

23. Break and go to next iteration in line 5

24, End If

25. End For //'loop with variableh in line 7 ends
26. End For // loop with variablem’ in line 5 ends
27. End For I/ loop with variabler; in line 3 ends
28.  Return “Failure”

29.End For I/ loop with variablePL in line 2 ends

Figure 6.5: Thel A- RT test

the loop in line 3—27, a new task € I'y is selected as a target task in line 3. The set of
other priority-unassigned taskl; = (I'yy — {r;}) is determined in line 4. If the target
taskr; is eventually assigned the priority levell, then the tasks iflP; will have higher
priorities than task;.

For a given target task;, the algorithm (temporarily) separate’ tasks from set
HP; considering the length of the current problem window andsb separates»’
processors. During each iteration (using the iterativeatdem’ = 0, ... (m—1)) of the
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loop in line 5-26, the response time of tasks calculated based on tie RTA- LCtest
in Eq. (6.19) by separating total of’ tasks from seHP; in line 8.

The initial value of the problem Windo@;J is set toC; in line 6. Remember that
in response-time-based analysis if the response time loffas greater than the length
of the current problem window, the size of the problem windsvwncreased until the
problem window is not greater than the relative deadlineheftask. The for loop in
line 7-25 determines the response time of taskor each possible size of the prob-
lem window. A total ofm’ tasks is separated from g€®; by considering the current

problem window of sizdi%? (i.e., for the current value of the loop varialéieby calling
the algorithmSel ect ( HPZ-,m’,n,F?) . The other non-separated, priority-unassigned
tasks are stored in séf in line 8 whereH = (HP; — Sel ect (HP;, m/, n,ﬁf’) ). The

size of the new problem Windoﬁghﬂ) is calculated in line 9 based on EQ. (8.19). If
the length of the new problem window size has not increased (he response time
calculation converges), then the target taskan be assigned priority levBL.

If the D- RTA- LCtest in line 10 is satisfied, then taskis assigned priority level
PL in line 11 and removed from the set of priority-unassignesdkdan line 12. If the
current priority levelPL is equal to(n — m), i.e., condition in line 13 is true, then there
are exactlym (priority-unassigned) tasks iny afterr; is removed fronT'y in line 12.
And, each of thesen priority-unassigned tasks ifi;; is assigned one unigue priority
level betweerPL=( n- mt1) andPL=n in line 15-16 (note that these are thehighest
priority tasks and are always schedulable). At this poilhtaaks are assigned priorities
and the algorithm returns “schedulable” in line 17. If therent priority levelPL is less
than(n — m), i.e., the condition in line 13 is false, then the prioritgigmment for next
priority level starts (jumping from line 19 to line 2).

If the D- RTA- LC test for taskr; in line 10 is not satisfied for curremt’ and the

new problem window siz@ihﬂ) > D; inline 22, then separating one more tasks is
considered by jumping from line 23 to line 5 in next iteratidfithe D- RTA- LCtest for
task; in line 10 is never satisfied for any’, 0 < m’ < m, then the for loop in line
5-26 exits, and the next iteration of loop in line 3 begins &lgsting another new target
task. If no new task can be selected as a target task at lifeeB,the for loop in line
3-27 exits. Since at this stage theraéstask that is assigned the current priority level
PL, the algorithm returns “Failure” in line 28.

The correctness of thieA- RT test follows from the correctness of thé\- DA test
proved in Theorerh 612. Moreover, thé\- RT test dominates thé A- DA test since
I i(ﬁf, H,m—m')inline 10 is never greater than(D,, H, m —m’) as is used for the
| A- DA test. In next section, the simulation results to compardhhtee proposed tests
(H ODA- LC, | A- DA, andl A- RT) with the state-of-the-af@DA- LCtest are presented.
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6.7 Empirical Investigation

In this section, empirical investigation into the performa of the proposed schedula-
bility tests of global FP scheduling is presented. The dgign of theoretical result,
for example, dominance of one schedulability test overlamtdoes not demonstrate
the average improvement of one test over another. Expetahienestigation of an it-
erative schedulability test is highly effective in comparidifferent schedulability tests
using randomly generated task sets. TIA- LC test proposed by Davis and Burns
[DB11K] is the sate-of-the-art iterative global FP schadility test for constrained-
deadline tasks. Each of the three tests (HeQDA- LC, | A- DA, andl A- RT) proposed
in this chapter dominates tt@A- LCtest. To quantitatively measure the improvement
of the proposed tests over the state-of-the@- LC test, simulation using randomly
generated task sets are conducted. The empirical invéstigato the following four
schedulability tests in Table_8.1 are presented in this@ect

ODA- LCTest The OPA algorithm in Figure_6l.1 combined with
the DA- LC test (proposed by Davis and Burns
[DB11h)).

H ODA- LCTest | The algorithm in Figure 62 (proposed in this the-
sis, pag€91).

| A- DA Test The algorithm in Figurgé 614 (proposed in this the-
sis, pag€ 99).

| A- RT Test The algorithm in Figure 615 (proposed in this the-
sis, pag€ 105).

Table 6.1: Different Iterative Schedulability Tests

The metric, calledacceptance ratipis used to evaluate the effectiveness of each
schedulability test. The acceptance ratio of a schedithalést is the percentage of
the randomly generated task sets that are deemed schedutahd that schedulability
test at a given utilization level. The larger the value ofegatance ratio at a utilization
level, the better is the test in determining the global FRedakability of task sets at that
utilization level.

The UUni f ast - Di scar d algorithm presented in subsection 516.1 (page 66) is
used to generate utilization values of a task set with cardinalityand total utilization
U. Once a set of utilizations {uy,us, ... u,} Of a task set is generated, the other
parameters of each taskare generated as follows:

e The minimum inter-arrival timg; of each task; is generated from the uniform
random distribution within the rand&0ms, 1000ms].

e The WCET of tasks; is set toC; = u; - T;.

e The relative deadlind®; of taskr; is generated from the uniform random distri-
bution within the rangéC;, T;].
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Each of the experiments is characterized by a frairn) wherem is the number
of processors and is the cardinality of task set. For each experimgntn), task sets
are generated at 40 different utilization leve]8:025m, 0.5m, ...0.975m, m}. A total
of 1000 task sets at each of the 40 utilization levels usiedAbni f ast - Di scard
algorithm with parameters andU (whereU is the utilization level) are generated. Each
of the 1000 task sets generated at a particular utilizageal] sayU, has cardinality
n and total utilization equal td/. The schedulability of each of the 1000 task sets
generated at each utilization level are determined baseatieoschedulability test for
each of the four priority assignment policies in Talhle] 6.4 #re acceptance ratio for
each test is computed.

6.7.1 Result Analysis

A series of experiments for different pairs @fi, n) wherem € {2,4,8,16} andn €
{10, 20,40, 60, 80,160} for constrained-deadline tasks are conducted. The acuEpta
ratios at each of the 40 utilization levels for each of thergotests in Tabl€ 611 are
calculated for each experiment. The important trends aiséroations based on these
experiments are presented in this section.

In each graphs presented in this section, the x-axis repiesee system utiliza-
tion U/m for utilization level U and the y-axis represents the acceptance ratio. The
acceptance ratios of all tests are around 100% at relatigehutilization level (e.g.,

U < 0.3m) and 0% at very high utilization level (e.d/, > 0.85m). The acceptance
ratios for system utilization between 30% to 85%, which espond to the utilization
levels betwee.3m and0.85m, are plotted.

The impact of task set cardinality on the theoretically He&t RT schedulability
test is first discussed based on experimental results. liteikevident that when the
cardinality of the task set is 5m, then the acceptance ratio of tha- RT test becomes
relatively small, and it is concluded that= 5m represents the worst-case parameter
setting regarding the task set generation algorithm fopthposed schedulability tests.
Then, the comparison among all the four schedulabilitystiesTabld 6.11 is presented to
see the improvement of the proposed tests over the stateeafrtODA- LCtest for task
set cardinality equal tom.

Impact of n on thel A- RT Test

In order to measure the impact of task set cardinality inrdeiténg the schedulability

of random task sets using thé\- RT test for some givemn, the acceptance ratios for
experiments with{m = 4,n) wheren = 8,10,12, 15,20 are presented in Figute 6.6.
The acceptance ratios of thé\- RT test at each utilization level decreases as the task
set size increases fromto 20 for a givenm. It seems to be more difficult to schedule
task sets with larger cardinality. This reason can be enpthias follows: as the car-
dinality of the task set increases, the number of tasks baelatively large utilization
also increases. Each of such heavy utilization tasks in thrstvcase may occupy one
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processor and leaving relative fewer number of free praredsr other tasks. Conse-
quently, the other tasks can not be decided to be schedulalrig thel A- RT test on
an insufficient number of processors.

Variation in n for a given m=4

n=8
100 % 4 ; n=10
) n=12
n=15 & |
n=20 -«

b b

»

80 % r

60 %

40 %

Acceptance Ratio

20 %

0%

0.4 0.6 0.8
Utilization / m

Figure 6.6: Acceptance ratios of thé A- RT test for experiments withn = 4 andn =
8,10, 12,15, 20.

When the cardinality is increased frahto 20 for m = 4, the decrease in acceptance
ratios of thel A- RT test, due to having relatively higher number of large uilian
tasks, only tells one-side of the story. If the cardinalifytlte task sets is increased
beyond a certain number (e.g..> 5m), then the trend is reversed: acceptance ratio at
each utilization level increases with the increase in nunalbéasks in a task set. The
acceptance ratios for experiments with = 4, n) wheren = 20, 40, 60, 80, 100 for the
| A- RT test are presented in Figurel6.7.

Variation in n for a given m=4

100 % 4

80 %

60 %

40 %

Acceptance Ratio

20 %

0%

Utilization / m

Figure 6.7: Acceptance ratios of thé A- RT test for experiments withn = 4 andn =
20, 40, 60, 80, 100.

In such case, the acceptance ratios ofl tAe RT test increases as the task set size in-
creases for a givem. This phenomenon can be explained as follows: as the cditgina
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of each task set increases beyamnd, the number of high utilization tasks starts decreas-
ing since the total utilization of the task set is now disitéd across higher number of
tasks. A low utilization task uses less computing resounck@ovides more opportu-
nity for other tasks to execute on the processors. And, teskish smaller number of
high utilization tasks does not suffer much from Dhall'seetf

The conclusion from these experiments is tfrat 5m) seems to be the worst-case
parameters for the experimental setup. To compare the iraprent of the proposed
tests in comparison to the state-of-the-@DA- LC test, results related to the experi-
mental parameter = 5m are only presented in this section. The experiments with
m = 4,8,16 andn = 3m, 10m are given in the Appendx]B.

Observation 1: Remember that the average total density of task set ingeesthe
cardinality of task set increases for a fixed number of premes(please see Figlire 5.10
and Figuré 5.711 in Chaptiel 5). While the acceptance ratiosodiémsity-based tests pro-
posed in Chapténl 5 decreases with the increase in task sitaéty for a fixed number

of processors, the iterative tdsh- DA shows a different trend: the acceptance ratio de-
creases untih = 5m and then increases again. This demonstrates that itetasiiseare
highly effective for scheduling tasks with large total dénsvhere the cardinality of a
task set is relatively large.

Experiments with (m, 5m)

The acceptance ratios of all the four tests in Tdblé 6.1 wifteemental parameters
(m, 5m) are presented in Figure 6.8—6110 whete= 4, 8, 16 are considered.

Observation 2: The acceptance ratios for thé\- DA and| A- RT tests do not differ
noticeably although A- RT test theoretically dominates the\- DA test. The two plots
for thel A- DA andl A- RT tests in Figuré¢ 6]81=6.10 are completely overlapping (i.e.,
difficult to see them separately). By looking at the raw ataege ratio numbers of
these two tests, it is found that those values are the sananfmst all utilization lev-
els and differ very insignificantly in the remaining utiltzan levels. Thel A- DA test
runs in polynomial time while thé A- RT test runs in pseudo-polynomial time. Given
the polynomial time complexity of theA- DA test and the fact that its performance is
equivalent to the A- RT test, thel A- DA test is the preferable iterative schedulability
test. The discussion regarding tha&- DA test is thus also valid for thieA- RT test.

Observation 3: The improvement of the proposed three tests in this chaptartbe
state-of-the-arODA- LCtest is noticeable at higher utilization levels. The imgment

in acceptance ratio of the proposed tests at higher utbizd¢vels is due to improved
priority assignment policy based on the HPA policy. By pmitieseparating the prob-
lematic tasks from the schedulability analysis of a targek{ significant fraction of the
randomly generated task sets pass one or more of the propestecbut do not pass
the ODA- LCtest. The proposedA- DA tests performs much better than the proposed
H ODA- LCtest. This demonstrates the effectiveness of the novetatmacriteria pro-
posed for the A- DA test in comparison to the highest-density based separetiitenia
proposed for thét+ ODA- LCtest.
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Figure 6.8: Acceptance ratios for experiments with, = 4, n = 5m
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Figure 6.9: Acceptance ratios for experiments with, = 8, n = 5m
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The | A- DA test significantly outperforms the state-of-the-@RA- LC test. For
example, the acceptance ratio of thA- DA test at0.6m utilization level for (m =
8,n = 40) in Figure[6.9 is 38.5% while that of for th@DA- LC test is 16.4% (i.e.,
an improvement in acceptance ratio of more than 134%). 8ilpjlthe acceptance
ratio of thel A- DA test at0.6m utilization level for(m = 4,n = 20) in Figure[6.8
is approximately 47.3% while that of for tH@DA- LC test is approximately 19.3% (an
improvement in acceptance ratio of more than 145%).

Observation 4: The differences in acceptance ratio betweendba- LCtest and each
of the other three proposed tests decreases as the numbrece$gors increases. And,
the acceptance ratios at each utilization level decreasesaich of the four tests as
the number of processors increases. For example, the pltis acceptance ratios of
| A- DA test in Figuré 686,10 are becoming relatively “healthigith decreasingn.
This is due the way the task sets are generated for the exgrsmwWhen the number
of processors is large, the number of tasks in a task set frarerents with(m, 5m) is
also relatively larger (one additional processor causesandinality to increase by 5).
Given that the number tasks in a task set is larger, the ar@mnte on the problem
window of each target task is still too large even after safrag at mos9, 1,... (m —
1) problematic tasks. There are too many problematic taskis wat separation can
not sufficiently reduce interference. And, each lower pityatask suffers interference
from a relatively larger number of higher priority tasks lea¢ which contributes to the
computation of interference. The interference is possiblgtively higher on a lower
priority task for task sets with larger cardinality. Thered, the acceptance ratio of all
the tests decreases at each utilization level with incngasi

6.8 Summary

This chapter proposes three different iterative schedlitiatests for global FP schedul-
ing: H- ODA- LCtest,| A- DAtest, and A- RT test. Each of these proposed tests domi-
nates the state-of-the-a®DA- LC schedulability test. All these proposed tests is based
on HPA policy which is effective in reducing the amount of giesism in the calculation
of interference when analyzing the schedulability of aipatar task. It has been shown
that separating the highest-density tasks, as is done égpribposedt+ CDA- LC test,
is not the best choice of separated tasks for the HPA policyoyel strategy to find
the best set of separated tasks when considering the sebditylanalysis of a lower
priority task is proposed for thieA- DA and thel A- DA tests.

Both the proposed A- DA and| A- RT tests perform significantly better than the
state-of-the-arODA- LC test. While the time complexity in evaluating thé- DA test
is polynomial, the time complexity in evaluating thé- RT test is pseudo-polynomial.
Although thel A- RT test dominates theA- DA test, empirical investigation shows that
the performance difference between these two tests isiifisignt. This finding implies
that one should apply the polynomial-tirhé- DA test first before applying the pseudo-
polynomiall A- RT test to determine the FP schedulability of a task set.



Fault-Tolerant Scheduling on
Uniprocessor

A fault-tolerant deadline-monotonid=TDM scheduling of constrained-deadline spo-
radic tasks for tolerating multiple task errors on unipssm# is presented in this chap-
ter. Time-redundant execution of backup tasks is consitiereecover from task errors.
Each task has multiple backups that are scheduled one-éyHatil the output of the
task is correct. The fault model thBT DMscheduling considers is very powerful in the
sense that it includes multiple hardware or software fahi$ can cause errors at any
time, in any task, and even during the recovery. Toleratitagk error by executing its
backup means that the task is able to produce its correctitligore the deadline.

The schedulability analysis of ti& DMscheduling is based on computing the work-
load of each task and its higher priority tasks within anrivdéequal to the relative dead-
line of the task under study. The schedulability analysithefTDMscheduling derives
an exact test considering at mgstask errors within each of all possible intervals of
length equal to the maximum relative deadline of any task.

7.1 Introduction

The importance of dependability on computer systems ieaging as computers are
taking a more active role in everyday control applicatiofault-tolerance in such sys-
tems is an important aspect to guarantee the correctnebs application even in the
event of faults. In many safety-critical systems, use oktimdundancy is considered
as a cost-efficient means to achieve fault-tolerance. Ih systems, when a task error

113
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is detected, the backup of the task is executed. Howevetodine additional real-time
requirements, it is essential that exploitation of time aseans for tolerating faults must
not compromise the timeliness guarantee in the system.

The two requirements, achieving fault-tolerance throumgie redundancy and meet-
ing the deadlines of the tasks, seem to be antagonistic. dimgtee both the correctness
and timeliness of dependable real-time systems, it is sacgs$o design fault-tolerant
scheduling algorithm and to derive appropriate schediitfabést. An algorithm, called
Fault-Tolerant Deadline-Monotoni¢=TDM scheduling, is proposed and its schedula-
bility analysis is presented in this chapter. The propdsSéBM scheduling algorithm
is based on FP scheduling on uniprocessor where the taskgvare the Deadline-
Monotonic (DM) priorities. However, thETDMscheduling and its schedulability anal-
ysis are also applicable to arbitrary fixed-priority assigmt of the tasks.

The fault model (presented in Sectibn]3.3) of fHEDM algorithm considers the
occurrences of at mogt task errors within each of the all possible intervals of lbng
D,nq. WhereD,,... is the largest relative deadline of any task in the sporaaik set
I'. There is no assumption regarding the distribution of tlut$aor on minimum inter-
arrival time of the faults that could cause task errors. Retathese assumptions allow
to consider many different situations, for example, whéra §ingle job of a particular
task is affected by multiple faults, (ii) different jobs affdrent tasks might be affected
by multiple faults, (iii) faults that may occur in bursts,daiv) the inter-arrival time of
consecutive faults is not predictable.

The FTDM scheduling considers passive backups: no backup is dismhtntil a
task error is detected. Each task is considered to have anamprand several backups,
where a backup could be same as the primary or could be aéiveptementation of the
same task. The worst-case execution time of the backupsias=ibwith a particular
task may be different. The backups associated with a p&atitcask have the same
priority as the primary and these backups are schedulédBMalgorithm one-by-one
until the no task error is detected. The time-redundantwti@t of backups to recover
from task errors takes additional CPU time. TREDM algorithm requires to ensure
that the correct output of each job of each task is generatatéits deadline even if
execution of backups are required to tolerate task errors.

The objective of the schedulability analysis of th&éDM algorithm is to derive a
schedulability test that needs to be verified to ensure thahe deadlines are met.
The outcome of the schedulability analysisFifDM algorithm is the derivation of an
exactschedulability test. The exact test is derived for each (askiterative test) and
based on computing the maximum total workload requestddmiihe release time and
deadline of any job of each task. To calculate the maximual tedrkload considering
occurrences of task errors, a novel techniqusoimposehe execution time of the higher
priority jobs is used.

The only work that deals with a similar fault model as thEDM algorithm is ad-
dressed by Aydin [AydQ7], but considered EDF priority and txact test in[ [Ayd(7]
has an exponential run-time complexity. On the other harelran time-complexity to
evaluate the exact schedulability test of the propdsEBMalgorithm isO(n - N - f2),
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whereN is the maximum number of jobs (generated by theeriodic tasks) released
within any time interval of lengtlD,,,.... No previous work has derived an exact fault-
tolerant uniprocessor schedulability test that has a ldimee complexity than that is
presented in this thesis for the assumed fault model.

The FTDMalgorithm does not consider tolerating processor failuFesilt-tolerant
multiprocessor scheduling algorithm for tolerating badkk errors and processor fail-
ures is proposed in Chapter 8. However, the uniprocessadsébility analysis of
FTDMalgorithm is applicable to partitioned multiprocessoresiling in which each
processor executes (preassigned) tasks based on ungwoé&ds scheduling algorithm.
The exact uniprocessor schedulability condition of Ei@®Malgorithm can be applied
during task-to-processor assignment phase in partitiomgtiprocessor scheduling. To
determine whether an unassigned task can be feasibly agsigra processor, the pro-
posed exact test fa*fTDMscheduling can be used to guarantee that each processor can
tolerate up tof task errors within any time interval equal to the maximunatieé dead-
line of the tasks assigned to that particular processor.

The rest of the chapter is organized as follows: the systentetrand the=TDMal-
gorithm are presented in Sectiion]7.2. Then, the related worault-tolerant schedul-
ing on uniprocessor is presented in Secfiod 7.3. The prolskatement is formally
given in Sectiol_7}4. The schedulability analysis of onedowpriority task under the
FTDM scheduling is presented in Section]7.5. Then, in SetfiodntAesexact test of
the entire task set is derived. The pseudocode of the exstdbrd=TDMscheduling is
presented in Sectidn 1.7 and its applicability to the mudtiessor setting is discussed.
Sectiorl Z.B summarizes this chapter.

7.2 System Model

The task and fault models f&fTDMscheduling are presented in Secfiod 3.1 and Section
[B.3, respectively. The salient features of the models ateraged here for readability.

A set ofn constrained-deadline sporadic tagks{y, 72, ..., 7, } is considered where
each task; € I' is characterized by WCET;, relative deadlind);, and periodrl;. At
most f task errors due to a variety of hardware and software faudtg atcur within
each of the all possible time intervals of length,.... The f task errors may occur

in the same job or may occur in different jobs of differentkkeas The WCET of the
primary of taskr; is C; and the WCET of each of thébackups of task; is denoted by

EY wherek = 1,2,... f.

Scheduler Model. The FTDM scheduling is uniprocessor FP scheduling where each
task’s primary or backup is executed based on DM priorityedrdy. And, each backup

of taskr; has the same priority as that of task TheFTDMscheduling works as follows.
For each task;, whenever a job of tis task is released, the primary exedugs|f an
error is detected at the end of execution of the primary, ttst fiackup of the task
becomes ready for execution. Again an error may be detettbd and of execution of
this backup which in turn would trigger the execution of neatkup, and so on. Each
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task is considered to havedifferent backups in case all thetask errors occur in the
same job of the task.

Remember that during the execution of a particular primardyazckup of a task, at
most one fault could affect this execution; and each erras@imed to be detected at
the end of execution of a primary or backup (please see thierfendel in Sectiof 313).

It is assumed that there is no fault propagation: one ermoaffact exactly one primary
or backup. If the cumulative execution demand within anrivgeof lengthD,,, .. due to

f task errors is maximum, then it is necessary that allftkeesk errors occur within that
interval. If totalk task errorsk < f, affect a particular job of task, then the execution
time required for recovery imaximizedf the first error affect the primary and each of
the subsequerik — 1) errors affect each subsequent backup of the same job of task

The exactFTDM schedulability condition has to check that whether all theks
deadlines are met or not if the occurrences of task errorstisvarse than the assumed
fault model. Since there are many different combinatiort@bccurrence of task errors
that could affect the execution of the tasks in an intervaleafjth D,,,,.., algorithm
FTDMmust guarantee that the schedule is fault-tolerant for sach combination. In
other words, all tasks must met their deadlines for any coatlin of errors affecting
the different jobs of different tasks. The different condiion of errors lead to the
notion offault pattern

Fault-Pattern. Remember that there are a maximumM\dfobs released within any in-
terval of lengthD,,, ... There are different possibilities of the occurrences effterrors
affecting thelV jobs. One possibility is that all the errors occur in one of thé/ jobs.
Another possibility is that different number of errors ocaudifferent jobs. Each such
possibility of error occurrence is calledfault patternin [Ayd07,[LMMOQ]. Given the
jobs in setA, any possible combination @f errors that can affect the jobs in sétis
denoted byk-fault-pattern. For example, i = 0, no error occurs within the jobs in set
A. If k= 1and|A| = 5, then there are 5 different 1-fault-patterns since thelsiagor
due to the fault may affect any one of the five jobs in4et

To achieve fault-tolerance, it has to be ensured that ajbihereleased in any inter-
val of lengthD,,,... meet the deadlines fgf-fault patterns. The question that arises is:
what are the different possible fault patterns that one roassider for=TDMschedula-
bility analysis ofV jobs released within a time interval of lengfh,,.,? In other words,
in how many ways the task errors could affect th& jobs that are released within any
time interval of lengthD,,, ... It is already pointed out in [Ayd07] that the number of dif-

ferent fault patterns is given by the binomial coefﬁuéﬁff = Q((%)f) O(NY),
which is exponential [CLRS01]. THeTDMschedulability anaIyS|s on uniprocessor con-
sidering this exponential number of different fault pateemay not be computationally
practical if f are large. To overcome this problem, a dynamic-programaéctrtique

is used to find an exadtTDM schedulability condition. The time complexity of this
technique for evaluating the exact testigr - N - f2).
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7.2.1 Traditional DM Scheduling

Leung and Whitehead proved that DM is an optimal fixed-pyaitheduling algorithm
on uniprocessor for constrained-deadline sporadic td382]. Necessary and suffi-
cient (exact) schedulability condition for uniprocessd Bcheduling have been derived
in [JP86, ABR"93,[ABRW91] without considering occurrences of faults. Thaat
DM schedulability condition proposed inh [ABP3] is derived by assuming that all
tasks are released at time O (i.e., critical instant for iogpssor fixed-priority schedul-
ing [LL73]). In [ABR ™93], the response-time of each taske I is given as follows:

1—1
R =Cit+ ) - {Rh] (7.2)
% - J Tj :
j=1

The iteration starts withR? = C; and terminates ifR"™' = R! (schedulable) or
Ré"“ > D, (unschedulable). The exact schedulability test of theren#isk sefl” is
essentially applying the test in E@.(I7.1) for each task.

The exact analysis as given in Eq (7.1) is not directly ajpplie for the exact fault-
tolerant schedulability analysis of tHeI DM scheduling because the worst-case fault
pattern considering the assumed fault model, for which thiklwad within the problem
window is maximum, is not known in advance. In this chaptaregact schedulability
condition forFTDMscheduling is derived by computing the exact amount of ei@tu
that needs to be completed within the release time and aeadfieach task for the
assumed fault model.

7.3 Related Work

Many approaches exist in the literature for tolerating tiirh real-time tasks. Tradi-
tionally, processor failures (permanent faults) are @ikt using Primary and Backup
(PB) approach in which the primary and backups of each taslseneduled on two
different processors [GMM94, 0S94, BMR99, AOSMO1, KLLSDEIh [ S054]. Next
chapter deals with algorithm for tolerating permanent pssor failures. The discussion
of related work for tolerating processor failures is posgmb until next chapter.

Ghosh, Melhem and Mossé proposed fault-tolerant unipemcescheduling of ape-
riodic tasks considering transient faults by insertingugtoslack in the schedule to
allow for the re-execution of tasks when an error is deteffE@dM95]. They assumed
that the occurrences of two faults are separated by a minidistance. Pandya and
Malek analyzed fault-tolerant RM scheduling on a uniprsoegor tolerating one fault
and proved that the minimum achievable utilization bourei% [PM98]. The authors
also demonstrated the applicability of their scheme fagrting multiple faults if two
faults are separated by a minimum time distance equal tormari period7;,,, of a
task set. In this thesis, the propodetiDMalgorithm can tolerat¢ task errors within
each of all possible time intervals equal to lend},.,, and no restriction is placed in
time distance between occurences of two consecutive faithan D,,, ...
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Ghoshet al. derived a utilization bound for RM uniprocessor scheduforgolerat-
ing single and multiple transient faults using a conceptaiup utilization[GMMS98].
To toleratef transient faults, the utilization of the backup is sef times the maximum
utilization of any task given that a fault model similar tetbne in this thesis is used.
Such reservation of backup can lead to schedule task setshawing very small to-
tal utilization in the fault-free case. Whereas the recogeheme in[GMMS98] allows
backups to execute at a priority higher than that of the yaakk, the recovery scheme in
this thesis executes backups at the same priority as thg fagk. Sinha and Suii[SS99]
later showed that the proposed protocolin [GMMIS98] is irt faalty.

Liberato, Melhem and Mossé derived both exact and suffidessibility condi-
tions for toleratingf transient faults for a set of aperiodic tasks using EDF sehed
ing [LMMOO]. They showed that for a set af aperiodic tasks in which a maximum of
f faults could occur, the exact test can be evaluated(in? - f) time using a dynamic
programming technique. However, the authors of [LMMOO]sider backup of a faulty
task simply as a re-execution of the primary copy and do nasicier the execution of a
diverse implementation of a task possibly having a diffeexecution time as backup.

Burns, Davis, and Punnekkat derived an exact fault-totefieasibility test for any
fixed-priority system using backup that could be simplexeeetion or a diverse imple-
mentation of the same task [BDR96]. This work is extende@®BD01] to provide the
exact schedulability tests employing check-pointing tarlf recovery. In[[MdALBO3],
de A Lima and Burns proposed an optimal fixed-priority assignt to tasks for fault-
tolerant scheduling based on re-execution. The fixed pigeriof the tasks can be
determined inO(n?) time for a set ofn periodic tasks. The schedulability analysis
in [BDP96,[MdALBO3] require the information about the minim time distance be-
tween any two consecutive occurrences of transient faultsnthe schedule, and only
considers simple re-execution exactlyone different implementation when an error is
detected. In the latter case, the execution time of the lyaiskihe same regardless of the
number of errors affecting a particular job. This is in castrto the proposed method in
this thesis where each backup for a particular job may hdfereint execution time.

Based on théast chance strateggf Chetto and Chetta [CC89] (in which backups
execute at late as possible), software faults are tolekatednsidering two versions of
each periodic tasks: a primary and a backup [HSWO03]. Backugscheduled as late as
possible using a backward RM algorithm (schedule from backhin time). Similar to
the work in [MdALBOZ], the work in[[HSWO0B3] considers that tlees only one backup
for each task and therefore does not have the provision fagidering different backups
of the same task if more than one fault affect the same task.

Santost al. in [SSOO05] derived a schedulability condition for determgthe com-
binations of faults in jobs that can be tolerated using ftalérant RM scheduling of
periodic tasks. The work in [SSOO05] is based a notion, cal&M schedulable (origi-
nally proposed in[SUSO04]). By¥-RM schedulable, the authors mean that there are at
leastk free time slots available between the release time and ideaofl each task. In
order to guarantee that the system can tolerate multiptsigrat faults for any combina-
tion of faults, all possible fault patterns has to be congiden their derived condition
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which gives an intractable time complexity. Moreover, thiéhars assumed that a fault
can occur only in the primary copy of a job.

A fault-burst model is recently defined by Many and Doosé ifibfM]] as a bounded
time interval during which the execution of the tasks aréwlis=d due to the occurrences
of faults for which the distribution of the faults is unknowAlthough [MD11] assumes
arbitrary number of faults in a fault burst, the proposedvecy strategy in fact con-
siders a finite number of errors to be tolerated within anriratieof length D, ... where
only one job of each task is assumed to be faulty. In contifastproposedTDMalgo-
rithm considers that multiple jobs of the same task can teried due to burst of faults
within an interval of lengthD,,, ...

Aydin in [Ayd07] proposed aperiodic and periodic task saligd) based on an exact
EDF feasibility analysis in which a backup of a task can béedit from the primary.
Aydin considers a fault model in which a maximum ptransient errors could occur
in tasks of the aperiodic task set. The schedulability asiglin [Ayd07] is based on
processor demand analysis proposed by Baruah et al._in [BRH®r periodic task
systems, the proposed exact feasibility testin [Ayd07yaleated inO(N?, ., f2,..,)
time, wherelffhyper is the number of jobs released within the first hyper-peri&d (east
common multiple of all the tasks periods) afig,,.. is the number of task errors that
can occur within the first hyper-period.

In this thesis, the derived exact DM feasibility conditicashrun-time complexity of
O(n - N - f2) whereN is the maximum number of jobs of thesporadic tasks released
within a time interval of lengtlD,,,..., andf is the maximum number of task errors that
can occur within any time interval of lengib,,, ... Therefore, the (pseudo-polynomial)
time complexity of the proposed exact test is more efficibahtthe exponential time-
complexity of the exact EDF test proposed|in [Ayd07].

In summary, most of the work related to developing fauletaht scheduling algo-
rithms using time redundancy consider a fault model thabisas general as the fault
model considered in this thesis. In many other works, aivelgtrestricted fault model
is considered, assuming, for example, that

e the inter-arrival time of two faults must be separated by aimum distance
[GMM95|[PM9&, BDP96, MAALBO3, PBD(01]

e at most one fault may occur in one task [PBD01, HSWO03]

e the backup is simply the re-execution of the original task (idoes not consider
diverse implementation of the task) [GMM95, PM98, PBID01,MBD,[MD11]

7.4 Problem Formulation

The uniprocessor fault-tolerant scheduling algoritRirfDM proposed in this thesis is
based on an exact schedulability analysis of the tasks. Aaoreences of a maximum
of f task errors within each of all possible time intervals ofgdgnD,,, ... is considered.

The f task errors could be distributed over any subset of jobsafeagligible to execute



120 CHAPTER 7. FAULT-TOLERANT SCHEDULING ON UNIPROCESSOR

within the time interval of lengttD,,,... Note that a job is eligible to execute between
its release time and its deadline. The problem addressédsichapter is:

Is the task setl" FTDMschedulable if a maximum off task errors occur
within any time interval of length equal to D, ?

The exact schedulability condition of task gefor the fault-tolerant scheduling algo-
rithm FTDMcan be derived based on exact feasibility condition of eask#; € T', for
1=1,2,...n. If amaximum off task errors can occur within a time interval of length
D, 0z, then the maximum number of such errors that can occur wéthyntime interval
of lengthD;, fori = 1,2,3,...n, can be at mosf. Following this, the last problem
statement can be re-written as:

Is task 7; FTDMschedulable if a maximum off task errors occur within
any time interval of length equal to D;, for i = 1,2,...n?

If the exact schedulability condition for each taske T' can be determined, then the ex-
act schedulability condition for the entire task Edbllows immediately. To ensure that
taskr; is FTDMschedulable on uniprocessor, the critical instant forclwhihe workload
imposed by the higher-priority tasks on tagks maximized needs to be considered in
the fault-tolerant schedule. Under the assumed fault mabdelcritical instant in the
uniprocessor fault-tolerant schedule is when all the taskseleased at the same time
(as discussed in Section B.1). In this chapter, without tdgpenerality, it is assumed
that all the tasks are released simultaneously at time 2erorder to derive the exact
schedulability condition of task;, it is sufficient to derive the exact schedulability con-
dition for the first job of each task; € I". The first job of taskr; become eligible for
execution at time 0 and must finish its execution (including possible execution of
backup due to faults) before time;. Consequently, the problem addressed can finally
be re-written as:

Is the first job of task =, FTDMschedulable if a maximum of f task
errors occur within the time interval [0, D;), fori =1,2,...n?

In the rest of this chapter, the exact schedulability caodiof taskr; refers to the exact
schedulability condition of the first job of; unless otherwise specified. During the
schedulability analysis, the following considerationd assumptions are made:

e The critical instant for each task is at time zero where a&ltdsks are simultane-
ously released for the first time.

e Considering the critical instant, the workload within tlimé interval[0, D;) is
maximized if the jobs of each sporadic task is arrived askiyias possible
(strictly periodic task set).

o Considering the critical instant and strictly periodiceases of the jobs of each
task, the jobJ; of taskr; is released attime/ = 7; - (j — 1) and has its deadline
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e An error is assumed to be detected at the end of executioneoptimary or
backup. This assumption is necessary for the worst-cassdabdbility analy-
sis since it corresponds to larger wasted CPU time in corspatio the situation
when the error is detected in the middle of execution.

e There is no fault propagation. One fault is assumed to affiactost one job either
the primary or the backup. And, any primary or backup is afédy at most one
fault since multiple faults affecting the same primary oclgp does not cause
any increase in recovery workload according toEi®Mscheduling.

The exact schedulability analysis of taskwithin the interval[0, D;) is presented in
Section Z.b. In order to find the worst-case workload requicebe completed within
an interval[0, D;) on behalf of the higher priority sporadic tasks, it is nofidiflt to
see that the work within the interval is maximized under tbguanption that the jobs of
the tasks arrive as quickly as possible (as is assumed ablove)der to find the exact
schedulability condition, the maximum total work compteteithin [0, D;) by the jobs
of the tasks{m, 72 ... 7;} is calculated based on twoad factors

In subsectiof 7.511, the first load factor that is equal tariagimum work that needs
to be completed by a job of taskin [0, D;) is calculated. Then in subsection 715.2, the
second load factor that is equal to the maximum work that heé®g completed within
[0, D;) by the higher priority jobs of the tasKs, 7 ... 7;_1} is calculated. This sec-
ond load factor is calculated as follows. First, the différeubsets of higher priority
jobs such that all the jobs in each such subset are releafeelsime time at some time
instant within[0, D;) are determined. Then, based on each of these differenttsutise
execution requirement of all the higher-priority jobs istihcted by means of twapm-
positiontechniques, calledertical compositiorandhorizontal compositionto find the
maximum work completed by the higher priority jobs within D; ) in subsectiof 7.512.

7.5 Load Factors and Composability

In this section, the fundamental theoretical building kkfor the schedulability analy-
sis of taskr; within the time interval0, D;) in terms of load factors and compositions
are derived. To determine whether the first job of tasis schedulable, the amount of
execution completed by higher-priority jobs witHih D;) needs to be calculated. Note
that the maximum amount of execution completed by the highierity jobs depends
on different fault patterns affecting these higher-ptiojpbs. By subtracting the max-
imum amount of execution completed by the higher- prioritlyg within [0, D;) from
D;, the maximum available time for execution of taskwithin [0, D;) can be derived.
To determine whether the available execution time for tas& enough for its complete
execution within[0, D;), it is needed to know the maximum amount of execution re-
quired to be completed by the first job of task This amount of execution depends on
the number of task errors exclusively affecting tashithin [0, D;).

When analyzing the schedulability ef, theworst-case workloaavithin [0, D;) is
the maximum execution completed by the jobs of the tasksti§ se = ...7;} that
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are released withif0, D;). Remember that at mogt task errors could occur within
[0, D;). To find this worst-case workload required to be completetiwi0, D;) by the
jobs of the tasks in setr{, 7> ...7;}, one has to consider (i) the occurrenceskabisk
errors affecting the jobs of the higher-priority tasks (iring their backups), and (ii)
the occurrences dff — k) task errors exclusively affecting the first job of taskand
its backups, fokk = 0,1,2,... f. In summary, to find the worst-case workload within
[0, D;), the following two workload factors are determined:

1. Load- Fact or - i : Execution time required by task when(f — k) errors ex-
clusively affect the first job of task;, fork = 0,1,2... f.

2. Load- Fact or - HPi : Execution time required by the higher-priority jobs withi
[0, D;) whenk errors affect these higher-priority jobs in this interviar & =
0,1,2...f1.

The worst-case workload withiff), D;) can now be defined as the sum of these two
load factors such that this sum is maximized for sdm® < k& < f. To meet the
deadline of task;, the complete execution of task (including the execution of its
backups) must take place within the inter{@&lD;). However, parts of the execution of
jobs released withif, D;) and having higher priority than the priority of taskmay
take place outside the intervidl, D;). If the execution of any higher-priority job takes
place outside the interv@), D,), the execution time beyond time instdnf must not be
accounted in the calculation dbad- Fact or - HPi . This is to avoid overestimating
the amount of worst-case workload within the interf@lD;) and to derive an exact
schedulability test foFTDMscheduling.

If the sum ofLoad- Fact or-i andLoad- Fact or - HPi , i.e., the maximum
workload in[0, D;), is not greater thal;, then task; has enough time to finish its com-
plete execution withif0, D;). Thus, based on the values of the two workload factors, the
exact schedulability condition for taskis derived in this thesis. The calculation of the
two workload factors (that is, value @fbad- Fact or-i andLoad- Fact or - HPi )
are presented in subsectlon 715.1 and subsection 7.502ctasly.

7.5.1 Calculation ofLoad- Fact or - i

The value ofLoad- Fact or - i is the execution time required by taskwhen(f — k)
task errors exclusively affect task, for k = 0,1,2... f. If an error is detected after
executing of the primary of the first job task then the first backup of task is ready
for execution. If an error is detected at the end of executfaambackup of task;, then
the next backup of task; is ready for execution. Remember that the WCET oftte
backup of task; is denoted byE?, forb = 1,2... f. The total execution time required
due to thg f — k) errors affecting the primary and backups of a particulagfiaskr; is
denoted byC! ~*). The value oLoad- Fact or - i is equal to'” ~* and has to be

calculated for alk = 0,1,2,... f. The value ofCi(f =% can be recursively calculated
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using Eq.[(Z.R) as follows:

C; if (f — k) =0
o0 _ (7.2)
BV 4 =FmD i (f— k) >0

The value OCZ.(f ~ M s set equal t@”; when(f —k) is equal to 0. Whelf — k) is equal
to 0, only the execution time of the primary copy of tasks considered in EqL(7.2). In
the recursive part of EQ.(7.2), the execution time of(tfie- k)" backup of task; and
the execution time due to a total of — k& — 1) task errors affecting task are added to

find the value oCi(f -k, Using Eq.[(Z.R), starting froth = f,(f — 1),...0, the value
¢ =% can be calculated for allf —k)=0,1,2... f using a total ofO( f) addition

operations. The task; must complete?i(f ~*) units of execution within the interval
[0, D;) to tolerate( f — k) task errors that exclusively affect the first job of taskThe

calculation ofLoad- Fact or - i is now demonstrated using an example.

Example 7.1. Consider a task setr{, 72, 73} given in Tabld_Z1l forf=2. The first

column in Tablé_7]1 represents the name of each task. Thedera third columns
represent the relative deadline and period of each taskpeesvely. The WCET of
the primary copy of each task is given in the fourth columre fiith and sixth columns
represent the WCET of the first and second (sifiee 2, at most two errors can occur in
the same job of any task for the assumed fault model) backgach task, respectively.
Note that the WCET of a backup of a task may be equal to, greatemaller than

the WCET of the primary of the corresponding task. Using #d), the amount of

| 10 | 10 | 3 2 3
> | 15| 15| 3 4 2
5 140 |40 9 | 8 | 6

Table 7.1: Example task set witlfi=2 backups for each task

execution time required for each taskdue to (f — k) task errors exclusively affecting
taskr; is calculated in Eq(Z.3)for k = 0,1,2 and f = 2 as follows:
For taskry, For taskrs, For taskrs,
cY =0, =3 cY =Cy=3 Cd =C3=9
Cl =Bl +CY =5 C3 =E3+CY =7 C} =FE;+CY =17 (7.3)
Ci =E}+C{ =8 (3 =E3+Cy =9 C; =E;+C; =23

The task set in Table“4.1 is used in the rest of this chaptdreasinning example. The
calculation of the value dfoad- Fact or - HPi is presented in next subsection.
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7.5.2 Calculation ofLoad- Fact or - HPi

The value ofLoad- Fact or - HPi is the maximum execution time completed within
[0, D;) by the jobs having higher priority than the priority of task whenk errors
affect these higher-priority jobs withi, D;). If the execution of some of these higher-
priority jobs takes place outside, D;), then only the execution that takes place within
[0, D;) must be considered in the calculationlaiad- Fact or - HPi . This is a very
crucial issue in determining the value lbbad- Fact or - HPi , as can be seen in the
following example.

Example 7.2. Consider the first job of task, in Table[7.1 that is to be scheduled within
the interval(0, 15] since Dy, = 15. Assume that jobs of the only higher priority task
are released as soon as possiblg} and J? are the jobs that are released within the
interval[0, 15) and have higher priority than the priority of task. The primary of each
of the jobs/{ and.J? executes within the interv@d, 3) and[10, 13), respectively.

Execution time by jobs/}
andJ7 within [0, 15) is 8

% 4 First Second i +
Fault Fault '
Ji e
T T T T T T T T N T ‘ [T
0 2 4 6 8 10 12 14 16 18 20 t

Figure 7.1: Schedule of jobdi and.J?. The downward vertical arrows denotes the arrival time
of the jobs ofr, . The two errors occur in the primary and the first backup of.jggb The maximum
amount of total execution by the joli$ and.J? due to the two errors is equal to 11. However, the
amount of maximum total execution by the jogsand J7 within the interval[0, 15) is 8, not 11.

Now, consider a 2-fault pattern in which the first and the sekerrors affect the
primary and the first backup of joli?, respectively. The detection of the second error in
the first backup of joly? triggers the execution of the second backup of.jgbThe first
and second backups of jol executes within the intervéil3, 15) and|[15, 18), respec-
tively. The schedule of the job§ and.J? including the execution of the backups for
the considered 2-fault pattern is shown in Figlrel 7.1. Thaltexecution time required
by the higher-priority jobs/i and JZ is (3 + 3 + 2 + 3) = 11 time unit (including time
for recovery). Notice that, the second backup of jb executes outside the interval
[0, D5). The maximum execution time by the joljsand JZ within the interval[0, D>)
is equal to(3 + 3 + 2) = 8, not11 for the considered 2-fault pattern. O

When calculating the worst-case workload@nD,) to derive the exadETDMschedu-
lability test of taskr;, the value oLoad- Fact or - HPi must not be overestimated. To



7.5. LOAD FACTORS AND COMPOSABILITY 125

calculate the value dfoad- Fact or - HPi , the jobs that are released within interval
[0, D;) and have higher priority than the priority of taskneed to be determined. The
set of jobs having higher-priority than the priority of taskis denoted by a setPJ;
such that each job in sétPJ; is released within the intervédd, D;). That is, the set
HPJ; is defined in Eq.[(714) as follows:

HPJ; = {JZ | p < iandr < D;} (7.4)

wherer{ = T, - (¢ — 1) andq = 1,2,.... According to Eq.[(7}4), if job/? € HPJ;,
then taskr, has shorter deadline (that is, higher pricﬂ)tyhan taskr; and the release
time of job J¢ ( that is, value of{ defined in Eq.[(3]1)) is less tha;. Each of the
higher-priority jobs in seHPJ ; is eligible for execution at or after its release time within
[0, D;). In the case of our running example, the 443 ; for i = 1, 2, 3 are determined
for the three tasks in Table 7.1.

Example 7.3. Using Eq.(Z.4)for the task set in Table 4.1 we have,

[0,D;)=1[0,9) and HPJ, =0
[0,D5) =[0,15) and HPJI,={J},J?} (7.5)
[OaD?)):[O?QO) and HPJBZ{J%!J%!‘]?!J%!J%1J22!J§} O

Remember thafV is the maximum number of jobs that are released within the tim
interval[0, D,...). Therefore, the number of jobs having higher priority tHaspriority
of taskr; that are released withiio, D;) is at mostN. If the release time of a higher-
priority job J¢ is earlier thanD;, thenJ} is included inHPJ;. Therefore, the time
complexity to find the setPJ; is O(N).

When considering the TDM schedulability of the first job of task;, the value of
Load- Fact or - HPi for a k-fault pattern such that thee errors affect the jobs in set
HPJ; needs to be calculated fér= 0,1,... f. The value ofLoad- Fact or - HPi is
a measure of how much computation is completed within theniat [0, D;) by the
higher-priority jobs in seHPJ; due to thek-fault pattern. The amount of computation
completedby the jobs in seHPJ,; within [0, D,;) depends on how much workload is
requestedby the jobs inHPJ; due to thek-fault pattern. Aydin in[[AydOF] used a
dynamic programming technique to compute the maximum weikiequested by a set
of aperiodic tasks due tofafault pattern. Using an approach similar to that in [Ayd07]
the maximum workload requested by a set of higher-priodbsjthat are all released at
a particular time instanttwithin the time interval0, D;) is computed.

The maximum workload requested by a set of jobs inkedll released at a partic-
ular time instant, is denoted by functiorL;(A) for a k-fault patterd. Note that the
value of L (A) is the maximum workload requested by the jobs in&emot the actual

1Ties between the deadlines of two tasks can be broken ailyitra

2The jobs in setd are released at time The time instant is not included in functiorL, (A) and can be
understood from the context. Although the valuelgf(A) can be calculated independenttpthe context
is important for the schedulability analysis as will be evitghortly.
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amount of execution by the jobs in sdtwithin [0, D;) because some of the work-
load may need to be executed afferD;). The functionL;(A) is defined recursively
(similar to [Ayd07], but the difference being that all theb@in setA have the same
release time) in EqL{7.6) and EG._{[7.7). The basis of therstmuis defined in Eq[{716)
considering exactly one jol¥ exists in set4, fork = 0,1,2,... f, as follows

Li({J2}) = Cy (7.6)

The value ofL, ({J¢}) represents the amount of execution time requested by job
whenk errors exclusively affect the primary and backups of jgb Remember that the
value of C* is defined in Eq.[{7]2) as the maximum amount of execution teeired
by the taskr,, whenk errors exclusively affect a particular job of this task. Madue of
C* in the right hand side of EqL_(7.6) can be calculated using(Eg) in O(f) time,
forallk =0,1,2...f.

By assuming that the value @f(A) is known, the value of.,. (A U {J¢}) is com-
puted recursively, fok = 0,1,2... f, as follows:

Li(AULJIZY) = miag {Ly(A) + Ly (72D } (7.7)
q=0

In Eq. (Z), the value of;(A U {.J¥}) is maximum for one of thék + 1) possible
values ofq, where0 < ¢ < k, for the right hand side of Eq._{1.7). The value f
is selected such that, if errors occur in the jobs in set and (k — ¢) errors occur
exclusively in jobJY, thenL; (A U{J¥}) is at its maximum for some, 0 < ¢ < k.
The working of Eq.[(Z]7) is now demonstrated using an example

Example 7.4. Consider the lowest-priority task given in Tablé_ZI1. The jobs, having
higher priority than the priority of tasks, that are released at time= 0 are in the set
A={J{, J3}. To determine the maximum workload requested by the higherity jobs

in setA={ J}, J3} due to ak-fault pattern, one needs to calculate the valué pfA). To
calculateL;(A), the base in EqZ.8) for each of the jobs in set need to be computed
considering the occurrences bferrors exclusively affecting that job. Sing¢ds equal
to 2, the possible values bfare 0, 1 and 2.

According to Eq(7.3), the maximum execution time required for j@pis CY =3,
Ci=5andC? =8for k = 0, k = 1 andk = 2 errors exclusively affecting job;,
respectively. The maximum execution time required for.jblis C9 =3, C3 =7 and
C2=9fork =0,k = 1andk = 2 errors exclusively affecting jod;, respectively
(according to Eq(7.3)). Using the base of the recursion in E&.8), we have

Lo{Jih) =CY =3 Li({Ji}) =Cl =5 L.({J{}) =CF =38
Lo({3}) =C9 =3 Li({J3}) =C3 =7 Ly({J3}) =C3 =9

Using Eq.(Z2), the value ofL;(A) for k = 0, 1,2 and A={J{,J2} can be calculated
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as follows:

Lo({7}, 73 Y) = maz {L({7} ) + Lo-o(73D)}
= Lo({71 D)+ Lo({3})
=3+3=6

Li({7}, 73 ) = maz {Lo({} D) + Lisg (13D}

maz { Lo({({ }) + Li(3})

Li({J} ) + Lo({3D)}
max {3+ 7,5+ 3} =10

Lo({(7}, 73 ) = maz {Ly({} ) + Loy (13D}

maz { Lo({({ }) + La(U}}) .

Li{Ji ) + Li({12))

Ly({J1 }) + Lo({2 1)}
= maz {3+9,5+7,8+3} =12

The maximum amount of workload requested by the jobs in SetiA#1} is Ly(A)=6,
L1(A)=10, and Ly(A)=12 for k = 0, 1 and2-fault-patterns, respectively. O

Time complexity to calculate L, (A U {J¥}): There aré|A|+1) jobsin set AU { J¥}).

For each one of thd A| + 1) jobs, evaluating the base case using Eql (7.6) can be done
using Eq.[(ZR) irO(f) steps foralk = 0,1,2,... f. Therefore, evaluating the base for
all the jobs in setAuU { J¢}) requires [|A| + 1) - O(f)]= O(|A| - f) operations.

For the recursive step, if the value bf,(A) is known, then there arg: + 1) pos-
sibilities for the selection of in Eq. (Z.1) to computd (A U {J¥}) for a givenk,

0 <k < f. Therefore, computing (A U {J¥}) requiresO(k) operations £ + 1 addi-
tions andk comparisons) for a particularand given that.,(A) is known. Given that
the values of_;(A) are known for alk = 0,1, 2, ... f, then computing., (A U {J¥})
forallk =0,1,... f requires totaD(0 + 1 + 2. .. f)=O(f?) operations.

Starting with one job in sed, a new jobJY is considered when computing the value
of L, (A U {J¥}). Byincluding one jobJ¥ inthe set4 at each step, the set(){ J¥}) is
finally formed. Therefore, for all the jobs in the seft ({ J¥}), the total time complexity
to recursively compute the value &f,(A U {JY}) is equal to[(|A| + 1) - O(f?)] =
O(]A] - f?). Consequently, the total time complexity for the base andnsve steps to
computeLi (A U{JZ}) is O(|A] - f + |A] - f%)= O(A] - f?). O
As mentioned before, the value bbad- Fact or - HPi is the maximum execution
completed within the intervad, D;) by the jobs having higher priorities than the priority
of taskr; for a k-fault pattern. The maximum execution completed by the Ekigher-
priority jobs within [0, D;) may not be same as the maximum workload requested by
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this set of higher-priority jobs for &-fault pattern.

Remember that the value éf,(A) is calculated considering that all the jobs in set
A are released at the same time, say at timeonsider that the set contains the jobs
having higher priority than the priority of tagk and all the jobs in setl are released
at timet. If the value ofL;(A) is greater thanlp; — t), then the maximum amount of
work completed by the higher-priority jobs in sétwithin the intervall0, D,) is at most
(D; — t) using the work-conserving algorithFirDM If L, (A) is less than or equal to
(D; — t), then the maximum amount of work that can be completed bydibe in set
A within the interval[0, D;) is at mostL; (A). This crucial observation is later used to
compose the workload of the higher priority jobs within theerval[0, D;).

In order to find the amount of execution completed by the jditkehigher-priority
tasks within the time intervdD, D;), the higher-priority jobs released at different time
instants within the time interval, D,) arecomposedA composed task is not an actual
task in the system rather a way to represent the executioncoflection of higher-
priority jobs in a compact (composed) way. The executioretioh a composed task
(formally defined later) represents the maximum amount etation within the inter-
val [0, D;) if the jobs represented by the composed tasks have exclasoass to the
processor within the intervld, D;). In other words, the execution time of a composed
task is the amount of maximum execution within the inteff@alD;) if only the jobs
represented by the composed task are allowed to executa Withintervall0, D;).

The composition of the higher-priority tasks are done in si@ps: first byerti-
cal compositionand then byhorizontal composition Each vertically-composed task
abstracts the higher-priority jobs that are all releaseal @drticular time instant within
[0, D;). Each horizontally-composed task abstracts the highieriyrjobs that are ab-
stracted by more than one vertically-composed task. Hot&#ccomposition is pre-
sented next following vertical composition.

Vertical Composition

Consider a set of all jobs that are released at time ingtantc D; and have higher
priority than the priority of task;. To compactly represent these higher-priority jobs, a
vertically-composed task, denoted bl , is defined such that the composed tagk
abstracts the set of higher-priority jobs that are all redehat timet where0 < ¢t <

D;. The execution time of the composed tdgk (formally calculated later) denotes
the maximum amount of execution that can be completed wijthiP;) by the higher-
priority jobs that are released at timesuch that only the jobs represented lgy are
allowed to execute withifd, D;). One vertically-composed task is formed for each time
instant within[0, D;) at which new higher-priority jobs are released.

Example 7.5. Consider the schedulability of task in Table[7.1. The first job of task
73 is released at time 0 and has its deadline by tibye= 40. The tasks, andr, are
the higher-priority tasks of;. The releases of the higher-priority jobs at different time
instants within the intervalo, 40) is shown in Figuré_7]2 using downward arrows by
assuming strictly periodic arrival of the jobs.
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Figure 7.2: Five vertically-composed tasks are shown using vertically long ovals afitistents
0, 10, 15, 20, and 30. Each vertically-composed task at timbstracts all the newly released
higher-priority jobs of task; that are released at timewithin the time intervalo, 40).

New jobs of the higher-priority tasks are released at timstdnts 0, 10, 15, 20 and 30.
At each of these five time instants, a vertically-compossklisaformed (that abstracts
the released jobs shown in each oval in Figurd 7.2). The fingposed tasks are denoted
by Wo},V{lo},V{m},V{zo} and Vigo} in Figure[7_72. O]

To form the vertically-composed tasks, the different tineéngs in [0, D;) where new
jobs of the higher-priority tasks are released need to berahdnied. The set of time
points, denoted by;, where jobs having higher priority than the priority of taslare
released within the intervéd, D;) is given by Eq.[[(ZB) as follows:

Si{k~Tj|j1...(2‘1),]@0..[%J}{Di} (7.8)

Each of the time points in sé&; are less thaD; and are nonnegative integer multiples
of the periods of the higher-priority task for j = 1,2,... (i — 1) assuming the critical
instant (i.e., all the tasks first arrives at time 0). Sinaettigher-priority jobs released at
or beyond time instanD; will not execute prior to time instard;, it is necessary that
all the time points in se§; are less thaD; (that is, before the deadline of the first job
of taskr;). At each of the time points in sé&t, new higher-priority jobs are released by
assuming that jobs of the higher priority tasks are releasaglickly as possible.

Example 7.6. Consider the task set given in Table]7.1. Using @&g), we have

S ={}
S, = {0,10} — {15} = {0,10} (7.9)
Sy = {0, 10,15, 20,30, 40} — {40} = {0, 10, 15, 20, 30} 0

The jobs having higher priorities than that of taskare released at each of the time
points in setS;. Remember that there are at md&jobs released within any interval of
length D,,.... The time points inS; are integer multiples of the periods of the higher-
priority tasks. Therefore, the run-time complexity to cartgS; is O(N).
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During the schedulability analysis of task we have to consider each time point
in setS; where some new higher-priority jobs of taskare released. For eashe S,
a vertically-composed taskK, is formed. In the case of the example in Table] 7.1,
when analyzing the schedulability of task one vertically-composed task for eack
S3 ={0,10,15,20,30} is formed (see the five vertically-compwbsasks in Figure712).
The vertically-composed tadks; for s € .S; abstracts the set of higher-priority jobs
from setHPJ; that are all released at tinse To find the execution time of a vertically-
composed task at time € S;, the higher-priority jobs in setiPJ; that are released at
time instants need to be determined. The &l ; ; denotes the higher-priority jobs of
taskr; that are released at tinse The setRel , ; is given in Eq.[(7.ID) as follows:

Rel ;s ={J}]|J} € HPJ; andr] = s} (7.10)

The setRel ; s contains the jobs that are released at tisrend are of higher priority
than taskr;. If job J{ isin setRel ; 5, then jobJ{ is in setHPJ; and the release time of
job J? is equal to time instant, that is,s is equal torg. The condition in Eq.[(7.10) is
to be evaluated for each job in 38®J;. Since there are at moat jobs released within
any time interval of lengttD,,, ..., the number of jobs in séPJ; is O(N). The jobJ¢

€ HPJ; is stored in seRel ; ; if the release time is equal tos. By selecting one by
one job.J¢ from setHPJ;, the job.J¢ can be stored in the appropriate &t ; s such

that the release time] of job J¢ is equal tos. Therefore, the time complexity to find

Rel ; . forall s € S; is equal taO(N).

Example 7.7. Consider the example task set in Tablg 7.1. Since there atégher-
priority jobs of taskr;, the setHPJ, = (). For tasksr, and 3 we haveS, ={0, 10}
and S; ={0, 10, 15, 20, 30}, respectively, according to H@.9). The setRel , ,, of
higher-priority jobs released at different time instant S; for i = 2 andi = 3 are
given in Eq.(Z.11)as follows:

Rel 2,0 = { Jll} Rel 2,10 = {J12}
Rel - = {J},J:} Rel = {J?
3,0 { 1 ; 2 } 3,10 { 13} (711)
Rel 3,15 = {J2 } Rel 3,20 = {J1 }
Rel 530 = {J3.,J{} L)

The jobs in seRel ; , are of higher priority than that of the taskand all these higher-
priority jobs are released at time For eachs € S;, the vertically-composed tadks)
abstracts the jobs in s&el ; ;. What follows next is the technique to calculate the
execution time of a vertically-composed tagk; .

The execution time of the vertically-composed tagk is denoted by the function
Wk, { s}) for a k-fault pattern only affecting the jobs in sgel ; ;. If no jobs other
than the jobs in seRel ; , are allowed to execute within the intenjal D;), then the
value ofw( k, {s}) represents the maximum amount of execution that can be com-
pleted by the jobs in s&el ; , within the intervall0, D;) for a k-fault pattern.
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The value ofL;(Rel ; 5) is the maximum amount of workload requested by the jobs
abstracted by the vertically-composed tagk. The set of jobs released at tirmean
complete, using work conserving algoritffiTDM at most(D; — s) amount of work
within [0, D;) if Ly (Rel ; ) is greater thafD; — s). Otherwise, the maximum amount
of work completed by the set of jobs released at timie L, (Rel ; ). To this end, the
execution time ol for k = 0,1,2, ... f is defined in Eq.[(7.12) as follows:

Wk, {s}) =min{Lr(Rel i), (D; —5)} (7.12)

The valuew( k, { s}) represents the maximum amount of execution completed by the
jobs released at time within the interval[0, D;) if no jobs other than the jobs in set
Rel ; ; are allowed to execute within the interya] D;). The calculation oiW k, { s})

is shown next for the running example.

Example 7.8. Consider the task set in Table_T.1. When considering thedsithigility
of taskry, there is no higher-priority jobs of task. Therefore, no vertically-composed
task is formed since séY is empty.

Fors =0andk =0 Fors =10 andk =0
w0, {0}) w0, {10})
= min{Lo(Rel 270), D; — 0} = min{Lo(ReI 2710), D, — 10}

mm{Lo(Rel 270), 15 — 0} mZT[{Lo(Re| 2710), 15 — 10}
=min{Lo({ J1}),15} = min{3,15} =3 | = min{Lo({ J?}),5} = min{3,5} =3

Fors =0andk =1 Fors =10andk =1

w1, {0}) w(1,{10})

= mm{Ll(Rel 270), D, — O} = mZTL{Ll(RE| 2710), D, — 10}

= mzn{Ll(Rel 2’0), 15— 0} = mzn{Ll(Rel 2710), 15 — 10}
=min{Li({ J1}),15} = min{5,15} =5 | = min{L1({ J?}),5} = min{5,5} =5
Fors = 0 andk = 2 Fors = 10 andk = 2

w2, {0}) w2, {10})

e mzn{LQ(Rel 2’0), Dz — O} = mm{Lz(Re| 2,10)a DZ - 10}

= mm{Lg(Rel 270), 15— O} = mm{Lg(Rel 2710), 15 — 10}

=min{La({ J1}),15} = min{8,15} =8 | = min{Lo({ J?}),5} = min{8,5} =5

Table 7.2: Calculation ofw( k, { s}) for vertical composition at each € S, for k = 0,1, 2.
The left column show the execution timgk, { 0} ) of the vertically-composed taskg for
k = 0,1, 2 faults and the right column show the execution tinfek, { 10} ) of the vertically-
composed tasko; for £ = 0, 1, 2 faults.

When considering the schedulability of task there are higher-priority jobs that
are released withiff0, D). To find the vertical compositions of the higher-prioriti§o
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the following information is used:

Sy ={0,10} from Eq.(Z.9)

D, =15 from Table[ 71l

Rel o0 ={Ji} fors=0fromEq.(Z11)
Rel 510 ={Ji} fors=10from Eq.(Z.11)

Two vertically-composed tasks are formed since there apetitwe points in sefy; =
{0,10}. The two vertically-composed tasks drgy and Vj10;. For each vertically-
composed task, the amount of execution tinje,il,) can be determined fdr = 0, 1, 2
(sincef = 2) using Eq. (7.12) The value of( k, {s}) for the composed tasKg
using Eq.(Z.12)is calculated in Tablge 712 fok = 0,1,2 ands = 0, 10.

When considering the schedulability of tasgk there are higher-priority jobs that
are eligible for execution withifd, D3). To find the vertical compositions of the higher-
priority jobs, the following information is used:

S3 ={0,10,15,20,30} from Eq.(Z9)

D3 =40 from Table[7.1

Rel 30 ={J},J;} fors=0fromEq.(Z11)

Rel 310 ={Ji} fors=10from Eq.(Z.11)

Rel 315 ={Ji} fors=15from Eq.(Z.11)

Rel 300 ={J;} fors=20from Eq.(Z11)

Rel 330 ={J{,J3} fors=30fromEq.(Z11)
Five vertically-composed tasks are formed since there aectiine points irb3 at each
of which new higher-priority jobs are released. The five icafly-composed tasks are
Vioy, Viroy, Viasy, Vieoy and Vizgy. For each vertically-composed task,, the value

of Wk, {s}) for k = 0,1,2 is given in each row of Table 1.3 fé&r = 0,1,2 and
s = 0,10, 15, 20, 30.

Vig | k=0 k=1 k=2
Vi | W0, {0})=6 [ W(1,{0})=10 | w(2,{0})=12
Vio, | W(0, {10}) =3 | (1, {10})=5 | w(2,{10})=8
Vis, | W(O, {15}) =3 | (1, {15})=7 | w(2,{15})=9
Vio, | W(0, {20}) =3 | W(1,{20})=5 | w(2,{20})=8
Viao, | W(0, {30}) =6 | w(1, {30}) =10 | w(2, {30}) =10

Table 7.3: The value ofM( k, { s}) for eachs € S3 and fork = 0, 1, 2. Thek faults affect the
higher-priority jobs that are released at tinsec Ss.
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Run-time complexity for vertical composition: CalculatingRel ; ; for all s € S;
needs total (V') operations. Calculating,,(Rel ; ) for setRel ; . requiresO(|Rel ; |-
f2) operations for allk = 0,1,2,...f. There are at mosW jobs that are released
within any time interval of lengthD,,.... Therefore, the number of total jobs having
higher priority than the priority of task; that are released in all the time points in
setS; is equal toO(N). In other words,Y", s |Rel ;| = O(N). Therefore, the
computational complexity of all the vertical compositidnsall time pointss € S; is
[O(N)"'O(Zsesi Rel ;s fQ)]:O(N ) f2) O

For eachs € S;, a vertically-composed tadkg, is formed. The vertically-composed
taskVjs; has execution time( k, { s}) considering &-fault patternfort = 0,1,2... f.
Within the interval[0, D;), there may be more than one vertically-composed task. In
our running example, there are five vertically-composeH ithin [0, D3) as shown
in Figure[Z.2 for the schedulability analysis of task The higher-priority jobs repre-
sented by two or more vertically-composed tasks will exeént0, D;). Notice that
the execution of the jobs represented by two or more velgic@mposed tasks may
not be completely independent. Some jobs in one verticaiyposed task may in-
terfere or be interfered by the execution of some jobs interotertically-composed
task within[0, D,). By considering such effect of one composed task over andtie
vertically-composed tasks are further composed usingbntal composition to calcu-
lateLoad- Fact or - HPi .

Horizontal Composition

A horizontally-composed task is formed by composing two orevertically-composed
tasks. To see how this composition works, consider two idiffetime pointss; ands,

in setS; such thats; < so. For these two time points, two vertically-composed tasks
Visy andV,,y are formed during vertical composition. A horizontallyaeposed task,
denoted byH;,, ..}, is formed by composing the two vertically composed tagks;
andVj,,;. The taskH;,, .,; abstracts all the jobs of the higher-priority tasks than the
priority of taskr; that are released at time instastsandss.

The execution time of this new horizontally-composed t&gk, ., is denoted by
w( K, {s1,s2}) and must not be greater thaR(— s1). This is because the earliest time
at which the jobs represented by the the composedisk ;,; can start execution is
at time sy sinces; < s2. Note that, if0 € {s1,s2}, thenw(Kk, { s1,s2}) must not
be greater thaD;. The value ofwm( k, { s1,s2}) represents the maximum execution
exclusively by the jobs released at timeandss within the time interval0, D;).

When considering the schedulability of task there are a total ofS;| time in-
stants at each of which a vertically-composed task is forniedcalculate the value of
Load- Fact or - HPi , one has to find the final horizontally-composed t&&k with
execution timem k, S;) forallk =0,1,2... f. The value oM k, S;) is the amount
of execution completed by the higher-priority jobs that maleased within the time in-
stants in setS; in [0, D;). Since setS; contains all the time instants where jobs of
higher-priority task are released, the valuewk, S;) is Load- Fact or - HPi .
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To find the horizontally-composed tagks, , total (S;| — 1) horizontal compositions
are needed. Starting with two vertically-composed task&va horizontally-composed
task is first formed. This horizontally-composed task igHar composed with a third
vertically-composed task to form the second horizontatiyaposed task. This process
continues until all the vertically-composed tasks are m®red in the horizontal com-
positions. Note that a vertically-composed task has naipyriassociated with it. The
jobs (primary and backups) abstracted by a vertically-cosed tasks have DM priori-
ties. Therefore, the order of execution of the jobs absthby a horizontally-composed
task is determined by the DM priorities of the jobs that arsti@zted by the constituent
vertically-composed tasks.

The first horizontally-composed task abstracts all higirésrity jobs released at two
points that are in sef;. The last (final) horizontally-composed task abstractghaljobs
that are released at all time points in $et For example, the five vertically-composed
tasks in Figuré 712 are composed horizontally as shown inrEi@.3.

Vioy Viao} Viis) Vi20) Vi30} Deadine ofrg |

( )

H10,10,15,20,30}

T1 (53 T i) 1
H{0,10,15, 20}
To [¢ ¢)
Hyp 10, 15} +
( )
Hyo 10} : .~
'HH!HH'NHN'HH'HH'HH'HH'HH“
0 5 10 15 20 25 30 35 40t

Figure 7.3: Four horizontal compositions (horizontally longer ovals) are shown far filre
vertically-composed tasks (vertically longer ovals). The four horizontadlypposed tasks are
Hio,105, Hip 10, 155 H{o,10, 15, 20} and Hip,10,15,20,30} The execution time (H{o,lo,lsvzo,go)is the value
of Load- Fact or - HPi .

The technique to find the execution time of a horizontallyaposed task is demon-
strated next. If there aretime points in the seb;, then the set; is represented as
Si={s1,s2...s.} wheres; < s;11. According to Eq.[(Z8B), the s&; contains the time
point 0 and therefore;; = 0. The firsta time points inS; is denoted by set

p(x) ={s; |l <zands; € S;}

Therefore, the sep(Xx) ={s1,s2...5,} for x = 1,2...c. For example, we have
P(1) ={s1}={0}, p(2) ={s1,s2}={0, s2}, andp(c) ={s1,52...5:}=5;.

We start composing the first two vertically-composed taskszbntally. The hor-
izontal composition of the first two vertically-composedksaV;,,; andV;,, is de-
noted by the composed task, o) =Hs, 5,3 The execution time of},,; andV,,;
arew( k, { s1}) andw(k, { s2}) , respectively (can be computed using Eq.(I7.12)). The
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execution time offd( ») is denoted byw( k p(2)) =wk, {s1,s2}) andis given in
Eqg. [Z.13) as follows, fok = 0, 1,2, .

w(k, p(2)) =mag {mm{wq,{sl}) +w(k-q, {s2}) ], Di}} (7.13)

The calculation of the value of( k, p(2) ) in Eq. [Z.I3) considers the sum of the exe-
cution time of taskd/,,; andV},; considering respectivelyand(k — ¢) fault pattern
such that the sum is maximized for somd) < ¢ < k. Since the amount of execution
within the interval[0, D;) by the higher-priority jobs released at timgands, can not
be greater than/§; — s;) = (D; — 0) = D;, the minimum of this sum (for somg and D,

is determined to be the value wf k, p(2)) in Eq. (ZI3). This is because the earliest
time that higher-priority jobs can start execution is atetisn = 0.

By assuming that the value of k, p(x) ) is known for the horizontally-composed
tasksHp(x) , a new horizontally-composed tagk, x+1) =Hp(x) u{s,..} IS formed. The
execution timem k, p(x+1)) of the horizontally-composed tadi, x+1) is given in
Eq. (Z.13), fork = 0,1,2,... f, as follows:

WK, POX+L)) = WK, POX) U {sa41})
= mag {mm{w A, (%)) +W(k-, {5211})], Di}} (7.14)

The execution timey k, p(x+1)) of the new horizontally-composed task,(x+1) is
calculated by finding the sum of the execution time of thezwrially composed task
Hy(x) and the execution time of a new vertically-composed fgsk, ;. The value of
this sum is maximized by consideriggfault-pattern in taski,(xy and ¢ — ¢) fault-
pattern in task/,, . ,;, for someg, 0 < ¢ < k. Since the amount of execution within
the intervall0, D;) can not be greater tha®{ — s1) = (D; — 0) = D;, the minimum of
this sum (for someg) and D; is the value ofM k, p(x+1)) in Eq. (Z.14).

Using Eq. [Z.T}), the execution timdg k, S;) of the final horizontally-composed
task Hs,=Hp(|s,)) can be determined, for = 0,1,2... f. The value ofm k, S;) is
the value ofLoad- Fact or-HPi for k = 0,1,2... f. Before the calculation of the
execution time of horizontally-composed task is demotettaising an example, the
run-time complexity of horizontal composition is derived.

Run time complexity of horizontal compositions: There are tota{|S;| — 1) horizon-
tal composition foi.S;| vertically-composed tasks when considering the schedityab
analysis of task;. When considering the schedulability of a taskfor each horizontal
composition, there arg+1) possibilities forg, 0 < g < k, in Eq. [Z.14). For each value
of ¢, there is one addition and one comparison operation. Towergbtal ¢-(k+1)) op-
erations are needed for one horizontal composition for éadtor allk = 0,1,2... f,
each horizontal composition requires tdtak-4 +6+...2- (f +1)]=0(f?) operations.
Given all the|S; | vertical compositions, there are a total[@f5;| — 1) - O(£2)]= O(]S;| -
f?) operations for all the| ;| — 1) horizontal compositions. Note thett;|[=O (N V) since
there are at mosV time instants where new higher-priority jobs are relea3éerefore,
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finding theLoad- Fact or - HPi for one taskr; is O(N - f%). The time complexity to
find the execution time of vertically-composed task@(si\? - f?). Therefore, total time
complexity for the vertical and horizontal composition wheonsidering the schedula-
bility of task7; is O(N - f2+ N - f2)=O(N - f?). O
Now the calculation of.oad- Fact or - HPi (that is, the value o k, S;) ) using our
running example is presented.

Example 7.9. For taskr;, we haveS; = () from Eq.({Z.8). Therefore, no vertical
composition, and hence no horizontal composition is needed

For task 7, we haveS, = {0,10}. Using vertical composition, we have two
vertically-composed taskgog, andV;10;. The execution time( k, { s}) ofthe vertically-
composed task for= 0 andk = 0, 1, 2 fault patterns arev( 0, { 0} ) =3, w( 1, { 0} ) =5,
andw( 2, { 0} ) =8 (given in the first column of Table7.2 in page 131). Sinhjlathe
execution timem k, { s} ) of the vertically-composed task fer= 10 andk = 0, 1,2
fault patterns are determined &g 0, { 10} ) =3, w( 1, { 10} ) =5andw( 2, {10} ) =5
(given in the second column of Tablel7.2 in page 131).

The two vertically-composed taskg, andVj,q; are horizontally-composed d#p, 10}
and its execution time( k, { 0, 10}) using Eq(7.13)is calculated in Tabl€ 74 for
k =0,1,2. Form Tabld_Z#, when considering the schedulability ok tasthe amount
of execution completed by the higher-priority jobs witftinl5) is 6, 8 and 11 fok=0,

1 and 2 errors affecting only the jobs of the higher-priotigk, respectively.

For task 73, we haveS; = {0,10,15,20,30}. Using vertical composition, we
have five vertically-composed tasKgy, Vii0;, Viisy, Vieoy @and Vizpp. The execution
time of the vertically-composed tasks for= 0, 1,2 are given in Table[7]3. Us-
ing Eq. (Z13) and Eq.(Z.14) the execution time of the four haorizontally composed
tasks formed using the five vertically-composed tasks ViiopViisy Vicoy and Vizg
is calculated. The execution time of the horizontally-cossl taskHo, 10, 15, 20, 30}IS
w(k, {0, 10, 15, 20, 30}) thatis calculated using EqZ.14) for k = 0, 1,2 (given
in the fourth row of each Table 7.5-Talble]7.7).

By composing/g; and V10, horizontally, the new horizontally-composed task is
Hio 10y is formed using Eq(Z.13) The execution time of the horizontally-composed task
Hp 10y isW(k, {0, 10}) and calculated using EqZ.I3)for & = 0,1, 2 (given in the
first row of each Table715-Tadle T.7).

Then, the first horizontally-composed taSl, 10y and the vertically-composed task
Viusy are composed to form the second horizontally-composedHAasko, 15 The ex-
ecution time ofHg 10,15 is Wk, { 0, 10, 15} ) and determined using Eq7.14) for
k = 0,1,2 (given in the second row of each Table]7.5-Tablé 7.7). Thisgss contin-
ues and finally the horizontally-composed t@&k; 10, 15, 20jand the vertically-composed
taskVjz0; are composed into the final horizontally-composed taskishio, 10, 15, 20, 30}
The execution time of the four horizontally-composed taskgjiven in Tablé 715, Ta-
ble[Z.6 and TablE7]7 fdt = 0, k = 1 andk = 2 fault patterns, respectively.

The amount of execution timé k, { 0, 10, 15, 20, 30}) ofthe final horizontally-
composed tasK s, is the exact value dfoad- Fact or - HPi due to ak-fault-pattern.
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For H{O’ 10} andk =0

W(OO- {0,10}) =w0, {0} {10})

=mag {min{w(q, {0}) +W(k-q,{10}).D; }|

min{ (0, {O}) +W(0, {10})], D; }

min{[3 + 3], 15} = min{6, 15}} =6

FOrH{O’]_Q} andk =1

w1, {0,10}) =w(1, {0}{10})

—mag {min{w(q, {0}) +w(1-q,{10}) . D: }}

= maz{min{W(0, {0}) +w(1, {10})],D; },
min{[W(1, {0}) +w(0, {10})], D }}

= maxz{min{[3 + 5],15}, min{[5 + 3], 15}}

= maxmin{8,15}, min{8, 15}} =38

For H{O,lO} andk = 2

w2, {0,10}) =w2, {0} U{10})

—mag {min{w(q, {0}) +w(2-q,{10}) . D: }}

= max{min{[w( 0,{0}) +w(2,{10})],D; },

min{W(1, {0}) +w(1,{10})],D; }
min{(w(2, {0}) +w(0, {10})], D }}
= max min{[3 + 5], 15}, min{[5 + 5], 15}, min{[8 + 3], 15}}
= maz{min{8,15}, min{10, 15}, min{11, 15}} —11

Table 7.4: Calculation ofw( k, { 0, 10} ) for horizontally-composed tadf, 10 for £ = 0, 1, 2.

Composed task Execution time for O-fault pattern
Hp, 10} w0, {0, 10}) =9
H{0’10‘15} W( O, {0, 10, 15}) =12
H{O,lO,lS,ZO} V\( 0, {0, 10, 15, 20}) =15
H 101520300 | MO, {0, 10, 15, 20, 30} ) =21

Table 7.5: The execution time due to O-fault pattern of the four horizontally-composdd ta
Hyo, 10y, Hyo, 10,15} Ho, 10, 15, 20y and Ho, 10, 15, 20, 30}

The value oW k, {0, 10, 15, 20, 30}) represents the amount of execution time
within [0,40) by all the higher-priority jobs due to thé-fault-pattern. Tabld 715-
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Composed task Execution time for 1-fault pattern
H{O’ 10} V\(l, {0, 10}) =13
H{o'10’15} V\( 1, { O, 10, 15} ) =16
Hp,10,15,20} w1,1{0, 10, 15, 20} ) =19
H{0’10‘15’20'30} V\( l, {0, 10, 15, 20, 30}) =25

Table 7.6: The execution time due to 1-fault pattern of the four horizontally-compostd ta
Hyo, 10, Hyp, 10,15}, Ho, 10, 15, 20y and Ho, 10, 15, 20, 30}

Composed task Execution time for 2-fault pattern
Hio, 10) w2, {0, 10}) =18
Hio,10,15) w(2,{0, 10, 15}) =21
Hi0,10,15,20} w2, {0, 10, 15, 20}) =24
Hio101520300 | W 2, {0, 10, 15, 20, 30} ) =30

Table 7.7: The execution time due to 2-fault pattern of the four horizontally-composds ta
Hyo, 10, Hyo, 10,15}, Ho, 10, 15, 20y and Ho, 10, 15, 20, 30}

Table[7.Y show that the execution completed by the higherifyrjobs within [0, 40) is
21, 25, and 30 fok=0,1 and 2-fault patterns, respectively (shown in the slsderth
row in each of the Table_4.5-Talle V.7). O

It is easy to realize at this point that the way the compasitézhnique is applied to
calculate the execution time of the final horizontally cosgbtask can also be applied
to any fixed-priority task system and to any length of therivakrather tharf0, D;).
Based on the value of tHenad- Fact or - HPi , the exacFTDMschedulability condi-
tion of taskr; is derived in Sectioh 716.

7.6 Exact Schedulability Test

The exact schedulability condition f&fTDMscheduling of a sporadic task deis de-
rived based on the exact schedulability condition of easktafori = 1,2...n. The
exact schedulability condition of task depends on the amount of execution required
by taskr; and its higher-priority jobs within the intervdd, D;) considering at most
f errors that could occur withifd, D;).

By considering { — k) faults exclusively affecting task; and thek-fault pat-
tern affecting the higher-priority jobs of task within the interval[0, D;), the sum
of Load- Fact or-i andLoad- Fact or - HPi can be calculated such that it is max-
imized for somek, 0 < k£ < f. This sum is consequently the worst-case workload
within [0, D;). The value oLoad- Factor-i is Ci(f ~*) and can be calculated using
Eq. (Z2), fork = 0,1,2,... f. The value ofLoad- Fact or - HPi isw(k, S;) and
can be calculated using Eq.(7114), foe= 0, 1,2, ... f.
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The maximum total workload withif0, D;) is denoted bylLoad; which is equal
to the sum oLoad- Fact or-i andLoad- Fact or - HPi such that this sum is max-
imum for somek, 0 < k < f. The functionTLoad; is defined in Eq[{Z.15):

TLoad; = szgc{q.(f*k) +w(k, ;) } (7.15)

Using Eq. [Z.IF), the maximum total workload within the intd [0, D;) can be deter-
mined. The total load is equal to the sum of the execution tieggliired by task; if
(f — k) errors exclusively affect the task and the execution time within the interval
[0, D;) by the jobs having higher priority than the taskdue tok-fault pattern, such
that, the sum is maximum for some0 < k < f.

Run-time complexity to compute the total load: Calculating the value qf’i(f %) for
allk =0,1,2,... f can be done irO(f) steps. The value of( k, S;) is the execu-
tion time of the final horizontally-composed task and can &leudate inO(N )
time for allk = 0,1,2,... f. In Eq. [ZI5), there aref(+ 1) possible values for
the selection of, 0 < k < f. EvaluatingTLoad; in Eq. [Z.I5) requires a total of
(f + 1) addition operations an@l comparisons to find the maximum. Given the val-
ues ofC =% andw(k, ;) forall k = 0,1,2,... f, finding the value offLoad;
requiresO(f) steps. Therefore, the total time complexity for evaluafiigpad; is
[O(f)+O(N - f2)+O(f)]=O(N - f?). 0

Based on the value afLoad;, the necessary and sufficient schedulability condition of
taskr; in FTDMscheduling is proposed in Theoréml7.1.

Theorem 7.1. Taskr; € T is FTDMschedulable if and only ifLoad; < D;.

Proof. (if part) It will be shown using proof by contradiction thaflif. oad; < D,, then
taskr; is FTDMschedulable. The value dl.oad; is the sum of two workload factors:
Load- Fact or-i andLoad- Fact or - HPi . The value ofLoad- Fact or -i is the
maximum execution time required by the taskf (f —k) errors exclusively occur in the
first job of taskr;. The value oLoad- Fact or - i is given byCi(f = in Eq. (Z.2) for
k=0,1,2,... f. The value oLoad- Fact or - HPi isthe execution completed within
the interval[0, D;) by the jobs having higher priority than the priority of task The
value ofLoad- Fact or - HPi is given byw( k, S;) which is equal to the execution
time of the final horizontally-composed tagks, considering &-fault pattern affecting
the jobs of the higher-priority tasks within the intenj@l D;), for k = 0,1,2,... f.
The value ofm k, S;) is the maximum amount of work that can be completed by the
higher-priority jobs within[0, D;).

Now, assume a contradiction, that is, that some job of taskisses it deadline
whenTLoad; < D,. This assumption implies that the first job of tagkmisses its
deadline (due to the first job being released at a criticahimy. When the first job of
task; misses its deadline at tim@;, the processor must be continuously busy within
the entire interval0, D;). This is because, if the processor was idle at some timeninsta
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within [0, T;), thenr; could not have missed its deadline siff@DMscheduling is based
on work-conserving DM scheduling.

In case that; misses its deadline, the processor either executes-taskts higher-
priority jobs at each time instant withid, D;). The time required for executing the
higher-priority jobs within0, D, ) isLoad- Fact or - HPi which is given byw( k, S;) .
Note thatw( k, .S;) is less than or equal t®; (because of thenin function) accord-
ing to Eq. [Z.I#4). The total time required for completing theecution of taskr; is
Load- Fact or-i considering(f — k) errors that could affect the first job of task
7;. Sincer; misses it deadline dp;, the complete execution of taskcan not have fin-
ished by timeD;. Therefore, the sum dfoad- Fact or -i andLoad- Fact or - HPi ,
denoted byl'Load;, must have been greater thBx (which is a contradiction!). There-
fore, if TLoad; < T;, then taskr; is FTDMschedulable.

(only if part) It will be shown that, ifr; is FTDMschedulable, thefiLoad; < T; .
The amount of work on behalf of task(including execution of its backup) completed in
the FTDMschedule in0, D;) is Load- Fact or - i . Since when analyzing the schedu-
lability of taskr;, the amount of execution on behalf of the jobs (includingceien of
their backups) having higher priority than taskhat is completed biFrTDMscheduling
is exactly equal td.oad- Fact or - HPi within [0, D;).

Since the work completed by algoritH&TDMon behalf of the jobs inHPJ; U {J}'})
in [0, D;) is equal to the sum ofoad- Fact or-i andLoad- Fact or - HPi , the
total loadTLoad; is less than or equal t®; whenever task; is FTDM schedulable.
Therefore, if tasks; is fault-tolerant=TDMschedulable, thefiLoad; < D;. O

The exact schedulability test {6 DMscheduling of task; is given in Theorern 7]1.
The time complexity for evaluating the exact test is samehagtitne complexity for
evaluating Eq[{7.15). Therefore, the necessary and sirificondition for checking the
schedulability of task; can be evaluated in tim@(N - f?). The exact schedulability
condition for the entire task s&tis now given in the following Corollary 711.

Corollary 7.1. Task sef” ={7y,7»,...,7,} is FTDMschedulable if, and only if, task
7; is FTDMschedulable using Theordm17.1 forak= 1,2, ... n.

Note that Corollarj 7]1 is the application of Theorienl 7.1efach one of the tasks
in setI". Therefore, the exact schedulability condition for theirentask set can be
evaluated irO(n - N - f?) time. TheFTDMschedulability of the running example task
set given in Tablg~7]1 is now demonstrated.

Example 7.10. We have to apply Theordm 1.1 to all the three tasks given itellaf.
For taskr;, the value offLoad; for i = 1,2,3 has to be computed. The taskbeing
the highest priority task is triviallfFTDM-schedulable.

Consider the schedulability of task. Remember thatm k, S;) is the execu-
tion time of the final horizontally-composed task and is ¢tuaoad- Fact or - HPi .
For taskr,, we haveS, = {0,10}. By horizontal composition, the final horizontally-
composed tasklj 10y has execution time equal t 0, S2) =6, W 1, S3) =8, and
W2,5) =11fork = 0, k = 1 and k = 2 fault-patters within intervall0, 15)
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(given in Tabld_714), respectively. For task we also have®) =3, C3 =7 and C5 =9
fork = 0, k = 1 and k = 2 fault-patterns, respectively, which are the values of
Load- Fact or -i using Eq(Z.3). For taskm, and f = 2, the calculation offLoads
using Eq.(Z.19)is given below:

TLoady —mag {cgw +w(q, {0, 10}) }
q=0
=max{[C} +w(0,{0, 10})],[C} +w(1,{0, 10})],
(€0 +w(2, {0, 10})]} :maaf{[9+6],[7+8],[3+ 11}} —15

SinceTLoad,= 15 < D, = 15, taskr, is FTDMschedulable using Theorém17.1.
Consider the schedulability of task. We haveS; = {0, 10, 15,20, 30}. By hor-
izontal composition, the final horizontally-composed té&&k 10,15,20,30has execution
time equal tom 0, S3) =21, W( 1, S3) =25, andw( 2, S3) =30 fork = 0, k = 1 and
k = 2 fault-patterns, within interval0, 40) (given in the fourth shaded row in Ta-
ble[Z.5-Tabl&7I7), respectively. For task we also have’§ =9, C3 =17 andC3 =23
fork = 0, k = 1 and kK = 2 fault-patterns, respectively, which are the values of
Load- Fact or -i using Eq(Z3). For taskrs and f = 2, the calculation offLoad3
using Eq.(Z.19)is given below:

TLoads =may {C*~? +w(q, {0, 10, 15, 20, 30}) }
- max{[cg +w(0,{0, 10, 15, 20, 30}) ],
[C} +w(1, {0, 10, 15, 20, 30}) ],
(€8 +w(2, {0, 10, 15, 20, 30}) ], }
- ma:z:{[Ql + 23], (25 + 17), [30+9]} — 44

SinceTLoads= 44 > D3 = 40, taskrs is not FTDMschedulable using Theordm17.1.
Therefore, the task set given in Tablel 7.1 is F6DMschedulable using Corollafy 4.1.

Based on the necessary and sufficient schedulability dondit Corollary[Z.1, the
pseudocode of the schedulability test FFDMscheduling is now algorithmically pre-
sented in Section 7.7.

7.7 Algorithm for the FTDMSchedulability Test

In this section, the exact test for fault-tolerant schedyhlgorithmFTDMbased on the
exact schedulability condition derived in Corolldry]7.1piesented. First, the pseu-
docode of the algorithn€heckFeasi bi | i ty( 7, f) is given in Figurd 7. The al-
gorithmCheckFeasi bi | i t y( 7;, f) checks th&=TDMschedulability of a task; by
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considering occurrences gftask errors in any jobs of the tasks in set{ 7, ...7;}
released within the intervdd, D;). Next, the algorithnFTDMTest (T, f)that checks
the schedulability of the entire task §&based on the schedulability of each tagk T’
is presented in Figuie 1.5.

Algorithm  CheckFeasi bil i ty(, f)

Find theHPJ; using Eq.[(Z})
Find theS; using Eq.[(Z.B)
Forall s € S;
Fork=0to f
Findw( k, { s}) using Eq.[(7.1R)
End For
End For
For x =210 |S;]
Fork=0to f
10. Findw k, p(z- 1) U{s,}) using Eq.[(Z.1})
11. End For
12.End For
13. Fork= fto0
14. FindCi(f_k) using Eq.[(Z.R)
15. End For
16.Fork=0to f
17. 1t [cY % +w(k, S;) 1> D; then
18. return False
19. End If
20.End For
21.return True

©CoNoO LN R

Figure 7.4: Pseudocode of Algorithi@heckFeasi bi l i ty( 7, f)

In line 1 of AlgorithmCheckFeasi bi | i t y(7;, f) in Figure[Z.4, the jobs having
higher priority than the priority of task; are determined using Ed. (7.4). In line 2,
the time instants at each of which higher-priority jobs aeased within the interval
[0, D;) are determined using Eq.(¥.8). Using the loop in line 3—-&,ekecution time
w(k, { s}) of each vertically-composed tasf, is derived for each poin € S;. The
value ofw( k, { s}) is determined for each=0,1,2,... f atline 5 using Eq[{7.12).

Using the loop in line 812, the vertically-composed taskscamposed further us-
ing horizontal compositions. The loop at line 8 iterateslt¢tS;| — 1) times. Each
iteration of this loop calculates the execution time of oweizontally composed task
Hp(2) =Hp(a- 1) Us.})» TOr o = 2,3,...15;]. The execution time( k, p(z- 1) U{ sz} )
of the horizontally-composed tagk,( .- 1) g, iS calculated at line 10 using E@. (7114)
for a k-fault pattern,k = 0,1,2,... f. The execution timeM k, S;) of the final
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horizontally-composed tasi s, is the value ot.oad- Fact or - HPi ,fork =0, ... f.

Using the loop in line 13-15, the value thf ~" is determined in line 14 using

Eq.(Z2)fork =0,1,... f. Remember that the valueﬁff ~k isLoad- Factor-i .
Inline 16—20, the exact schedulability condition fpis checked by consideringerrors
affecting the jobs of the higher-priority tasks afyd- k) errors exclusively affecting the
taskr;, for k = 0,1,2,... f. Inline 17, the value oTLoad; is calculated by summing
Load- Fact or-i andLoad- Fact or - HPi and this sum is compared against the rel-
ative deadline of task;. If this sum is greater thaP;, then task-; is notFTDMschedu-
lable and the algorithnEheckFeasi bi | i ty( =, f) returns False at line 18. If the
condition atline 17 isfalse forall = 0,1, 2. .. f, then task- is FTDMschedulable and
the algorithmCheckFeasi bi l i t y( 7;, f) returns True at line 21. Next, using the al-
gorithmCheckFeasi bi | i t y( =, f) the algorithmFTDMTest (T, f)is presented in
FigurelZ5b.

Algorithm  FTDMTest (T, f)

1. Forall r; €{m,7,...,7a}

2. If CheckFeasi bi lity(;, f)=False then
3. return False

4, EndlIf

5. End For

6. return True

Figure 7.5: Pseudocode of AlgorithfARTDM Test (T, f)

Using the loop in line 1-5 of algorithrfTDMTest (', f) given in Figure Zb, the
FTDMschedulability of taskr; is checked. The algorithrRTDMTest (T, f), based
on algorithmCheckFeasi bi | i ty(r, f), checks th&=TDM schedulability of task
7, € I atline 2. If the condition at line 2 is true for any task (the algorithm
CheckFeasi bi l i ty(, f) returns False), then the task §as notFTDMschedulable.
In such case, the algorithFTDM Test (T, f) returns False (line 3). If the condition at
line 2 is false for task;, forall: = 1,2,...n (CheckFeasi bi l i ty( =, f) returns
True for each task), then the task $eis FTDMschedulable. In such case, the algo-
rithm FTDMTest (T, f) returns True (line 6). Given a task deand the number of task
errors f that can occur within any possible interval of lendih,, .., the fault-tolerant
schedulability of the task set using tRé DMalgorithm can be exactly determined using
algorithmFTDM Test (T, f) in O(n - N - £2) time. The applicability of exact unipro-
cessor schedulability test f&6fTDMscheduling to multiprocessor platform is presented
in subsectioh 7.711.
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7.7.1 Multiprocessor Scheduling

The uniprocessoFTDM schedulability analysis is applicable to multiprocessartip
tioned scheduling. The exact test 6f DM scheduling can be applied during the task
assignment phase of a partitioned multiprocessor schregalgorithm in which the run
time dispatcher in each processor executes tasks in DMtgrayder using uniprocessor
FTDMscheduling.

Consider a multiprocessor platform consistingrofdentical processors. The ques-
tion addressed is as follows:

Is there an assignment of the tasks ofISen m processors such that each
processor can toleratetask errors within a time interval equal to the max-
imum relative deadline of the tasks assigned to each process

Partitioned multiprocessor task scheduling is typicalsdéd on a bin-packing algo-
rithm for task assignment to the processors. When assigniregvaask to a processor,
a uniprocessor schedulability condition is used to checkthwdr or not an unassigned
task and all the previously assigned tasks in a particulzrgesor are schedulable using
uniprocessor scheduling, for example, DM scheduling &lgor. If the answer is yes,
the unassigned task can be assigned to the processor. htomdend the partitioned
multiprocessor scheduling to fault-tolerant scheduliag can apply the exact schedula-
bility condition derived in Corollarf{/7]1 when trying to ags a new task to a processor
in partitioned scheduling. The following principle disses how the exact schedulabil-
ity condition derived in Corollarf7]1 can be applied to thesEFit heuristic for task
assignment on multiprocessors.

An idea to assign tasks to multiprocessors:Consider the First-Fit heuristic for
task assignment to processors. Given a task sgtr, ..., 7,}, the tasks are to be
assigned ton processors in increasing order of (given) task index. Téataiskr is
considered first, then task is considered, and so on. Using the First-Fit heuristics, th
processors of the multiprocessor platform are also indéoad 1 . . . m. An unassigned
task is considered to be assigned to processor in increasiteg of processor index.
An unassigned task is assigned to the processor with thdeshaddex on which it is
schedulable.

Following the First-Fit heuristic, task; is trivially assigned to the first processor.
For taskr,, the necessary and sufficient schedulability condition anoBary[7.1 is
applied to a set of tasksr{, 7} considering at mos{f errors that could occur in an
interval of lengthD,, ... (whereD,, ... is the maximum relative deadline of the tasks
in set {r;, 72}). If the schedulability condition is satisfied, then is assigned to the
first processor. Otherwisey is trivially assigned to the second processor. Similarly,
for each unassigned task the schedulability condition in Corollaky 7.1 is first cked
considering the already assigned tasks includingtash the processor with index 1. If
taskr; and all the previously assigned tasks to the first processdi@DMschedulable
using the exact condition in Corollaky T.1, thenis assigned to the first processor. If
the exact condition is not satisfied, the schedulabilitydition is checked for the second
processor and so on.
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If task 7; can not be assigned to any processor, then task sah not be partitioned
on the given multiprocessor platform. If all the tasks agrsed to the multiprocessor
platform, then task sdt is FTDMschedulable on each processor. For a successful par-
tition of the task sef’, each processor can tolergtesrrors that can occur in any tasks
within a time interval equal to the maximum relative deagllof the tasks assigned to
each particular processor. The successful assignmene aaslks tan processors also
guarantees that totéin - f) task errors (each processor tolerating at nyostrors) can
be tolerated within each of all possible time intervals afgth D,,,,.. whereD,,,,.. is
the largest relative deadline of all the tasks.

7.8 Summary

This chapter presents the analysisFdfDM scheduling algorithm that can be used to
guarantee the correctness and timeliness property otirealapplications on unipro-
cessor. The correctness property of the system is addrbgsedans of fault-tolerance
so that the system functions correctly even in the presefdautis. The timeliness
property is addressed by deriving a necessary and suffeidetdulability condition for
the FTDMscheduling algorithm on uniprocessor.

The proposed algorithrATDM Test (I', f) can verify theFTDMschedulability of
constrained-deadline sporadic task sets. The time coityplex evaluate the test is
O(n- N - £2), wheren is the number of tasks in the periodic task 9étis the maximum
number of jobs released within any time interval of lenfth ..., andf is the maximum
number of task errors that can occur within any time inteofdéngthD,,,...

The fault model considered for tifd DMschedulability analysis is general enough in
the sense that multiple task errors due to various hardwettea@ftware faults can occur
in any job, at any time and even during the recovery operafidrere is no restriction
posed on the inter-arrival time between the occurrencesyptwo consecutive faults.
The only restriction of the fault model is that a maximumfofask errors could occur
within any time interval of lengttD,,,,.. Such a fault model does not require to know
the distribution of the faults and also covers faults whaeytmay arrive in bursts.

No other work has proposed an exact fault-tolerant scheditjaanalysis of spo-
radic tasks having constrained deadlines considering augéneral fault model as is
used in this chapter. If an efficient (in terms of time comijii@xand exact schedula-
bility test is needed, then the scheduling algoritRivDMprovides better computational
efficiency than that of proposed for fault-tolerant EDF shifing algorithm in|[Ayd07].
The proposed exact uniprocessor schedulability condiorbe applied to task schedul-
ing on multiprocessors based on partitioned approach.






Fault-Tolerant Scheduling on
Multiprocessors

In this chapter, a fixed-priority multiprocessor schedylatgorithm, called Fault-Tolerant
Global SchedulingKTGS), is proposed for tolerating both task errors and procdader
ures. The major strength &TGS algorithm is the fault model it assumes; a variety of
software and hardware faults that may lead to task errorsamegsor failures are con-
sidered. The main contribution is the derivation of a sigfitischedulability test for the
proposed-TGS algorithm that exploits time redundancy to tolerate faulisis schedu-
lability test when satisfied guarantees that all the deadlof the real-time tasks are met
even in the presence of task errors and processor failures.

The novelty of the proposed schedulability test is that #mlience of resource-
constrained embedded real-time systems can be deternunédférent combinations
of task errors and processor failures. The schedulabdgyfor theFTGS algorithm is
OPA-compatible: if a task set does not satisfy the scheditlatest for a given priority
ordering of the tasks, then a priority ordering for which taskset may satisfy the
schedulability test can be searched using multiprocessension of Audsley’s optimal
priority assignment algorithm.

8.1 Introduction
There are numerous works that have addressed fault-tolefanpartitioned and global

scheduling on multiprocessolis [0$94, GMMB4, TKK95, BMREYKTO7, [KLR10,
BGJO6| LLMM99]. In fault-tolerant scheduling, each taskasidered to have one pri-
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mary and one or more backups. In partitioned fault-tolesaheduling, a task allocation
algorithm assigns the primary and backups of each task tmcliprocessors at design
time. In case of a task error or processor failure detectedratime, the backup of the
affected task is executed on a different non-faulty prometgswhich it is assigned.

One interesting observation of the task allocation alpor& proposed in [0S94,
GMM94,[TKK95,[BMR99, CYKTO7| KLR10] is that these algoritlsnalo not take into
account any difference between task errors and procestmetawhen assigning the
tasks to the processors. These allocation algorithmsrpesiially assume that tolerat-
ing a task error is equivalent to tolerating a processouffail This pessimism requires
relatively higher number of processors for successfulbigasng all the primary and
backups even when only task errors are to be tolerated. Suetpoovisioning of com-
puting resources (i.e., processors) may restrict the upamitioned method for many
resource-constrained embedded real-time systems likenatitve and avionics where
weight, volume and space are limited. And more importairityreasing the number of
processors also increases the probability of having mailésfan the system.

One of the consequences of the rising trend of transienisfautomputer electron-
ics (as pointed out by Baumann in [BaliO5]) is the possibidftiiaving higher number of
task errors. It is therefore important to develop resouffieient fault-tolerant schedul-
ing algorithm to tolerate task errors. Global schedulirgpathm does not require allo-
cation of tasks to processors. The main motivation of thekvmthis chapter is based
on an important observation: the global scheduler can sidtippatch the backup of the
faulty task to any processor even to the processor on whielatk has encountered a
task error. This is because transient errors are shortéiaddolerating such errors using
global scheduling does not need the backups to be executdifferent processors.

In this chapter, d&ault-TolerantGlobal Scheduling algorithm, calle8TGS, to tol-
erate both task errors and processor failures is propodezlalforithmFTGS not only
can tolerate task errors but also can withstand procesibamefa Global scheduling can
tolerate processor failure just by assuming the task ekegah the faulty processor has
encountered an error. In other words, a processor failurdeaviewed from the global
scheduler’s point of view as a task error. The treatmentlaydte the processor failure
usingFTGS algorithm is same as tolerating a task error — dispatchiegtimary and
the backups of the tasks only to the non-faulty processoydoBrating processor fail-
ure it means that the effect of permanent processor faitungitigated by executing the
tasks on non-faulty processors while meeting all the deadlof the tasks.

Time-redundancy is considered to tolerate both task eandsprocessor failures.
In order to ensure that all the deadlines of the applicatéskgs are met while achiev-
ing fault-tolerance, the schedulability analysisFafGS algorithm derives a sufficient
schedulability test that when satisfied for a task set guaesrthat all the deadlines are
met. One of the novel properties of the proposed scheditlatgkt is that the number
of task errors and the number of processor failuresaparatelyincorporated in to the
mathematical expression of the schedulability test. Thaperty enables the system de-
signer to independently judge the robustness of the schéaltérms of tolerating only
task errors, only processor failures, or tolerating both.
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Another important property of the schedulability test foe FTGS scheduling al-
gorithm is that it is OPA-compatible. If the proposed scHallility test is not satisfied
for a task set for a given priority ordering, then anotheofty assignment for which
the task set may satisfy the schedulability test can be m@ted. This an important
property since the optimal priority assignment for globRl $cheduling is not known.

TheFTGS scheduling and its corresponding schedulability testiclens very gen-
eral fault model in the sense thatultiple errorscan occur in any task, at any time, in
any processor, and even during the recovery operations.ahy rather works regard-
ing fault-tolerant scheduling on multiprocessors, a neddy restricted fault model is
considered, assuming, for example, that

e the inter-arrival time of two faults must be separated by aimium distance
[GMM94, [TKK95, LLMM99]

e at most one fault may affect each task [LLMM99, GMM94]

e the recovery operation is simply the re-execution (i.eesdoot consider a differ-
ent implementation of the same task) [CYKT07, KLR10]

For the proposed algorithm, tolerating a maximuny aésk errors within each possible
interval of lengthD,,, ..., whereD,, .. is the largest relative deadline of a constrained-
deadline sporadic task set is considered. In addition;atifey at mosp permanent pro-
cessor failures during the life time of the system is alsosagred in the fault model.
The assumed fault model does not put any restriction betweenccurrences of con-
secutive task errors or processor failures. Any job of asl¢ taay suffer from multiple
errors at any time. The backups of each task could simply éedkexecution of the
primary or execution of a diverse implementation of the task

The rest of this chapter is organized as follows: Sedtiohp82ents related work.
Section 8.B presents the system models and=iH@S algorithm. In Sectiof_8]4, the
fault-tolerant schedulability problem is formally statédhe fault-tolerant global schedu-
lability analysis considering only task errors is presdiiweSection 8 H=817. This analy-
sis is then extended for tolerating processor failure irtiSe®.8. Finally, Sectioh 8.10
concludes the chapter.

8.2 Related Work

The fault-tolerant partitioned scheduling algorithms taaglitionally based on Primary-
Backup (PB) paradigm with the main aim for tolerating persr@mprocessor failures
[GMM94], [TKK95,[BMR99,[CYKTO7,KLR10]. In PB approach, eacdsk is consid-
ered to have a primary and one or more backups. The primanpacklips of each
task are statically assigned (partitioned) to differewtpssors at design time. Both task
errors and processor failures are tolerated in the same way executing the backup
of the affected task on @ifferentprocessor.

A backup may bective or passive An active backumlwaysexecutes regardless
of any error in its corresponding primary while a passivekibgoonly executes after
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the primary fails. Active backups are always executed eligreiprimary encounters no
fault. Active backup policy utilizes more processing reseland energy but can provide
better fault-tolerance for low-laxity (shorter deadlin@$ks. In contrast, passive backup
policy consumes less processing resource but may not graridugh fault-tolerance
for the low-laxity tasks. Considering the wide ranges obrese-constrained embedded
real-time systems, passive backups is consideredrT@S algorithm: the backup is
only executed if an error is detected.

The work in [BT83] considers the allocation of a set of peltadsks to a number
of processors by assuming the same WCET ofrth®ackups and does not consider
minimizing the number of processors. The works in [O$94, &2$8onsider allocation
of primary and multiple backups using RM first-fit [0S$94] an¥ Rext-fit [OS954a]
heuristics. Both these algorithms requires at least twieenumber of processors than
that of required for some optimal allocation algorithm. Tdwrk in [CYKTO7] proposes
efficient allocation algorithm by simple modification of tfiest-fit, best-bit and worst-fit
heuristics for minimizing the number of processors regtarsuccessfully assign a task
set where each task has fixed number of replicas.

The works in [0S94, BMRS9, CYKTO07] consider active backupgdierate only
processor failures based on partitioned schedulingtriétly periodic real-time tasks.
The task allocation algorithm proposed by Oh and Sori_in [(D$6dsiders multiple
diverse backups of each task while the algorithm proposedhmnet al. in [CYKTO7]
considers the backups simply as replicated copies of tmeapyi The task allocation
algorithm proposed by Bertosst al. in [BMR99] is based on RM first-fit bin pack-
ing heuristic to assign the primary and exaatiye backup of each periodic task to
the processors. Multiple active backups of the periodikdase considered by Kim
et al. in [KLR10] for tolerating multiple processor failures; hewer, the backups are
duplicates of the primary. None of these works consideragiortask model and do
not explicitly address the issue of tolerating only tasloesr Task assignment with
replication to achieve fault tolerance in heterogeneousgssor processors are consid-
ered [ZQQ1L, EBQ8].

Fault-tolerant scheduling of aperiodic tasks based on RBoagh is proposed in
[GMM94] [TKK95]. Instead of considering active backup, pesdackup [GMM94]
or partially-active backup [TKK95] are found to be effeetifor fault tolerance. More-
over, in order to efficiently utilize the processors, theesttiling algorithms in [GMM94,
TKK95] consider backup-backupverloadingand backupleallocationtechniques. In
backup-backup overloading, two backup copies of two diffiémprimary copies over-
lapped in time on the same processor if their correspondiimyapies are assigned in
two different processors. Primary-backup overloadingpissidered in[[AOSMO01] and
shown to have better schedulability than backup-backugaading. In primary-backup
overloading, the primary of a task can be scheduled ontoahee r overlapping time
interval with the backup of another task on a processor. dhewks considers only
one backup copy for each task and assumes that there is auninsgparation interval
between occurrences of consecutive processor failureswblnk in [BEM97] consider
RM first-fit policy for allocating periodic tasks to toleratme processor failure using
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PB approach by determining whether a task should use aatipassive backup. The
idea of [BEM97] is augmented with backup deallocation andrimading for implicit
deadline task set in_ [BMR99]. To tolerate more processdisréaat a certain time,
the processors are statically [MM98] and dynamicélly [ACM$divided into disjoint
logical groups such that one processor failure can be teléia each group.

There are very few works that have addressed fault-toleréroglobal scheduling
[BGJO6,LLMMO9C]. Fault-tolerant global scheduling basedprobabilistic fault model
is proposed by Bertent al. for global EDF scheduling in [BGJ06]. The algorithm
in [BGJO6] considers simple re-execution of the tasks tertdk only task errors based
on EDF* scheduling that is proposed by Goossenal. in [GFBOZ3]. The task model
used in[[BGJOB6] is periodic and the deadline of each tasknsidered to be equal to its
period. The pFair scheduling proposed by Barathl. in [BCPV96€] for periodic task
model is augmented with fault tolerance by Liberataal. in [LLMM99]. However,
the work in [LLMM99] considers exactly one backup for eackkta Moreover, the
schedulability test in [LLMM99] requires that there is a mium separation between
the occurrences of two consecutive task errors. There isark that addresses fault-
tolerant global scheduling that considers sporadic tasttahixed-priority, deadline of
the tasks being less than or equal to the periods, and cosdidéh processor failures
and task errors using multiple and diverse backups. TheosegFTGS scheduling
algorithm presented in this chapter possesses all thesaotbastics.

8.3 System Models and thé&TGS Scheduling

Fault-tolerant scheduling of a set of constrained-deadiporadic tasks on a multipro-
cessor platform consisting of identical processors/cores is considered. The task and
fault models foFTDMscheduling are presented in Secfiod 3.1 and Setidn 3@:aes
tively. The salient features of the models are reiteratae far better readability. A
set ofn constrained-deadline sporadic tadks{r, 72, ..., 7,} is considered, where
each task; € I' is characterized by WCET;, relative deadline);, and periodl’;. A
number off task errors due to a variety of hardware and software faudtisrhay occur
within each of the all possible time intervals of lendi, ... is considered. Within any
time interval of lengthD,,,..., the f task errors may occur in the same jobs or may oc-
cur in different jobs of different tasks. Each task has onimary andf backups. The
WCET of the primary of task; is C; and the WCET of each of thé backups of task
7, is denoted byE¥ wherek = 1,2,... f .

When there ar¢f — c) task errors affecting the primary and subsequgnt ¢ — 1)
backups of the same job of task the total execution requirement of the job of this task

is denoted b;Ci(f ~9 and recursively calculated using Eq.(8.1) as follows:

Ci(f_c) _ Cs if (f —¢)=0 (8.1)

B { EV™ ycV e if (f-¢)>0
whereEl.(f’C) is the WCET of the f — ¢)" backup of task;. Thus, starting fronk =
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£, (f=1),...0,allthe valueg™® ,C! ,...C/ for taskr; can be recursively calculated
using totalO( f) addition operations (and for all task¥n - f) addition operations are
needed). Note that the WCET, relative deadline, and intéradrtime of each task
7; must satisfyC/ < D; < T;.

The FTGS algorithm does not only capable of tolerating task errorsaiso can
mitigate the effect of permanent processor failures. FRES algorithm considers mit-
igating the effect ofp permanent processor failures during the lifetime of theesys
The effect of processor failure is mitigatedR GS algorithm by executing the backup
of the affected task on a non-faulty processor. The backuguah case may be the
re-execution of the primary.

Fault-Tolerant Mechanism and Algorithm FTGS: Each sporadic task generates an
infinite number of jobs having a minimum inter-arrival timetlveen successive jobs.
The fault-tolerant mechanism based on time-redundancyT@S scheduling works
as follows. For each job of a task, the primary executes fWghenever a task error
or processor failure is detected, the first backup of thectdtetask becomes ready to
execute. The priority of the backup is same as that of its gmymAgain, a task error
or processor failure may be detected during the executidgheobackup which in turn
would trigger the execution of next backup and so on.

The scheduler is always made aware of all the non-faultyge®ars in the system.
Such awareness can be achieved ugiilgsignaledprocessors. Once a processor fail-
ure is detected, thETGS scheduler never dispatches any task to this faulty processo
Moreover, if a task was dispatched to this faulty processemn the backup of the af-
fected task becomes ready for execution. FAES scheduler stores all the ready (i.e.,
released but not completed) tasks in a global queue andidigsthen highest priority
tasks from this queue am processors, possibly by preempting, if any, the executfon o
a lower priority task. Th&TGS scheduling is based on global FP scheduling paradigm.
Similar to the uniprocessdfTDM scheduling algorithm, it is assumed e GS algo-
rithm that a task error is detected at the end of executioneoptimary or backup. There
is no fault propagation: one fault is assumed to affect attroos job either a primary
or a backup. And, any primary or backup is assumed to be affdnt at most one fault.

8.4 Problem Statement

In this chapter, the following problem is addressed:

Are all the deadlines of sporadic task sef” met on m processors using
FTGS scheduling if there are maximum f task errors within each of all
possible time intervals of lengthD,,,,,, and a maximum of p processors
failures during the lifetime of the system?

Note that the maximum number of task errors within any tinterival of lengthDy
isalsof, for k = 1,2,3,...n, becauseD; < D,,.,. Following this, the problem
statement for toleratingnly task errors can be re-written as:
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Are all the deadlines of taskr;, met onm processors usind-TGS schedul-
ing if there are maximum f task errors within any time interval of
length Dy, for k =1,2,...n7?

In Section$ 83=817, this later schedulability problenmarding tolerating only task er-
rors is addressed first by proposing an iterative scheditlatsist — the schedulability
of the entire task set is given in terms of a schedulability ter each of the lower prior-
ity task. Then this schedulability test is extended in $&¢8.8 for mitigating the effect
of p permanent processors failures.

8.5 Analysis for Tolerating Task Errors

The schedulability analysis presented in this and thevigilg two sections derives a
schedulability test for task;, € I' by assuming that all the higher priority tasksHRy,
meet their deadlines usirgTGS scheduling. Then it follows that, if this test is sat-
isfied for all the lower priority tasks i’ (an iterative test), then the entire task set
T" is schedulable usingTGS algorithm. The proposed schedulability analysis in this
chapter follows the same multiprocessors schedulabilighyesis framework proposed
by Baker in [Bak06]: anecessary conditiomwhenever any job of task; misses its
deadline is derived. Consequently, if this condition is satisfied, then all the jobs
of task7, meet their deadlines. When analyzing the schedulabilityaskt;, the oc-
currences of at mosft task errors within any interval of length,, is considered. In
other words, the schedulability test for tAR@é GS scheduling algorithm is derived based
on deadline-based analysis. In Secfiod 8.8, this scheitityadnalysis for tolerating
processor failures is extended.

Consider a generic job;, of task,. By generic it means thal; represents an
arbitrary job of taskr;,. The interval[ry, dx] is called thescheduling windovof job
Ji. Note that the length of the scheduling window of any job skta, is Dy. The
computation load within the scheduling window of joly, is defined to be equal to
the cumulative length of the intervals during which jdp is ready but not executing
(interference) plus the total execution requirement of jab Notice that the lower
priority tasksry11, ... 7, do not contribute to the computation load since they can not
interfere the execution of tasig in fixed-priority scheduling.

Consider thé=TGS schedule of the tasks in s@tP;, U {7, }) such that all the jobs
of tasks inHP; meet their deadlines while the jol, misses its deadline at,. The
computation load within the scheduling window of j@b must exceed;, if and only if
job J;. misses its deadline. Without loss of generality, jhbis considered as exitical
job in the sense that task; is not feasible, if and only if, jol;, is not feasible using
FTGS scheduling. It will be evident later from the schedulakibinalysis that it is not
needed to know where in the schedule this critical jplis released. If the computation
load of this critical jobJ, within its scheduling window is not greater than,, then all
the jobs of task;, meet deadlines, and conversely.
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The computation load in the scheduling window of jgbhas two contributing fac-
tors: interferenceof the higher priority jobs andelf-execution requiremewnf job J;.
The interference due to the tasksHR;, and self-execution requirement of joh de-
pend on the number of task errors withii, di]. Let there be: errors that affect the
higher priority jobs within[ry, di] and there aré errors of jobJ, within [rg, dx] when
job J;, misses its deadline. Because there are at rhestors any interval of lengthy,
we must havéa +b) < f. The self execution requirement of jol is at mosiC? since
job Jy, suffers fromb errors (according to Eq.(8.1)).

Theinterference within [r, di] due to all the higher priority jobs iHP;, is defined
as the cumulative length of intervals during which tasksedHp;, are executing and job
J. is ready but not executing. The interferencemmwithin the intervallry, dx], where
the higher priority jobs itHP;, suffer froma errors in[ry, di], is denoted by, ([r, dk]).
Thus, if job J;, misses its deadline, then

Ti([r, di]) + CL > Dy 8.2)

where(a + b) < f and Dy is the length of the scheduling windowy, di]. Since
(a+b) < f, the following inequality in Eq.[{8]3) holds:

il {Tullr ) + € =9} 2 T + ¢ ©3)
Therefore, from EqL(8]2) and EQ.(B.3), it follows that ibjd;, misses its deadline, then

mézox {I;([rk, d]) +CY - C)} > Dy (8.4)
The inequality in Eq.[(8]4) is aecessaryunschedulability condition for task,. How-
ever, computing the interferenég([r, di]) of the higher priority jobs on jold, within
[rk,d] is difficult. This is because it is not known where in the saliedhe job.J;

is released. In other words, theitical instant — the job of taskr; that suffers the
maximum interference — isnknownfor global multiprocessor scheduling (please see
Example_3.1l and the discussion in pagé 36). The problem ofkmm#ing the critical
instant for determining the interference on a lower pnojdb is sidetracked by finding

a safe upper bound on the interference due to the task®jnfor global (non fault-
tolerant) multiprocessor scheduling [Bak06, BC1I09, GS¥YDBOQ9]. In order to find
such an upper bound on actual interference, the upper bourbkedotal interfering
workloadwhich is the sum of the upper boundsioferfering workloadof each of the
tasks inHP;, has to be determined.

Theinterfering workload within [ry, di] of a higher priority taskr; in HPj, is de-
fined as the cumulative length of intervals during which tggk executing and job}, is
ready but not executing. Thetal interfering workload within [r, di] of all the higher
priority tasks in a setlP, is defined as the sum of the interfering workload of each task
in setHP;, within [ry, d;]. Notice that the total interfering workload with{n,, d,] of
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the tasks irHP;, is equal to(m - T, ([, dx])). This is because when taskis interfered,
all the m processors are simultaneously busy executing the higlanitprtasks. The
idea from [Bak06, BCL0O9, GSYY09, DB09] in finding the safe eppound on the total
interfering workload is adopted for the proposed fauletaht schedulability analysis of
FTGS in this chapter. Deriving such an upper bound on total ietémfy workload does
not require us to know the released time of jgbin the fault-tolerant schedule. How-
ever, the pessimism in deriving the safe upper bound onitatafering workload needs
to be reduced as much as possible in order to derive an gfexiificient schedulability
test based on necessary unschedulability test.

The upper bound on the total interfering workloadg, di] due to all the higher
priority tasks inHP,, wherec errors affect the higher priority jobs [n, dx], is denoted
by | ¢(Dy). Thus, the following inequality holds:

| (Dy) > m - Ty([rr, di) (8.5)

Since interferencé, ([r, dx]) is an integer, it follows that

| ¢(D —c
2| > ) 89
Thus from Eq.[(B14) and Ed. (8.6), if joh, misses its deadline, then the following holds:
iz { {Ik(Dk)J + C,gf c)} > Dy, (8.7)
c=0 m

The schedulability test proposed in this chapterFaiGS scheduling is based on the
necessary unschedulability condition in Hq.18.7) and s¢edind the value of ¢, (D)
forallc = 0,1,... f. In Sectio 8.6, the upper bound on interfering workloadaifte
higher priority taskr; in HP;, is computed. The upper bound on interfering workload of
all the tasks irHP,, are combined to find the value bf (D) in Sectior{ 8.F. Based on
the value ot ¢ (Dy,), the sufficient schedulability tests f6T GS scheduling is proposed.

8.6 Calculating Interfering Workload

The interfering workload of each task in HP;, is determined in two steps. First, an
upper bound on thevorkload of each taskr; in setHP, within [ry, di] is determined
(Subsection 8.611). Second, an upper bound on the integfevorkload of each task
7, within [ry, di] is calculated based on the upper bound-gmworkload within[r, di]
(Subsection 8.612). The value of the upper bound on the totatfering workload
(i.e.,1 £(Dx)) is calculated in Sectidn 8.7 by combining the upper boumdsiterfering
workload of all the tasks; in HP;, in order to derive the schedulability test of the lower
priority taskry.
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8.6.1 Workload of taskT;

Theworkload of taskr; within an interval[z, y] is the amount of time task, executes
in [z,y]. The work done by task; in [z, y] can be divided into three parts:

1. Carry-in: the contribution of at most one jolsdlled, carry-in joh) with release
time earlier than: and deadline ir, y].

2. Body: the contribution of the jobscélled, body jobswith both release time and
deadline in[x, y].

3. Carry-out: the contribution of at most one jobdlled, carry-out job with release
time in [z, y] and deadline aftey.

Finding the actual workload of a sporadic taskn [z, y] requires to consider all possible
release times for all of its jobs i, y]. Instead, an upper bound on the workload of task
7; within [z, y] is calculated. The upper bound on the workload is computeddan
the workload of each of the parts: carry-in, body, and cauyjob of taskr; in [z, y].
Taskr; is called acarry-in task (Cl -task) if taskr; is considered to have carry-in
work within the intervalz, y]; otherwise, task; is called anon carry-intask (NC-task).
The length of the interval:, y] id denoted ad. whereL = (y — z). It is determined
later whether task; must be &Cl -task orNC-task. The following notations are used to
denote the carry-in and non carry-in workload of taslithin any interval of length.:

e VWNC/(L, &) denotes the upper bound on then carry-in workloadof task; in

any interval of lengthL such that there argerrors of task; in [z, y] and the set
¢ contains all the body and carry-out jobsNE-taskr; in [z, y].

e WCI Y(L,¢) denotes the upper bound on tbarry-in workloadof taskr; in any
interval of lengthL such that there areg errors of taskr; in [z, y] and the set
contains all the carry-in, body and carry-out job<bftaskr; in [z, y].

The calculation ofANC/ (L, ) andWCl {(L, &) are presented next.

Calculating WNC (L, €)

Since taskr; is aNC-task, there is no carry-in work of task in [z, y]. In order to find
a safe upper bound on the workloadNg-task; in [z, y], it is needed to consider the
densest possible packing of jobs of tagkn [z, 3]. In such case, the released time of the
first job of taskr; in [z, y] coincides withxz. Without loss of generality, it is considered
that job.J” ™! of taskr; has its release time exactly at the beginning of the inténvall
and the subsequent jobsfare released as early as possible (see Figule 8.1).
Considering the densest possible packing of jobd@tiaskr;, there are at m0$tfj
body jobs and one carry-out job released within the intevaj] of lengthL. Note that
all the body jobs have their deadlines within the inteffwaly] while the deadline of the
carry-outjob is outside the interval. Therefore, the maximamount of work completed
by the carry-out job inz, y] is upper bounded bfL. — L%JTi).
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Figure 8.1: Densest possible packing of the jobd\aftaskr; within an interval of length.. The
up-arrow and down-arrow are the released time and deadline of thegbtaskr;, respectively.

The set of body jobs of thalC-task 7; within [z,y] are {J**! ... J?*"} where
N = [4]if L > T;, otherwise there is no body job. The carry-out job/ PV
if T; is not an integer multiple of, otherwise, there is no carry-out job. Therefore,
é- _ {Jip+17 o Jip+N7 Jip+N+1}.

In order to find the value o¥\NC/(L, &), the worst-case occurrences @ferrors
affecting the primary and backups of the jobs in&kas to be determined. Aydin’s work
in [Ayd07] considered dynamic programming to compute thekload of a collection
of aperiodic tasks scheduled using EDF on uniprocessor thaththe aperiodic tasks
suffer from a particular number of errors. Inspired by theknia [Ayd07], the value of
WNCY (L, €) is computed based on the workload of each jol§.irSince the jobs in set
{JPT ... JP*NY are from the same task, it follows that

WRCY(L, {71)) = ... = WKC (L, {77} = ¢ (8.8)

whereC? is given according to Eq(8.1). The Ef.(8.8) essentiallpudates workload
of each individual job such that there arerrors effecting this particular job.

It is pointed out earlier that the maximum amount of carrywark within the in-
terval of lengthL is limited to (L — | £ ]7;). Thus,WKC/(L, {J7**"'}) is given as
follows: L

WNCY (L, { PN = mm{q.q : (L — {TJT> } (8.9)

In order to evaluat®C/ (L, &), the worst-case occurrencesgoérrors within[z, ],
affecting the jobs in{J?**, ... J*™N JP*N*11 "has to be considered. The value of
WNC/ (L, €) is maximum, for somg, such that there arg errors of job{J"*'} and
there ere(g — ¢) errors of the jobs in set/” 2, ... JP* N1} where0 < ¢ < g. Thus,
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the value oMINC/ (L, &) is recursively given as follows:
WNCY (L, &) = WNCY (L, {JPTH Y u {JPt2, gty =

maz {W(L{Jf“}) + WG T (L, {Jf“,...Jf*N“})} (8.10)

Calculating WCI (L, £)

Since taskr; is Cl -task, there is carry-in work of task in [z, y]. In such case, the
released time of the first job of taskin [z, 3] is earlier than: and its deadline is after
z. Lets say the joly” of Cl -taskr; is the carry-in job inz, y]. Also let A is the set of
body and carry-out jobs ifx, y]. Thereforeg = {J’} U A. In order to find the upper
bound on the workload dfl -taskr; within [z, y], the densest possible packing of the
carry-in, body and carry-out jobs has to be considered. @Reler that is the length
of the interval|z, y]).

q errors

if;erf;'_?r? (g-q) errors affecting the body and carry-out jobs
job JP
—A— ~
“— T —r—— T —>t+— T — e T —>
q : : :
T Gy T v T v T v T -
P p p+1 p+1 p+N p+N p+N+1 p+N+1
i g, i ! 0 d r d,
- L >
- L ————»
X y

Figure 8.2: The carry-in jobJ? suffers fromg errors and executes faf'! time units starting
from the beginning of.. The subsequent body and carry-out jobs are released as egplyszible
within an interval of length.” = L — (C? + (T; — D;)) and are subjected tfu — q) errors.

The value oMl Y(L, &) is maximum, for some, such that there argerrors of the
carry-in job J? and the remainingg — ¢) errors affect the body and carry-out jobs in
A where0 < ¢ < g. The jobJ? executes foiC{ time units if there are errors of
this job. The workload\Cl ¢(L, &) within [z, y] is maximized for some (depicted in
Figure[8.2), if the following two conditions are satisfied:

e C1: the carry-in job starts execution exactly at timend finishes its execution
exactly at its deadline which i8) = = + C} (see the shaded execution of the
carry-in job in Figuré 812), and
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e C2: the subsequent jobs (i.e., body and carry-out jobs) arasetband execute
as early as possible such tigt— ¢) errors affect the body and carry out jobs,

where0 < ¢ < g.

To show that these two conditions (i.€1 and C2) result in maximum workload
in [z, y], it will be shown that for any leftward shift of the interval, y] up toT; time
units, the amount of workload within the intervial, y| does not increase as long as
7; has carry-in contribution. Note that since the situatiopegodic (i.e., jobs arrives as
compactly as possible), shifting the interval for exagflyime units again produces the
same situation as in Figure 8.2. Therefore, any leftwarfl shthe interval for at most
T; time units is considered.

Consider leftward shift of intervdle, y] up to (z — ) time units. In such case the
carry-in contribution can not increase and the carry-ontwdy decrease. Now consider
a leftward shift of{z, y] for more than(z — r¥) time units but less thaf; time units.
Any leftward shift of[z, y] by A time units is equivalent to shifting:, y] rightward for
(T; — A) time units. Thus, the leftward shift ¢f, y] for more than(z — r?) time units
but less tharT; time units is equivalent to shifting, y] rightward for more than 0 time
units but less thafl; — (x — r¥) time units. Any rightward shift of the intervak, y]
cause the carry-in work to decrease while the carry-out warkonly be increased by
the same amount as long as there is carry-in contributidm,ig]. Evidently, if 7; is a
Cl -task, then the workload within the intervial, y] is maximum if the condition€1
andC2 are satisfied.

The workload of the carry-in job is given &} according to Eq.[(8]11). It is
evident from Figurd_8]2 that the body and carry-out jobs afteased within the in-
terval [ y]. This situation is same as in Figure]8.1 where tashs a NC task
within [ y]. The length of the interval-?*', y], denoted byl is given ad.’ =
L — (C? + (T, — D;)). And, according to Eq[{8.10), the value WKIC!Y ~ % (L', A)
is the worst-case workload of the body and carry-out job&iwithe interval[rf“, Y]
such that these body and carry-out jobs are subjectég tog) errors. Thus, the value
of WCI (L, ) is given as follows:

WOl 9 (L, €) :m%g; {Cf +\ANC§9“1>(L’,A)} (8.11)
na

where¢ = ({JP} U A), setA is the collection of body and carry-out jobs[if **, ],
L'=L—(C! + (T; — D;)) andC} is given using Eq[{8]1).

Note that the value of\Cl Y(L, &) is greater than or equal ¥NC/(L,¢). This is
because shifting the intervat, y] leftward for exactly(z — r¥) time units in Figur€8J2
produces the same scenario as in Fiquré 8.INfotask, and such leftward shift can
only reduce the workload within the intervial, y]. In next subsection, the upper bound
on interfering workload of task; on job J;, based on workload of task in [ry, dx] is
determined. The value of carry-in workload may be reducethén by exploiting the
slack of the carry-in higher priority task similar to the apgch in [BCLO9]; however,
this issue is not addressed in this thesis.
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8.6.2 Interfering Workload of task 7;

The upper bound on interfering workload of each higher fsidask 7; based on the
upper bound on the workload of taskis calculated. Similar to workload, the carry-
in and non carry-in interfering workload of task subjected tqy errors in[r, di| are
defined as follows:

e | NC(Dy, c) denotes the upper bound on the interfering workload®@taskr; in
any interval[ry, di] of length Dy, such that there arg errors of task-; and there
arec errors of all the higher priority tasks (including tash of 7 in [ry, di].

e | Cl (Dy, c) denotes the upper bound on the interfering workloa@l etaskr; in
any interval[ry, di] of length Dy, such that there argerrors of taskr; and there
arec errors of all the higher priority tasks (including tash of 7, in [ry, di].

In both | NC/ (Dy, ¢) andl Cl {(Dy, ¢), it is assumed that there ateerrors affecting
all the tasks irHP,, within [ry, di] whereg errors,g < ¢, exclusively affect the higher
priority taskr; € HPy.

A straightforward upper bound on the interference of eashk tain [ry, d] is the
upper bound on the workload of each tasln [rx, d;]. However, this way of bounding
the interference using the upper bound on the workload mayebsimistic as pointed
out in [Bar07/BCQOF, BCLO9] for non-fault-tolerant globalultiprocessor scheduling.
This fact is also true for the fault-tolerant schedulapiinalysis ofF TGS scheduling as
is shown below.

If job J;, misses its deadline when the higher priority jobs suffemfraerrors and job
J. suffer from(f — ¢) errors, the amount of work completed by jdpwithin [r, di] is
strictly less tharC,if -9, If job J;, misses its deadline, then all theprocessors simul-

taneously execute jobs of the higher priority tasks foc#yrimore than Dy, — O,if B C))
time units. Therefore, if joly,, suffers enough interference firy, dx| to miss its dead-
line, then it is sufficient to consider the interfering warall of each task; limited to at
most(Dy, — C,gf =< 4 1). Thus, the value of NC! (Dy, ¢) andl CI ¢(Dy, c) are given
as follows:

| NG (Dy,, ¢) = min{WNC!(Dy, &), D, — CY =9 1+ 1} (8.12)
| O 9(Dy,, ¢) = min{WCl ¥(Dy, &), D, — CY =9 1+ 1} (8.13)

Similar to workloads, it is not difficult to see that the camyinterferencd Cl ¢(Dy, c)
is greater than or equal to the non carry-in interferdn€’ (Dy, c) for task;. Given
the values of NC/ (D, ¢) andl Cl (D, c) for all ; € HP;, and for allg = 0,1,...¢,
the value of combined interferenté(D;,) is calculated in Sectidn 8.7.
It will be discussed shortly that only a subset of all the leigpriority tasks inHP
are considered a8l tasks. However, such a subset must be selected such that-the d
ference between its total carry-in interfering workload &otal non carry-in interfering
workload within[ry, dx] is the largest in comparison to that of any other subset of the
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higher priority tasks having the same cardinality. Thedeihg function and set defini-
tions will be used to determine the set of carry-in tasks it sabsection.

Useful Definitions: Consider a subséf of the task setiP,, such that within the schedul-
ing window of Jy, there argy errors of the tasks il and there are errors of the task in
HP,.. Note that the occurrences of therrors are part of the occurrences of therrors
sinceY C HP,. We denoteDl FF (Y, Dy, ¢) as the maximum difference between the

e total carry-in interfering workload by considering allkasnY” as carry-in tasks,
and

e total non carry-in interfering workload by consideringtaltks inY” as no carry-in
tasks

within the scheduling window of joby;,, where there arg errors of the tasks itr” and
there are: errors of the task ifP;.. If there is exactly one task in s&t, sayY = {r;},
thenDl FF, (Y, Dy, c) is given as

DI FFy({7:}, D,c) =1Cl ! (Dy,c) — 1 NC,(Dg, c) (8.14)

If setY has more than one task, siy= X U {r;} whereX is the set of all tasks in
setY” except tasky;, then the value obl FF, (Y, Dy, ¢) is maximized, for some, such
that there arg errors of the tasks in sef and there arég — ¢) errors of the task;
within the intervaljry, di|, where0 < ¢ < g. Thus, the value obl FF,(Y, Dy, ¢) can
be recursively calculated as follows:

DI FF, (Y, Dy, c) = Dl FF,(X U {r}, Dy, c)

q=0

—miax {DI FF,(X, Dy, c) + Dl FF(, q)({Ti},Dk,@} (8.15)

We defineQ(S, a, m, c) as a subset of the task sesuch thatQ(S, a, i, ¢) hasm tasks
from setS and satisfie€onstraint C1 that is given for sef(S, a, m, ) as follows:

Constraint C1: The tasks in se®(.S, a, m, ¢)

e hasm'’ tasks from sef,
e are subjected to the worst-case occurrencesesfors within[ry, dx],
e where there are at moserrors that affect the tasks in s&within [r, d;], and

o the difference between

— the total interfering workload of thesé tasks considering each task in
(S, a,m, c) as aCl -task, and

— the total interfering workload of thesé tasks considering each task in
(S, a,m, c) as aNC-task

is greater than or equal to that of any other subset tdsks from seb.
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Formally, if setQ(S, a, m, ¢) satisfieConstraint C1, then for any other s&® such that
B C S and|B| = m, we have

DI FF,(Q( S, a, 1, ¢) , Dy, ¢) > Dl FF,(B, Dy, c) (8.16)

The definition of setQ(S, a,m, ) is used in the next section to determine the set of
carry-in tasks. Once the set of carry-in and non carry-ikdase known, the interfering
workloads of all tasks ifP;, are combined to findl ¢ (Dy).

8.7 Total Interfering Workload of the Tasks in HP;,

In order to find the upper bound on total interfering workldgd Dy, ), the upper bound
on interfering workload iriry, d] of all the tasks irHP;, have to be combined consider-
ing the worst-case occurrencesadbisk errors affecting the taskshiP,.. Whether task

7; should be considered a£h or NCtask has to be determined before combining the in-
terfering workload of individual task. Based on Baruahssdn [Bar0Y] for global EDF,

it has already been shown in [GSYY (09, DB11b] that for globeddi-priority schedul-
ing, there are at mogin — 1) higher priority tasks that have carry-in work within the
scheduling window of any lower priority job.

However, selecting theém — 1) carry-in tasks from sdtlP;, is challenging for two
reasons: (i) there ar(c%LSFf“l‘)): % possible ways to select a subsetof—1)
tasks from setlP;, and more importantly, (ii) the carry-in or non carry-inérfering
workload of each task; depends on the number of errors affecting taskvhich in
turn depends on the worst-case occurrence ot tgors affecting all the tasks idP;,
within [rg, di]. To solve the problem of findingn — 1) carry-in tasks efficiently, the
algorithm, calledFi ndCl Tasks, is proposed in Subsectién 8.I7.1 based on dynamic
programming approach. Given the sets of carry-in and nay-@atasks, the individual
carry-in and non carry-in interfering workload of all task® combined to findl ¢ (Dy,)
in Subsectiom 8.712. Finally, the schedulability test FGiGS algorithm based on this
total interfering workload is proposed.

8.7.1 Finding Carry-in Set Q(S, a, m, c)

Recall that se©(S, a, m, c) is a subset ofn tasks from sef and satisfie€onstraint 1.
In this subsection, an algorithm calledndCl Tasks that finds the se@(S, a, 7, ¢) is
proposed. Two cases are considered to find th&$8ta, 7, ¢): Case(iy = 1, and
Case(iiymn > 1.

Case(i)rn = 1: For this case, the aim is to find 38{.9, q, 1, ¢) such thatConstraint 1
is satisfied. The se®(S, a, 1, ¢) is given as follows:

(S, a,1,¢) = {1} (8.17)
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such that task, satisfies Eq[{8.18)

Dl FF,({7z}, Dk, c) = mgxs {DI FFa({Ti},Dk7C)} (8.18)

which impliesConstraint 1 is satisfied for se©(S, a, 1, ¢) .

Case (i) > 1: For this case, it is required to find from sgtmore than one carry-in
tasks that are subjected ¢oerrors within the scheduling window of jalj,. Two steps
are considered to find sueh number of tasks from set:

e Step 1Find exactly one carry-in task from sgt

e Step 2Recursively findri — 1) carry-in tasks from setS — {7, }) where task,
is found in Step 1.

These two steps (i.eStep 1andStep 2 have to consider the worst-case occurrences
of a errors that can affect all these tasks within the scheduling window of jal,.
The worst-case is determined by considering that «) errors exclusively affect the
task determined in Step 1, and the worst-case occurrencesrodrs affecting the other
(rh — 1) tasks determined in Step 2 far= 0, 1, ...a. For Step 1, the task affected by
(a — ) errors is in the se®(S, a — a, 1, ¢) and can be determined using Hq. (8.17).
For Step 2, the othepn — 1) tasks are selected from sgf — Q(S, a — o, 1, ¢))
considering an occurrences®grrors affecting thes@in — 1) tasks. This set ofm’—1)
tasks is given byo(S’, a, m — 1, ¢) whereS’” = (S—9(S, a — a, 1, ¢)). The tasks
found in Step 1 and Step 2 for a particutaare given in sef,, as follows:

Se=9(S,a—a,1,c)UQ(S,a,n — 1,¢) (8.19)

whereS’ = (S — 9(S,a — o, 1, ¢)) and0 < « < a. The setS,, is a potential candidate
for setQ(S, a, m, ¢) which must satisfyConstraint C1 where0 < «a < a. Therefore,
the setQ(S, a, i, ¢) for m > 1 is given as follows:

(S, a, m, ¢) = S, (8.20)
where sefS,, satisfies
DI FF,(S,, Dy, c) = :mzzg: {DI FFa(Sa,Dk,c)} (8.21)

which impliesConstraint 1 is satisfied for setS, = O(S, a, ™, ¢). The algorithm
Fi ndCl Tasks(S, a, 7, ¢) in Figure[8.8 determines the s&XS, a, m, c) based on
these two cases: casefi) = 1 (line 1-5), and case(iif» > 1 (line 6-16).

Whenm = 1 (line 1-5), the task, is selected from se$ such that Eq.[{8.18)
is satisfied. The task, is returned in line 4. Wher > 1 (line 6-16), the set§,
forall « = 0,1,...a using Eq. [[8.I09) have to be determined first. Then, theSset
which is equal to setd(S, a, 7, c) is determined by evaluating Eq._(8121). The for
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Algorithm  Fi ndCl Tasks(S, a, i, ¢)

1. If (m =1) Then

2. Find taskr, such that

3. DI FF(L({TJ;},Dk):lnng {DI FF.({m:}, Dk) }
4. Return {,}

5. EndIf

6. If (" > 1) Then

7. Fora=0toa

8. 9(S,a — a, 1, ¢)=Fi ndCl Tasks(S,a — a, 1, ¢)
9. S'=85-09(S,a—a,1,c)

10. 95, a, 1 — 1, ¢)=Fi ndCl Tasks (S, a, 1 — 1, ¢)
11. S =9(S,a—a,1,0)UQ(S,a,m — 1,¢)

12. End For
13. Find task sef, such that

14. D FFa(Sx,Dk,c)zm‘&ge {DI FFo(Sy, Dy, c) }
o=

15. Returns,
16. End If

Figure 8.3: Pseudocode for finding carry-in tasks

loop in line 7-12 runs a total ofe + 1) times for the iterative variable = 0,...a.
For each value ofy, the setQ(S,a — a, 1, ¢) is determined by recursively calling
Fi ndCl Tasks(S,a — «, 1, ¢)inline 8. The sets’ = S — Q(S, a — a, 1, ¢) is deter-
mined in line 9. The rest of then — 1) tasks are determined in line 10 by recursively
calling Fi ndCl Tasks(5,a,m — 1,¢). Finally, the setS,, is determined in line 11.

The value ofDl FF,(S,, Di,c) can be determined using E§._(8.15) for all=
0,1,...a. The setS, that satisfieConstraint 1 is the setQ(S, a, i, ¢). The set
(S, a, m, )= S, that satisfie€onstraint 1 for some0 < z < a, is searched in line
13-14 and returned in line 15. The set(ef — 1) carry-in tasks from sdtlP,, where
the carry-in tasks are affected hyerrors and all tasks iHP;, are affected by errors, is
O(HPy, g, m — 1, ¢) and can be determined by callifg ndCl Tasks (HP,q,m —1,¢).

The time complexity of algorithnii ndCl Tasks(S, a, 7, ¢) is now presented
by assuming that the value & FF,({r;}, Dy, c) is known for all7; € S and for all
g =0,1,...a. The base case, i.e., whén= 1, in line 1-5 can be determined (»(n)
steps since there are at mastasks in sefS.

Whenrm > 1, the setS,, has to be determined for all = 0, 1, . .. a. For each value
of a, the base case in line 1-5 is evaluated tatalimes and there are totéln — 1)
set difference operations in line 9. The time complexitydach call of the base case in
line 1-5isO(n). The set difference in line 9 can be done in linear time simdg one
element is removed from sét The set union in line 10 can be done in constant time
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since one of the sets has only one element. Thus, for a partiguthe time complexity
to determine the s&t,, in line 11 isO(n - m).

The tasks in seb, are potential candidates for the set/fcarry-in tasks while
the tasks in(S — S,) are potential candidates for the set of non carry-in tasis, f
a =0,...a. The forloop in line 7-12 finds all the potenti@l task setsS;, Ss ... S,.
Note that sincex < f, the for loop in line 7-12 runs totaD(f) time. Thus, the time
complexity to find all the set§;, 55 ... S, inline 7-12isO(n - m - f).

It is not difficult to see that given the values Df FF, ({7}, Ds,c), for all g =
0,1,...a, evaluatingDl FF,(S,, Dk, c) using Eq. [8.15) has the time complexity of
O(n - f) since there are at most elements inS, and the maximum operation in
Eg. (8.1%) needs at mogtcomparisons for seX U {7;} whereg < ¢ < f. Therefore,
evaluating the value oDl FF, (S, Di,c) in line 13-14 for alla = 0,...a has time
complexityO(n - f2). Thus, the time complexity of the algorithFi ndCl Tasks is
On-m-f+n-f?)=0(n-f -mazx{m, f}) if the values oDl FF,({7;}, Dy, c), for
allg=0,1,...aandforall; €S are known.

8.7.2 Total Interfering Workload and Schedulability Test

The total interfering workload, i.e., the value bf(Dy) is computed by combining
the upper bound on the interfering workload of all the higpgority tasks inHPy.
Recall that there arén — 1) carry-in tasks in seitlP,. The worst-case occurrence of
the ¢ errors affecting the tasks iAP; needs to consider the worst-case occurrence of
q errors affecting thém — 1) carry-in tasks and the worst-case occurrencé:ef ¢)
errors affecting thé|HP;| — m + 1) non carry-in tasks for somg 0 < ¢ < ¢. The

set of(m — 1) carry-in task are given b@(HPy, ¢, m — 1, ¢) according to Eq.(8.20)
and can be determined by callikg ndCl Tasks(HP;, ¢, m — 1, ¢) for a particularg,

0 < g < ¢. And the remaining |HP,| — m + 1) non carry-in tasks are given by set
(HP,, — Q(HPy, ¢, m — 1, ¢)).

Before combining the upper bound of the individual intarfgrworkload of all the
tasks inHP;, to find | ¢ (D), the following problem needs to be solve@onsider a set
Y such that Y C HP, and assume that it is already known whether r; isa Cl task
or NCtask for each task 7, € Y. What is the upper bound on the total interfering
workload of the tasks in set Y on task 7, within [ry, d] if the tasksin set Y suffer
from g errorsand all the tasksin HP;, suffersfrom c errorswithin [ry, di|?

The upper bound on the total interfering workload of the saigksetY” on taskry
within [ry,dy] is denoted ag'1 9(Y, Dy, ¢) such that there arg and ¢ errors within
[rk, di] affecting the tasks in sets andHPy,, respectively (note that theerrors are part
of thec errors sinc&” C HPy). If there is exactly one task in skt such that” = {r;},
thenTl 9(Y, Dy, c) is given as follows:

| Cl Y(Dy,c) if 7;isaCl -task

g _
MY, Dy, c) = { I NC/(Dg,c) if 7 is aNC-task (8.22)

wherel Cl Y(Dy, c¢) andl NC/ (D, c) are defined in Eq[{8.13) and Ef.(8.12), respec-
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tively. Now consider the case where the Bdtas more than one task, sgy= X U{r;},
where X is the set of all the tasks il except taskr;. The value ofTl 9(Y, Dy, ¢) is
maximized, for some, if there are; errors of the tasks in sé&f and there arég — q) er-
rors of the task;, where0 < ¢ < g. Thus, the value ofl 9(Y, Dy, ¢) can be recursively
calculated as follows:

TI9(Y, Dy, c) =TI I(X U {7}, D, c)

:m%g {TI 9(X, Dy, ¢) + \If} (8.23)
—

1Dy, e) if r;isaCl -task
where ¥ = { I NG/~ %(Dg,c) if 7; is aNC-task

Recall that the upper bound on combined interferérige;, ) is sum of the upper bound
of the individual interfering workload of the higher prityritasks inHP; where these
tasks are affected byerrors within[rg, d]. The sum of the upper bounds of the indi-
vidual interferences of th€l andNC tasks is maximum, for somg where there are
q errors of the(m — 1) carry-in tasks and there are the— ¢) errors of the remaining
([HP;| — m + 1) non carry-in tasks) < ¢ < ¢. Thus, the value of ¢(Dy,) is given as
follows:

| ¢(Dy) :mag; {TI YA, Dy, c) + Tl gq(B,Dk,c)} (8.24)
q=
whereA = Q(HPy, ¢, m — 1, ¢) is the set of m — 1) carry-in tasks an® = (HP;, — A)

is the set of non carry-in tasks. Note that the 4éh Eq. (8.24) may be different for
different values of;, 0 < ¢ < ¢. The value ofl {(Dy) given in Eq. [8.24) is the upper
bound on the total interfering workload.

Sufficient Schedulability Test. Now based on the necessary unschedulability condi-
tion in Eq. [8.Y), the following sufficient schedulabilitgst in Theorenl 811 for task
7, follows:

Theorem 8.1. A taskr;, € I' is schedulable usingTGS algorithm if

rine { {"i(D’“)J +ol - C>} < Dy (8.25)

c=0 m

Proof. This Theorem is proved using contradiction. Assume thaesioimof taskr, has
missed its deadline while the condition in Eig. (8.25) hol@emember that job}, is a
critical job in the sense that task is not feasible using TGS if and only if J, misses
its deadline. Consequently, if at least one job of tasknisses its deadline, then job
Ji. also misses its deadline which implies that Eq.1(8.7) hatdsifadicts the fact that

Eq. (8.25) holds!). O
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The schedulability test of thentire task setl” is given by iteratively applying Theo-
rem[8.1 on each lower priority task for k = (m + 1),...n.

Corollary 8.1. Sporadic task sdf is feasible usindg-TGS algorithm if

miaz { {"‘(D’“)J +cl- C)} < Dy (8.26)

c=0 m
foral k=m+1,...n.

A concise notation for the iterative schedulability testGurollary[8.1 is denoted by
FTGS- Test (T, f, m) that when passed for a task $ejuarantees that all the tasks in
T" meet their deadlines am processors even if there afaask errors in any interval of
lengthD,,,.... The Pseudocode to evalud€GS- Test (T, f,m) is given in Figuré 814.

The algorithm in Figur&8l4 starts by caIcuIati@éf ~forall k = 1,2,...nand
forall (f —¢) = 0,1,... f in line 1-6 of Figurd_ 8}4. In other words, the values of
CY,CL...cf forall k = 1,...n is calculated in line 1-6. The for loop in line 7-33
runs total(n —m) times and evaluates the schedulability condition in E@ggfor each
of the lower priority tasksy, in each iteration fok = m+1,...n. When evaluating the
schedulability of tasky, the carry-in workload and non carry-in workload of each of
the higher priority tasks are determined first in line 8-1Bef, the individual carry-in
interfering workload, non carry-in interfering workloaand their difference for each
higher priority task are determined in line 14—22. Findlhe total interfering workload
of all the higher priority tasks are determined and Eq. (Bi®@valuated in line 23-32.

The condition in line 28 checks whether the total computatéad of the tasks in
HP, U {7} in any interval of lengttD,, exceedd;, where task, is affected by(f —¢)
errors, the carry-in tasks are affected¢ogrrors, and the non carry-in tasks are affected
by (c — q) error for allg, cand f such thay < ¢ < f. If the answer is positive (compu-
tation load is greater than the length of the interval), tteesk;, can not be guaranteed
to be schedulable and the algorithm returns “False” in lifie [2 the condition at line
28 is never true, then the for loop at line 7-33 is exited, tigerithm returns “True”
in line 34 and the entire task set is schedulable using-TH@S scheduling. The time
complexity of FTGS- Test (I, f, m) is pseudo-polynomial as is shown next.

Time Complexity. Remember that the self execution time of all théasks when af-
fected by(f — ¢) errors can be determined @(n - f) time. So, line 1-6 runs in
O(n - f) time. The two nested for loops in line 8-13 determine theyearrand non
carry-in workload of each of the higher priority tasks whensidering the schedulabil-
ity of task 7. All the higher priority tasks are iterated using the itesatvariables for
t=1,...(k—1)inline 8-13. The carry-in and non carry-in workload of thgher
priority jobs of taskr; that is exclusively affected by errors are determined in line
10-11 for allg = 0,... f. Aydin in [Ayd07] showed that the time complexity to find
the workload of a set oV aperiodic tasks ié)(N - f) where these jobs are affected by
exactly f errors. The jobs of a set of sporadic tasks, when arrive dg asupossible,
can be considered as a set of aperiodic tasks and there amsaiNnjobs within the
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Algorithm  FTGS- Test (T, f,m)

1. Fork=1ton

2. CY=Cy

3. Forc=(f—1)to0

4 C}(Cf—c):E](cf—C) +C](cf_c_1)

5. End For

6. End For

7. Fork=(m+1)ton

8. Fori=1to(k—1)

9. Forg=0to f

10. FindWNC! (D, €) using Eq.[(8.10)
11. FindWCI ¢ ( Dy, €) using Eq.[(8111)
12. End For

13. End For

14. Fori=1to(k—1)

15. Forc=0to f

16. Forg=0toc

17. Findl NC/(Dy, ¢) using Eq.[(8.IR)
18. Findl Cl ¢(Dy, ¢) using Eq.[(8IB)
19. FindDl FF,({7;}, Dy, ¢) using Eq.[(8.15)
20. End For

21. End For

22. End For

23. Forc=0to f

24, For¢g =0toc

25. A =Fi ndCl Tasks(HPy, ¢, m — 1, ¢)
26. B=HpP,— A

27. I =TI %A, Dg,c) + Tl <79(B, Dy, c)
28. f(|L]+CY ™9 > Dy)then

29. Return “False”

30. End if

31. End For

32. End For

33. End For

34. Return “True”
Figure 8.4: Pseudocode dfTGS- Test (T, f,m)

scheduling window of each task. Thus, the time complexitfyriid the value of carry-in
and non carry-in workload using Eq.(8110) and Eq.(B.11)(& - ¢) for a particular

g and a particular task;. And, thus the time complexity for evaluating EQ.(8.10) and
Eq. (811) forally = 0,1,... f and for all tasks in line 8-13©(n - N - f2).
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Based on the workload of each of the higher priority taskdividual interfering
workload of each higher priority task in line 14-22 is caltedd. Given the values of

C,(Cf ~ % and the workload of each task, the value of individual camrgr non carry-in
interfering workload can be calculated using one additiore subtraction and one com-
parison using using Ed. (8112) and Eg. (8.13), respectividte difference between the
carry-in and non carry-in individual interfering worklaadf each task; is determined
in line 19. The value oDl FF,({7;}, Dy, ¢) using Eq.[(8.15) is determined in line 19
using only one subtraction operation. Thus, the time corilyi¢o find the individual
carry-in and non carry-in interfering workload and the eli#nce between them for all
c=0,...f foralli=1,2,...(k—1)andforallg =0,1,...cisO(n - f?).

When evaluating Eq[{8.26) for task, one has to consider errors affecting the
higher priority tasks itHP,, and the remainingf — c) errors affecting task; within an
interval of lengthD, for ¢ = 0,--- f. Moreover, for a given a value @f a total ofg
errors affecting only thém —1) higher priority carry-in tasks an@d— ¢) errors affecting
the higher priority non carry-in tasks are consideredjfer 0, . . . c¢. The two nested for
loops in line 23—-24 consider each possible values ahd ¢ where0 < ¢ < f and
0 < g < c. The(m — 1) carry-in tasks are determined by callifRgndCl Tasks (HP,

q, m — 1, ¢) in line 25 for particular values of andq. The non carry-in tasks from
setHP,, are determined in line 26 using one set difference operatidowever, it is
not needed to perform this set difference operation singerighm Fi ndCl Tasks in
Figure[8.8 can easily determine the set of non carry-in tadkle determining the set
of carry-in tasks. Remember that the time complexity to flveltn — 1) carry-in tasks
usingFi ndCl Tasks is O(n - f - maz{m, f}). Given the carry-in and non carry-in
tasks in setsd and B (line 25-26), the total interfering workload of all the task
HP, = AU B can be determined using Ef. (8.23).

The total interfering workload of the carry-in tasks and mamry-in tasks respec-
tively in setsA and B are given ag | ¢(A, Dy, c) andTl 97%(B, Dy, c) using Eq.[8.2B).
The sum ofTl 4(A, Dy, c) andTIl 979(B, Dy, ¢) in line 27 is the total interfering work-
load of the higher priority tasks that are affecteddogrrors where; errors affect the
carry-in task andc — q) errors affect the non carry-in tasks. It is not difficult tese
that the time complexity to find the valuesDif (A, Dy, ¢) andTI 9-9(B, Dy, ¢) for a
particularc, wheree < f, using Eq.[(8.23) i®©(n - f).

Evaluating the condition in line 28-30 can be done in coridtare. Thus, the time
complexity to evaluate the condition in line 28 falt possible values of andq using
the loops in line 23-24 i®(n - f3 - maxz{m, f}) when evaluating the schedulability
test for taskr,,. By adding the time complexities of all the steps, the timmplzxity to
evaluateFTGS- Test (T, f,m) in Figure[82 isO(n? - f2 - maz{N,m - f, f2}) which
is pseudo-polynomial in the representation of the taskrsetfault model.

8.8 Tolerating Processor Failures

In this section, the schedulability teBTGS- Test (T, f,m) is extended in order to
determine whether the effect pfpermanent processor failures can be mitigated using
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FTGS algorithm. Remember th& TGS scheduler deals with a processor failure by
assuming the task that was executing on the faulty procéssoencountered a task
error. Once a processor failure is detected, Rii€S scheduler performs the following
two actions:

e no task is dispatched to the faulty processor, and

e if any task was executing on the faulty processor, its baékgpored in the ready
queue.

The fault model for processor failure considers fail-stopcgssors and includes simul-
taneous multiple processor failures. The execution requént of the recovery opera-
tions at any time instant due to processor failures is maminfuall the p processors
fail simultaneously at that time instant while each of theggrocessors is executing
some task. This is the worst-case scenariogf@rocessor failures since the backups
of total p tasks that were executing on the faulty processors sinediasly become
ready. And, the multiprocessor platform now las — p) non-faulty processors. Con-
sequently, there is an interval of lengith,,.. in which it is required to consider to-
tal (f + p) task errors that need to be tolerated usiigsS scheduling on(m — p)
processors. Note that tolerating both task errors and psocdailures using TGS al-
gorithm requires each task to hayg + p) backups.The extended schedulability test
for FTGS algorithm to tolerate both task errors and processor fa#lsiis given as fol-
lows: applyFTGS- Test (I, f + p, m — p) to determine whether the answer to this
schedulability test is positive or negative.

Resilience: Given a sporadic task sé&t, the system designer can apply the proposed
FTGS- Test (T, f + p, m — p) for various combinations of the paramet¢rsn and

p. An exhaustive approach to judge the resilience of the-faldrant system would be
to apply theFTGS- Test (I, f + p, m — p) on all possible tripletsi@, f, p) where

m e {2,3,...}, f € {0,1,...} andp € {1,2,...m}. The system designer can also
determine the minimum number of processors required foeduling an embedded
real-time application for some givehandp usingFTGS algorithm.

Effective Priority Assignment Policy: It is not difficult to see that the schedulability
testFTGS- Test (T, f, m) is OPA-compatible (i.e., the three OPA-compatibility cend
tions in pagé 83 are satisfied). Thus, it can be used to deterefiective fixed-priority
assignment by applying the combination of multiprocessteresion of Audsley’s op-
timal priority assignment policy. Moreover, this test cdesoatake the advantage of
the hybrid priority assignment policy using the separatigterion that is proposed in
Chaptef 5. In addition, instead of performing deadlinelsis, a response-time based
analysis similar to thé A- RT test can be performed (please see chapter 6). These three
features (i.e, OPA+HPA+RTA) would result progressivelitéetests than the proposed
FTGS- Test (T, f,m) for the FTGS scheduling.

Configuring FTGS for Active Backups: The FTGS scheduling algorithm and the
schedulability tesFTGS- Test (T, f,m) considers passive backups: a backup task
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only becomes ready if a task error is detected, otherwigseb#tkup never executes.
However, it is possible to configuFer GS scheduling algorithm to consider active back-
ups as well. Active backups consumes more CPU cycles in cosopao passive back-
ups but provides quick error recovery to the tasks. Suchkerior recovery is needed
for low-laxity tasks. The basic idea for incorporating aetbackups is described below.

Consider that there arg’ backups of each task that are active backups where
0 < f' < f. Without loss of generality, consider that the fifétbackups of each task
7, are the active backups while the remainirfg— f’) backups are passive backups. In
such case, the primary and tlfiebackups of each task become ready whenever a job of
the task is released. The priority of the active backupsaresas that of the primary. In
contrast to complete passive backup, the active backupsy/alexecute no matter what
happens to the primary or other active backups. If an errdetected after execution of
any one of these active backups or the primary, the first yassickup becomes ready
for execution. Subsequent error detected in any one of tirerttly active backups or
the primary results in next passive backup to become readgxfcution. However, as
soon as either the primary or any of the backups of a task @iagpkxecution without
signaling an error, the other active backups of the task eaetminated. Such backup
deallocation utilizes the processors efficiently withcatricing fault-tolerance.

In order to ensure that all the tasks are schedulable usengpttmbined active-passive
backup policy, new schedulability test has to be derived.réliminary idea is to con-
sider each of the active backups as a different task. These thill be /' additional
(pseudo) tasks for each original task A new task set is formed by including for each
taskr; € T, a task corresponding to the primary and tia@asks corresponding to the
f' active backups. This new task set has t¢tak- n - f’) tasks. If this new task is
global FP schedulable (without considering faults), themast f’ task errors can be
tolerated within any interval of length,,,.... To tolerate an additiondlf — f’) task
errors within any time interval of lengtP,,...., it is sufficient to show that an additional
(f — f') task errors within any time interval of lengfh; can be tolerated when con-
sidering the schedulability of a lower priority task therefore, if this new task set can
tolerate(f — f’) task errors within any interval of length,,..., then all the deadlines
are met onn processors while toleratinfjtasks errors in any interval of length,,, ...
The FTDMscheduling algorithm proposed in last chapter for unipseoe fault-tolerant
scheduling can also be extended to incorporate active packu

8.9 Graceful Degradation

The fault tolerant scheduling algorithia$ DMandFTGS proposed respectively in Chap-
ter[d and Chaptén 8 assumes a certain fault model. Howewdrifderant systems needs
to provide correct service even if the errors that occur engisstem are not compliant
with the fault model. For example, if there are more th&ask errors within an interval
of length D,,,...., then the proposed schedulability analysis can not enbaiteatl the
deadlines will be met. In such case, upon detection of am #ntwe recovery operation
(i.e., execution of a backup) can not be guaranteed to meeteadline of the task, the
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system should be robust enough such that it provides dedjszateice in a graceful way.
An admission controller in such can decide whether to acoepject such a recovery
request. Three possible alternatives for handling thevesgaequest are proposed:

e Direct Rejection: Simply reject the request without any further consideratio

e Criticality-Based Eviction: Evict some low-criticality task from the system to
accept the new recovery request.

e Imprecise Computation: Accept the new recovery request and execute as much
as possible of the corresponding backup without compromitiie timeliness of
other tasks.

8.9.1 Direct Rejection

If an error is detected and the recovery request can not eptext; for example by the
admission controller of the fault-tolerant schedulingoaidhm, then the simple approach
is to just rejecting the recovery request. If the system iisaaly highly-loaded, the
recovery request is most probably be rejected and in such tbasreliability of the
system is degraded so as to guarantee schedulability othiee existing tasks.

8.9.2 Criticality-Based Eviction

If an error is detected and the recovery request can not beptert by the admission
controller of the fault-tolerant scheduling algorithmettcriticality-based evictiorcan
be employed. In this approach, some already-admittedtasing lower criticality than
the criticality of the recovery request, is temporarilynénated and the recovery request
is serviced. The termination of the lower-criticality taskemporary in the sense that,
when the backup corresponding to the recovery finishes &recuhe evicted lower
criticality task can be re-admitted into the system. In soake, the lower-criticality
task may be unable to execute its jobs that are released veutevery operation is
being performed.

By criticality of a task it means the user-perceived impact of the applications
tasks in meeting the deadlines. The criticality of the taslkstask set can be determined
independent of the priorities of the tasks [MAM99]. SucHicallity-based eviction is
applicable for applications in which execution of some jolbs task can be skipped.
In [CB99], scheduling of hard and firm periodic tasks are adered. A firm task can
occasionally skip one of its jobs based on some predetedhgjnality-of-service agree-
ment while the hard periodic task must execute all of its jobs

Criticality-based scheduling for non-deterministic wlodds is addressed by Al-
varez and Mossé in [MAM99]. They analyzed the schedulahilfta fixed-priority sys-
tem using a concept called responsivengss [MAM99]. Theatyais is best suited for
systems with nondeterministic workload in which recovepgi@tions caused by faults
are serviced at different responsiveness levels. By resspamess level, the authors
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mean whether the recovery operation is run in a non-inteusiwithout affecting schedu-
lability of other tasks) or intrusive (affecting scheduila of existing tasks) manner. In
case of intrusive recovery, timeliness of the less-ciitiasks are compromised and the
system suffers degraded service. Thus, the eviction ofrantcality task degrades
schedulability performance but provides higher relidili
Note that, such criticality-based eviction may not worlhiéte is no lower-criticality

task to evict in order to accept a recovery request, or if tiegéhe total computation de-
mand of all the lower-criticality tasks from the system i$ @oough for executing the re-
covery request. This problem can be addressed using insprecmputation paradigm.

8.9.3 Imprecise Computation

If partial computation of the recovery request is usefugntithe recovery request can
be accepted into the system even though a complete recamgugst can not be ser-
viced due insufficient processing capacity. When the regudtamplete execution of
a recovery request can not be produced before the deadiines éoutside the scope of
the consider fault model) can be recovered usingrecise computatioof the backup.
Imprecise computation models are considered in [CLL90, 1%, [MAAMMOO] and
are appropriate for monotone processes where result pedduge a task will have in-
creasingly higher quality if more time is spent in executthg task. Such monotone
processes are considered to have a mandatory part and anadjtart [LSL"94]. The
mandatory part of each task has a hard deadline and must emmitd execution be-
fore deadline. However, the optional part of a task can bgped if enough processing
power is not available.

The imprecise computational model is applicable if the b@acf a faulty task is
modeled as a monotone process. Therefore, even if the filution of the backup can
not be completed, the result of the partial computation efitackup can ensure certain
quality to the application. Hence, when the admission odietrcan not guarantee com-
plete execution of a recovery request, the request catstidkccepted to the system and
imprecise result can be delivered to the application. Bysm@ring the recovery request
as a monotone process, the imprecise computation techtucpaeve a recovery request
can be seen as providing a balance between schedulabiifyrp@ance and reliability.

It is easy to realize that eviction of a low-criticality taskd imprecise computation
can be combined so as to offer a solution to the problem wihereneindatory part of a
task does not have enough time to finish before its hard deadih such case evicting
a lower criticality task could enable the complete exeeutbthe mandatory part of a
highly-critical recovery request.

8.10 Summary

In this chapter, a fault-tolerant multiprocessor schedyélgorithm calledTGS and its
corresponding schedulability test for constrained-deadiporadic tasks are proposed.
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This schedulability test enables the system designer @ejtide robustness of the sys-
tem by experimenting with different number of task errord processor failures. Such
sensitivity analysis enables the designers to evaluaténefithe resource requirement
and resilience of the fault-tolerant system. The fault nhdllat FTGS algorithm con-
siders is very powerful in the sense that multiple task ermrprocessor failures are
considered to occur at any time, in any task, or even duriegeitecution of recovery
operation. No other works have considered such a genedainfaxel for scheduling
real-time sporadic tasks on multiprocessors.

The FTGS scheduling considers passive backups: a backup is digghtditer an
error is detected. Such passive-backup strategy is goarmstof saving CPU cycles
for systems where faults are less likely. Passive backugpalao effective for tasks that
have enough laxity so that there is enough time in the sckadubxecute the backup
after an error is detected. However, for low-laxity taskasgive backups may not be
effective to provide fault-tolerance and active backupy tmaappropriate in such case.
However, active backup strategy consumes more energy buides quick recovery.
The system designer can determine forfR&S algorithm whether only active backups,
only passive backups, or a combined approach to be usedsfaygtem.

The FTGS scheduling algorithm and its analysis can be extended lmothrf im-
proved priority assignment policy. The proposed schediitialtest for FTGS algo-
rithm is OPA-compatible and can be used to find a fixed-psianitiering of the tasks if
the schedulability test is not satisfied for the given fixe1ity ordering of the tasks.
Moreover by prudently keeping some tasks and processoraeddrom the schedu-
lability analysis of a lower priority task, better priorigssignment policy based on the
HPA scheme can be obtained.



Mixed-Criticality Systems

The advent of multicore processors has attracted manyysafiital systems, e.g., au-
tomotive and avionics, to consider integrating multipladtionalities on a single, pow-
erful computing platform. Such integration leads to hosicfionalities with different
criticality levels on the same platform. The design of suetfixed-criticality” systems
is often subject to certification from one or more certifioatauthorities. Coming up
with an effective scheduling policy and its analysis that gaarantee certification of
the system at each criticality level, while maximizing th#ization of the processors,
is the focus of the research presented in this chapter.

The global, fixed-priority scheduling algorithm for a setohstrained-deadline and
mixed-criticality sporadic tasks on multiprocessors iasidered. A sufficient schedu-
lability test based on response-time analysis of the preghadgorithm is derived. One
of the useful features of the proposed test is that it can bd fm systems with more
than two criticality levels. In addition, the test can be dise find “effective” fixed-
priority ordering of the mixed-criticality tasks based ondsley’s approach. Empirical
investigation into the effectiveness of Audsley’s pripassignment algorithm using the
proposed schedulability test shows significant improverogar other heuristic-based
(e.g., deadline-monotonic, criticality-monotonic) prig assignment policies.

9.1 Introduction

Single-chip multiprocessors are viewed as serious coetsrfdr many safety-critical
and hard real-time systems to meet the growing demand of atingppower. The de-
signers of such systems are considering integrating neifimctionalities on the same
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computing platform due to space, weight and power concefios.example, aviation
industry is contemplating “Integrated Modular AvionicsMA) to achieve economic
advantage by hosting multiple avionics functions on a simgatform [ARI]. Simi-
larly, the growing complexity and safety requirements itoawtive systems have led
to the development of the AUTOSAR framework focusing on cosgbility of compo-
nents [AUT]. Version R4.0 of AUTOSAR provides the specifioatfor multicore OS
architectures.

The functionalities of safety-critical applications, €.gontrol and monitoring, are
often modeled as a collection of real-time, sporadic taskdng hard deadlines A
MC real-time system is the one in which theticality levels i.e., importance, of differ-
ent real-time tasks may be different. The desigiMokystems is often subject to certifi-
cation at each criticality level by standard statutoryiiedtion authority (CA), for ex-
ample, by Federal Aviation Authority in the US or the Eurapé&iation Safety Agency
in Europe for avionics systems. One of the major challengeesigningVC real-time
systems is devising a scheduling strategy that addresseghedcriticality” and “dead-
line” aspects of the tasks while facilitating certificatiand efficient resource usage.

In order to certify aVC system as being correct, the CAs make certain assumptions
about the worst-case behavior of the system. In this thegiarticular aspect of the run-
time behavior of the system: the WCET of the application taskonsidered. Vestal
has pointed out ir [Ves07] théhe more confidence one needs in a task execution time
bound, the larger and more conservative that bound tendetm Ipractice The CAs
become increasingly pessimistic regarding their estonatif the WCET of a piece of
code for increasingly higher criticality levels. Howevére CA, when certifying the
system at some criticality level, is also concerned aboaitcthrrectness (i.e., meeting
the deadlines) of the real-time tasks relevamly to that particular criticality level. For
example, in order to operate Unmanned Aerial Vehicle (UA®raivilian airspace, the
flight-critical functionalities must be certified as “correct” by the CA wvehihe manu-
facturer needs to ensure the correctness of bosision-criticaland flight-critical func-
tionalities. Due to such different assumptions and corecamong the CAs and the
manufacturers, conventional scheduling strategies adiig both the “criticality” and
“deadline” aspects dffC systems are not cost- and resource-efficient. This is ifitesd
using a contrived example:

Example 9.1. Consider six constrained-deadline periodic tasks. . 74 that are to be
scheduled omn = 2 identical processors based on gloaP scheduling. Assume that
all the tasks are released at time zero and there are only titicality levels (i.e., dual-
criticality system): tasks; and, are low-critical tasks while the other tasks. .. 74
are the high-critical tasks.

The period of each task & The relative deadline of each of the low-critical tasks
71 and 1> is 4. The relative deadline of each of the high-critical tasks.. 74 is 7.
According to the system designer, the WCET of each task is@ording to the CA,
the WCET of each of the higher—critiaaiasksfg ...Tg is 3. Scheduling the tasks us-

1The CA is not concerned about the low-critical tasks and doéspecify their execution times.
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ing global FP scheduling requires each of the tasks to have one distired-fixiority
between priority level 1 (highest) to 6 (lowest).

If any of the low-critical task$; or 7, is assigned priority level 5 or 6, then that task
misses its deadline even if each of the high critical tasks. . . 74} actually executes
for at most 2 time units (the system designer is not happytiviischedule). If none of
the tasksr, andr, is assigned priority level 5 or 6, themot all the high-critical tasks
{73, ...7¢} meet their deadlines when they execute3ftime units at run-time (the CA
is not happy with the schedule). Thus, the system can notiedsied in a manner that
satisfies both the system designer and the CA if traditiolwdilad FP scheduling is used.
However, there is a valid schedule that can satisfy bothigsurt

e Consider that the globaFP scheduling algorithm is augmented with runtime
monitoring support that can monitor the execution time afreb of each task,
i.e., can determine how long a job has been executing.

e Taskrs andry, are assigned the highest priority levels 1 and 2. Tas&ndr, are
assigned the next two priority levels 3 and 4. And, tas&nd 74 are assigned the
lowest two priority levels 5 and 6.

¢ Note that the hyperperiod of the task set is 7 and within eggletperiod exactly
one job of each task is released. Therefore, if the job of ¢askis schedulable
in the first any hyperperiod, then all the jobs of all the tagaks schedulable.

e First, the tasksr; and 74 are executed within the hyperperiod since these are the
two highest priority tasks and there are two processors.

o If any of the two jobs of these two tasksand 7, does not signal completion
of execution after executing f@rtime units (i.e., the assumption of the system
designer does not hold), then low-critical tasksand > are dropped from the
system. And, each of the jobs of the high-critical tagks. . . 74} can execute for
at most3 time units within each hyperperiod and can meet their deadli

¢ If both jobs of tasks; and 4 signal completion after executing for at magime
units, then the two jobs of the low-critical tasksand , are executed fo2 time
units and can meet their deadlines. Finally, the two jobsefhiigh-critical tasks
75 and g can execute for at mo8ttime units and can also meet their deadlines.

So, if the system designer’s assumption (that each job &ém2 time units) hold
during runtime, then all tasks meet their deadlines acaaydb globalFP scheduling.
If the CA is right (that each high-critical job executes fottiBie units), then all the
deadlines are met. Thus, both the CA and the system desiyessatisfied. O

It is evident that the schedulability of thdC task systems in Example 9.1 can not
be guaranteed based on traditional global FP scheduliragitdg. No work has pro-
posed scheduling of constrained-deadIvi& sporadic tasks on multiprocessors based
on the industry-preferred FP scheduling. The only work odtiprecessor schedul-
ing of MC tasks is recently proposed by Li and Baruah'in [LB12] consigdedynamic
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priority and implicit-deadline tasks. The study of FP salled) algorithms and their
analysis on multiprocessors fMC constrained-deadline sporadic tasks is the focus of
this chapter.

In this thesis, an implementation scheme of global FP sdmegwalled Mixed-
criticality Scheduling algorithm on Multiprocessors8M), for dispatching a set of
mixed-criticality, sporadic tasks on identical processors is proposed. The proposed al-
gorithmMSMessentially dispatches tasks in accordance to traditgiobal FP schedul-
ing but has two additional implementation features: (i)dheation of the execution time
of each job ismonitoredat run-time in order to detect any transition of the systema’s
havior to a higher criticality level, and (ii) upon detectiof such transition at runtime,
some tasks argroppedto better utilize the processors without violating the ifiegtion
requirements. The run-time monitoring support exists imynsafety critical-system
where the execution time of each job is monitored in orderrtvide temporal guar-
antees, fault-tolerance or health monitoring [AB98, CIJIPMCRO08/ RRJ9Z, HS89].
And, this capability is exploited in this thesis for the dgsand analysis of certification-
cognizant multiprocessor FP schedulingulif systems.

The main contribution in this chapter is the derivation ofuffisient schedulabil-
ity condition of theMSMalgorithm based on response time analysis (RTA) that can be
used to guarantee certification at each criticality levehe®@f the novel features of
the proposed schedulability test is that it can be used to“&ffdctive” fixed-priority
ordering of theMC tasks based on Audsley’s optimal priority assignment (O&lgp-
rithm [Aud01]. When aMC task set for a given priority ordering does not satisfy the
proposed schedulability test, a different priority ordgrfor which the task set satisfies
the schedulability test may be determined using Audslelgisraghm. This is an im-
portant feature since the optimal fixed-priority orderiegen for traditional (nonvC)
sporadic tasks on multiprocessors, is still unknown. Aaptiseful feature of the pro-
posed test is that it is applicable to systems having moretilia criticality levels. This
feature is important as many safety-critical systems @@omotive, avionics) that have
more than two criticality levels.

The chapter is organized as follows: Secfior 9.2 preseatsytbtem model and the
MBMalgorithm. The basic framework for the schedulability gs& of theMSMalgo-
rithm is presented in Sectidn 9.3. The schedulability asialgf theMSMalgorithm for
dual-critical systems is presented in Section$[9.4-9.8nTthe schedulability analysis
for arbitrary number of criticality levels is presented iecBon[9.6. Empirical investi-
gation into the proposed schedulability test and priorggignment policy is presented
in Section[9.V. The related works are presented in Seci@@me&fore concluding the
chapter in Section 9.9.

9.2 System Model and The Scheduler

The preemptive scheduling &fC sporadic task systems on identical processors is
considered. AVC sporadic task systeiin consists of: mixed-criticality sporadic tasks
T1,...,Tn having L distinct criticality levels. Each task is characterized by a 4-tuple
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(Liv Di)ﬂ7 Cz), Where

e L, € {1,2,... L} is the criticality level of the task wheré is the highest criti-
cality level in the system.

e T; ¢ N* is the minimum inter-arrival time of the jobs (also, callegtipd) of the
task.

e D, € Nt is the relative deadline such th&f < T;.

e C;isavector< C},C2,...CF > that represents the worst-case execution times
of taskr; at different criticality levels. The WCET of tagk at criticality level?
is equal toC?.

The WCET of a piece of code is generally an upper bound on tle WCET and
the more confidence one needs in estimating the WCET of a pfecede, the more
pessimistic this upper bound tends to be. Therefore, diffevalues for WCET of a
piece of code can be determined based on the level of conéderecneeds in estimating
that WCET. To that end, it is assumed tiigt < Cf”l) for each task; € I'.

The set of all thénigher prioritytasks of task; is denoted byHP;. The set of higher-
priority but lower-critical tasks of taskr; is denoted byhpL (i ) . Similarly, the set of
higher-priority andhigher/equal-criticaltasks of task; is denoted bynpH(i ) . Note
that,HP; = hpL(i) UhpH(i).

Behavior: A MC sporadic task system shows different behavior during ifferun of
the system since different jobs may be released at difféimt instant and may have
different execution times. The system is said to have etdulgi-criticality behaviorif

no job ofanytaskr; executes for more thafi! time units, for someninimum¢, where

1 < ¢ < L. If no such{ betweenl and £ exists, then the behavior of the system is
erroneous

Correctness: A MCsystem is certified asorrectif and only if the system ischedulable
at each criticality level. AMC task system ischedulable at criticality levef using
algorithm A if and only if the jobs of each task, satisfyingL; > ¢, complete by their
deadlines for all-criticality behavior of the system when scheduled usihg

The MsMalgorithm. The MSMalgorithm for dispatching the jobs of tiMC tasks works
as follows:

e There is a criticality level indicatot, initialized to the lowest criticality level,
1.

e While (¢ < L), at each time-instant, the ready jobs of at mashighest-priority
tasks with criticality level greater than or equal fare dispatched for execution
onm processors; and

— if a currently executing job of any task has executed? time units without
signaling completion, thef < (¢ + 1).
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Algorithm MSMworks exactly same as traditional global FP scheduling gt run-
time monitoring of the execution of each job is employed ttediethe switch from
(-criticality to (¢ + 1)-criticality behavior of the system. And, according to thefidi-
tion of “correctness” the jobs dkcritical tasks need not be dispatched (hence, dropped
by MSMalgorithm) as soon as the system switches(te- 1)-criticality behavior. The
system switches fromito (¢ + 1)-criticality behavior if some job does not signal com-
pletion after executing for ité-criticality execution time.

The main objective in this chapter is to derive a schedutglitst of theMsMal-
gorithm. Sectior 9]3 presents the framework for the scladwlity analysis of the
MBMalgorithm. The schedulability analysis is first presenkmddual-criticalitﬂ sys-
tems: Section 914 and Sectibn19.5 present the response tiatgses considering the
LOandH! criticality behavior of the system, respectively. The stflability analysis
for more than two criticality levels is presented in Secl@o@.

9.3 Schedulability Analysis: an Overview

In this section, an overview of the schedulability analydishe MSMalgorithm is pre-
sented. To guarantee certificationME system at criticality level, each task; sat-
isfying L; > ¢ must be schedulable during dHcriticality behavior of the system. A
sufficient schedulability test of theBM algorithm based on response time analysis is
derived in this chapter.

The response time of task is denoted by! considering the-criticality behavior
of the system. To deriv&’, the schedulability analysis of a generic job of tagkn
an interval of lengtht, called the “problem window” of task;, is considered. The re-
sponse time of task; is derived by computing theorkload interfering workloadtotal
interfering workloadand interferenceof the higher priority tasks within the problem
windowd

The Cl andNC workloads of each higher priority task, € HP; within the prob-
lem window of lengtht are determined. Whether a taskshould be considered as a
Cl task or aNCtask is determined later. Ti& andNCinterfering workloads of each
higher priority taskr, € HP; are determined based on the upper bound orCthand
NC workloads of taskr, within the problem window, respectively.

Itis proved in[GSYY09] that there are at md@st — 1) carry-in tasks in the problem
window of any lower priority task for global FP scheduling afnstrained-deadline
sporadic tasks. Since thdMalgorithm essentially dispatches tNE tasks based on
global FP scheduling policy, limiting the number@if tasks ta(m—1) is also applicable
for the schedulability analysis &M algorithm. Thetotal interfering workload is
calculated by adding th€l interfering workloads of m — 1) carry-in tasks and the
NC interfering workloads of the remaining higher priority kas The(m — 1) carry-in
tasks from setP; are selected such that the total interfering workload isimezed.

2The criticality levels 1 and 2 are denoted ly®’ and “HI ”.
3The terms (i.e., workload, interfering workload, total ifiéging workload and interference) are formally
defined in Section 612 (see pdgeé 81).



9.3. SCHEDULABILITY ANALYSIS: AN OVERVIEW 181

Finally, theinterference due to the tasks itP; in the problem window of task; is
calculated based on total interfering workload of the taskdP;.

Once the interference of the higher priority tasks withinralylem window con-
sidering the/-criticality behavior of the system is calculated, the msge timeR! of
taskr; is given as a recurrence that can be solved using fixed-gdenattion technique.
This response-time test is derived by assuming sgiwen fixed-priority ordering of
the tasks. However, determining a “good” fixed-priority erdg of theMC tasks is as
important as deriving a schedulability test. This is beedfia task set does not pass
the schedulability test for a given priority ordering, theempriority ordering for which
the task set passes the schedulability test can avoid uss@geupgrade of hardware or
re-specification of software. The Audsley’s OPA algoritliludi01] combined with the
proposed (response-time based) schedulability testsrectiapter will be applied to find
an effective fixed-priority ordering of thelC tasks.

9.3.1 Dual-Criticality Systems

A dual-criticality system exhibits eithdrO or HI criticality behavior. The response
time R-%and R of taskr; will be derived for the.OandHI -criticality behavior of the
dual-criticality system, respectively. The following Lema is used in Sections 9[4=P.5.

Lemma 9.1. If task 7; meets all its deadlines during all correct behaviors of aldua
criticality system, then

RS < ¢

- Dj— (C’;" - CJLO) if L; =H
where, (; = { D, if L, — LO (9.1)

Proof. Consider a job of task; that finishesC;° units of execution exactlyz:° time
units after its release time without signaling completithr:° > D; — (C}' — C%9)
andL; = Hi, then this job can not complete additior@’' — C%°) units of exe-
cution before its deadline during thé -criticality behavior of the system. Therefore,
if task 7; meets its deadline in all correct behavior of the system ane= Hi , then
RO < D;j — (CH — C%0). And obviously, if L; = LO, thenR}° < D; for all correct
behavior of the system. O

According to Lemm&39]1, a job of task that is released at timemust finishC]LO units

of execution by timgr + ¢;) in all LO-criticality behaviors. LemmBa 9.1 essentially
captures the “true” relative deadline of task for the LO-criticality behavior of the
system. The relative deadline of taskwhen analyzing thé& O criticality behavior of
the system is denoted lgy. The relative deadline of task during theH criticality
behavior of the system is still equal ;.
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9.4 RTA Procedure atLOCriticality Level

A dual-criticality system is schedulable at th@® criticality level if and only if each
taskr; € T' meet their deadlines for allO-criticality behaviors of the system. In this
section, the response tinf&-© of task; considering the.O-criticality behavior of the
system is derived. According to thésMalgorithm and Lemmpa 9.1, the execution of
any taskr; € (HP; U {r;}) during theLO-criticality behavior of the system is equiv-
alent to traditional global FP scheduling of (M) sporadic task; with parameters
(C59,¢;,Ty). In such case, the response tifg® of taskr; can be determined us-
ing standard RTA technique proposed for (ndB)} sporadic task systems, for example,
using the test proposed by Guan et al. [in [GSYY09]. HoweVes,test proposed by
Guan et al. in[[GSYY09] is OPA-incompatible [DB11b], i.g.can not be used to find
effective fixed-priority ordering of the tasks based on Aags approach. Now in sub-
section 9.4.11 a new, OPA-compatible response time testHrabe used to determine
the schedulability of task; is presented.

9.4.1 New RTA for Sporadic Task Systems

The response tim&:© of taskr; is determined by calculating the workload, interfering
workload, total interfering workload and interference tod higher priority tasks within
the problem window of task;.

Workload. TheCl andNC workloads of each higher priority task € HP; within the
problem window of task; need to be computed. The upper bound on the workload of
taskr;, € HP; within any interval of lengtht is denoted by\(¢) andW (¢) whenever

7 is aNCtask andCl task, respectively. Since each job of taglexecutes at most-©

time units during thé O-criticality behavior, theNC workloadW () of taskry is given
(based on [GSYY(Q9]) as follows:

WE) = [t/Te) - CF°+ min(CrOt — [¢/Ti ] - T) (9-2)

Guan et al. in[[GSYY09] also proposed a novel technique fomeding theCl work-
load of taskr;, within the problem window of;. However, theCl workload computa-
tion of taskr, according to[[GSYY09], requires to know the response tifask 7,
which in turn requires to know thelative priority orderingof the higher priority tasks
in HP;. This is because without knowing the relative priority aidg of the tasks in
HP; it is not possible to determine the response time of task HP;. Such dependency
on the relative priority ordering of the higher priority kasneeds to be avoided to derive
an OPA-compatible JAud01, DB11b] schedulability test (fimst condition in pagé 83
for being a test OPA-compatible is not satisfied). This peobis circumvented by using
the upper bound on the response tiR}¢’ of taskr;, according to Lemm@a9.1. The value
of CI workloadWF' (¢) of taskry, is given as follows:

W (t) = A . CEO 4 min(CEC t + ¢ — CF° — AF - Ty) (9.3)
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where A¥ = |(t + ¢, — CE°) /Ty | and (, is defined in Eq.[(3]1). Note that L
is used in place ofy in Eq. [9.3), then EqL(913) calculates the sa@heworkload as
in [GSYYO09]. However, in order to make the proposed test @BAxpatible, an upper
bound onR%® (according to LemmB9.1) is used in EG.(9.3). It is easy totsatthe
NC andCl workloads calculation in EqL_(9.2) and Ef. (9.3) do not regjtn know the
relative priority ordering of the tasks P;.

Interfering Workload: The upper bounds on the interfering workload of tagkn any
job of taskr; within the problem window of lengthare denoted byk (t) andl NC( )
wheneverr is aCl task and\Ctask, respectively. It is pointed out in [BCO7, BCL 09]
that if a job of taskr with execution timeC' and relative deadlinéd suffers enough
interference to miss its deadline, then it is sufficient togider the interfering workload
of a higher priority task limited to at mo$D — C + 1). Therefore) ¢, (¢) andl Y (¢)
are given as follows: 7 7

I3 () = min(W (¢),t — CHO+ 1) (9.4)

I (t) = min(WC(t),t — CFO + 1) (9.5)

The difference between th@ andNCinterfering workload of task; within the prob-
lem window of lengtht is denoted by 2 ¥ (#) such that:

IR =105 — 135 ()

Total Interfering Workload. The upper bound on total interfering workload due to all
the tasks in setlP; is denoted by ;(¢). The value of ;(¢) is calculated as follows:

Ly = > 10+ > I R() (9.6)
T €HP; TREMaz(HP;,m—1)

where M az(HP;, m — 1) is the set ofim — 1) tasks from seHP; that have the largest
values ofl 2! FF(t).

Interference. The term interference is an integer and all thgprocessors are busy exe-
cuting tasks fronHP; while taskr; is interfered. Thus, an upper bound on interference
due to the tasks iHP; on any job of task; within the problem window of lengthis

LHi(t)/m].

The Response Time TestThe response tim&:© of taskr; for the LO criticality be-
havior of the system is given as follows:

(RLO
R®+ C°+ {' Z(ﬁl )J (9.7)

This can be solved by searching iteratively the least fixedtmtarting withR-C = CL°
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for the right-hand side of Eq{3.7). B-° > (;, then the task; misses its deadline.
When certifying a system dtO criticality level, Eq. [9.¥) can be used to determine
whether task; € I" meets its deadline during all theD-criticality behavior of the sys-
tem. Note that Eq[{917) can also be used to determine thelskgglity of traditional,
nonMC, sporadic tasks. The test in EQ. (9.7) does not depend oretatve priority
ordering of the higher priority tasks; hence, is OPA-coriipeat

An Example: Consider the following dual-criticality task set in Tabldl@omprised of
n = 3 tasks to be scheduled usiMpMalgorithm onm = 2 processors.

Ti Lz C 1' S CZH I D i Tz Cz
7 | H 1 2 3 4 12
5 | LO 1 - 2 3|2
| H | 2 3 [ 3 [4]2

Table 9.1: An example task set

Assume that task; is thelowestpriority task. The aim is to calculatg;° to determine
if 7 is MSMschedulable during allO-criticality behaviors. Note that the other two
higher priority tasks» andrs are trivially schedulable since = 2.

Calculating RLC: The response tim&;° of taskr; is calculated in the table below. The
first column represents the length of the problem windowiaty, set toR'° = C}° =

1. The second column presents (based on[Ed. (9.6)) the tteafléring workload of the
higher priority tasks» and 3 for the length of the problem window given in the first
column. Finally, the right hand side of EG.(D.7), i.e., neaue of R\C, is evaluated and
presented in the third column.

R59(problem window) | 1 1(R5°) | RY® « Ct°+ L%J
Ci°=1 2 1+[3]=2
2 3 1+ (2] =2

Since the values aR%C in the third column for the first two iterations are the same,
the RTA procedure converges aiy® = 2. SinceR:° =2 < (; = 2 < D; = 3, the
deadline of task; is met for allLO-criticality behaviors. O

9.5 RTA Procedure atHl Criticality Level

A dual-criticality system is schedulable at tHe criticality level if and only if it is true
that eactHl -critical taskin I" meets their deadlines for &l -criticality behaviors of the
system. In this section, the response tiRtl¢ of taskr; considering theHl -criticality
behavior of the system is derived.
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In order to derive the response tini&! of aHl -critical taskr;, the schedulability
analysis of a generic joli® of taskr; within the problem windowr?, ¥ + ¢) of length
t is considered. Assumebe the time instant relative to the release time of jgbat
which the system switches frobOto HI criticality behavior (as is given in Figuie 9.1).

A

i Problem window of length t

i ,

I S :

———————————— :
I i v
rx r*+s rix+t dix

Figure 9.1: The problem window of length

If s > RLO, then the system exhibitsO-criticality behavior beforér? + s) and the
job J# must have completed befote? + s) becausdr? + s) > (r¥ + RL9). Since
the aim is to determine the response time of tadior theHl -criticality behavior of the
system, it is sufficient to consider< s < R-Cto computeRr!! .

The response time of task (i.e., the response time of the generic j@p) for a
given value ofs is denoted byi!!,. The response tim&!! is the largestz!!, for some
5,0 < s < RYO. The value of!!_ is calculated based on the workload, interfering work-
load, total interfering workload and interference of eaaghbr-priority taskr, € HP;
whereHP; = (hpL(i) UhpH(i)).

The NC andCl workloads of the higher priority task, € hpL(i) are respec-
tively denoted byWLN<(s, ) andWL{ (s, ) such that the system switches fram®to
HI criticality behavior at times relative to the beginning of the problem window of
lengtht. Similarly, WH®(s,¢) andWH' (s, ¢) denote theNC andCl workloads of task
7 € hpH(i ), respectively.

The remainder of this section is organized as follows. RingiNCandCl workloads
of taskr, € hpL(i ) are derived in subsectign 9.5.1. Second,NBeandCl workloads
of task, € hpH(i ) are derived in subsectign 9.5.2. Then, the interfering Voaud,
total interfering workload and interference of the taskslit are calculated, and finally,
arecurrence foR!!_ is derived in subsectidn 9.5.3.

9.5.1 Workload of 7, € hpL(i) within [r¥,rf + 1)

In this subsection, thBC andCl workloads of aLO-critical taskr,, € hpL(i) within
the problem windowr?, r¥ +t) are calculated. According to tihdsMalgorithm, theLO-
critical taskry, is not dispatched after the criticality-switch(af +s). The WCET of task
1 is CLO since taskr, executes only during theO-criticality behavior of the system.
The execution of thé O-critical taskr, in [r¥,r¥ 4 s) is equivalent to the execution of

traditional (nonMC) sporadic task with parametef€'t°, (x = Dy, T). In such case,
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WLNC(s, ) andWLY (s,t) are given as follows:

WY (s, 8) = W(s) (9.8)

W (s,t) =W (s) (9.9)

whereW<(s) andW' (s) are given in Eq.[{9]2) and E4.(9.3), respectively.

9.5.2 Workload of 7, € hpH(i) within [r?,rf +¢)

In this subsection, thBIC andCl workloads of aHl -critical taskr, € hpH(i ) within
the problem windowr?, ¥ 4 t) are calculated.

Calculating WH(s, t). The NC workload\WH\ (s, t) of task, € hpH(i ) within the
problem window{r7, 77 + t) is calculated according to the releases of the jobs of task
71, as follows: one job of task; is released at time instanf and subsequent jobs of
taskr; are released as early as possible. The jobs oftasikecute as early as possible

within the problem window (as given in Figure B.2).

Problem window of length t

-

< Tk » < Tk > Tk » < »
A H | H | H | H A
eel v [ef ¥ Uenly [erly [en),

r riX +s rix+t

A

Figure 9.2: TheNC workload of taskr, € hpH(i ) within an interval of length. Note that the
criticality changes at time instarft-y + s).

If each job of taskr;, executes foC!H! time units within[r?, r# +t), then the work-
load of taskr;, within [r¥, r¥ 4 t), denoted byV“rPe"(t), is given as follows:
WHPPr (t) = [t/ Ty - CF + min(Cy ,t — [t/Tx] - Ti) (9.10)

However, each of at least/ T} | jobs of taskr;, executes for at moﬁ',gotime units
within [rZ, 7% + s). The value oNC workloadWH\<(s, ¢) is given as followd:

W (s, 1) = WP (t) — [s/Ti] - (CF = C°) (9.11)

“4The job of taskry, that is released at time-? + |s/T | - T);) executes for at mosELO time units if
(Is/Tx] - Tk + R';;O) < s; otherwise, it executes for at moSt! time units. For ease of presentation, this
job is assumed to execute f6f! time units.
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Calculating WH (s,¢). The Cl workload WH' (s, ¢) of taskr, € hpH(i) within a
problem window of lengtht is calculated by considering a particular release pattern,
called thereference pattern, of the jobs of task, within [r¥, ¥ + t). The reference
pattern is defined considering releases of the jobs oftaskthin [r¥, r¥ +t) as follows
(see Figur€9l3):

e one job of taskr is released at timér? + ¢ — CH') and other jobs of, are
released as close as possible (periodically) to the jolasettatr? + ¢ — CH );
and

e the jobs of task, that are released before time instént + ¢t — CH') execute
aslate as possible and the jobs of tagkthat are released at or after time instant
(r¥ +t — CH') execute agarly as possible.

4‘ Problem window of length t

Y

i
S s m e I:W e
r ry rX+s ri+t

i k i

Figure 9.3: The reference pattern. The criticality-switch occurgat + s) within the interval
[ri.ri +1).

Based on the reference pattern, the valu€lofvorkloadWH? (s, t) is calculated in two
steps as follows:

e STEP1: The workload of tasky;, within [r7,r7 + t) for the reference pattern in

Figure[9.3 is calculated. The workload of taskwithin the problem window for
the reference pattern is denotedmyy(s, t).

e STEP2: By considering all possible leftward or rightward shiftstbé problem
window in the reference pattern, th@aaximum net increase in workload within
the shifted window in comparison to the workload calculate&tep 1 is deter-
mined.

The sum of the two workload factors in Step 1 and Step 2 is thevaf W' (s, ¢). The
details of calculating the workloads for Step 1 and Step Zavepresented.

STEP 1 (workload of 7, in the reference pattern): In this step, the workloaBy (s, t) of
the jobs of task, for the reference pattern in Figure 0.3 is computed. Considejob
J}! that satisfies the following condition in the reference qraitt

V< (rf ts) <Y (9.12)
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According to Eq.[(9.12), the criticality-switch &t? + s) occurs at or after the release

time of jobJ}/ but prior to the release ofjobliy+1). It is assumed that joli;/ executes

for C' time unit§l. Any job of taskr; that is released before and after the release of

J} executes for at mogtL®andC!! time units in the reference pattern, respectively.
Given the values of ands, the time instant when joli! is released relative to the

time instant-? can be precisely determined. Since jfbsatisfies Eq[{9.12), the release

timer} of job J/ is:

=7 ) - O - N T ©013)

where N, is number of jobs of task;, that are released ifr},r? +t — C}' ) in the
reference pattern; altt’cft’fS is given as follows:

NE, = [(maz{0,t — Cf' — s})/Ty] (9.14)

In other words, the joly} is releasedt — Cf' — N, - Tj) time units apart from
the beginning of the problem window. Sineg is aHl -critical task, i.e.,L, = Hl,
the response time of a job of task that executes for at most;© time units is upper
bounded by, = D;, — (C! — C:°) according to Lemm&_9.1. In other words, each of
the jobs released beforé completes its execution at legdd, — (i) = (CH — CEO)
time units earlier than its deadline. Based on this obsivathe specific reference
pattern is depicted in Figufe 9.4.

é Problem window of length t

A
L

1 :k: f k: 1 k: 1 H A H
AR AR AN A I A kA

A

I
rY rX+s I‘ix+t
Ko

]
ol

Figure 9.4: The reference pattern. Each job released befdfdinishes(D, — () time units
earlier than its deadline in the reference pattern.

Observe that no job of task, in Figure[9.4 can execute i} — (T) — i), 77)

since the job],iy_l) completes its execution at or before time instgt- (T}, — ().
Thus, the workload of task, within [r7, rz) is in fact the workload of task; within

®In fact, job JY executes foiCL time units if (r} + RLO) < (r + s); otherwise,J! executes for at
mostC!H time units. For ease of presentation, j# is assumed to execute f6f! time units.
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[r¥, 17} — (Tx — Ck)). The length of the interval?, r; — (T — (x)) is denoted byQ
such that
Q = max{0,t — C}} — Ny - T, — (Th — )} (9.15)

The workload of task, in the reference pattern is calculated considering twoscase
Case(A)RQ = 0, and Case(B}) > 0.

Case (A) (2 = 0): For this case, each of the jobs of taskexecutes for at most}!
time units within theentireproblem window(r?, ¥ +t) sincery > 0 > t—C' — N, -
T, — (Tx — &) In other words, the execution of task is equivalent to the execution
of traditional (nonMC) sporadic task;, with parameter$C}! , Dy, T};) in the reference
pattern. Based on the work by Bertogna and Cirinelin [BC@rtfaditional sporadic
tasks, the workloa®; (s, t) of taskr;, with parameterg$C}' , Dy, T},) in any interval of
lengtht is given as follows:

Pi(s,t) = BF - C' + min{C ,t+ D, — C' — BF. T3} (9.16)

whereBf = |(t + Dy — CH) /Ty |.

Case (B) (2 > 0): According to Eq.[(9.15) for this case> C! + N, - T+ (Ti — i)
And, according to Eq[{3.13);} > r7 whenevert > CH' + NF, - T + (T — ().
Therefore, jobJ}! is not thecarry-in job because// is not released before!. The
workloadPy (s, t) of taskr, within [r¥, ¥ + t) for the reference pattern in Figure.4 is
determined by adding the workload of tasgkin [r¥, ) and[r{, r¥ +t).

Remember that the workload of task within [, 7}) in Figure[9.4 is in fact the
workload of taskr, within [r¥, 7} — (T}, — ()). By viewing the schedule in Figufe 9.4
(backward in time), starting from{ — (T}, — (;) to r¥, it is evident that the workload
of taskry, in [r?,r{ — (T — (1)) is equal to theNC workload of traditional (norvC)
sporadic taskr, with parameter§CL°, ¢, Tx) in an interval of lengthy. Thus, the
NC workload of sporadic task; with parameter§CLC, ¢, T},) within an interval of
length@ can be given a¥)(Q) according to Eq[{9]2).

Within the interval[r}, r¥ + ¢) in Figure[9.4, there are at most/, + 1) jobs of
taskr;, that each executes féf! time units. Therefore, the workload of taskwithin
[ry,r¥ +t) is equal to(NVf, + 1) - C;!. The workloadPy (s, t) of taskr, within the
entire problem windowr¥, ¥ + t) for the reference pattern is given as follows:

R

Pe(s.t) = WQ) + W, +1)-C (9.17)

In summary, the workloaB (s, t) of taskr, for the reference pattern is given using
Eq. (9.16) and Eq[(9.17) for Case (A) and Case (B), respalgtiv

STEP 2 (net increase in workload due to shift):In this step, by shifting the prob-
lem window within the reference pattern in Figlire]9.4 thaximum net increase in
workload within the shifted problem window in comparisonRg(s, t) is determined.
According to the analysis by Bertogna and Cirineilin [BCQRE releases of the jobs
in the reference pattern for Case (A) represents the warst-workload of task; with
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parameter$CH | Dy, T},) in any interval of lengttt. Therefore, it is only needed to con-
sider shifting the problem window in the reference pattemGase (B), i.e., whenever
@ > 0. Themaximum net increase workload in addition tdP (s, t) for all possible
leftward and rightward shifts of the problem window in Figi&.4 is given in Lemmia9.2
(proof is in AppendiXA, page 225).

Lemma 9.2. The net increase in workload due to any shift of the problendaiv in
Figure[9.4 is bounded byCH — CL©).

Given the workloadPy, (s, t) for the reference pattern in Eq.(9116) and Eq. (9.17) respec
tively for Case (A) and Case (B), the value@f workloadWH? (s, ) of theH! -critical
taskr, in the problem window is given as follows:

V\H%I (s,t) =

{ Pi(s,t) +(CP' =C(9  if Q>0 (9.18)

Py (s, 1) otherwise

In summary, the&N\CandCl workloads of dO-critical taskr;, € hpL(i) within a prob-
lem window of lengtht of taskr; are given in Eq[{918) and Ed.(9.9), respectively. And,
theNCandCl workloads of aHl -critical taskr;, € hpH(i ) within a problem window
of lengtht¢ of taskr; are given in Eq.[(9.11) and Ed.(9]18), respectively. Basethe
NC andCl workloads of each task, € HP; = (hpL(i) UhpH(i) ), the response
time R™ of theH! -critical taskr; is derived in next subsection.

9.5.3 The RTA Test forHI Criticality Level

The response tim& of HI -critical taskr; is calculated by computing the interfering
workload, total interfering workload and interferencedshen the workload of the tasks
in HP; within the problem window of task;.

Interfering Workload. TheNC andCl interfering load of task; within the problem
window of lengtht for some givers are denoted b?,t'c_i(s, t) andrg,i(s, t) wheneverr,
isNCandCl task, respectively. An upper bound on the interfering waekl of a higher
priority task within the problem window is the workload ofetthigher priority task
within that problem window. However, it is pointed out [n [BZ,[GSYY09, DB11b]
that it is sufficient to consider the interfering workloadaohigher priority task limited
to at most(t — C; + 1) within the problem window sizeéwhenever task; has execution
time C;. The values orgﬁ(s, t) andrﬁi(s, t) are given as follows:

TG (s,t) = {

{ min{W.{ (s,t),t —CH +1}  if 7, € hpL(i)

min{W.N(s,¢),t —CH +1}  if 7, € hpL(i)

min{WH(s,t),t —CH +1} if 7, € hpH(i)

min{WH (s, t),t —CH +1}  if 7, € hpH(i )
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The difference between th@l andNC interfering workload of task;, is denoted by
T?,ZFF(& t) and is given as:

T (s,t) =Thi(s,t) —Tha(s,t)

Total Interfering Workload. The upper bound on total interfering workload due to all
the tasks in satP; within the problem window for some givenis denoted by, (s, ?).
The value of;(s, t) is given as follows:

S Tha(st) + > T (s,t) (9.19)

T, €HP; TRrEMaz(HP; ;,m—1)

whereMaz(HP; ,m — 1) is the set ofim — 1) tasks from seHP; that have the largest
values ofF?fF(s,t).

Interference. Because interference is an integer and all #lhgorocessors are busy
executing tasks frorhiP; while taskr; is interfered, the upper bound on interference
due to the tasks iHP; on any job of task; within the problem window of lengthis

[T5(s,t)/m].

The Response Time TestThe response time @l -critical taskr; for some givers is

given as follows: "
ri ’ Rz S
RH oM 4 Li(s ’ )J (9.20)
’ m

The Eq.[[9.2D) can be solved by iteratively searching thstlfseed point starting with
R, = C}' for the right-hand side of EqL{9.20). The response tifije of task;
durlng anyHl -criticality behavior of the system is given as:

R = maz  [RH (9.21)
0<s<RL® ’

When certifying a system &l criticality level, Eq. [9.2]l) can be used to determine
whether theHl -critical taskr; meets its deadline during aHl -criticality behaviors of
the system. The RTA test in Eq._(9]21) is OPA-compatiblessincloes not depend on
the relative priority ordering of the higher priority tasksHP; and all conditions given
in pagd 8B for a schedulability test to be OPA-compatiblesatisfied.

An Example: Consider the dual-criticality task set in Talple]9.1 wheskta is the
lowestpriority task. It is shown in subsectign 9.4.1 that taskis schedulable for all
LO-criticality behaviors and?t° = 2. Since taskr is aHl -critical task, i.e..L; =

the aim is to calculat&!! to verify if 7, is schedulable in all -criticality behaviors.

Calculating R According to Eq.[[3.21), the response tin‘%é' is the maximum of
Jforalls =0,...,R® WhereRLo = 2. The values of?!!_for all s = 0,1,2 are
calculated using the recurrence in E[gt@ 20) in the taUlmAbe
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The first column represents all possible values,0f < s < R-C. The second
column presents the length of the problem window; initia#igt toRY', = C}' =
2 for each new value of in the first column. The third column presents (based on
Eq. (9:19)), the total interfering worklodd (s, RY!,) of the higher-priority tasks, and
3 considering the length of the problem window given in theoseiccolumn. Finally,
the right hand side of EJ.{9.20), i.e., new valug#f,, is evaluated in the forth column.

s | BU (window) | T (s, RY) | Y« oft 4 | DO
0 cH =2 2 24 3] =3
3 2 2+15]=3
L Ot =2 3 24 3] =3
3 3 24 (2] =3
5 ch =2 3 2+ (3] =3
3 3 2+ L%J =3

Itis evident thatkR! _, = 3, R{'._, = 3, andR!!__, = 3 (see the shaded cells
in the last column). Therefore, it follows that!! = 3 based on Eq[{9.21). Since
R =3 < Dy = 3, the deadline of task; is met in all theHI -criticality behaviors
of the system. Therefore, task meets all its deadlines in bottOandHl criticality
behaviors of the system. And, the two other taskandrs having higher priorities are
trivially schedulable since: = 2. Consequently, the dual-criticality task setin Tdblé 9.1
is MSMschedulable. O

9.6 Schedulability Analysis forL > 2

In this section, the main principle to compute the respoinse B! of taskr; is presented
considering the-criticality behavior of the system wheBe< ¢ < L, andL; < L.

Consider the problem windoy?, ¥ 4 t) of some generic jol/? of taskr;. As-
sume thatS = {s1,...,5(-1)} is the set of relative distances frorii such that the
system switches from-criticality to (v + 1)-criticality behavior at timgr? + s,,) for
eachs, € S. For the sake of analysis, assume that= oo for v > ¢, ands, = 0 for
v =0.

According to theMsM algorithm, taskr, € HP; is allowed to execute within the
problem window{r?, r¥ + t) before time instan{r? + p) during the/-criticality behav-
ior of the system such that = min{¢, sz, }. In other words, ifL;, < ¢, then taskr
is allowed to execute beforg? + sz, ) in the problem window; otherwise, task is
allowed to execute during the entire problem window for/adkiticality behaviors of
the system.

The response time of task for somegivensets is denoted b)Rf,S. The response

time R{ is the maximumR! 5 over all possible set§ where eachs, € S can have
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any value betweei0, R}] ands, < s(,,1). Therefore, the number of different sets
S that one has to consider to firféf is upper bounded byD;)*. However, the num-
ber of different criticality levelsC in many practical safety-critical systems is not very
large, e.g., according to the RTCA DO-178B standard, thezefiae different Design
Assurance Levels (DAL A to DAL E) for software in avionics ggs1s, and according to
ISO 26262 standard, the safety functions in automotiveesystcan have four different
Automotive Safety Integrity Levels (ASIL A to ASIL D).

The response timﬁfys can be derived (similar to that of in Sectibn19.5 for dual-
criticality systems) once th&C andCl workloads of each task, € HP; in [r?, 77 +
p) are known, wheres = min{t, sz, }. The basic idea for calculating tféC and
Cl workloads of tasky, € HP; is presented next.

NC Workload: In order to find theNC workload of taskr;, within an interval of length
p, consider that one job of task arrives exactly at the beginning of the window and
subsequent jobs arrive and execute as early as possiblendTBfi the upper bound on
NC workload ofr;, € HP; within an interval of lengttp can be calculated as follows:

e If all the jobs of taskr;, executes foICy, time units within an interval lengtp,
then the total workload within the problem window is:

WP = |p/Ti) - Gy + min{Cy, p— [p/Ti] - T}

e However, each of at leagt | jobs of taskr, executes for at most;’ time units
forv = 1...(¢ —1). This is because the system exhibitgriticality behavior
before (r7 + s,). Thus, an upper bound ddC workload within the problem

window is:
-1

WP S s, /T - (O Y — o)

v=1

Cl Workload: In order to calculate th€l workload within the problem window, con-
sider the releases of the jobs of as follows (called, theeference pattern one job
of taskry, releases exactly dt% + p — C¢) and executes fof’y time units as early as
possible; and earlier jobs af are released and executel@s as possible.

Given the reference pattern, the release time of each joastfr, relative to the
beginning of the intervalr?, ¥ + p) can be determined. For each such job of tagk
say job.J/, that executes within the problem window, thegests,, if one exists inS,

suchthaty < (rf +s,) < r,(j’“), can be determined. If such ap € S exists for job

J¥, then itis assumed that jolf executes foc'(" ") time units. If no such, exists for

job JY, then it is considered that jolf executes foc’\” ™" time units wherdr? + s)
is theclosestriticality-switch time of the system prior to the releaggab J;/ (such an
sz must exist since it is assumed thgt= 0).
Given the execution time of each job of tagkfor the reference pattern within the
interval of lengthp, the workload of task;, for the reference pattern can be computed.
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And, it can be shown that the maximum increase in workloadda@ay possible shift of
the problem window within the reference pattern is bounde@f — C}). By adding
these two workload factors, th@ workload within the problem window is derived.
Once theCl andNC workloads of each task. € HP; are known, the recurrence for the
response timeRfvs can be derived by finding the interfering workload, totakiféring
workload and interference for a given set

9.6.1 Finding Priorities using Audsley’s Algorithm

The pseudocode for applying Audsley’s approach to find tredfipriority ordering of
the MC tasks is given in Figure 9.5. THéC tasks in sel” are assigned priority starting
from the lowest priority leveh to the highest priority level using the outer loop in line
1. If Rf < D, for all ¢ < L; for some priority-unassigned task(i.e., condition in line
3-5is true), then task; is assigned the current priority level in line 6. The valugf
is calculated in line 3-5 by assuming priority lewl for the priority-unassigned task
7; and higher priorities for all other priority-unassignedks.

If some priority-unassigned taskis assigned the current priority level in line 6, then
the priority assignment for next (higher) priority levetisnsidered (i.e., next iteration of
the outer loop starts). If no priority-unassigned task camadsigned the current priority
level (condition in line 3 is false for all priority-unassigd tasks), then the priority
assignment fails and line 8 reports “Failure”. If all thekssre assigned priorities, then
line 9 reports “Success”.

Algorithm OPA(Mixed-Criticality task set I")

1. for each priority levePL, lowest first

2. for each priority-unassigned taske T'

3 If RY < D, forall ¢ < L;, where task; is assumed to have
4 priority levelPL with all other priority-unassigned

5 tasks are assumed to have higher priorities, Then

6. assignr; priority level PL

7 break (continue outer loop)

8. return “Failure”

9. return “Success”

Figure 9.5: OPA algorithm forMC tasks scheduled usingsM

Time-Complexity for Dual-Criticality. To determine whether a dual-criticality task
meets all the deadlines in all correct behaviors of the systeis required to findz-°
andR! based on Eq[{9.7) and Ef.{9.21), respectively. Since thenmence in Eq[(9]7)
can be solved i0(T},,,..) iterations, the time complexity to finB-Cis O(T,,,.. ), where
Tomaz i the largest period of the task set.

To computeR!! based on Eq[{3.21), one has to evaluate the recurrence {@.20)
for each possible value af where0 < s < RO, The recurrence in Eq_{9.20) can be
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solved for agivenvalue ofs usingO(T,,,... ) iterations. Since < R';O < Tz, at most
O(T?2,,) iterations are needed to find! based on Eq[{9.21). Therefore, the time
complexity to findR-C and R is pseudo-polynomial.

When applying the OPA algorithm in Figure B.5 for dual-catity system, evaluat-
ing the condition in line 3-5 requires to comput® and R for at mostn different
tasks at priority levePL = n, for at most(n — 1) different tasks at priority level
PL = (n — 1), and so on. Therefore, the total number of times line 3-5ésated is
O(n?). Therefore, the time complexity of the OPA algorithm for Haaticality system
is O(n? - T2, ,..) Which is pseudo-polynomial in the representation of thie &. It can
be shown that the time complexity of the OPA algorithm foktast with £ criticality
levels isO(n? - £ - T%,.) which can be considered pseudo-polynomial for any fixed

value of L that is reasonable for practical mixed-criticality system

9.7 Empirical Investigation

In this section, the result of empirical investigation toasere the performance of the
proposed response time test for dual-criticality systesnmésented. In particular, the
effectiveness of the OPA-based priority assignment sch@sgiven in Figur€ 915) is
compared with the following two heuristic priority assigem schemes:

e Deadline-Monotonic Priority OrderindMPO): The priorities are ordered based
on deadline (i.e., the shorter the relative deadline, thhdriis the priority).

¢ Criticality-Monotonic Priority Ordering @WPO): The priorities are first ordered
based on criticality (i.e.Hl critical task first); and then based on deadline (i.e.,
shorter relative deadline first).

To determine thévBMschedulability of randomly generated task sets using OPA,
DMPO, andCMPO priority assignment schemes, the response-time tests.i@Ef) and
Eqg. [9:21) are used. The well-known metric, cald@teptance ratipis used to evaluate
the effectiveness of different priority assignment schem&he acceptance ratio of a
priority assignment scheme is the percentage of the randgerierated task sets that
are deemed schedulable using the response-time tests {@.Bpand Eq.[(9.21) at a
given utilization level. Before presenting the experinaéngsults, the task set generation
algorithm is presented next.

Task set Generation. The UUni f ast - Di scar d algorithm proposed by Davis
and Burns[[DB11b] (given in subsectibn 516.1, pagk 66) isl tisgenerate utilizations
for n tasks with total utilization equal to'. Once a set of utilizations{uy, us, ... u,}
of a task set is generated, the other parameters of each; taskgenerated as follows:

e The minimum inter-arrival timg; of each task; is generated from the uniform
random distribution within the randéms, 1000ms].

e TheL Ocriticality execution time of task; is set toCtC = u; - T;. Note thatu; is
the utilization corresponds to the task'®-criticality execution time.
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e Whether a generated task i@ or HI -critical task is determined using a sim-
ulation paramete€P whereCP < 1. A random number in the randé, 1] is
generated. If this newly generated random number is grésacCP, then task:;
is aLO-critical task; otherwise, the task k4 -critical.

e TheH -criticality execution time ofr; is set toCH! = CL°. CF, whereCF is a
simulation parametep 1.

e The relative deadliné; of taskr; is generated from the uniform random distri-
bution within the rangéC-®, T;] and [C!' , T;] wheneverr; is aLO-critical and
HI -critical task, respectively.

Each of the experiments is characterized by a 4-tgplen, CF, CP) wherem is the
number of processors, is the task set siz&;F is equal to o , andCP corresponds to
the percentage dfll -critical tasks in a task set. For each experlment totali#@rdnt
utilization levels{0.025m,...0.975m,m} are considered. For each utilization level
U € {0.025m,... 0.975m,m}, total 1000 task sets are generated with parameters
CF, CPandU.

Result Analysis. Experiments with different simulation parameteiss {2,4,8},n €
{10, 20,40,60}, CF = {2,3,4} andCP = {0.25,0.5,0.75} for both implicit-deadline
and constrained-deadline task sets are conducted.

The acceptance ratios for experimemt £ 4, n = 20, CF = 2, CP = 0.5) consider-
ing the OPA DMPO, andCMPO priority-assignment schemes are presented in Flgute 9.6
(the trend is similar for other experiments). The x-axigespnts the system utilization
(i.e.,U/m) and the y-axis represents the acceptance ratios.

Since the scheduling window for implicit-deadline tasksdstrelatively wider than
that of the constrained-deadline task sets, the acceptatios of all priority assign-
ment schemes for implicit-deadline task sets are relatietter in comparison to the
constrained-deadline task sets in Figuré 9.6. The perfoceafCMPOIis very poor in
comparison to th®WVPO scheme, i.e., the criticality-monotonic priority ordegiis far
from the optimal priority assignment scheme. The accepgtaato of the OPA scheme
is more than 50% larger than that of thisPOscheme af.6m and0.4m utilization lev-
els for implicit-deadline and constrained-deadline tagitems, respectively. The OPA
scheme significantly outperforms both thePOandCMPO schemes.

It is not difficult to realize that the acceptance ratio wolbddrelatively lower for ex-
periments with relatively large€F and/orCP. This is because larg&F and/orCP means
larger total utilization of thédl -critical tasks; and it is generally difficult to schedulska
sets having large total utilization.

The acceptance ratios of the OPA scheme u€iRg= 2 andCP = 0.5 for implicit-
deadline task sets for differefiz, n) pairs are presented in Figdre19.7. There are vari-
ations in acceptance ratios at higliéffor the variations inm andn. The reasons for
such variations are also common for traditional global Fiedaling and discussed in
Chaptef 6. However, the acceptance ratios for all the cadeigure 9.Y aré00% upto
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m=4, n=20, CP=0.5, CF=2 (Implicit-Deadline)

0 . ‘ ‘ OPA = |
3 100 % Sy ey OIPe -
T 80% | CMPO -
o "'.. iy
8 60% L]
8 %
S 40% | ",
Q 1
=} w, Y
< 20 % [ 4-""", ‘.0

0% ) ) e 0. B
0.2 0.4 0.6 0.8 1

Utilization / m

m=4, n=20, CP=0.5, CF=2 (Constrained-Deadline}

J

0 ‘ ‘ ‘ OPA - |
. 100 /o: = DMPO -
T 80% [ CMPO e
o B
8 60% | >
c
8
S 40% |
[8)
(&)
< 20% | .

0% i"("--‘- . B, .
0.2 0.4 0.6 0.8 1

Utilization / m

Figure 9.6: Acceptance ratios foD; = T; (top) andD; < T; (right)

0.4m utilization level which justifies the scaleability of thegmosed response time test
combined with the OPA algorithm.

9.8 Related Works

The seminal work by Vestal in [VesD7] first proposed Metask model and its anal-
ysis based on FP scheduling algorithm on uniprocessoroptatf Vestal's algorithm

is proved as the optimal for traditional FP scheduling onprogessor by Dorin et
al. [IDRRG10]. By showing that neither FP nor EDF schedulihyid tasks on unipro-
cessor dominates the other, Baruah and Vestal proposedia laydporithm by combin-
ing the benefits of both FP and EDF policies [BY08]. Recertlyariant of FP schedul-
ing algorithm and its analysis on uniprocessor platformrigppsed by Baruah et al.
based on the following observation [BBD11b]: the run-timenitoring of execution
time of the jobs can be used to drop jobg-afritical tasks as soon as the system switches
to (£ + 1)-criticality behavior. ThevSMalgorithm proposed in this chapter also uses this
observation but for multiprocessors.
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Figure 9.7: Acceptance ratio using OPA scheme with diffefent n) pairs.

Several works address@&dC scheduling of a finite collection of jobs on uniproces-
sors. It has been proved by Baruah etlal. [BBI2E] that determining the feasibility
of a collection ofMC jobs is strongly NP-hard, even when all release times ane-ide
tical and there are only two criticality levels. Baruah et ptoposed Own Criticality
Based Priority (OCBP) algorithm for scheduling a finite eotion of jobs on unipro-
cessor. Algorithm OCBP works as follows: jobs are assigneatifpriorities in offline,
and the highest priority ready job is always dispatched attime [BLS10]. The pro-
cessor speed-up factor of the OCBP algorithm for dualeaiity system is 1.619, i.e.,
any feasible instance of dual-criticality jobs on unit-aeity processor is also OCBP-
schedulable on a processor that is 1.619 times faster [BL ®t0improved load-based
sufficient schedulability condition of the OCBP algorithsrproposed in [LB10b] by Li
and Baruah.

By assuming the earliest releases of the jobs withusy interval Li and Baruah
proposed interesting techniques to apply the OCBP algorftir scheduling sporadic
MCtasks on uniprocessor platform [LB10a]. However, Due tosih@radic nature of the
tasks, the priorities of the jobs are recomputed at run-ame such priority recompu-
tation at run-time has pseudo-polynomial time compleXifg10e]. Recently, Guan et
al. [GESY11b] proposed a novel polynomial time algorithmrecomputing the priori-
ties at run-time for scheduling sporadic tasks using the PB@Borithm.

An EDF based scheduling algorithm, called EDF-VD (Virtizadline), in which
the deadlines of the implicit-deadline sporadic tasks aodified online, is proposed
by Baruah et al. in[BBD 11a]. The algorithm EDF-VD modifies the deadlines of the
tasks depending of the behavior of the system at differetitality levels and schedule
the tasks based on EDF scheduling according to the modifizdlides. The processor
speed-up factor of EDF-VD scheduling for dual-criticabtystem is 1.619. By perform-
ing a more precise analysis of the EDF-VD scheduling of impteadlineMC spo-
radic tasks, the speed-up factor of EDF-VD is further impabwy Baruah et al. to
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1.333 [BBD"12a]. Ekberg and Yi[IEY12] recently proposed interestinghtéque to
compute the demand-bourid [BMR90] function to determineBB& schedulability of
constrained-deadlindC sporadic tasks. The demand-bound of the tasks at eaclatritic
ity level is determined by adjusting the deadline of the sasken the system switches
from LOto HI criticality behavior. The purpose of shaping or adjusting temand is
to respect the supply-bound [MECO01] function of the undadyuniprocessor platform
to ensure schedulability.

Time-triggered (TT) scheduling &fiC jobs on uniprocessor platform is proposed by
Baruah and Fohler in [BF11]. The TT-scheduling essentiatlynputes in offline, for
each criticality levels, the scheduling table that stohestime instant at which jobs will
be dispatched for execution. When the criticality behavidhe system switches froith
to (£+1), then jobs are scheduled based on the scheduling table ¢edfou criticality
level (¢ + 1). The processor speed-up factor for TT-scheduling is 1.619.

Many of the scheduling algorithms fMC systems considers dropping tasks of lower
criticality levels when the system switches to a higheriaality level. However, the
lower criticality tasks may not need to be dropped as lonb@gare not causing a higher
criticality task to miss its deadline. Based on this obsiowma Santy et al.[[SGTG12]
proposed a method, called Latest Completion Time (LCTY, @aiaws lower criticality
task to execute using uniprocessor FP scheduling until instant at which the lower
criticality task is suspended to allow execution of a higtréicality task to avoid miss-
ing its deadline. The lower-criticality task may resumedtecution later when the
system switches back to lower-criticality behavior.

The only work that considers multiprocessor scheduliniyfofsystem is proposed
by Li and Baruah in[[LB1P] but for implicit-deadline taskshi§ work is based on the
basic principle of computing the deadlines for uniproce€sbF-VD scheduling but
uses the utilization-bound test of global dynamic-priositheduling, known as fpEDF,
proposed by Baruah in_[Bar04]. The processor speed-uprféatdahis algorithm is
(v/541): aMCtask sets that can be scheduled in a certifiably correct nmame unit
capacity processors by an optimal clairvoyant scheduliggrigthm can be scheduled by
the proposed algorithm an speed(y/541) processors. This work in [LB12] considers
implicit-deadline tasks, dynamic priority and is applitato only two criticality levels.
The work presented in this chapter is the first work that atersi global FP scheduling
of certifiable mixed-criticality sporadic tasks with corshed deadlines and more than
two criticality levels on multiprocessor platform.

Many other works addressed schedulingvf systems for aspects other than cer-
tification. Pellizzoni et al. [PMNQ9] and Petters et. al._[PLHE09] proposed tech-
niques for isolating (either in time or space) subsystembadifferent criticality lev-
els based on reservation based approach. However, thekeamrentrate on provid-
ing isolation through worst-case reservation of resouetesdo not efficiently utilize
the resources. The work proposed by De Niz et[al. [NLRO9Epked that isolation
among multiple subsystems that are based on reservatieu lzgproach may suffer
from, so callectriticality inversionproblem: the deadline of a higher-criticality job may
be missed while allowing a lower criticality job to meet iteadlline. In addition, as-
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signing priorities based on criticality to avoid critidglinversion is not a good priority
assignment policy for meeting the deadlines. They haveqaegslack-awareschedul-
ing that dynamically assigns the priorities to tasks or jbavoid criticality inversion
while focusing on efficient use of the resourdes [dNLRO9]isTdigorithm avoids crit-
icality inversion under which low-criticality task can nioterfere with high-criticality
task but high-criticality task can steal cycles from the Honiticality task under over-
load situations to meet deadlines. The workin [dNLR09] idHar extended for non-
preemptable shared resourdes [LANRIM10] and distributsigsys[LdNRI1]. Mollison
et al. [MEA™10] proposed an architecture for schedulMgtasks based on criticality-
monotonic scheduling on multicore. The allocationMiftasks in a distributed systems
is considered i [TSP11], where each task allocated to sepsut is given a time par-
tition by determining the sequence and size of each partiticaddition to finding the
scheduling table for each processor.

9.9 Summary

In this chapter, the global FP scheduling of mixed-criftyabystems on preemptive
multiprocessors is considered. In order to utilize the pssors efficiently and to fa-
cilitate certification, a sufficient schedulability testsled on response-time analysis of
the proposedvSM algorithm is derived. This schedulability test can also beduto
find fixed-priority ordering of theMC tasks based on Audsley’s approach. The time-
complexity for evaluating the proposed test is pseudo+pmtyial for dual-criticality
system. In addition, the proposed test is applicable toegystaving more than two
criticality levels which makes the algorithm relevant foamy practical safety-critical
systems that have more than two criticality levels. The datability test of thevVSMal-
gorithm can be easily extendented by finding a better pyiassigning policy using the
separation criteria proposed in Chapfer 6 and using the Hé&sed priority assignment
policy.

In order to design a certification-cognizant schedulingatgm for mixed-criticality
systems, the criticality behaviors of the systems need tadi@tored at run-time. How-
ever, such monitoring requires to know what behavior speHi particular criticality-
behavior of the system. The criticality-behavior of theteys is determined based on
the run-time behavior of the system which varies from onetinstant to another. The
run-time behavior of the system depends on many factorgxample, the actual exe-
cution time of each task, the actual inter-arrival time affetask, energy consumption,
the frequency and types of faults, and so on. This chaptesiders one such source
of variation to determine the criticality-behavior at rimé: the actual execution time
of each task. By appropriately modeling the criticalityhbeior based on other sources
of variations that specify the criticality behavior, dasigy new certification-cognizant
real-time scheduling algorithms fMC systems is left as future work.
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Conclusion

This thesis deals with the modeling, analysis, and verificabf three important non-
functional behaviors of real-time systems: timeliness|tfeolerance, and mixed criti-
cality. The level of acceptability or the desired qualityeaich non-functional behavior
is modeled as a set of design constraints — satisfaction @hndre important for cor-
rectness, popularity, and competitiveness of the systdm.flinctional behaviors (i.e.,
the workload) of the real-time applications are modeledgisonstrained-deadline spo-
radic tasks that are dispatched for execution on a platfeaminig multiple identical
processors/cores using global fixed-priority schedulilggrithm. The non-functional
behaviors considered in this thesis are common in manyysefiical real-time sys-
tems; therefore, the proposed scheduling algorithms anddfresponding schedulabil-
ity tests have wide applicability for many practical syssem

The acceptability of timeliness behavior is modeled as liaatlline for each spo-
radic task. The proposed schedulability tests for globalsEReduling verify offline
whether all the deadlines of all the tasks are met or not. Teegability of fault-
tolerant behavior is modeled based on the number and typfeailté that need to be
tolerated during the execution of the tasks. The proposdtiialerant scheduling algo-
rithms have the responsibility to ensure that the effectmolts are mitigated in order
to generate the correct output before the deadline of ea&hE@nally, the acceptability
of mixed-criticality behavior is modeled as the level ofwssice needed in meeting the
deadlines of the tasks where different WCETSs (estimatedfateint level of assurance)
for each task are considered. The reason for consideringiméevel of assurance in
meeting the deadlines of the tasks is to facilitate certificawhile efficiently utilizing
the processing platform of the mixed-criticality systero.tfiis end, the following three
research questions are addressed in this thesis:

201



202 CHAPTER 10. CONCLUSION

Q1 (Timeliness) How to guarantee that all the deadlines of d-tieae
application are met on a particular computing platform?

Q2 (Fault Tolerance) How to guarantee that all the deadlinesoéal-
time application are met on a particular computing platformile
providing fault-tolerance?

Q3 (Mixed Criticality) How to guarantee that all the deadlinefa real-
time application are met while ensuring certification of edxcriticality
system at each criticality level?

In this thesis, timeliness is about meeting the deadlinetheftasks; fault-tolerance
is about providing correct service even in the presence wfsfavhile also meeting
the deadlines; and mixed-criticality is about certificat{@e., guaranteeing timeliness)
regarding the integration of multi-criticality tasks on antmon computing platform
where different WCETSs of each task are considered at varyéggess of confidence.

The purpose of modeling the real-time application and isigieconstraints is to
ensure through analysis and verification that the systemedigtable at runtime. A
system is considered to be predictable when all the desigsti@ints are satisfied for
the assumed model of the system. Satisfying the temporatieonts (i.e., meeting
the deadlines) is the main design constraint consideredisnthesis. The temporal
constraints of meeting the deadlines might be contendinly thie design constraints
of other non-functional behaviors (e.g., fault-tolergnesticality). In order to verify
offline that whether all the design constraints will be mehat, schedulability tests are
proposed by analyzing global FP scheduling. The propodeedstability tests do not
only dominate but also empirically perform significanthttee than the corresponding
state-of-the-art schedulability tests.

The different techniques used to analyze one particulaffaoctional behavior are
orthogonal to the analysis of other non-functional behaviio this thesis. For example,
the criteria to determine the set of tasks to be kept semhfeden the schedulability
analysis of a lower priority task (as proposed forife DAtest) can also be used for the
schedulability analysis of tHeTGS andMSMalgorithms. Similarly, if a mixed-criticality
system is also a fault-tolerant system, then the respomsektased schedulability test
of the MSMalgorithm can be extended with the schedulability analyséel for the fault-
tolerantFTGS algorithm in order to derive a new schedulability test.

The mathematical expressions of the proposed schedtyatefits incorporate the
parameters of the task set, processing platform, and desigstraints. The compact
representation and the efficiency in evaluating the prappestedulability tests enable
the designers making the trade-off between resourcesergant and rigidity of the
design constraints. The analysis of the scheduling alyostaims to reduce the pes-
simism in order to derive more effective schedulabilitytsefer global FP scheduling.
Such reduced pessimism is beneficial in reducing resoumnssucaption and enables
quick adaptation to changes, for example, adding new s3\an existing hardware.

Although the proposed algorithms consider fixed-prioritiyexduling of constrained-
deadline tasks on multiprocessors, the correspondindtsean be extended for other
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work-conserving scheduling algorithms, for example, gldbDF scheduling. To per-
form the schedulability analysis of global EDF scheduliting technique for workload
computation of the higher priority jobs within the problenmdow of each task has to
be derived. In global EDF, each job having its absolute deadh a problem window,
that ends at the deadline of the analyzed task, becomes abcoot to the workload
in that problem window. Depending on the non-functionaldxébtr under study, the
workload within the problem window has to be appropriatedycalated. By finding
the workload of the higher priority jobs, an upper bound om ititerference on each
task within its problem window can be calculated and a scladdlity test for global
EDF can be derived. In addition, designing new scheduliggrithms, performing pre-
cise schedulability analysis and deriving efficient schalility tests for the following
open problems are left as future work:

e There is an important source of pessimism in the existingdalability analysis
of global scheduling algorithms, which is stated as followhen a lower prior-
ity task 7 executes, all the other{m — 1) processors are assumed to be idle
This assumption is not always true as will be demonstratedusing an example.

Consider the global FP scheduling of four tagks, 72, 73, 74} onm = 2 pro-

cessors, where a task with lower index has higher prioritgoAonsider that the
interference on task; according to théA- LC test within a problem window of
length D3 is (D3 — C3). Evidently, taskrs is guaranteed to be schedulable ac-
cording to theDA- LC test. Now assume thdd, = D3, C3 = 4, andCy < Cj.

The total interfering workload within a problem window ohigth D, is at least
[m - (D3 — C3) + 4] when analyzing the schedulability of task based on the
DA- LCtest. By assuming that all the other processors are idle \wdskr, exe-

cutes within a problem window of lengihy, the interference on task according
to theDA- LCtest is at leastD3; — C5 + 2) = (Dy — Cy4 + 1). Therefore, the
schedulability of task, can not be guaranteed based on[ie LC test. How-
ever, theDA- LC test assumes thétn — 1) = 1 processor is idle when task

executes, and therefore, taskis also schedulable since its relative deadline is
equal toD3 and its execution time is smaller than the execution timasit;.

The lesson learned is that the assumption that- 1) processors are idle, when
a particular task executes, does not need to be enforceaydine schedulability
analysis of each task. Relaxing this assumption for apfateptasks will result
in more precise schedulability analysis and better scladditly test. Finding the
details when such assumption can be relaxed is left as afutoik.

e The fault-tolerance scheduling algorithms proposed inttinésis considers a fault
model in which a particular job of each task is assumed to teetad by at most
f task errors. Arelatively general fault model would be tosider different num-
ber of task errors to be tolerated for different tasks. Tésiinore reasonable fault
model since not every task is equally prone to the same nuaflegrors. For ex-
ample, a piece of complex software is possibly more pronestigth errors than
a simple software. In addition, the internal robustness &sking faults or er-
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rors of different software can be different due to the défere in software design
process, testing, debugging, and so on. Therefore, it i® me@asonable to con-
sider different number of errors to be tolerated for différesks. Fault-tolerant
schedulability analysis considering such a relativelyegahfault-model and re-
laxing the assumption of no-fault-propagation is left astarfe work. In addition,

schedulability analysis on multiprocessors considerimgckpoint or imprecise-
computation for error recovery is also another interesfingre work.

In order to provide different degrees of assurance needegating the deadlines
of mixed-criticality tasks, this thesis considers only @oerrce of variation in the
run-time behavior of the system, i.e., the execution timeauth task. There are
other sources of variations that may impact the degree ofrasse needed for
certifying a mixed-criticality system at various critiggllevels. One such source
is the inter-arrival time (period) of each task.

The system designer may assume a relatively larger periadask while the CA
being more pessimistic may assume a shorter period of the tesk. For exam-
ple, consider an aircraft that periodically runs some disgjo function to check
if lightning (or some other disturbance) has caused somegdasto the on-board
electrical and electronic systems. The system designerd®aige to execute the
function in every minute whereas the CA may require to exedutvery 5 sec-
onds. To put it in another way, consider that the functiorxeceated every minute
during sunny weather and every 5 seconds during cloudy weateveloping
scheduling algorithm and schedulability test considediffgrent periods along
with different WCETSs of each task at different criticalityéds is another inter-
esting future work. Similarly, the number and types of fatitat may need to be
tolerated for each task can be different for different caility levels. Fault tolerant
scheduling oMC systems considering different number and types of faultseto
tolerated at different criticality levels is another irgsting future work.

The research presented in this thesis is to help the systsignges to build a predictable
system. To this end, | wonder whether it is really possiblelésign a computerized
system that is completely predictable. The answer is pesitthe model of the system
is perfect and the analysis of the system based on this ‘gerfeodel is precise. Then,
the question arises is whether the model of a computer syist@erfect in capturing

the environment of the system. | believe that it is reallyidiifit to entirely capture the

environment of computerized systems which may consist of:

hardware (e.g., sensor, actuator, processing platforoeje@tors, GPUSs),
software (e.g., application tasks, operating systemsgleicare, drivers),

inputs (e.g., from sensors, human users, other systems),

users’ interactions (e.g., robots, human beings),

factors related to atmosphere (e.g., radiation, tempexdightning, dust, snow),

factors related to software design (e.g., competence iexpe, testing).
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In addition, changes in technology (e.g., introduction aflttore, miniaturization
of transistors), changes in users’ perceived level of conféog., autonomous cars), new
operating condition/atmosphere (e.g., spacecraft in apiamet), and new certification
standards — all are contributing to the difficulty in the dgsbf predictable comput-
erized systems. Perfect modeling and precise analysisdesitg) all these sources of
variability are daunting tasks in terms of time and compiexAlthough it seems that
we are far from building true predictable system, there araputerized systems that
are in fact behaving predictably.

A computer system can hardly be entirely predictable ancethee only systems
which may have not yet become unpredictable and we can osigmi@ “more” pre-
dictable system in comparison to another existing systeme Way to build amore
predictable system is to consider the different systemraye starting from the ap-
plication to the middleware, operating system, procesandsall the way down to the
transistors — aformation providergather tharinformation concealersAn interde-
pendent system design approach in which information fromdesign layer is heavily
exploited in another can help building a better predictabéd-time system.
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Proofs of Theorems and Lemmas

Lemmal5.3 (from Chaptef ) Considera, b, x, candd such that) < a < b <z <

c < d < 5 for any integern > 0. The following two inequalities hold:

min{ Fp (b),Fin(c)} < Fin () o))
min{ Fp(a),Fin(d)} < min{Fn (b),Fm(c)} (%:))

Proof. To show that Eq[({5]4) holds we will show that, the functigp(z) = %’f)—i—z
achieves its absolute minimum at one of the end-poin{s, if}, whereb < z < ¢, for
any givenm. Thus, the minimum betweeR,, (b) and F,,,(c) is the absolute minimum
of F,,,(z), and consequently Eq.{5.4) holds.

The first derivative of functionf’, () with respect tar is Fy, (z) =1 — 5245s.
By settingF),,(x) = 0, we haver = (2 £ /m). For any value ofn > 0, the point
r = (2++/m) is outside of(b, ¢) sincec < 5" < 1 for m > 0. Moreover, the point
r = (2 —+/m) is outside of(0, 5. ) for bothm = 1 andm > 4. Consequentlyy =
(2 — +/m) is also outside ofb, c) becauséb, c) is entirely contained withiri0, - )
form = 1 andm > 4. So, the only possible values satisfying botkh = (2—\/m) and
F! (z)=0arex = (2 —+/2) andz = (2 — v/3) for m = 2 andm = 3, respectively
(called thestationary points Since there is no stationary point Bf, (x) within (b, ¢)
for m = 1 orm > 4, the absolute minimum aF;,,(x) occurs at one of the end points
of [b, c] for m = 1 andm > 4. So, only the cases where = 2 andm = 3 need to be
considered.

Now for m = 2, if the pointz = (2 — v/2) is outside of(b, ¢), then the absolute
minimum of F;(x) occurs at one of the endpoints [ ¢c]. Otherwise, if the point

219
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r = (2 — +/2) is within (b, c), then the absolute minimum occurs at one of the three
pointsz = a, x = (2 — v/2), orz = b. The functionF,(x) is increasing within
[b,2 — /2) sinceF)(z) =1 — @7 > O within (0,2 — V/2) and Fy () is decreasing
within (2 — v/2, ¢ since Fj(z) =1 — 5%z < 0 within (2 — v/2,¢). Therefore, the
function F»(z) has its absolute maximumat= (2 —+/2). Thus, the absolut@inimum
of F»(x) occurs at one of the end points[6f¢|.

Similarly for m = 3, if the pointz = (2 — 1/3) is outside of(b, c), then the absolute
minimum of F5(x) occurs at one of the endpoints f#f ¢]. Otherwise, if the point
r = (2 — +/3) is within (b, ¢), then the absolute minimum occurs at one of the three
pointsz = a, z = (2 — \/3) ora: = b. The functionF3(z) is increasing within
[b,2 = V/3) sinceF3(z) =1 — 525 > 0 within (b,2 — v/3) and F3(z) is decreasing
within (2 — /3, ] sincng( ) =1 — 5oz < 0within (2 — V/3,¢). Therefore, the

function F3 () has its absolute maximum at= (2 — v/3). Consequently, the absolute
minimumof F5(z) occurs at one of the end points[éfc|.

Since the functior;,, (x) has its minimum at one of the end points[fc] for any
m, it can be concluded that if is within [b, ¢] thenF,,(x) is not less than the minimum
betweenF;,,(b) andF,,(c). Therefore, Eq[{5l4) holds.

Since according to the premiae< b < d anda < ¢ < d, it follows from Eq. [5.4)
that min{F,,(a),F,(d)} < F,(b) andmin{F,,(a),F,(d)} < F,,(c) which imply
thatmin{F,,(a),Fn(d)} < min{F,(b),Fm(c)} holds. O

Lemmal5.4 (from Chapte[ ) Consider the sporadic task systéth that is special on
m processors. The following inequality holds for> 1

m2

2m —1 &9

mm{F ( mzn) 'F ( maw) } =

Proof. We show that the inequality in Eq.(5.6) holds by considefing different cases:
Case (i)ym = 1, Case (iiym = 2, Case (iiiym = 3, and Case (iv)n > 4. Remember

that, according to Property 1 of special taski8&twe havey® = < ST -

Case (i)ym = 1: The functionF}(z) is increasing within0, 1] since Fy(z) = 1 —
2%1,)2 > 0 within (0, 1). Thus, the maximum of" (z) within [0, 1] occurs atz = 1,

(
andF; (1) = 1. Note thats® , andsk . are within[0, 1] since each task’s density is as-
)} < Fi(1)=1for

min max

sumed to be Wlthlr[() 1]. Therefore, we havenin{ Fy (6% , ), Fy (6%,

=1 Becaus% = 1form = 1, we havemin{ F,, (6%, ), Fn (65,0} < %
Case (ii) = 2 form = 2andd},, < 52, bothék, and
5k .. of are Within[ , 2], The functlonFQ( ) is increasing Withln[0,2 — /2] since
Fi(z)=1- (2 5z > 0 within (0 2 —+/2) and the functiorF, () is decreasing within

2 — V2, 3] sinceF;(x) = 1 — 5%y < Owithin (2 — V2, §). Therefore, the function
Fy(x) has its maximum at = (2 — /2) within [0, 2], andF»(2 — v2) = 2(2 — V2).
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Consequentlymln{F (68 ) Frn(0F )} < Fa(2 — V/2). SinceFy(2 — v2) = 2(2—

V2) < 4 = ™ form = 2, we havemin{ Fyn (65,,),Fon (05,00 1)} < 2;;;:.
Case (iii)m = 3: Since;-"~ = 2 form = 3 anddl,,, < , both 6k . and
8F,q. Of are within [0, 2]. The functloan( ') is increasing W|th|n[0 2 — /3] since

Fi(x) = 1~ 5z > 0within (0,2 —+/3) and the functior¥; (z) is decreasing within
[2— /3, 2] sinceF}(z) =1 — @7 < Owithin (2 - V3, 2). Therefore, the function
F3(z) has its maximum at = (2 — V/3) within [0, 2], and F3(2 — v/3) = (5 — 2V/3).

Consequentlyn|2rl{F (8% . ), Fr(6F O} < F3(2 — /3). SinceF3(2 - \/3) (5-—

2v/3) < 2 = ;™ for m = 3, we havemin{ F,,, (6% ;. ), Fn (6,4, 1)} < 52—
Case (iv)m > 4: The functiong(m) = 2m 1 is decreasing fom > 4 becausg’(m) =
@z < 0form > 4. Therefore; 2 for m > 4, and boths%, andéf,m are

within [0, 2]. The functionF,,, (= ) is decreasmg withif0, 2] for 0 < z < 1 since

Fl (x)=1- ez < Owithin (0, 2) for m > 4. Thus, the maximum of’, () occurs

atz = 0, andF,, ( ) = 2. Therefore mm{F (6 ..) s Fon(0F .0} < Fn(0). Since
Fm(O): ( mzn)’ ( maa:)} < 2»::71

It is proved for all the cases thatlif* is special onn processors, then the inequality
in Eq. (5.6) holds. O

Lemma A.1. The following inequality holds famn > m' > 1.
/
B(m) < <
2m —1 2m’ — 1

whereB(m) is the function defined in E5.12)

(A.1)

Proof. We prove this Lemma considering three cases: Case € 1, Case (iiym = 2,
and Case (jiiyn > 3.

Case (iym 7/ 1: For this case, we have = m’ = 1 sincem > m’ > 1. Therefore,
m_ = M =1form=m = 1. From Eq. [51R), we havB(m) = B(1) = 1

2m—1 2m’ 1

for m = 1. Therefore, Eq[{All) holds.

Case (ii)m = 2: Using Eq. [51R), we hav#(2) = (2 — v/2) for m = 2. And

5 = 2 form = 2. Becausé2 —v/2) < % we haveB(m) < = 2. The
functiong(z) = "(2) = =z < 0fora > 1.

Thus, we hav%— < 52 form > m'. ConsequentlyB(m) < 5 < 51—
Therefore, Eq.(Al1) holds
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Case (iiiym > 3: The following inequality in Eq{{A.R) holds for any. such thain > 3.

0<m?2—4m+3 (A.2)
Am? —4m+1<5m? —8m+4

2m —1<+/5m? —8m+4

3m—2—vVm?2—-8m+4<m-—1
3m —2—+vbm?2 —8m +4 <1
2m — 2 -2
[ ~ 3m—2—+5m? —8m +4

= |sinceB(m) = 5 5 according to Eq[{5.12) fomn > 3

!/

1
2
m m
< <
—2m -1 " 2m/ —
m/

<
“—2m -1 " 2m/ -1

1fOfmZm’Zl

Therefore, Eq[{AIL) holds for all the cases. O

Lemma A.2. Letm andm’ be two integers such that > m’ > 1. The following
inequality in Eq.(A.3) holds
B(m) < B(m') (A.3)

whereB(m) is the function defined in E5.12)

Proof. For m > 2, the first derivative ofB(m) = 3m=2=ysm_—8mil jg B/(1) =

—2(v/BmZ—8m+4—m) / 8/5m? —8m + 4
VomT ST (@am—2)? Note that we havé3’(m) < 0 because/5m? —8m +4 > m

for m > 2. So,B(m) is decreasingor m > 2. Thus, the maximum aB(m) occurs at
m = 2 whenevem > 2, andB(2) = (2 — v/2). From Eq.[5.IR), we havB(1) = 1.
Sincel > (2 — v/2), we haveB(1) > B(m) for anym > 2.

If m = m’, then Eq.[(A3B) trivially holds. So, to prove this Lemma, wensider
wherem > m/. Note thatn > 2 whenevermm > m' becausen’ > 1.

Now, if m’ = 1, thenB(m’) > B(m). This is becaus&(1) > B(m) for any
m > 2. Otherwise, ifm’ > 1, thenm > 2 since we considem > m'. Because the
function B(m) is decreasing forn > 2, we haveB(m') > B(m) wherem > m/.
Therefore, ifm > m’ > 1, we haveB(m) < B(m/). O
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Theorem[5.5(from Chaptel k) An implicit-deadline sporadic task sEtis schedulable
using globalFP scheduling undeSM US[\/2 — 1] priority assignment policy, if the
following condition, form > 2, holds:

Ur<m-(v2-1)

whereu; < (1 — %) oru; > (v/2 — 1) for eachr; € T.

Proof. Given the tasksef’ and the number of processars the two subset$'; and
'y such thaf' = I';, U 'y based on the threshold density or utilizatihn = (ﬁ —

1) can be determined. We will show that if the total utilizatioit < m - (v/2 — 1),
then the two general conditiorl andC2 of Lemma[5.6 hold; which guarantees the
schedulability ofi" using global FP scheduling if no task’s utilization is withihe range
1- . V2 —1].

Each task il has utilization greater thad/2 — 1) for the SM US[v/2 — 1] policy.
Since the total utilization of tasksgtis not greater thaiv/2 — 1)m according to the
premise, the number of tasks that are given the highesityristess thann (C1 holds).

To show thatC2 of Lemma[5.6 holds, we have to show that is special onmn’
processors wherey’ = (m — |T'g|). Let UL be the total utilization of all the tasks in
T'p. Also letu,, 4.1, @andu,,;,, be the maximum and minimum utilization of any task in
setl'r,, respectively. To show that;, is special onn’ processors, we show that Property
1 and Property 2 (given in Definitidn 5.1) of special tasksetsatisfied. In other words,
we have to show that the following two inequalities hold.

m/

Property 1 mazl < ——
perty UmazL ol — 1

Property2 UL < min{E,, (wminL ), Fpy (Umazr)}

(Property 1 holds for I'z) Sinceu; < (1 —1/+/2) oru; > (v/2 — 1) for each task
7; € T, no task in['z, has utilization greater thafi — 1/+/2) for the SM US[/2 — 1]
policy. SO,umasz < (1 —1/v/2). Note that(l — 1/v/2) < 5™ for any integer
m' > 0. Consequentlyi,arr <

#/,_1, and thus, Property 1 is satisfied.

(Property 2 holds for I';) The total utilization of the tasks ifiy is greater than
(ITx| - (v/2 — 1)) because each taskiiy has utilization greater thaiy/2 — 1) for the
SM US[v/2 — 1] policy. Since the total utilization df is not greater tham - (v/2 — 1)
according to the premise, the total utilization of the taskiy, is at mostm’ - (v/2 — 1)
wherem’ = (m — |T'y|). Therefore, Eq[(Al4) holds.

UL <m’-(vV2-1)} (A.4)
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SiNCe0 < tminz, < Umaer < (1 —1/v/2) < -2 from Eq. [5.5), we have

2m’—1"1

min{F,/(0) , /(1 — 1/v/2)} < min{ F,,,» (wminr)+F,y (tmaer)} (A.5)

From the function definition given in E4_(5.3), we have

Fm/(0)=%+0:m’/2:m/-1/2 (A.6)
Fo(1—1/v32) = m’2(1_—(1(1_—1/1\//\g)§)) 4 (1-1/v2) (A7)

=m'(V2-1)+(1-1/V2)>m' - (V2-1)
It follows from Eq. [A.8) and Eq[(AJ7) that
min{F,,(0), F,, (1 =1/v2)} >m’ - (V2 - 1) (A.8)
Thus, it now follows from Eq[(A}) and Ed._(A.8) that
UL < min{F,, (0), F,(1—1/V2)} (A.9)
Finally, from Eq. [A5) and Eq[{AI9), we have
UL < min{ Fyy (tming.)s Py (tmaar) } (A.10)

Therefore, Property 2 is satisfied for task Bet Consequently]'; is special onmn/
processors (i.eC2 holds). O

Theorem[6.3(from Chapte[B) If task sefl is schedulable using tHe- ODA- LC test,
thenI is also schedulable using theA\- DA test, and not conversely.

Proof. Assume a contradiction that task $etloes not pass theA- DA test but passes
the H CDA- LCtest. Note that A- DA testcannotfail to assign priorities between pri-
ority levels(n — m + 1) andn because theA- DA algorithm in Figuré 64 assigns these
m highest priority levels in line 12—-13 and returns “schedid&in line 14. Therefore,
the | A- DA test can fail to assign priority only at some priority leveltiweenl and
(n —m).

Let thel A- DA testfirst fails to assign priority at some priority lev@élL, where
1 < PL < (n—m). Thus, when A- DA test fails at priority levePL, there are total
(PL—1) tasks that are already assigned fixed priorities and ther®tal(n — PL + 1)
priority-unassigned tasks. Consequently, thi@imumnumber of priority-unassigned
tasks when A- DA fails is (m + 1) sincel < PL < (n —m). LetF denotes the set of
all priority-unassigned tasks wheém- DA fails. Note thatF| > (m + 1).

Remember that thét ODA- LC test assigns the highest fixed priority to thé
highest-density tasks and the remaining— m’) lowest-density tasks are assigned pri-
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orities based on th@DA- LC test for somen’, where0 < m’ < m. Sincel passes the
H ODA- LCtest, there arén — m’) lowest-density tasks that are successfully assigned
priorities using theédDA- LCtest for somen’, 0 < m’ < m. In other words, each of the
(n — m') lowest-density tasks passes & LCtest (because theDA- LCtest essen-
tially applies theDA- LC test in algorithm OPA in Figure 6.1). L& denotes the set of
these(n — m’) lowest-density tasks. Note th@ > (n — m + 1) since0 < m/ < m.
BecausdF| + |P| > (m+ 1)+ (n —m + 1) = (n + 2) and|I'| = n, there are
at least two tasks that are common to both $etnd P. Let 7, be such a common
task where task, € (F' N P). Without loss of generality assume that each task in set
((FnP)—{r,}) has higher priority than that of task for the priorities assigned by the
H ODA- LCtest. Therefore, each of the taskg§h— {7,.}) is assigned higher priorities
than that of task, according to the priorities assigned by tHeODA- LCtest. In other
words, if ¢ is the set of tasks that are assigned higher priorities thskrt, according
to the priorities assigned by tthé ODA- LCtest, thenF — {7.}) C ¢.
Sincer, € P, taskr, passeDA- LC test when assigning the priority using the
H ODA- LC test. Note that sep includes them’ highest-density tasks that are sepa-
rated and assigned the highest fixed-priority-4#nODA- LC test. If taskr, passes the
DA- LCtest, wheren’ highest-density tasks from s¢tare separated, then according to
Lemmal6.1l, task, must pass th®A- LC test by separating:’ tasks using algorithm
Sel ect (¢, m', 7., D,) from sety. Consequently, task, must pass th®A- LC test
by separatingn’ or lower number of tasks from séf’ — {r,.}) using theSel ect
algorithm since(F — {7,.}) C ¢. Therefore, thd A- DA test that uses th8el ect
algorithm for separation of the tasks can not fail to assigority to taskr, at prior-
ity level PL if T' passes thét ODA- LC test. Therefore, any task set that passes the
H ODA- LC test also passes theA- DA test. The task set in Examdle .2 passes the
| A- DA test but not thé+ CDA- LCtest. Thereforel, A- DA test dominates the state-of-
the-artH ODA- LCtest. O

Lemmal[9.2 (form Chaptef’B) The net increase in workload due to any shift of the
problem window in Figuré 914 is bounded 6§' — CL©.

Proof. This Lemma is proved by considering any possible shift ofitedlem window
for the reference pattern in Figure B.4 both in (i) leftwaadd (ii) rightward directions
for a time units,0 < a < T}, Shifting the problem window by exactly). time units in
any direction results in the same release pattern as inéffdr For ease of readability,
Figure[9.4 is presented here again in Fidure A.1.

Leftward shift: Due to the leftward shift of the problem window in the referen
pattern, the workload in the shifted window miaigreasein two of the following ways:

e First, the jobJ,gy_l) that was executing fo€’:° time units in the reference pat-
tern may now experience the criticality-switch in the shiftvindow. Thus, the
workload of job.J ¥ ") may now increase byC! — CL-O) time units within the
shifted window.
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é‘ Problem window of length t L
i‘ ——
T T, T,
e S L N
[ P P P i
< | ey L [EEY L ey fer| Vo Tery

Figure A.1: The reference pattern. Each job released befdfdinishes(D;, — (i) time units
earlier than its deadline in the reference pattern.

e Secondnewworkload may enter into the shifted window from the left-Haide
of the window. Note that any job that is released before.j¢bexecutes for at
mostCEC time units. Thus, the amount of new workload that may entenfthe
left-hand side of the problem window is boundedd®)P.

Consequently, a (pessimistic) upper bound on the totaéase in workload within the
shifted window isCH! time units. However, workload in the reference pattern nisy a
decrease from the right-hand side of the problem window.

Shifting the problem window left byt time units, wher® < o < CLC, the workload
in the shifted window islecreasedby « time units from the right-hand side. In such case,
new workload that may enter into the shifted window from &ifié-hand side is at most
a. Because the execution time of jof’ ") may now be increased Hy’H — CLO)
time units, thenet increase in workload within the shifted problem window israist
(CH' — CLO), wheneveD < a < CE°.

Shifting the problem window left byy time units, whereC,';O < a < Ty, the
workload in the shifted window decreases by at le@s? time units from the right-
hand side of the window. Because an upper bound on the tataase in workload
in the shifted window isCH , the maximumnet increase in workload is bounded by
(CH' — Cr°) wheneverC® < a < Tj. In summary, the maximum net increase in
workload is upper bounded byC! — CLO) for any left shift of the window in the
reference pattern.

Rightward Shift: The workload in the shifted window due to right shift of thepr
lem window can increase only if the window is shifted right foore than(7}, — C!')
time units. This is because no job of tagkexecutes withir? + ¢, r% +t + (T}, — CH']
in the reference pattern.

If (T, —CH') < a < (T, — CL9), then shifting the problem window right by
time units, the workload in the shifted window increases(by- (7}, — C{!)) time
units. Sincer < (T}, — CL°), the maximummet increase in workload isCH! — CL©),
whenever(T;, — CH' ) < a < (T, — C}9).
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Every right shift of the problem window for exactl}, time units must decrease the
workload from the left-hand side by':© time units. Therefore, the workload within
the shifted window is decreased by at leést— (T, — C}°)) time units from the
left-hand side for any right shift of the problem window bytime units whenever
(T, — C’,%O) < a < Tj. Any right shift of the problem window by time units, where
(Ty, — C};O) < a < Ty, increases the workload within the shifted window by at most
(a — (T, — CH)) time units. Consequently, the maximumet increase in workload
within the shifted window is equal teC! — CL9), wheneverT), — Ct°) < a < T,

In summary, the maximum net increase in workload is uppented by(C! — C%°)
for any right shift of the window in the reference pattern. O
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Figure B.4: Acceptance ratios for experiments withh = 4,n = 10m = 40).
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Figure B.5: Acceptance ratios for experiments withh = 8, » = 10m = 80).
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Figure B.6: Acceptance ratios for experiments witth = 16,n = 10m = 160). The task
set generation algorithm failed to generate 1000 task sets at utilization leyehtde’0% for the
given discard limit of 1000. So, the algorithm was aborted. However, ¢hepance rationof all
the tests are zero at utilization leved%.



	Abstract
	List of Publications
	Acknowledgments
	Introduction
	Context of this Research
	Contribution Areas
	Timeliness
	Timeliness vs. Fault-Tolerance
	Timeliness vs. Mixed-Criticality

	Applicability of this Research

	Preliminaries
	Real-Time Systems
	Sporadic Task Systems
	Task Priority
	Preemptive Scheduling
	Work-Conserving Scheduling
	Schedulability and Optimality
	Schedulability Test
	Minimum Achievable Density
	Scheduling Algorithms

	Fault-Tolerant Systems
	Failure, Error, and Fault
	Error Detection Techniques

	Mixed-Criticality Systems

	Models
	Task Model
	Resource Model
	Fault Model

	Goals and Contributions
	Density-Bound-Based Test
	Introduction
	Related Work
	Parameters of Task Model
	Constrained-Deadline Tasks: Density-Bound
	Prior Results and Useful Definitions
	``Special'' Task Set and its Schedulability
	Slack-Monotonic Hybrid Priority Assignment
	Density Bound for Policy ISM-DS

	Policy ISM-DS[]: Searching the Threshold
	Empirical Investigation
	Task Sets Generation Algorithm
	Result Analysis

	Implicit-Deadline Tasks: Utilization Bound
	Independent and Scale Invariant Priority Assignment

	Uniprocessor Slack-Monotonic Scheduling
	Summary

	Iterative Tests
	Introduction
	An Analysis Framework
	Audsley's OPA Algorithm

	Related Work
	State-of-the-art Iterative Tests

	The H-ODA-LC Test
	Applying HPA Policy to ODA-LC Test

	The IA-DA Test
	Overview of the IA-DA Test
	New Criterion for Separation
	Priority Assignment Algorithm: the IA-DA Test

	The IA-RT Test
	The D-RTA-LC Test
	Priority Assignment Algorithm: the IA-RT Test

	Empirical Investigation
	Result Analysis

	Summary

	Fault-Tolerant Scheduling on Uniprocessor
	Introduction
	System Model
	Traditional DM Scheduling

	Related Work
	Problem Formulation
	Load Factors and Composability
	Calculation of Load-Factor-i
	Calculation of Load-Factor-HPi 

	Exact Schedulability Test
	Algorithm for the FTDM Schedulability Test
	Multiprocessor Scheduling

	Summary

	Fault-Tolerant Scheduling on Multiprocessors
	Introduction
	Related Work
	System Models and the FTGS Scheduling
	Problem Statement
	Analysis for Tolerating Task Errors
	Calculating Interfering Workload
	Workload of task i
	Interfering Workload of task i

	Total Interfering Workload of the Tasks in HPk
	Finding Carry-in Set Q(S,a,,c) 
	Total Interfering Workload and Schedulability Test

	Tolerating Processor Failures
	Graceful Degradation
	Direct Rejection
	Criticality-Based Eviction
	Imprecise Computation

	Summary

	Mixed-Criticality Systems
	Introduction
	System Model and The Scheduler
	Schedulability Analysis: an Overview
	Dual-Criticality Systems

	RTA Procedure at LO Criticality Level
	New RTA for Sporadic Task Systems

	RTA Procedure at HI Criticality Level
	Workload of k hpL(i) within [rix, rix+t)
	Workload of k hpH(i) within [rix, rix+t)
	The RTA Test for HI Criticality Level

	Schedulability Analysis for L >2
	Finding Priorities using Audsley's Algorithm

	Empirical Investigation
	Related Works
	Summary

	Conclusion
	Proofs of Theorems and Lemmas
	Additional Graphs for Iterative Tests

