
THESIS FOR THEDEGREE OFDOCTOR OFPHILOSOPHY

Three Aspects of Real-Time Multiprocessor
Scheduling: Timeliness, Fault Tolerance,

Mixed Criticality

RISAT MAHMUD PATHAN

Division of Networks and Systems
Department of Computer Science and Engineering

CHALMERS UNIVERSITY OF TECHNOLOGY

Göteborg, Sweden 2012

Three Aspects of Real-Time Multiprocessor Scheduling: Timeliness,
Fault Tolerance, Mixed Criticality
Risat Mahmud Pathan
Göteborg, Sweden, 2012
ISBN: 978-91-7385-754-3

Copyright c© Risat Mahmud Pathan, 2012.

Doktorsavhandlingar vid
Chalmers tekniska högskola
Ny serie Nr 3435
ISSN 0346-718X

Technical Report No. 86D
Dependable Real-Time Systems Group
Department of Computer Science and Engineering
Chalmers University of Technology

Contact Information:

Division of Networks and Systems
Department of Computer Science and Engineering
Chalmers University of Technology
SE-412 96, Göteborg, Sweden
Phone: +46 (0)31-772 10 00
Fax: +46 (0)31-772 36 63
http://www.chalmers.se/cse/

Printed by Chalmers Reproservice
Göteborg, Sweden 2012

http://www.chalmers.se/cse/

Three Aspects of Real-Time Multiprocessor Scheduling: Timeliness,
Fault Tolerance, Mixed Criticality
Risat Mahmud Pathan
Department of Computer Science and Engineering
Chalmers University of Technology, Sweden

Abstract
The design of real-time systems faces two important challenges: incorporating more
functions/services on existing hardware to make the systemmore attractive to the mar-
ket, and deploying existing software on multiprocessors (e.g., multicore) to utilize more
processing power. Adding more services on the same hardwareneeds efficient resource
utilization. In addition, satisfying the real-time constraints, while at the same time effi-
ciently utilizing the multiprocessor platform, is a challenging problem. This thesis deals
with global multiprocessor schedulingfor real-time systems, that is, thefixed-priority
scheduling of sporadic tasks, where each task is allowed to run on any processor.

More specifically, this thesis considersthreeaspects of the design and analysis of
global scheduling algorithms: timeliness, fault tolerance, and mixed criticality.Timeli-
nessis about meeting the deadlines of the tasks;fault toleranceis about producing the
correct output within the deadline even in the presence of faults; andmixed criticalityis
about facilitating the certification of systems when tasks having different criticality (or
importance) are hosted on a common computing platform.

With respect to the timeliness aspect, global multiprocessor scheduling is analyzed
(by assuming no faults and the same criticality for all the tasks) in order to propose
new fixed-priority assignment policies and efficient schedulability tests. The proposed
schedulability tests are shown to not only dominate (from a theoretical point of view)
but also significantly outperform (by using simulation experiments) the state-of-the-art
schedulability tests for global fixed-priority scheduling.

To allow for the combination of fault tolerance and timeliness, new scheduling al-
gorithms that use time redundancy (i.e., execution of backup task) to tolerate multiple
hardware and software faults are proposed. To account for the potential intrusive effect
of time-redundant execution of backup tasks on the capability to meet task deadlines,
new efficient schedulability tests for the proposed algorithms are derived. If a task set
satisfies the schedulability tests, then all the task deadlines are met even when multiple
faults (restricted by the assumed fault model) are to be tolerated using time redundancy.

To allow mixed-criticality tasks to be hosted on the same multiprocessor platform, a
new algorithm for fixed-priority scheduling is proposed. The purpose of the algorithm
is to facilitate certification, while at the same time efficiently utilizing the processing
platform. A schedulability test for the algorithm can determine whether the appropriate
level of assurance, according to the requirement of some certification authority/standard
for meeting the deadlines of the mixed-criticality tasks, is guaranteed or not.

Keywords: Real-Time Systems, Sporadic Tasks, Fixed Priority, Global Multiprocessor Schedul-
ing, Time Redundancy, Fault-Tolerant Scheduling, Mixed-Criticality Systems

List of Publications

This thesis is based on and extends the results in the following works:

⊲ Risat Mahmud Pathan, “Schedulability Analysis of Mixed-Criticality Systems on
Multiprocessors,”24th Euromicro Conference on Real-Time Systems (ECRTS),
Pisa, Italy, 2012.

⊲ Risat Mahmud Pathan and Jan Jonsson, “A New Fixed-Priority Assignment Al-
gorithm for Global Multiprocessor Scheduling,”Technical Report No. 2012:10,
Department of Computer Science and Engineering, Chalmers University of Tech-
nology, Sweden, 2012.

⊲ Risat Mahmud Pathan and Jan Jonsson, “FTGS: Fault-TolerantFixed-Priority
Scheduling on Multiprocessors,”8th IEEE International Conference on Embed-
ded Software and Systems (ICESS), Changsha, China, 2011.

⊲ Risat Mahmud Pathan and Jan Jonsson, “Improved Schedulability Tests for Global
Fixed-Priority Scheduling,”23rd Euromicro Conference on Real-Time Systems
(ECRTS), Porto, Portugal, 2011.

⊲ Risat Mahmud Pathan and Jan Jonsson, “Exact Fault-TolerantFeasibility Anal-
ysis of Fixed-Priority Real-Time Tasks,”16th IEEE International Conference
on Embedded and Real-Time Computing Systems and Applications (RTCSA),
Macau SAR, P.R.C., 2010.

The following works are related but not covered in this thesis:

⊲ Risat Mahmud Pathan and Jan Jonsson, “Load Regulating Algorithm for Static-
Priority Task Scheduling on Multiprocessors,”24th IEEE International Parallel
and Distributed Processing Symposium (IPDPS), Atlanta, USA, 2010.

⊲ Risat Mahmud Pathan and Jan Jonsson, “Parameterized Schedulability Analysis
on Uniform Multiprocessors,”39th International Conference on Parallel Pro-
cessing (ICPP), San Diego, CA, USA, 2010.

v

vi LIST OF PUBLICATIONS

⊲ Risat Mahmud Pathan, “Fault-Tolerant Real-Time Scheduling using Chip Multi-
processors,”Proceedings Supplemental volume of the 7th European Dependable
Computing Conference (EDCC), Kaunas, Lithuania, 7-9 May, 2008.

⊲ Johan Nordlander, Rolf Johansson and Risat Mahmud Pathan, “Unambiguous
Semantics In Automotive Timing Modeling,”1st Workshop on Critical Auto-
motive applications: Robustness & Safety (CARS) in conjunction with the 8th
European Dependable Computing Conference (EDCC), Valencia, Spain, 2010.

Acknowledgments

First of all, I would like to thank my advisor Professor Jan Jonsson for his excellent
comments, invaluable ideas, feedback, and most importantly, his confidence in me to
carry out this research. It has been an extreme pleasure and aprivilege working with
and learning from him. I am grateful to him for supervising mywork over the past
couple of years with great patience and enthusiasm. I am thankful to Jan also for spon-
soring my trips to several conferences, which have helped meto learn and to get better
understanding of the real-time systems community.

Special thanks and gratitude to my thesis examiner Professor Johan Karlsson for his
feedback and sharing with me his knowledge on fault-tolerant computer systems. I thank
Professor Koen Claessen, Professor Per Stenström and Professor Philippas Tsigas for
helpful discussion about the direction of research during my PhD follow-up meetings.
Thanks to Dr. Johan Nordlander, Dr. Rolf Johansson and Dr. Anders Svensson who
I worked with and learned from while working on the TIMMO and MCC-AI projects.
Thanks to former gratuates Dr. Raul Barbosa and Dr. Daniel Skarin for their valuable
suggestion and discussion during my early years as a PhD student. Thanks to Peter
Lundin, head of my division, for helping me in dealing with administrative issues.

I am extremely grateful and would like to take the opportunity to thank Professor
Sanjoy Baruah for hosting me as a visiting researcher in the Real-Time Systems Group
at the University of North Carolina (UNC) at Chapel-Hill, USA in Fall, 2011. His
guidance has always been a source of inspiration for research during my stay at UNC. I
also thank all the members of the Real-Time Systems Group at UNC for their friendship.

Many thanks to all my colleagues at the Department of Computer Science and Engi-
neering at Chalmers for creating such a friendly and stimulating working environment.
Thanks to Associate Professor Roger Johansson and Arne Dahlberg for their help and
advice regarding my role as teaching assistant in differentcourses at Chalmers. Thanks
to Eva Axelsson, Peter Helander, Marianne Pleén-Schreiber, Tiina Rankanen, and other
administrative personnel for helping me with different office-related matters. I am very
thankful for the friendship that I have received from Alen, Angelos, Anurag, Behrooz,
Bhabi, Dmitry, Erik, Fatemeh, Jakob, Kashab, Madhavan, Negin, Ruben, Tung, and all
other PhD and post-doctoral students. Special thanks to former graduates Dr. Mafijul
Islam and Dr. M.M. Waliullah who helped me settling — received me at the airport,
cooked me dinner, helped me finding an apartment — when I first arrived in Sweden.

Thanks to the anonymous reviewers in the research communitywho reviewed our
submitted manuscripts and gave comments in improving our work before publication.

vii

viii ACKNOWLEDGMENTS

I would like to thank the Swedish Agency for Innovation Systems (VINNOVA) for
funding this research under the TIMMO (P30619-2), TIMMO-2-USE (39005), NFFP-4
(S4207), and Multi-Core Computing in Automotive Industry (MCC-AI) projects.

I want to express my deepest gratitude and thanks to my parents, brother and sister
who have been always encouraging me in pursuing my study. Without their support and
care I would not have finished doing this work. Finally, I thank my wife Nashita Moona
and our son Mahir Samran Pathan for their love, continuous support, and particularly,
for their patience during the last five years of my PhD study. Thank You!

Risat Mahmud Pathan
October 16, 2012

Contents

Abstract iii

List of Publications v

Acknowledgments vii

1 Introduction 1
1.1 Context of this Research . 3
1.2 Contribution Areas . 7

1.2.1 Timeliness . 7
1.2.2 Timeliness vs. Fault-Tolerance10
1.2.3 Timeliness vs. Mixed-Criticality 14

1.3 Applicability of this Research .. 16

2 Preliminaries 19
2.1 Real-Time Systems . 19

2.1.1 Sporadic Task Systems . 19
2.1.2 Task Priority . 21
2.1.3 Preemptive Scheduling . 21
2.1.4 Work-Conserving Scheduling 21
2.1.5 Schedulability and Optimality 22
2.1.6 Schedulability Test . 22
2.1.7 Minimum Achievable Density 23
2.1.8 Scheduling Algorithms . 24

2.2 Fault-Tolerant Systems . 27
2.2.1 Failure, Error, and Fault . 27
2.2.2 Error Detection Techniques 29

2.3 Mixed-Criticality Systems .30

3 Models 33
3.1 Task Model . 33
3.2 Resource Model . 37
3.3 Fault Model . 38

CONTENTS

4 Goals and Contributions 41

5 Density-Bound-Based Test 45
5.1 Introduction . 46

5.2 Related Work . 48

5.3 Parameters of Task Model . 49

5.4 Constrained-Deadline Tasks: Density-Bound 50

5.4.1 Prior Results and Useful Definitions51

5.4.2 “Special” Task Set and its Schedulability 53

5.4.3 Slack-Monotonic Hybrid Priority Assignment 56

5.4.4 Density Bound for PolicyISM-DS 58

5.5 PolicyISM-DS[ξ]: Searching the Threshold 62

5.6 Empirical Investigation .65

5.6.1 Task Sets Generation Algorithm 66

5.6.2 Result Analysis . 67

5.7 Implicit-Deadline Tasks: Utilization Bound 72

5.7.1 Independent and Scale Invariant Priority Assignment. 73

5.8 Uniprocessor Slack-Monotonic Scheduling 75

5.9 Summary . 76

6 Iterative Tests 77
6.1 Introduction . 78

6.2 An Analysis Framework . 81

6.2.1 Audsley’s OPA Algorithm . 82

6.3 Related Work . 85

6.3.1 State-of-the-art Iterative Tests 86

6.4 TheH-ODA-LC Test . 89

6.4.1 Applying HPA Policy toODA-LC Test 89

6.5 TheIA-DA Test . 92

6.5.1 Overview of theIA-DA Test 92

6.5.2 New Criterion for Separation 93

6.5.3 Priority Assignment Algorithm: theIA-DA Test 99

6.6 TheIA-RT Test . 103

6.6.1 TheD-RTA-LC Test . 103

6.6.2 Priority Assignment Algorithm: theIA-RT Test 104

6.7 Empirical Investigation .107

6.7.1 Result Analysis . 108

6.8 Summary . 112

CONTENTS

7 Fault-Tolerant Scheduling on Uniprocessor 113
7.1 Introduction . 113
7.2 System Model . 115

7.2.1 Traditional Deadline-Monotonic (DM) Scheduling 117
7.3 Related Work . 117
7.4 Problem Formulation . 119
7.5 Load Factors and Composability .121

7.5.1 Calculation ofLoad-Factor-i 122
7.5.2 Calculation ofLoad-Factor-HPi 124

7.6 Exact Schedulability Test .138
7.7 Algorithm for theFTDM Schedulability Test 141

7.7.1 Multiprocessor Scheduling . 144
7.8 Summary . 145

8 Fault-Tolerant Scheduling on Multiprocessors 147
8.1 Introduction . 147
8.2 Related Work . 149
8.3 System Models and theFTGS Scheduling 151
8.4 Problem Statement . 152
8.5 Analysis for Tolerating Task Errors 153
8.6 Calculating Interfering Workload 155

8.6.1 Workload of taskτi . 156
8.6.2 Interfering Workload of taskτi 160

8.7 Total Interfering Workload of the Tasks inHPk 162
8.7.1 Finding Carry-in SetQ(S, a, m̂, c) 162
8.7.2 Total Interfering Workload and Schedulability Test 165

8.8 Tolerating Processor Failures .. . 169
8.9 Graceful Degradation . 171

8.9.1 Direct Rejection . 172
8.9.2 Criticality-Based Eviction . 172
8.9.3 Imprecise Computation . 173

8.10 Summary . 173

9 Mixed-Criticality Systems 175
9.1 Introduction . 175
9.2 System Model and The Scheduler . 178
9.3 Schedulability Analysis: an Overview 180

9.3.1 Dual-Criticality Systems . 181
9.4 RTA Procedure atLO Criticality Level 182

9.4.1 New RTA for Sporadic Task Systems 182
9.5 RTA Procedure atHI Criticality Level 184

9.5.1 Workload ofτk ∈ hpL(i) within [rxi , r
x
i + t) 185

CONTENTS

9.5.2 Workload ofτk ∈ hpH(i) within [rxi , r
x
i + t) 186

9.5.3 The RTA Test forHI Criticality Level 190
9.6 Schedulability Analysis forL > 2 . 192

9.6.1 Finding Priorities using Audsley’s Algorithm 194
9.7 Empirical Investigation .195
9.8 Related Works . 197
9.9 Summary . 200

10 Conclusion 201

A Proofs of Theorems and Lemmas 219

B Additional Graphs for Iterative Tests 229

1
Introduction

The demand for more functionalities and comfort in the use oftoday’s prevailing com-
puterized systems is increasing. The types and varieties ofdifferent functions or services
determine the competitiveness of computerized systems — e.g., portable devices, cars,
aircrafts — in the market. A modern passenger car, now-a-days equipped with dozens of
processors, does not only provide functions related to vehicle control but also supports
services related to comfort and safety. The development of such complex computerized
systems with increasingly higher number of functionalities requires rigorous design and
analysis effort to ensure that the system is “predictable”.

In my opinion, a system is predictable if any possible run-time behavior and its
consequences are either known or can be tuned to be known during the design of the
system. One way to characterize a computerized system is based on its functional and
non-functional behaviors. Thefunctional behaviorsof a system are the main activities or
services provided by the system, for example, anti-lock braking system (ABS) in a car,
online stock trading service, auto-pilot function in an aircraft, and so on. The end-users
directly interact with the functional behaviors of a system. Thenon-functional behaviors
are the qualitative or quantitative measure of the functional behaviors. Examples of non-
functional behaviors of computerized systems are throughput, timeliness, and energy
consumption (e.g., in portable devices). The users perceive the non-functional behaviors
while interacting with the functional behaviors of the system.

The aim of the research presented in this thesis is to aid the system designer in en-
suring predictability regarding some important non-functional behaviors of a class of
computer systems known asreal-time systems. The most prominent non-functional be-
havior of a real-time system is the requirement on producingthe output within a certain
deadline (also referred to as timeliness). Examples of suchsystems are automotive,

1

2 CHAPTER 1. INTRODUCTION

avionics, space systems, nuclear power plants, and consumer electronics. This thesis
focuses on modeling, analysis, and verification of some important non-functional be-
haviors of real-time systems.

The modeling and analysis of key non-functional behaviors of real-time systems
are important to ensure predictability. This is because thepopularity and success of
a computerized system does not only depend onwhat it does but also onhow it does
it. Consider the example of withdrawing money from an ATM where a customer en-
joys the opportunity of getting cash in a remote location without visiting the bank in
person. However, the client would not be satisfied if the ATM does not dispense the
cash few seconds after correct credentials are entered intothe machine’s keypad. The
ability to withdraw cash at a remote location is a functionalbehavior of the ATM while
the time it takes in dispensing cash is an important non-functional behavior. Another
non-functional behavior for an ATM system is its fault-tolerance capability: after with-
drawing cash from an ATM, the account balance of the customermust not be updated
incorrectly even if the system encounters some fault. Acceptable non-functional behav-
iors are crucial to customer satisfaction with the functional behaviors of the system.

What is modeling? In the context of this thesismodelingrefers to the act of formally
representing the parameters and assumptions of the system relevant to the non-functional
behaviors under study. In particular, the software (e.g., functional behaviors) and hard-
ware (e.g., number and type of processors) are abstracted using modeling. In addition,
the constraints needed foracceptablenon-functional behavior of the system are formally
captured. Modeling eliminates unnecessary details and captures only the relevant infor-
mation necessary for analyzing the non-functional behavior under study. For example,
dispensing cash within 5 seconds, after correct credentials are entered, may be an ac-
ceptable non-functional behavior to most of the clients of an ATM. This non-functional
behavior, i.e., time it takes in dispensing cash, can be modeled using a parameter called
“dispenseTime”. And, the acceptable behavior ofdispenseTime can be modeled as a
constraint such that “dispenseTime ≤ 5 seconds”.

What is analysis? In the context of this thesisanalysisrefers to evaluating the non-
functional behavior from the worst-case perspective. Analysis is about determining the
worst-case situation that might occur at run-time and (qualitatively or quantitatively)
evaluating the non-functional behavior during that particular situation. However, iden-
tifying the worst case may not be trivial or its analysis may not be simple or straight-
forward. In the ATM example, finding the worst case of the non-functional behavior
dispenseTime means finding the maximum time the ATM takes in dispensing cash.
And, the analysis ofdispenseTime requires the consideration of several factors for ex-
ample, hardware, software, network latency, time to check the customer’s account bal-
ance, and so on. Determining the exact worst-case behavior of the system, considering a
particular non-functional behavior, may not be always possible due to shortage of time,
limited resources, or due to the complexity of the analysis.In such case, the worst-case
behavior may need to be safely approximated which introduces pessimism in the analy-
sis. The degree of pessimism determines the preciseness of analysis — lower pessimism
(without compromising the correctness) means more preciseanalysis.

1.1. CONTEXT OF THIS RESEARCH 3

Is the system acceptable?Whether a non-functional behavior is acceptable or not is
determined usingverification. While analysis estimates the quality of the non-functional
behavior from the worst-case viewpoint, verification is about checking whether this
quality is acceptable to the customers or compliant with some certification standard.
For example, if the analysis of non-functional behaviordispenseTime concludes that
dispenseTime = 20 seconds, then the verification step would conclude that the be-
haviordispenseTime is not acceptable because “dispenseTime > 5 seconds”. Unac-
ceptable non-functional behaviors may require changes in hardware, software or even a
re-specification of the system. Clearly, such changes cost significant time and/or money.

Appropriate modeling, effective analysis and efficient verification of non-functional
behaviors of real-time systems are therefore of utmost importance and are also the main
ingredients of this thesis.

1.1 Context of this Research

The non-functional behaviors of a system may not be specifiedby the end-users, e.g.,
buyers of passenger cars.1 The end-users may remain unaware of the important non-
functional behaviors of the system. However, the end-usersbecome aware of the exis-
tence and importance of a non-functional behavior if its quality becomes unsatisfactory
in some way. The level of acceptability of a particular non-functional behavior is mod-
eled as one or moredesign constraintswhich are verified before the system is put in
mission. It is the responsibility of the system designers toensure that functional behav-
iors are correctly implemented and that the design constraints used to model the accept-
ability of the non-functional behaviors are satisfied. Thisthesis addresses the modeling,
analysis, and verification ofthree important non-functional behaviors of real-time sys-
tems:timeliness, fault tolerance,andmixed criticality.

Timeliness is a non-functional behavior which is about meeting the deadlines of the
real-time applications deployed on a particular computingplatform. Acceptable time-
liness behaviors of real-time application are specified as timing constraints. Thefirst
research question addressed in this thesis considers timeliness:

Q1 How to guarantee that all the deadlines of a real-time application are
met on a particular computing platform?

Fault tolerance is a non-functional behavior which is about providing correct service
even in the presence of faults. Fault-tolerant behavior is implemented using hardware
(space) or software (time) redundancy in many safety-critical systems, for example, au-
tomotive, aircraft, and space shuttle applications. This thesis considers fault-tolerant

1However, the OEM (not an end-user) of a passenger car may specify the non-functional behaviors when
ordering or buying particular component from an external supplier. Non-functional behaviors of defense
applications are often specified by the corresponding military organization.

4 CHAPTER 1. INTRODUCTION

systems that are also real-time systems. Deviation from acceptable timeliness or fault-
tolerant behavior of such systems might result in catastrophic consequences, for exam-
ple, loss of human lives, threat to the environment or severeeconomic loss.

The timeliness and fault-tolerant behaviors may be dependent on one another in
a conflicting way. For example, the likelihood of meeting timing constraints of a fault-
tolerant system may decrease as the amount of space or time redundancy used to achieve
fault-tolerance is increased. In other words, the requirement on timeliness in such case
is competing with the requirement on fault-tolerant behavior. To that end, thesecond
research question addressed in this thesis considers this interdependency of timeliness
and fault-tolerance:

Q2 How to guarantee that all the deadlines of a real-time application are
met on a particular computing platform while providing fault toler-
ance using time or space redundancy?

Mixed criticality is a non-functional behavior which is about providing certain level
of assurance regarding the correct behavior (e.g., meetingthe deadlines) of different
multi-criticality functions hosted on a common computing platform. Traditionally, the
design of a non-mixed-criticality system assumes thesamecriticality level for all the
functions present in the system. In contrast, an Mixed Criticality (MC) system hasmul-
tiple criticality levels where each function is assigned one unique criticality based on its
“importance”. For example, the ABS function in a car is assigned a safety criticality
level that is relatively higher than that is assigned to the DVD player function. Higher
criticality level assigned to a function means that higher degree of assurance is needed
regarding the correct behavior of the function.

The design of safety-critical systems considers the integration of multiple functions
having different criticality levels on a single, powerful processor due to space, weight
and power (SWaP) concerns. The run-time behavior of such systems varies based on the
operating environment, hardware dynamics, input parameters, and so on. The behavior
of the system at each time instant determines thecriticality behaviorof the system at
that time instant. The criticality behavior of the system changes from one time instant
to another while the statically-assigned criticality of each function does not change.

MC systems often need to be certified by a third party, known as a certification au-
thority (CA). Certification is about ensuring certain levelof confidence regarding the
acceptable (i.e., correct) behavior of the system. For example, certifying an aircraft may
need to verify that standard design guidelines are followedduring the development of
the flight-control software. A certified product is considered safe and also promotes
confidence among the end-users in buying that product. The degree of assurance needed
for certifying the behavior of anMC system as “correct” at one criticality level is typi-
cally different from the assurance needed at a different criticality level. In this thesis, the
correct behavior of anMC system is modeled using timing constraints (i.e., deadlines).

Whether the deadline of a function is met or not depends on the worst-case execution
time (WCET) of the function, which is the maximum CPU time the function requires to
complete its execution. The WCET of a function can be approximated at varying degrees

1.1. CONTEXT OF THIS RESEARCH 5

of confidence or assurance, depending on the inaccuracy or difficulty in estimating the
true WCET, for example, due to the variability in inputs, operating environment, hard-
ware dynamics, and so on. The higher degree of assurance needed in estimating the
WCET of a function, the larger (more conservative) the WCET bound tends to be in
practice. The criticality behavior of the system is then determined by comparing the
actual execution time of each function with the WCET that is estimated using different
degrees of assurance.

Conventional real-time scheduling policies for non-MC systems can not address both
deadline and criticality (e.g., multiple WCET of the same function). Thethird research
question addressed in this thesis considers this interdependency between timeliness and
mixed-criticality:

Q3 How to guarantee that all the deadlines of a real-time application are
met while ensuring certification at each criticality level?

In the context of this thesis, timeliness is about meeting deadlines; fault tolerance is
about providing correct service even in the presence of faults while satisfying the timing
constraints; and mixed criticality is about certifying theintegration of mixed-criticality
functions considering varying degrees of confidence in the WCET estimation of each
function. The first problem considers the timeliness requirement independent of other
non-functional behaviors while the second and third problems address the interdepen-
dency of different non-functional behaviors: timeliness vs. fault-tolerance and timeli-
ness vs. mixed-criticality, respectively.

Application Characteristics. Many real-time applications, e.g., control and monitor-
ing, are modeled as a collection of recurrent tasks with stringent/hard deadlines. A task
is a particular piece of program code that performs some computation, e.g., reading sen-
sor data, writing actuator value, executing a control loop,etc. The recurrent task model
considered in this thesis is thesporadic task modelwhere the inter-arrival time (period)
of each task has a lower bound and the relative deadline of each task is not greater than
its period. An instance (also, called job) of the task is saidto be released when it be-
comes available for execution. The releases of two consecutive jobs are separated by
at least the period of the task. The deadline is “relative” inthe sense that whenever a
job is released, the deadline for that job applies with respect to its release time. Each
task is also characterized by exactly one WCET (i.e., the maximum CPU time the task
requires to finish its execution2). Every job of the task must finish its execution before
its corresponding deadline expires (i.e., the timing constraint of the task).

The category of real-time systems having stringent timing constraints is calledhard
real-time systems. If the timing constraints of a hard real-time system are not satis-
fied, then the consequences may be catastrophic, for instance, threat to human lives.

2The non-functional behavior timeliness, when considered independent of other non-functional behaviors,
is based on the modeling of non-MC systems. So, only one WCET of each task is considered. Different
WCET of the same task is considered when modelingMC systems.

6 CHAPTER 1. INTRODUCTION

Consequently, it is of utmost importance for designers of hard real-time systems to en-
sure a priori that all the timing constraints will be met whenthe system is in mission.
The timing constraints of hard real-time applications can be fulfilled using appropriate
scheduling of the tasks on a particular hardware platform.Schedulingis the policy of
allocating resources (e.g., CPU time, communication bandwidth) to the tasks of the ap-
plication that are competing for the same resource.Scheduling algorithms and their
analysis that can be used to verify the timing constraints ofhard real-time systems
are at the heart of the research presented in this thesis.

Computing Platform. The emerging Chip-Multiprocessors (CMPs) technology, where
multiple processing cores are placed on the same chip, is attractive for real-time systems
design due to the computation power provided by such technology. Major processor-
chip manufactures have already shifted towards multicore architecture to overcome the
heat and thermal limitations in the design of single-core processors. Multicore proces-
sors are commonplace in both general purpose (e.g., Intel’sdual-, quad-core processors)
and embedded domains (e.g., ARM’s Cortex family of processors). The trend is now
incorporating more and more cores on the same chip. Intel’s Teraflop research chip has
announced the design of an 80 core platform. The current shift towards multicores by
prominent chip vendors indicates that the commercially available off-the-shelf proces-
sors in near future would be only multicores. To this end, this thesis considers real-time
scheduling on a computing platform having multiple identical processors/cores.

Scheduling Policy. The dominating scheduling approach in industry for meetingthe
hard deadlines of application tasks is the fixed-priority (FP) scheduling policy, due to its
flexibility, ease of debugging, and predictability. Under the FP scheduling strategy, each
task is assigned a priority that never changes during the execution of the task. This thesis
addresses preemptiveglobal FP schedulingof sporadic tasks on a platform consists of
identical processors or cores. In preemptive global FP scheduling, at each time instant,
the highest-priority runnable3 task is dispatched for execution if a processor is idle. If
all the processors are busy and a relatively lower-prioritytask is executing on some
processor, then the highest-priority runnable task is dispatched for execution on that
processor by preempting the lower-priority task. The preempted task may later resume
its execution on any processor (i.e., the assumed executionmodel allows migration).

Given the trend of widespread diffusion of multicore platform for real-time systems,
there are several challenges in global scheduling on multiprocessors. It has already
been shown by the researchers in the real-time systems community that the relatively
mature theories and techniques applicable to analyze timeliness on uniprocessor plat-
form are not applicable (i.e., perform poorly) to global multiprocessor scheduling. For
example, while the best fixed-priority ordering of sporadictasks is known for unipro-
cessor FP scheduling, the best priority ordering for globalFP scheduling is not cur-
rently known. In addition, when the non-functional behavior timeliness is considered
in addition to other non-functional behaviors like fault tolerance or mixed criticality,
the schedulability analysis becomes even more difficult. This thesis addresses such

3A task is runnable if it has been released but has not completedits execution

1.2. CONTRIBUTION AREAS 7

challenges by proposing new techniques to analyze global multiprocessor scheduling
in order to answer the three research questions mentioned above.

Why global multiprocessor scheduling? There are two main paradigms for multi-
processor FP scheduling of real-time tasks: the global approach and the partitioned
approach. In the partitioned approach, each of the tasks is preassigned to exactly one
processor and allowed to execute only on that processor (i.e., no migration is allowed).
Each processor can execute the assigned tasks using some uniprocessor FP schedul-
ing algorithm, for example, Deadline-Monotonic (DM) scheduling in which task with
shorter relative deadline is given higher fixed priority. Inthe real-time research com-
munity, there is no clear evidence that one scheduling paradigm is superior to another:
one task set that is deemed schedulable using global FP scheduling may be not schedu-
lable using partitioned FP scheduling, and conversely. However, global scheduling is
advocated in this thesis for several reasons. First, the open research problems related to
global FP scheduling are very challenging. Second, the adoption of global scheduling in
actual multicore systems is becoming more likely as variousmechanisms (e.g., locked
cache) are being proposed to reduce migration overhead. Third, global scheduling does
not require an a priori assignment of tasks to the processors(finding an optimal task
assignment to processors is known as an NP-hard problem) andprovides the flexibility
to execute a task on any processor by allowing migrations. Finally, global scheduling
does not require reassignment of the tasks if a new task has tobe accepted in the system,
for example, due to function or component upgrade (such reassignment is needed for
partitioned scheduling when tasks are presorted prior to assigning them to processors).

1.2 Contribution Areas

What follows in this section are the major challenges and the contributions in dealing
with each of the research questions mentioned above.

1.2.1 Timeliness

The most important non-functional behavior of areal-time systemis timeliness. In this
thesis, timeliness meansmeeting the deadlinesof a set of real-time sporadic tasks. The
output of a task corresponds to the functional behavior while the time at which the output
is generated is related to the non-functional behavior timeliness. The deadline by which
the output has to be generated is modeled as atiming constraint.

The means to satisfy the timing constraints is to appropriately schedule the tasks
on the processors. Whereas the uniprocessor real-time scheduling theory is considered
very mature, a comprehensive multiprocessor scheduling theory has yet to be developed.
Many of the well-understood traditional uniprocessor scheduling algorithms perform
poorly (in terms of hard real-time schedulability) on multiprocessors. There is conse-
quently a need for the design and analysis of multiprocessorscheduling algorithms. This
thesis considers global FP scheduling and its analysis to verify whether all the deadlines
of the tasks are met or not.

8 CHAPTER 1. INTRODUCTION

Research Challenges.The two major research challenges for global FP scheduling
are: (i) priority assignment problem, and (ii) schedulability testing problem. In global
FP scheduling of sporadic tasks, whether a particular task,say taskτ , meets its deadline
or not depends on the tasks having priorities higher than that of taskτ . This is because
the set of higher priority tasks determine the length of the cumulative time interval dur-
ing which all the processors are busy executing these higherpriority tasks while the task
τ is awaiting execution (called theinterferenceon taskτ due to the higher priority tasks).
Since the priority ordering of the tasks determines the set of tasks having higher priori-
ties than the priority of each task, the interference that a particular task suffers depends
entirely on the priority ordering. Therefore, deriving a good fixed-priority assignment
policy for global FP scheduling is important to guarantee the schedulability of each task.
A priority assignment is said to beoptimal if given some priority ordering for which all
the deadlines of the tasks are met, then the optimal priorityassignment also guarantees
the same. While the optimal fixed-priority ordering of sporadic tasks scheduled preemp-
tively on a uniprocessor is known4, the optimal fixed-priority ordering for preemptive
global multiprocessor scheduling is still unknown.

Whether the deadlines of the hard real-time tasks are met or not needs to be de-
termined offline based on a schedulability test. A schedulability test of a scheduling
algorithm is a condition that, when satisfied for a given taskset, guarantees that all the
deadlines of the tasks are met using that scheduling algorithm. Deriving a schedulability
test involves analyzing the worst-case behavior of the scheduling algorithm. The worst-
case behavior for global FP scheduling of sporadic tasks is difficult to determine.5 To
circumvent this problem, the worst-case behavior of globalFP scheduling algorithm is
approximated by introducing some degree of pessimism during the schedulability anal-
ysis. The challenge is to introduce as little pessimism as possible during the analysis in
order to derive a more effective schedulability test based on a more precise analysis.

Contributions. In order to address the two problems just discussed, new fixed-priority
assignment policies and effective schedulability tests for global FP scheduling of spo-
radic tasks are proposed in this thesis. Two different flavors of global FP schedulabil-
ity tests are proposed:density-bound testsand iterative tests. One of the most simple
schedulability tests is the density-bound test in which it is only required to check exactly
one condition: if the total density6 of a sporadic task set is not greater than a threshold
(called thedensity bound), then all the tasks meet their deadlines. A larger density
bound means a better schedulability test. Moreover, the density-bound test relates the
sum of the densities of all the tasks in a task set to the total available processing capac-

4Deadline-monotonic priority ordering is optimal for uniprocessor FP scheduling where each task’s rela-
tive deadline is less than or equal to its period.

5The worst-case scenario in analyzing a FP scheduling algorithm is called a critical-instant (formally
defined later). While the critical instant for uniprocessor FP scheduling is known, the critical instant for
global FP scheduling is not known.

6The densityof a task is the execution time required per unit of time within the relative deadline of the
task. The total density of a task set is the sum of densities ofall the tasks in that task set. Theutilization of a
task is the execution time required per unit of time within the period of the task. Formal definitions of these
concepts will be presented shortly.

1.2. CONTRIBUTION AREAS 9

ity. Consequently, a density-bound-based test can be used not only to verify the timing
constraints for some given processing capacity but can alsobe used to determine the
sufficient processing capacity needed for satisfying a given set of timing constraints.

A new fixed-priority assignment policy, calledImproved Slack-Monotonic Density
Separation(ISM-DS), is proposed in this thesis and the corresponding density bound for
global FP scheduling is derived. This thesis will show that the proposed density-bound-
based test dominates the state-of-the-art density-bound test for global FP scheduling of
sporadic tasks where the relative deadline of each task is not greater than its period. By
domination it means that there are schedulable task sets that satisfy the proposed density-
bound test forISM-DS but do not satisfy the state-of-the-art density-based test, and that
the converse does not apply. The density-bound test becomesthe utilization-bound test
when the relative deadline of each task is equal to its period.

Unlike the density-bound test, an iterative schedulability test requires one condi-
tion to be tested for each task: if the schedulability condition is satisfied for each task
(checked iteratively), then the entire task set is schedulable. In this thesis, a new iterative
test, calledInterference-Aware Response-Time(IA-RT) test, is proposed. The deriva-
tion of this iterative test is based on reducing different sources of pessimism identified
in the state-of-the-art schedulability analysis of globalFP scheduling. As shown in this
thesis, theIA-RT test dominates the state-of-the-art iterative test for global FP schedul-
ing. In addition, empirical investigation using randomly generated task sets shows that
theIA-RT test significantly outperforms the state-of-the-art iterative test.

Determining the fixed-priority assignment of the tasks for global FP scheduling is
a challenging problem and the optimal priority ordering in such case is not known. An
important property of theIA-RT test is that it checks the schedulability of each task
while assigning the fixed priorities to the tasks. If all the tasks are assigned priorities
based on theIA-RT test, then it is also true that the task set is schedulable using global
FP scheduling according to the assigned priorities. This isa very important property
since determining the fixed-priority assignment of the tasks for global FP scheduling
is a challenging problem and the optimal priority ordering in such case is not known.
Notice that this result does not imply that priority ordering found using theIA-RT test
is also the optimal priority ordering for global FP scheduling. Optimality can only be
claimed with respect to theIA-RT test.

Apart from being able to verify the timing constraints, the proposed density-bound-
based and iterative schedulability tests for global FP scheduling approximate the worst-
case behavior by reducing the pessimism in comparison to that present in the state-of-
the-art iterative schedulability tests. Reducing such pessimism has several advantages.
First, it reduces the demand on computing resources which inturn reduces the cost of
the system for mass production. Second, lower computing resource means less space,
weight and power consumption which are desirable in many resource-constrained em-
bedded systems. Finally, efficient use of system resources enables incorporating more
functionalities on the same computing platform without buying additional hardware. All
these advantages provide better competitiveness of a product in the market.

10 CHAPTER 1. INTRODUCTION

1.2.2 Timeliness vs. Fault-Tolerance

Real-time systems with fault-tolerance requirements mustprovide correct service even
in the presence of faults. In addition to satisfying the timing constraints, the functional
correctness of the application must be guaranteed; otherwise, the consequence may be
disastrous. For example, after the computer system failed in the London Stock Exchange
on September 8, 2008, the stock trading halted for several hours; upsetting clients who
trade an average $17.5 billion a day. The cause of such incorrect behavior of com-
puter system is the occurrences of faults in the system. Bothpermanent and transient
faults in hardware may occur due to, for example, hardware defects, electromagnetic
interferences, or cosmic ray radiation. In addition, software faults (bugs) may remain
undetected even after months of software testing and debugging.

A systemfailure occurs when a system deviates from the correct specified service.
Such deviation from correct service is due to some incorrectstate in the system which
is called anerror, i.e., an error is liable for a failure. The source or cause ofan error is a
fault. To better understand these concepts, consider the following example.

Example 1.1(Faults, Errors, Failures). Consider a safety-critical system that must
invoke a function, calledaction(), to avoid catastrophic consequence (failure) if the
temperature of the system’s environment, measured using a temperature sensor, is0o

Celsius(C). Assume that the sensor only reads temperature in units of Fahrenheit(F).
The conversion ruleC = (F − 32) ∗ 1.8 can be used to convert F to C. Therefore, when
the sensor reading is32oF, which is equivalent to0oC, thenaction() must be invoked to
avoid system failure.

Algorithm some_control_function()

// The system fails ifaction() is not invoked when temperature is0oC
1. F ← <read from temperature sensor>
2. C = (F − 3.2) ∗ 1.8; // instead of 32 in the rule, 3.2 is used (a fault)
3. If C == 0 Then
4. action();
5. End If

Figure 1.1: A simple program to understand fault, error, and failure

This service of the system is implemented in Figure 1.1 wherethe constant3.2 in line 2
is mistakenly used instead of constant32 for the conversion rule. Coding the rule using
constant3.2 is an example of afault. This fault causes incorrect computation ofC in
line 2 (an incorrect state of the system), which is anerror. When the read (input) value
from the sensor isF = 32, the converted valueC = (32− 3.2) ∗ 1.8 = 51.84 in line 2
is erroneous which results in a systemfailure becauseaction() in line 4 is not invoked
although the actual temperature of the environment is32oF= 0oC.

Not every error leads to a system failure. When the input fromthe sensor is not32oF
(i.e., actual temperature of the environment is not0oC), the converted value in line 2 is
erroneous; however, the system does not fail because functionaction() is not needed to
be invoked in such case anyway.

1.2. CONTRIBUTION AREAS 11

Similarly, every fault does not cause an error. To see why, consider that the sensor is
not working properly and reads3.2oF when the “true” temperature of the environment
is 32oF. Although the conversion rule in line 2 is faulty, the stateof the system is not
incorrect (no error) since the converted value00C is correct for the actual temperature
of 32oF. In such case, the fault in the conversion rule is masked, there is no error, and
functionaction() is invoked.

The faults that are manifested as errors must be tolerated toprevent system failures with-
out its effect being adversely perceived by the end-users (an acceptable non-functional
behavior). However, no fault-tolerant system can toleratean infinite numbers and ar-
bitrary types of faults. The nature and frequency of faults considered for the design
of a particular fault-tolerant system are specified using afault model. The fault model
used for analyzing the predictability of different computer systems varies. For example,
the fault model considered during the design of a space shuttle is different from that of
personal computers.

The level of protection needed against failures is modeled as reliability constraints.
For example, the reliability constraint for the design of a fault-tolerant system may be to
withstand a total off transient errors (as caused by hardware transient faults).Satisfying
the reliability constraints ensures that the functional behavior of the system is acceptable
even in the presence of faults. Acceptable timeliness and fault-tolerance behaviors can
be achieved by means offault-tolerant scheduling, which is the focus of this thesis.

Research Challenges.Achieving fault-tolerance in computer systems requires employ-
ing redundancy either in space or in time. Space redundancy is provided by additional
hardware, for example, using extra processors. Space redundancy is used to achieve tol-
erance against permanent hardware failure. For example, when a processor chip ceases
functioning, the tasks can be executed on redundant processors. However, due to cost,
volume and weight considerations implementing space redundancy for all the function-
alities may not be always viable, for example, in space, automotive or avionics applica-
tions. To achieve fault-tolerance in such systems, time redundancy is used in the form
of executingbackuptasks.

Fault-tolerance using time redundancy in real-time systems can not be addressed in-
dependently of the task-scheduling issues. This is becausetime-redundant execution as
a means for tolerating faults may have a negative impact on the schedule of the tasks
in the sense that it might lead to missed deadlines for one or more of the tasks. Con-
sequently, there is a need for fault-tolerant scheduling algorithms that minimize such
intrusive impact resulting from time-redundant executionto tolerate faults.

Contributions. This thesis presents fault-tolerant FP scheduling algorithms for both
uni- and multiprocessor platforms considering a certain fault model. The proposed fault
model is very powerful in the sense that multiple faults can occur in any task and at any
time, even during the execution of a recovery operation. Transient hardware faults that
cause transient task errors is considered in the fault model. Transient hardware faults
are short lived and generally cause no permanent error to thehardware. Therefore, re-
executing the original task as backup is a cost-efficient andsimple means for tolerating

12 CHAPTER 1. INTRODUCTION

such faults. Although software faults are permanent, theirmanifestation (i.e., the cor-
responding error) might be of transient nature due to, for example, changes in input or
executing a different path during re-execution. Such software faults which result in tran-
sient errors are considered in the fault model and can be tolerated through re-execution.
Software faults, which result in permanent task errors (andtherefore can not be tolerated
using re-execution), are also considered in the fault model. A diverse implementation
of the task needs to be executed as backup to recover from suchpermanent error due
to software faults. A diverse implementation of the same task is expected not to have
the same software fault, and therefore, does not cause the same permanent error upon
execution of the backup.

The types of faults considered in the fault model can cause task error (i.e., incorrect
output generated by the task) or permanent processor failure (i.e., some processors in
the multiprocessor platform are not working). The conceptsof task error and processor
failure are distinguished in this thesis. Atask error corresponds to a situation where
the output of a task is not correct but the processor on which the task is executing is
non-faulty. Aprocessor failureis caused by a fault that is permanent in hardware and
the output of the task executing on that faulty processor is considered as erroneous. Mit-
igating the effect of a processor failure does not mean that the failed processor becomes
functional again; instead, it means the task that was executing on the failed processor
still meets its deadline by executing its backup on a non-faulty processor. The fault-
tolerant scheduling algorithms proposed in this thesis consider original-task re-execution
or diverse-implementation execution as backup in order to tolerate both task errors and
processor failures. Any instance of a task when first executes is called theprimarywhile
the original-task re-execution or diverse-implementation execution is called thebackup.

This thesis proposes a preemptive FP uniprocessor fault-tolerant algorithm, called
Fault-Tolerant Deadline-Monotonic (FTDM) scheduling, where at mostf task errors can
be tolerated within all possible time intervals, each of which is not longer than the max-
imum relative deadline of any task in the task set. TheFTDM algorithm is designed not
to consider permanent processor failure in its fault model.7 TheFTDM scheduling con-
siders tolerating task errors caused by hardware or software faults. The errors affecting
the tasks are tolerated using time redundancy where both original-task re-execution or
diverse-implementation execution as backup is possible. When an error is detected, the
backup of the task becomes ready for execution. An exact schedulability condition of
theFTDM algorithm is derived, for which it applies that all task deadlines are met if, and
only if, this condition is satisfied.

While processor chip failures requires that redundant chipsare available to tolerate
permanent hardware failures, permanent core failure in CMPs may be tolerated without
having additional backup processor chip. The task that was executing on a faulty core
can be migrated to a non-faulty core on the same chip and its backup can be executed
on this non-faulty core. Such time-redundant execution on the same chip is possible
if the task set is still schedulable on the remaining available (non-faulty) processing

7However, the exact schedulability condition for theFTDM algorithm is directly applicable to partitioned
multiprocessor scheduling where tasks are preassigned to processors and never migrate.

1.2. CONTRIBUTION AREAS 13

cores. Luckily, contemporary CMPs offer such high processing capacity that they may
be exploited to tolerate core failures. Therefore, time redundancy in combination with
space redundancy can mitigate the effect of permanent core failures in CMPs where the
scheduling algorithm allows task migration.

Most of the previous work on fault-tolerant scheduling for multiprocessors, based
on partitioned method, do not distinguish between tolerating task error and processor
failure. Previous work considered tolerating task error bypessimistically assuming that
the processor on which the faulty task was executing has crashed and execute the backup
task on a different processor to which the backup is preassigned. Such pessimism unnec-
essarily increases the number of processors required to tolerate task errors even though
it could be possible to execute the backup on the same (non-faulty) processor on which
the task error is detected. Moreover, increasing the numberof processors is costly in
terms of SWaP for many embedded real-time systems and also increases the probability
of having more faults as more chips are deployed.

To this end, this thesis proposes a multiprocessor FP fault-tolerant scheduling algo-
rithm, called Fault-Tolerant Global Scheduling (FTGS), which tolerates both task errors
and processor failures. The design of theFTGS algorithm is based on two crucial ob-
servations: (i) in case of task error, the global scheduler can simply dispatch the backup
of a faulty task to any processor (even to the processor on which the task encountered
the error), and (ii) mitigating the effect of processor failure is same as tolerating a task
error by dispatching the backup of the task to a non-faulty processor. TheFTGS algo-
rithm considers toleratingf task errors within all possible intervals not larger than the
maximum relative deadline of any task and tolerates (i.e., mitigate the effect of) total
ρ permanent processor failures during the entire lifetime ofthe system.

The schedulability analysis for theFTGS algorithm derives a schedulability test that,
when satisfied, guarantees that all the deadlines of the tasks are met even in the presence
of task errors and processor failures. The novelty of the proposed schedulability test
is that the resilience in terms of tolerating different combinations of task errors and
processor failures can be efficiently determined for resource-constrained embedded real-
time systems. Moreover, if the given priority ordering of the task set does not satisfy the
proposed test, then a priority ordering for which the task set may satisfy the proposed
test can be searched efficiently. Finding such a priority ordering is important since it
avoids unnecessary upgrading of the hardware or even re-specification of the software.

The proposed schedulability tests for theFTDM andFTGS scheduling algorithms
can be used to verify the reliability and timing constraints(under the assumed task and
fault models) for uni- and multiprocessors, respectively.The mathematical expressions
of these schedulability tests include parameters related to the task, fault and resource
models. The system designer can play around with these parameters to determine, for
example, the resource requirement for a given task set and fault model, or the maximum
number of task errors that can be tolerated on a given processing platform. Such ca-
pability enables the designer to make a trade-off between resource requirement and the
level of redundancy necessary for an acceptable fault-tolerant behavior of the system.

14 CHAPTER 1. INTRODUCTION

1.2.3 Timeliness vs. Mixed-Criticality

SWaP concerns drive the design of safety-critical systems towards integrating multiple
functionalities having multiple criticality levels on thesame computing platform. The
computation power of CMPs also encourages such integrationso as to incorporate more
functionalities on the same platform. For example, aviation industry is contemplating
“Integrated Modular Avionics” (IMA) to achieve economic advantage by hosting multi-
ple avionics functions on a single platform.

Traditionally real-time scheduling of safety-critical systems assumes that all the
tasks in the system have the same level of criticality (or importance). In contrast, an
MC system is one in which thecriticality levelsof different real-time tasks may be dif-
ferent. For example, in the RTCA DO-178B standard, there arefive different Design
Assurance Levels (DAL A to DAL E) for software in avionics systems, and in ISO
26262 standard, safety functions in automotive systems canhave four different Auto-
motive Safety Integrity Levels (ASIL A to ASIL D). In this thesis, it is assumed that
assigning a criticality level to a task in anMC system means the degree of assurance
required for the correct behavior (i.e., meeting deadline)of that task.

In order to certify anMC system as being correct, the CAs make certain assump-
tions about the worst-case run-time behavior of the system.However, the assumptions
made by the system designers may be different from that of theCAs. For example,
the CA generally makes very conservative assumptions regarding the WCET of a task
in comparison to the assumptions made by the system designers. It is well-known that
the accuracy in estimating the WCET of a particular piece of code is problematic: the
WCET used for the schedulability analysis of each task is generally a conservative upper
bound that exceeds the true WCET. The higher level of assurance or confidence needed
in estimating the WCET of a piece of code, the larger the WCET tends to be in practice.

Different upper bounds on WCET for a piece of code can be considered based on
the level of assurance needed for certification at differentcriticality levels. Whether the
deadline of a task is met depends on the WCET of the task, and therefore, the level
of assurance needed for certification in meeting the deadlines depends on the level of
assurance used in deriving the WCET of that task. When certifying the system at a
lower criticality level than the criticality assigned to some task, the WCET of that task
estimated according to the level of assurance required at that lower criticality level can
be considered during the schedulability analysis ofMC system.

Research Challenges.One of the challenges regarding the design ofMC systems is to
ensure theisolationproperty, i.e., that functions, tasks or components at a lower critical-
ity level do not interfere adversely with those at a higher criticality level. Such level of
isolations can be provided by dedicating the system resources for each criticality level.
For example, all the high critical functions may be integrated on a separate processor.
However, providing a dedicated resource at each criticality level may not be cost- and
resource-efficient. Therefore, sharing the computing resources among the tasks having
multiple criticality levels has to be considered. Unfortunately, such sharing requires
special design considerations to avoid issues such as, thecriticality inversion problem,

1.2. CONTRIBUTION AREAS 15

where a high critical task may miss its deadline when the scheduler assigns CPU time
to meet the deadline of a low criticality task.

Although the isolation property is not explicitly addressed in this thesis, global
FP scheduling can achieve this property as follows. When multiple tasks having dif-
ferent criticality levels are integrated on the same multicore chip, all the tasks having
the same criticality can be globally FP scheduled on a (dedicated) subset of the pro-
cessing cores. This scheduling approach requires no explicit task assignment algorithm,
and more importantly, the temporal behavior of each function can be restricted only to
its dedicated cores to ensure isolation. Such restriction is necessary and beneficial for
function/component upgrade, modification and incrementalcertification.

Another challenge in the design of mixed-criticality scheduling is the priority assign-
ment problem for theMC tasks. The priority and criticality of a task are not necessarily
positively correlated in the sense that always assigning higher priority to a higher criti-
cality task may not yield the best performance. The criticality level of a task is statically
assigned based on the degree of assurance needed regarding its correct behavior (which
in this thesis is about meeting its deadline). In case of FP scheduling, a task with higher
criticality level may sometimes be assigned higher fixed priority to ensure, for example,
the isolation property or to avoid the criticality inversion problem. However, a task with
higher criticality level may sometimes need to be assigned arelatively lower fixed pri-
ority to allow the deadlines of all the tasks to be met. Assigning higher fixed priority to
higher criticality task is known as the Criticality-As-Priority-Assignment (CAPA) pol-
icy. It will be evident later that CAPA is not an optimal priority assignment policy for
FP scheduling ofMC tasks. In fact, the optimal FP ordering ofMC tasks is still unknown
for multiprocessors. Therefore, determining a good FP priority assignment policy is
very important forMC systems and this problem is addressed in this thesis.

A third aspect in the design ofMC systems isstatic verification, which is related to
the certificationof safety-critical systems. The design ofMC systems is often subject
to certification at each criticality level by a certificationauthority (CA), for example, by
Federal Aviation Authority in the US or the European Aviation Safety Agency in Europe
for avionics systems. Certification is about verifying thatan appropriate level of assur-
ance in meeting the deadlines of the tasks at each criticality level is guaranteed. The
level of assurance needed in meeting the deadlines of the tasks may be different at each
criticality level. Conventional scheduling strategies, that address both the “criticality”
(i.e., multiple WCET of the same task) and “deadline” aspectsof MC systems, are not
cost- and resource-efficient. Yet another major challenge in the design ofMC system
is devising a multiprocessors FP scheduling strategy that addresses both the criticality
and deadline aspects of the tasks while facilitating certification and efficient resource
usage. This challenge is addressed in this thesis along withthe challenge of assigning
fixed-priorities to the tasks.

Contribution. This thesis proposes a preemptive FP multiprocessor scheduling algo-
rithm, called Mixed-criticality Scheduling algorithm on Multiprocessors (MSM). The
MSM algorithm is based on traditional global FP scheduling but with the additional fea-
ture of runtime monitoring of the mixed-criticality behavior of the system. The actual

16 CHAPTER 1. INTRODUCTION

execution time of the tasks at any time instant defines the mixed-criticality behavior of
the system at that time instant. When the actual execution time of any task exceeds the
WCET estimated for certain criticality level, the system switches to a higher critical-
ity behavior. The system monitors the mixed-criticality behavior at each time instant
and dispatches tasks relevant to that criticality behaviorbased on global FP schedul-
ing strategy. The schedulability analysis of theMSM algorithm derives response-time
based schedulability tests to verify the timing constraints at each criticality level. The
response-time test of the tasks at each criticality level can be used by the system de-
signers to ensure that the timing constraints for differentmixed-criticality behaviors are
guaranteed, which facilitates certification.

The proposed response-time based tests are not only applicable to any given fixed-
priority ordering of the tasks, they can also be used to find the priority ordering of a given
task set. Finding such a priority ordering is required if thetest fails for the given priority
ordering of the tasks. Simulation results show significant improvement in guaranteeing
schedulability of randomly-generated task sets using the proposed searching mechanism
for priority assignment over that of using simple8 priority assignment policy. In contrast
to other works on mixed-criticality scheduling, where onlytwo criticality levels are con-
sidered, the proposedMSM algorithm and its analysis is applicable for arbitrary criticality
levels. This makes theMSM algorithm relevant since many safety-critical systems typi-
cally have more than two criticality levels. While a majorityof the earlier work consider
uniprocessors and dynamic-priority scheduling ofMC tasks, theMSM algorithm consid-
ers a multiprocessor platform, making it applicable for theemerging CMP technology
and the industry-preferred FP scheduling policy.

1.3 Applicability of this Research

The non-functional properties — timeliness, fault-tolerance and mixed-criticality —
considered in this thesis are common to many safety-critical real-time systems. While
the functional behaviors of different systems are generally different, the modeling and
analysis principle of common non-functional behaviors of different systems can be the
same. Consequently, the research results presented in thisthesis are applicable to a
variety of safety-critical real-time systems. For example, the braking function in an au-
tomotive system and adjusting the trajectory of a shuttle inthe space are completely two
different functional behaviors. However, the same scheduling principle might be used
for dispatching the control tasks of both functions if the offline analysis and verification
of the scheduling algorithm guarantees the timeliness requirement for both functions.

The real-time scheduling algorithms and their analysis presented in this thesis can be
used to ensure predictability (in terms of timeliness, fault tolerance and mixed critical-
ity) for safety-critical systems. The approaches proposedin this thesis can help the sys-
tem designers to efficiently determine offline whether the design constraints needed for

8By simple priority assignment it means that the priorities are determined based on heuristics, for example,
decreasing periods or decreasing deadlines of the tasks.

1.3. APPLICABILITY OF THIS RESEARCH 17

acceptable non-functional behaviors of the system are met or not. The proposed schedu-
lability tests can also be used to estimate the resource requirements to satisfy a given
set of design constraints. The designers can change the parameters of the mathematical
expressions used to represent the schedulability tests to experiment with “what-if” sce-
narios. This capability enables the designer to make a trade-off between the resource
requirement and the rigidity of the design constraints.

All iterative schedulability tests proposed in this thesisassume an arbitrary fixed-
priority ordering of the tasks. However, when a task set doesnot satisfy the schedulabil-
ity test for a given priority ordering of the tasks, finding another priority ordering (which
could make the task set to satisfy the schedulability test) is important since it would not
require any changes in hardware, software or specification.The iterative schedulability
tests proposed in this thesis can be used to search for such a priority ordering in case
the given priority ordering is deemed to be infeasible. Thisis particularly important for
multiprocessors where the optimal priority ordering is currently not known. In sum-
mary, the scheduling algorithms and their analysis presented in this thesis have wide
applicability for verifying the timing, reliability and mixed-criticality constraints for a
variety of safety-critical systems.

Organization of the thesis. The rest of the thesis is organized as follows: Chapter 2
presents the necessary background for real-time computing, fault-tolerance, and mixed-
criticality. Chapter 3 presents the system (i.e., task, resource, and fault) model. Chap-
ter 4 outlines the major contributions of the thesis in details. The density-bound-based
test and the iterative test for global FP scheduling are presented in Chapter 5 and Chap-
ter 6, respectively. The fault-tolerant scheduling algorithms for uni- and multiprocessors
are presented in Chapter 7 and Chapter 8, respectively. Then, Chapter 9 presents the
multiprocessor schedulability analysis and response-time test forMC systems. Finally,
Chapter 10 concludes the thesis.

2
Preliminaries

In this chapter, the related background and basic concepts of real-time scheduling, fault-
tolerance, and mixed-criticality systems are presented.

2.1 Real-Time Systems

Real-time systems are computerized systems with timing constraints. Real-time systems
can be classified ashard real-time systemsandsoft real-time systems. In hard real-time
systems, the consequences of missing a task’s deadline may be catastrophic. In soft real-
time systems, the consequences of missing a deadline are relatively milder. Examples
of hard real-time systems are space applications, fly-by-wire aircraft, radar for track-
ing missiles, etc. Examples of soft real-time systems are on-line transactions used in
airline reservation systems, multimedia systems, etc. This thesis deals with scheduling
algorithms and their analysis for hard real-time systems. The most relevant real-time
scheduling concepts are: sporadic task system, task priority, preemptive scheduling al-
gorithm, schedulability test, density bound, and so on.

2.1.1 Sporadic Task Systems

The basic component of real-time scheduling is atask. The functional behavior of an
application is implemented by executing a collection of tasks. The model of a task set
captures the workload requirement of an application and thereal-time constraints that
need to be satisfied for acceptable non-functional behavior. A sporadic task systemis

19

20 CHAPTER 2. PRELIMINARIES

a set of tasks in which each task is characterized by three parameters:minimum inter-
arrival time, relative deadlineandworst-case execution time (WCET).

Minimum inter-arrival time: Each task in a sporadic task system has a minimum inter-
arrival time of occurrence, called theperiod, of the task. The release time of any two
consecutive instances, calledjobs, of a task are separated by at least the period of the
task. Therelease timeof a job is the instant in time when the job becomes available for
execution. A job of a task isreadyto execute when it is released and remainsactiveuntil
it completes its execution. A job of a task is released no earlier than the period plus the
release time of the previous job.

Relative Deadline:Each job of a task has arelative deadlinethat is the time by which
the job must finish its execution relative to its release time. The relative deadlines of
all the jobs of a particular task are the same. Theabsolute deadlineof a job is the time
instant equal to release time plus the relative deadline.

WCET: Each sporadic task has a worst-case execution time (WCET), which is the
maximum CPU time that each job of the task requires in order tocomplete its execution
between its release time and absolute deadline. Determining the exact WCET of a piece
of code is challenging and also an active research area [BEL11, GLYY12, LNBCG11,
CKR+12, YKS11]. The methodology used to determine the WCET of a piece of code
is outside the scope of this thesis. It is assumed that the WCETof each task is known.

If the relative deadline of each task in a task set is less thanor equal to its period, then
the task set is called aconstrained-deadlinetask system. If the relative deadline of each
task is exactly equal to its period, then the task set is called an implicit-deadlinetask
system. If a sporadic task system is neither constrained norimplicit, then it is called an
arbitrary-deadlinetask system. In this thesis, scheduling of constrained-deadline spo-
radic task system is considered. Since the relative deadline of each task in a constrained-
deadline task set is also allowed to be equal to its period, the results presented in this
thesis for constrained-deadline task system are also applicable to implicit-deadline spo-
radic task systems. And, because the jobs of a sporadic task are allowed to be released
as quickly as possible, i.e., strictly periodically, the results of this thesis for sporadic task
system are also applicable to periodic task systems where successive releases of the jobs
are exactly separated by its period.

Task Independence.The execution of the tasks of a real-time application may be depen-
dent on one another, for example, due to resource or precedence constraints. If a resource
is shared among multiple tasks, then some tasks may be blocked from being executed
until the shared resource is free. Designing better resource sharing protocol for both uni-
and multiprocessors is an ongoing research area [BA10, BCB+08, GESY11a, NSBS09].
Similarly, if tasks have precedence constraints, then one task may need to wait until
another task finishes its execution. There are many work thatconsider precedence con-
straints [SEGY11, SS94, BCGM99]. In this thesis, all tasks are assumed to be indepen-
dent, that is, there exists no dependency of one tasks on another. The only resource the
tasks share is the processor platform.

2.1. REAL-TIME SYSTEMS 21

2.1.2 Task Priority

When two or more ready tasks compete for the use of the processor(s), some rules must
be applied to allocate the use of processor(s). This set of rules is often governed by the
priority discipline for many real-time scheduling algorithms. The selection of the ready
task for execution is determined based on the priorities of the tasks. The priority of a
task can bestaticor dynamic.

Static Priority: In static (fixed) priority discipline, each task has a priority that never
changes during run time. The different jobs of the same task have the same prior-
ity relative to any other tasks. For example, according to Liu and Layland, the well
known Rate-Monotonic (RM) scheduling algorithm assigns static priorities to tasks such
that the shorter the period of the task, the higher the priority[LL73]. In preemptive
RM scheduling, the task with the shortest period is always dispatched for execution.
This thesis considers fixed task priority for all the scheduling algorithms.

Dynamic Priority: In dynamic priority discipline, different jobs of a task mayhave
different priorities relative to the priorities of other tasks in the system. In other words,
if the priorities of different jobs of the same task change from one execution to another,
then the priority discipline is dynamic1. For example, the well known Earliest-Deadline-
First (EDF) scheduling algorithm assigns dynamic priorities to tasks such thata ready
job whose absolute deadline is the nearest has the highest priority [LL73]. In preemptive
EDF scheduling, the ready job with the shortest absolute deadline is always dispatched
for execution. While EDF is a job-level static priority scheme, the priority assignment
scheme governed by pFair scheduling, proposed by Baruah et al. [BCPV96], is a non
job-level static priority scheme.

2.1.3 Preemptive Scheduling

A scheduling algorithm ispreemptiveif the release of a new job of a higher priority task
can preempt the currently running job of a lower priority task. During runtime, task
scheduling is essentially determining the highest priority active job(s) and executing
them on the processor(s), possibly by preempting some lowerpriority job(s).

Under non-preemptive scheme, the job of a currently executing task always com-
pletes its execution before another ready job starts execution. A higher priority ready
job may need to wait in the ready queue until the currently executing job (may be of
lower priority) completes its execution. This will result in worse schedulability perfor-
mance than for the preemptive case. In this thesis, preemptive scheduling is considered.

2.1.4 Work-Conserving Scheduling

A scheduling algorithm is work conserving if it never idles aprocessor whenever there is
a ready task awaiting execution on that processor. A work conserving scheduler guaran-

1In this thesis, static priority means task-level static priority and dynamic priority means job-level static
priority. In non job-level static-priority, the same job may have different priorities at different time instants.

22 CHAPTER 2. PRELIMINARIES

tees that whenever a job is ready and the processor for executing the job is free, the job
will be dispatched for execution. For example, scheduling algorithms RM and EDF are
work-conserving by definition. A non work-conserving algorithm may decide not to
execute any task even if there is a ready task awaiting execution. In this thesis, the
work-conserving scheduling algorithms are considered.

2.1.5 Schedulability and Optimality

If scheduling algorithmA can generate a schedule for a given set of tasks such that
all the tasks meet their deadlines, then the task set is said to beschedulableusing that
scheduling algorithmA. If a task set is schedulable using scheduling algorithmA, then
the task set isA-schedulable.

A scheduling algorithm is said to beoptimal, if it can successfully schedule a task set
whenever some other algorithm can schedule the same task setunder the same schedul-
ing policy (with respect to, for example, priority assignment discipline, preemptivity,
etc.). For example, Liu and Layland [LL73] showed that the RMand EDF are the opti-
mal uniprocessor scheduling algorithms for implicit-deadline tasks under the static and
dynamic priority assignment policy, respectively.

While the optimal scheduling algorithm on uniprocessor is known for sporadic task
sets, the optimal static or dynamic priority scheduling algorithm for multiprocessors is
currently unknown [DB11a]. Optimal multiprocessor scheduling are only known for
non-job level static priority discipline (known as pFair family of algorithms [BCPV96,
AS04, ZMM03, CRD06]). However, such algorithms suffers from significant number
of context-switch and scheduling overheads which make these algorithms impractical to
implement without sacrificing some schedulability [HA05].

The notion of optimality is also applicable to a priority-assignment policy under
specific scheduling algorithm and processor platform. A fixed-priority assignment pol-
icy is said to be optimal if given some fixed-priority assignment policy using which
a task set is fixed-priority schedulable on a given platform,then the optimal priority
assignment also guarantees the same. For example, the RM andDM are the optimal
fixed-priority assignment policies for uniprocessor fixed-priority scheduling of implicit-
and constrained-deadline tasks, respectively [LL73].

2.1.6 Schedulability Test

For a given task set, it is computationally impractical to simulate the execution of the
tasks at all time instants to see offline whether the task set will be schedulable during
runtime. However, the designers of hard real-time systems need to ensure a priori that all
the timing constraints are met. To address this problem, schedulability tests for schedul-
ing algorithms are used. Aschedulability testof a scheduling algorithmA is a (set of)
condition(s) that is (are) used to determine whether a task set isA-schedulable on a par-
ticular platform. A schedulability test can benecessary and sufficient (exact)or it can
besufficientonly.

2.1. REAL-TIME SYSTEMS 23

Necessary and Sufficient (Exact) Schedulability Test:A task set will meet all its
deadlines if, and only if, it passes the exact test. If the exact schedulability test of a
scheduling algorithmA is satisfied, then the task set isA-schedulable. Conversely, if
the task set isA-schedulable, then the exact schedulability condition of algorithmA is
satisfied. Therefore, if the exact schedulability test of a task set is not satisfied, then it is
also true that the scheduling algorithm can notsuccessfully schedule the task set.

Deriving an exact test for a scheduling algorithm is always tempting as it guarantees
either schedulability or unschedulability of a task set using the corresponding scheduling
algorithm. However, deriving an exact test requires precise schedulability analysis con-
sidering the worst-case behavior of the algorithm in scheduling a task set. Determining
the actual worst case, and then performing precise schedulability analysis, may not be
always possible due to lack of time or complexity of the analysis. Therefore, the worst
case may need to be safely approximated by introducing some degree of pessimism
when analyzing a scheduling algorithm. Introducing such pessimism often results in
simpler but sufficient schedulability test.

Sufficient Schedulability Test: A task set will meet all its deadlines if it passes the
sufficient test. If the sufficient test of a scheduling algorithm A is satisfied, then the
task set isA-schedulable. However, the converse is not necessarily true. Therefore,
if the sufficient schedulability condition of a task set is not satisfied, then the task set
may or may notbe schedulable using the scheduling algorithm.

Domination. To compare different scheduling algorithms and schedulability tests, the
concept ofdominationis useful. Scheduling algorithmA dominates scheduling algo-
rithm B, if any task set schedulable using algorithmB is also schedulable using al-
gorithmA, and not conversely. In other words, if scheduling algorithm A dominates
scheduling algorithmB, then all the task sets schedulable using algorithmB are also
schedulable using algorithmA and there is at least one task set that is not schedulable
using algorithmB but schedulable using algorithmA. Similarly, a schedulability test
P dominates schedulability testQ, if any task set that satisfies testQ also satisfies test
P, and not conversely. In other words, if schedulability testP dominates schedulability
testQ, then all the task sets that satisfy testQ also satisfy testP and there is at least one
task set that does not satisfy testQ but satisfies testP.

2.1.7 Minimum Achievable Density

A processor platform is said to be fully utilized when an increase in the density of any of
the tasks in an arbitrary constrained-deadline task set will make the task set unschedu-
lable on the platform. Theminimum achievable densityof a scheduling algorithm is the
minimum over all total densities of all task sets that fully utilize the processor platform.

A scheduling algorithm can successfully schedule any set ofconstrained-deadline
tasks on a processor platform if the total density of the taskset is less than or equal to
the minimum achievable density of the scheduling algorithm. The higher the minimum
achievable density of a scheduling algorithm, the better isthe scheduling algorithm in
terms of utilizing the processing resources while meeting the deadlines of the tasks.

24 CHAPTER 2. PRELIMINARIES

Deriving the minimum achievable density may not be always possible due to the pes-
simism introduced during the schedulability analysis of a scheduling algorithm. How-
ever, a bound that is lower than the actual minimum achievable density of a scheduling
algorithm can be derived. Such a lower bound on the actual minimum achievable den-
sity is simply called adensity boundof the scheduling algorithm. Since the density
bound of a scheduling algorithm is not greater than the minimum achievable density,
any task set having total density not greater than the density bound is schedulable using
that scheduling algorithm.

Schedulability tests using density bound is called the density-bound-based test. The
density-bound-based test compares the total density of a constrained-deadline task set
with the density bound to determine whether all the deadlines are met. If the density
bound of scheduling algorithmA is greater than the density bound of scheduling algo-
rithm B, then the density-bound test for scheduling algorithmA dominates the density-
bound test for scheduling algorithmB. In this thesis, a density bound for global FP mul-
tiprocessor scheduling is proposed. This proposed test dominates the state-of-the-art
density bound for FP scheduling of constrained-deadline sporadic tasks.

If the deadline of each task is equal to its period, then the density bound is called
theutilization boundand the corresponding schedulability test is given as follow: if the
total utilization of a task set is not greater than the utilization bound of a scheduling
algorithm, then all the deadlines are met using that scheduling algorithm.

Iterative Schedulability Tests: The density bound test requires exactly one condition
to be tested for the entire task set: the total density of a task set is compared with the
density bound. On the other hand, aniterative testrequires one condition to be tested for
each task in a task set. The well known response-time test [ABR+93, LSD89, JP86] for
uniprocessor fixed-priority scheduling is an example of iterative test where the response
time of each task is computed and compared against its relative deadline. Theresponse
timeof a task is the largest time interval between the completiontime and release time
of any job of the task. Therefore, if the response time of a task is smaller than its
relative deadline, then all the jobs of the task meet their deadlines. This thesis proposes
new iterative schedulability tests which dominate the state-of-the-art iterative test for
constrained-deadline sporadic task sets for global FP scheduling.

2.1.8 Scheduling Algorithms

Scheduling algorithm is a method / policy used to dispatch the jobs of tasks that share
some resource, for instance, CPU time on a particular platform. In this thesis, the only
resource assumed to be shared among the tasks is the processing platform. Depending
on the computing platform, a scheduling algorithms can be categorized as either unipro-
cessor scheduling or multiprocessor scheduling. In this subsection, the basic principle
of preemptive FP scheduling is presented.

Uniprocessor Scheduling. Uniprocessor scheduling algorithm dispatches tasks on a
single processor. A uniprocessor FP scheduling algorithm always executes the highest
priority active task. If a new job of some task arrives such that its priority is higher than

2.1. REAL-TIME SYSTEMS 25

that of the task currently executing on the processor, then the lower priority (executing)
task is preempted and the job of the higher priority task is dispatched for execution.
The preempted job may later resume its execution when it becomes the highest priority
active job.

Whether the deadlines of a task are met or not depends on the interference caused by
the higher priority tasks. Theinterferenceon a job of a particular task is the cumulative
length of intervals during which the job is ready but can not be executed due to the ex-
ecution of its higher priority tasks. Evidently, the set of higher priority tasks determines
the amount of interference on a lower priority task. Consequently, the fixed-priority or-
dering of the tasks plays an important role in determining the schedulability of each task
in a task set. Whether a task set is schedulable under a certainFP assignment can be
determined using appropriate schedulability test. Liu andLayland in [LL73] derived a
sufficient utilization-bound test for RM scheduling of implicit-deadline tasks on unipro-
cessors: if the total utilization of a task set is not greaterthann(2

1
n − 1), then all the

tasks meets their deadlines, wheren is the number of tasks in a task set. Necessary
and sufficient (exact) schedulability test for uniprocessor FP scheduling have been de-
rived in [LSD89, JP86, ABR+93, ABRW91]. The exact test proposed in [ABR+93] for
uniprocessor DM scheduling is presented in Subsection 7.2.1 (page 117).

Multiprocessor Scheduling. In multiprocessor scheduling, tasks can be scheduled us-
ing one of the two basic multiprocessor scheduling principles: theglobal scheduling
and thepartitionedscheduling. In global scheduling, a task is allowed to execute on any
processor (even when it is resumed after preemption). This is done by keeping all the
ready tasks in a global queue from which the highest prioritytasks are dispatched to the
processors, possibly by preempting some lower priority tasks, based on fixed priority
assigned to each task.

In partitioned scheduling, the task set is grouped in different task partitions and each
partition has a fixed processor onto which all the tasks of that partition are assigned.
A task assignment algorithmpartitions the task set and decides the mapping of each
task to a particular processor. In partitioned scheduling,ready tasks assigned in one
processor are not allowed to execute in another processor even if the other processor is
idle. Evidently, tasks can migrate in global scheduling while no migration is allowed in
partitioned scheduling. The advantage of partitioned scheduling is that once tasks are
assigned to processors, each processor can execute tasks based on mature uniprocessor
scheduling algorithms. Many static-priority scheduling policies for both global [ABJ01,
Lun02, Bak06, BG03b, BCL05, And08a, DB11b, DB09] and partitioned [DL78, AJ03,
FBB06, LMM98a, LBOS95, LDG04, LGDG03, OB98, OS95b] approaches have been
studied to derive appropriate schedulability tests.

The main goal of schedulability analysis for many global andpartitioned FP schedul-
ing algorithms is to derive aschedulability testthat — when satisfied for a given task set
— implies that all the deadlines are met. It has already been proved that there exists some
implicit-deadline task set with utilization slightly greater than 50% of the capacity of a
multiprocessor platform on which a deadline miss must occurfor both global and par-
titioned static-priority scheduling [ABJ01, OB98]. Therefore, the minimum achievable

26 CHAPTER 2. PRELIMINARIES

utilization for both global and partitioned multiprocessor scheduling can not be greater
than 50%. Moreover, it is also well-known that applying the uniprocessor RM scheme
to multiprocessor global scheduling can lead to missed deadlines of tasks even when the
utilization of a task set is close to 0% of the capacity of the multiprocessor platform.
This effect is known asDhall’s effect[DL78, Dha77]: some task with large utilization
is assigned lower RM priority and misses its deadline.

Technique to avoid Dhall’s effect for static-priority is first proposed in [ABJ01]
which is further improved in [Lun02, BCL05, And08a]. Luckily, Dhall’s effectis ab-
sent in partitioned scheduling. The main challenge for partitioned scheduling is instead
to develop an efficient task assignment algorithm for partitioning a task set. However,
since the problem of determining whether a schedulable partition exists is an NP-hard
problem [GJ79], different heuristics have been proposed for assigning tasks to multi-
processors using partitioned scheduling. The majority of the heuristics for partitioned
scheduling are based on different bin-packing algorithms (such as First-Fit or Next-
Fit [LDG04]). One such bin-packing heuristic is First-Fit (FF), which is described next.

First-Fit (FF) Heuristic. With the FF heuristic, all the processors (e.g. processor one,
processor two, and so on) and tasks (task one, task two and so on) are indexed. Tasks
may be indexed based on some ordering of the task parameters (for example, sort the
task set based on increasing/decreasing periods or utilizations) or can simply follow
any arbitrary ordering for indexing. For example, Dhall andLiu in [DL78] proposed
FF partitioned scheduling using the sufficient RM schedulability test where tasks are
first sorted based on increasing periods. Starting with the task with lowest index, tasks
are assigned to the lowest-indexed processor, always starting with the first processor
(processor one). To determine if an unassigned task will be schedulable on a particu-
lar processor, when assigned along with the already-assigned tasks on that processor, a
uniprocessor schedulability test is used. If a task can not be assigned to the first proces-
sor based on that schedulability test, then the task is considered to assign in the second
processor, and so on. If all the tasks are assigned, then the partitioning of the task set is
successful. If some task can not be assigned to any processor, then the task set can not
be partitioned using FF.

Task-Splitting Algorithms. The different degrees of migration freedom for tasks in
the global and partitioned scheduling can be considered as two extremes of multipro-
cessor scheduling. While in global scheduling no restriction is placed for task migra-
tion from one processor to another, partitioned schedulingdisallows migration com-
pletely. This strict non-migratory characteristic of partitioned multiprocessor schedul-
ing is relaxed using a promising concept calledtask-splitting in which some tasks,
calledsplit-tasks, are allowed to migrate to a different processor. Task splitting does
not mean dividing the code of the tasks; rather it is migration of execution of the
split tasks from one processor to another. Recent research has shown that task split-
ting can provide better performance in terms of schedulability and can overcome the
limitations of minimum achievable utilization of 50% for pure partitioned schedul-
ing [AT06, AB08, ABB08, KY08, KY09, GSYY10, LRL09, BBA11, PJ10].

2.2. FAULT-TOLERANT SYSTEMS 27

2.2 Fault-Tolerant Systems

A fault-tolerant system is one that continues to perform itsspecified service in the pres-
ence of hardware and/or software faults. In designing fault-tolerant systems, mecha-
nisms must be provided to ensure the correctness of the expected service even in the
presence of faults. Due to the real-time nature of many fault-tolerant systems, it is es-
sential that the fault-tolerance mechanisms provided in such systems do not compromise
the timing constraints of the real-time applications. In this section, the basic concepts of
fault-tolerant systems under the umbrella of real-time systems are discussed.

2.2.1 Failure, Error, and Fault

Avižienis and others define the termsfailure, error andfaults in [ALRL04].

Failure A systemfailure occurs when the service provided by the system deviates from
the specified service. For example, when a user can not read his stored file from
computer memory, then the expected service is not provided by the system.

Error An error is a perturbation of internal state of the system that may lead to failure.
A failure occurs when the erroneous state causes an incorrect service to be deliv-
ered, for example, when certain portion of the computer memory is corrupted or
broken and the stored files therefore can not be read by the user.

Fault The cause of the error is called afault. An active fault leads to an error; otherwise
the fault is dormant. For example, impurities in the semiconductor devices may
cause computer memory in the long run to behave unpredictably.

If a fault remains dormant during system operation, then there is no error. If the fault
leads to an error, then it must be tolerated so that the error does not lead to system
failure2. Identifying the characteristics of the faults and the corresponding errors is an
important issue for the design of an effective fault-tolerant system. Faults in systems
may be introduced during development (for example, design and production faults) or
due to the interaction with the external environment (for example, faults entering via
user interface or due to natural process such as radiation).Based on persistence, faults
can further be classified as permanent, intermittent, and transient [Joh88]. Faults can
occur in hardware or/and software.

Hardware Faults: A permanent failure of the hardware is an erroneous state that is
continuous and stable. Such erroneous state is caused by some permanent fault in the
hardware. On the other hand, transient hardware faults are temporary malfunctioning
of the computing unit or any other associated components which causes incorrect state
in the system. Intermittent faults are repeated occurrences of transient faults. Transient
faults and intermittent faults manifest themselves in a similar manner. They happen for
a short time and then disappear without causing a permanent damage. If the error caused

2Example 1.1 (page 10) demonstrates the terms — faults, errors and failures — using an example.

28 CHAPTER 2. PRELIMINARIES

by such transient faults are recovered, then it is expected that the same error will not re-
appear since transient faults are short lived. To tolerate apermanent processor failure,
either the processor is repaired / replaced or its effect is mitigated by executing the task
on a redundant processor.

• Sources of Hardware Transient Faults:The main sources of transient faults in
hardware are environmental disturbances like power fluctuations, electromagnetic
interference and ionization particles. Transient faults are the most common, and
their number is continuously increasing due to high complexity, smaller transistor
sizes and low operating voltage for computer electronics [Bau05].

• Rate of Transient Faults: It has been shown that transient faults are significantly
more frequent than permanent faults [SKM+78, CMS82, IRH86, CMR92, Bau05,
SABR04]. Siewiorek and others in [SKM+78] observed that transient faults are
30 times more frequent than permanent faults. Similar result is also observed
by Castillo, McConnel and Siewiorek in [CMS82]. In an experiment, Iyer and
others found that 83% of all faults were determined to be transient or intermittent
[IRH86]. The results of these studies show the need to designfault-tolerant system
to tolerate transient faults.

Experiments by Campbell, McDonald, and Ray using an orbiting satellite con-
taining a microelectronics test system found that, within asmall time interval (∼
15 minutes), the number of errors due to transient faults is quite high [CMR92].
The result of this study shows that in space applications, the rate of transient faults
could be quite high and a mechanism is needed to tolerate multiple transient faults
within a particular time interval. It was shown in [SKK+02] that the error rate in
processors due to transient faults is likely to increase by as much as eight orders
of magnitude in the next decade. Moreover, given the fact that transistor size and
operating voltage are shrinking for recent computer electronics, the number of
transient faults is expected to rise in future within a giventime interval.

Software Faults: All software faults, known as software bugs, are permanent.How-
ever, the way software faults are manifested as errors leadsto categorize the effect as:
permanent and transient errors. If the effect of a software fault is alwaysmanifested,
then the error is categorized as permanent. For example, initializing some global vari-
able with incorrect value which is always used to compute theoutput is an example of
a permanent software error. On the other hand, if the effect of a software fault is not
always manifested, then the error is categorized as transient. Such transient error may
be manifested in one particular execution of the software and may not manifest at all
in another execution. For example, when the execution path of a software varies based
on the input (for example, sensor values) or the environment, a fault that is present in
one particular execution path may manifest itself as an transient error only when certain
input values are used. This fault may remain dormant when a different execution path is
taken, for example, due to a change in the input values or environment.

2.2. FAULT-TOLERANT SYSTEMS 29

The fault-tolerant scheduling algorithms proposed in thisthesis considers tolerat-
ing multiple task errors within a time interval equal to the largest relative deadline of
the tasks in a sporadic task set. Such task errors may be caused by software faults or
transient hardware faults. In addition, the fault-tolerant scheduling algorithm proposed
for multiprocessors also considers tolerating3 permanent processor failures. The fault
model considered for processor failures is permanent hardware faults that are contin-
uous and stable. Processors are assumed to befail-stop processors: each processor is
either working correctly or ceases functioning [SS83, Sch84].

2.2.2 Error Detection Techniques

In order to tolerate a fault that leads to an error, fault-tolerant systems rely on effective
error detection mechanisms. The design of many fault-tolerant scheduling algorithm
relies on effective mechanisms to detect errors. Error detection mechanisms and their
coverage (e.g., percentage of errors that are detected) determine the effectiveness of the
fault-tolerant scheduling algorithms.

Error detection can be implemented in hardware or software.Hardware imple-
mented error detection can be achieved by executing the sametask on two processors
and compare their outputs for discrepancies (duplication and comparison technique us-
ing hardware redundancy). Another cost-efficient approach based on hardware is to use
a watchdog processor that monitors the control flow or performs reasonableness checks
on the output of the main processor [MCS91]. Control flow checks are done by verify-
ing the stored signature of the program control flow with the actual program control flow
during runtime. In addition, today’s modern microprocessors have many built-in error
detection capabilities like, error detection in memory, cache, registers, illegal op-code
detection, and so on [MBS07, WEMR04, SKK+08, KSSF10].

There are many software-implemented error-detection mechanisms: for example,
executable assertions, time or information redundancy-based checks, timing and control
flow checks, and etc. Executable assertions are small code inthe program that checks the
reasonableness of the output or value of the variables during program execution based
on the system specification [JHCS02]. In time redundancy, aninstruction, a function
or a task is executed twice and the results are compared to allow errors to be detected
(duplication and comparison technique used in software) [AFK05]. Additional data (for
example, error-detecting codes or duplicated variables) are used to detect occurrences
of an error using information redundancy [Pra07].

In summary, there are numerous ways to detect the errors and acomplete discussion
is beyond the scope of this thesis. The fault-tolerant scheduling algorithms proposed in
this thesis rely on effective error-detection mechanisms.

3By “tolerating” it does not mean preventing/stopping the failure in some way; rather, it means that the
effect of permanent processor failure is mitigated by executing the tasks on other non-faulty processors.

30 CHAPTER 2. PRELIMINARIES

2.3 Mixed-Criticality Systems

An MC system is defined as follows in [BBB+]:

“A mixed-critical system is an integrated suite of hardware, operating sys-
tem and middleware services and application software that supports the ex-
ecution of safety-critical, mission-critical, and non-critical software within
a single, secure compute platform.”

In short, anMC system is one in which the functionalities hosted on a commonplatform
have different criticality levels. For example, in the RTCADO-178B standard, there
are five different Design Assurance Levels (DAL A to DAL E) forsoftware in avionics
systems (please see Table 2.1). The “criticality” of a function or task specifies its “im-
portance”. The consequence for not meeting the specification of a high critical function
could be severe. The criticality assigned to a function specifies the level of assurance or
confidence needed regarding the correct behavior of the function.

Level Failure Condition Interpretation

A Catastrophic Software that could cause or contribute to the
failure of the system resulting in the loss of abil-
ity to continue safe flight and landing. Failures
may cause a crash. An example of such system
is an engine controller software.

B Hazardous Software that could cause or contribute to the
failure of the system resulting in serious or fa-
tal injuries to the aircraft occupants. Examples
is pressurization system software.

C Major Software that could result in a major failure
condition or discomfort to the occupants of the
aircraft.

D Minor Failures results in some inconvenience to the oc-
cupants of the aircraft. Example is failure caus-
ing a routine flight plan change.

E No Effect Software that could cause or contribute to the
failure of the system resulting in no effect on the
system. Examples are entertainment system, In-
ternet access.

Table 2.1: RTCA published the DO-178B software development process standard “Software Con-
siderations in Airborne Systems and Equipment Certification”. The United States Federal Avia-
tion Authority (FAA) accepts the use of DO-178B as a means of certifying software in avionics
application. The five DO-178B levels describe the consequences of a potential failure of the soft-
ware: catastrophic, hazardous, major, minor, or no-effect.

2.3. MIXED-CRITICALITY SYSTEMS 31

The need for research in the domain ofMC systems is motivated in [BBB+] using an
example of Unmanned Aerial Vehicle (UAV) which is expected to operate over or close
to civilian airspace. Such a system has bothflight-critical andmission-criticalfunction-
alities that require safety, reliability and timeliness guarantee. In addition, such a system
must pass the mandatory certification from standard civil aviation authority. Certifica-
tion of MC system is challenging and costly approach since such systemis relatively
complex due to the integration of functionalities with different criticality levels.

The objective of designing anMC systems is to combine previously independent sys-
tem applications into a single computation platform while also ensuring that the system
is predictable. In other words, the integration of mixed-critical functions on a common
computing platform aims to save cost while at the same time hope to improve the overall
performance in terms of, for example, safety, reliability and timeliness. Research in the
real-time community has recently received considerable attention considering two im-
portant factors ofMC systems: (i) run-time robustness, and (ii) design-for-certification.

Run-time Robustness.One of the most important requirement for designing mixed-
criticality systems is in ensuring the non-interference orisolation property among func-
tions of different criticality levels. In particular, a high-critical function must not be
adversely affected by a low-critical function. In the context of real-time scheduling,
temporal isolation is achieved by ensuring that if the system is not capable of meeting
some deadline (e.g., due to overload situation), then no deadline of a high-criticality task
is missed before all the low-critical tasks.

Physical separation of resources is one option to achieve the isolation property where
the functionalities including all logic and processor are physically separated. For exam-
ple, the safety-critical functions, e.g., flight control, engine control, electrical power sys-
tem control in an UAV may have their own hardware, software, and standard interfaces
to communicate with other functions.

Due to the space, weight, and power considerations, providing such dedicated re-
sources is costly or may even impractical for many resource-constrained systems. To
solve this problem, integration of multiple functionalities on the same platform is con-
sidered where the isolation property is achieved by partitioning the system resources.
For example, according to ARINC 653 standard, the system must provide space and
temporal partitioning of all resources — e.g., memory, processing time, communica-
tion bus — for all the hosted functionalities. In such an approach, a partition allo-
cated to a low-critical function can not be used by a high-critical function. Therefore,
a high-critical task may miss the deadline in its time partition while a low-critical task
meet the deadline in another time partition (known as criticality inversion [NLR09]).
Moreover, resources are not utilized efficiently since function in one partition is not
allowed to execute on a different partition. To avoid the criticality inversion prob-
lem and to efficiently use the processing resources, “true” sharing of the platform is
considered while providing run-time robustness. New resource allocation and schedul-
ing algorithms are being designed such that the system provides run-time robustness
[NLR09, LdNRM10, TSP11, YYP+12].

32 CHAPTER 2. PRELIMINARIES

Design-for-Certification: Another important aspect ofMC system, which is addressed
in this thesis, is design-for-certification. For example, the design and development of an
UAV needs to be certified by standard statutory certificationauthority (CA), for example,
by Federal Aviation Authority in the US or the European Aviation Safety Agency in
Europe for avionics systems. The CA certifies a system as correct if the assumptions of
the CA regarding the system behavior hold at run-time.

Traditionally, when functions having different criticality levels are hosted on the
same computing platform, then the system is certified by assuming the highest criti-
cality level for all the functions. Such assumption is pessimistic because certifying at
the highest criticality level implies the highest degree ofassurance regarding the correct
behavior of all the functions which in turn could be guaranteed by over-provisioning
the required resources. Therefore, it is necessary to develop new design and analysis
techniques that addresses certification ofMC systems while efficiently utilizing the pro-
cessing resources. This thesis proposes fixed-priority scheduling algorithms considering
this design-for-certification issue ofMC systems.

3
Models

The design and analysis of hard real-time scheduling algorithms is based on appropriate
modeling of the target system. This is because a priori knowledge of the workload and
available resources is necessary to analyze and ensure predictability of the system. The
task, resourceand fault models are presented in this chapter. A task model specifies
the workload and timing constraints of the real-time application. A resource model
specifies the type and capacity of the available resources (e.g., processors) for executing
the tasks. A fault model specifies the nature and frequency offaults that the system
needs to tolerate.

3.1 Task Model

The formal notations and important concepts of sporadic tasks are now presented.

Sporadic task set. In this thesis, real-time scheduling ofn constrained-deadline spo-
radic tasks in setΓ = {τ1 . . . τn} is considered. Each of the tasksτi ∈ Γ is characterized
by a triple (Ci,Di, Ti), where

• Ci represents the worst-case execution time (WCET) of each job of the task;

• Di is the relative deadline;

• Ti is the period which is minimum inter-arrival time of the jobsof the task.

Jobs of Tasks.Successive arrivals of the instances or jobs of taskτi are separated by
at leastTi time units. Thejth job of taskτi is denoted byJji . The release time of job

33

34 CHAPTER 3. MODELS

Jji is denoted byrji . A job of a taskτi is released no earlier than the release time of the
previous job plus the periodTi, i.e., rj+1

i ≥ (rji + Ti). The absolute deadline of job
Jji is denoted bydji and given as follows:

dji = rji + Di (3.1)

A job Jji requires at mostCi units of execution time between its release timerji and
deadlinedji . If taskτi is periodic and first released at time 0, thenrji = (j − 1) · Ti.
Density and Utilization. Thedensityδi andutilizationui of a taskτi are denoted by

δi = Ci/Di

ui = Ci/Ti

Thetotal density (resp. utilization)of task setA is
∑

τi∈A δi (resp.
∑

τi∈A ui).

Fixed-Priority. For a given fixed-priority ordering of the tasks, the set of tasks with a
priority higher than the priority of taskτi is denoted byHPi. There are many policies
for assigning the fixed-priorities to the tasks. Some example fixed-priority assignment
policies are the following:

• Rate-Monotonic (RM) priority: The priority of taskτi is greater than the pri-
ority of task τj if Ti < Tj . This is the priority assignment governed by the
RM scheduling policy: a task with smaller period has higher priority.

• Deadline-Monotonic (DM) priority: The priority of taskτi is greater than the
priority of taskτj if Di < Dj . This is the priority assignment governed by the
DM scheduling policy: a task with smaller relative deadlinehas higher priority.

• Slack-Monotonic (SM) priority: The priority of taskτi is greater than the prior-
ity of taskτj if (Di−Ci) < (Dj −Cj). This is the priority assignment governed
by the SM scheduling policy: a task with smallerslackhas higher priority.

• Audsley’s Optimal Priority Assignment Algorithm: While the optimal fixed-
priority ordering for some system model1 can be given using simple heuristic
(e.g., the DM priority ordering is the optimal for constrained-deadline tasks on
uniprocessor [LW82]), the optimal priority ordering for other system model is not
necessarily based on simple heuristic. For example, the optimal priority ordering
of constrained-deadline tasks having arbitrary start times (offsets) is not neces-
sarily the DM priority assignment policy for uniprocessor.To assign the fixed
priorities to such task sets with offsets, an optimal priority assignment (OPA) al-
gorithm, known as Audsley’s OPA algorithm, is proposed in [Aud01, Aud91]. Al-
though the OPA algorithm is first proposed for uniprocessors, it has been adapted
by Davis and Burns [DB09] for priority assignment on multiprocessors. The basic

1The system model consists of the task, resource, and scheduler models.

3.1. TASK MODEL 35

idea of Audsley’s OPA algorithm to assign the priorities is based on a schedula-
bility testS and involves the following steps:

– Initially, no task is assigned any priority (each task is called a priority-
unassigned task);

– The fixed priorities are assigned starting from the lowest priority level to the
highest priority level, i.e., the task which is first assigned a priority is the
lowest priority task and the task which is assigned the final priority is the
highest priority task;

– For a particular priority level (staring from the lowest), if any one of the
priority-unassigned tasks, sat taskτ , is deemed schedulable using the schedu-
lability testS at that priority level, by assuming all other priority-unassigned
tasks having higher priorities, then taskτ is assigned that priority level;

– If no priority-unassigned task can be assigned the prioritylevel then priority
assignment fails. If each task is assigned one priority level, then the priority
assignment succeeds.

While many work consider the priority assignment problem andschedulability
testing problem as two independent problems, the Audsley’sOPA algorithm com-
bines the problem of finding the priority assignment with theschedulability test
of each task. Consequently, if all the tasks are assigned priorities according to the
OPA algorithm using schedulability testS, then the task set is also schedulable.

In order to find a priority ordering for which a task set passesthe schedulability
testS, a naive and exhaustive approach is to consider all then! different priority
orderings of the tasks. In contrast, Audsley’s OPA algorithm needs to check at
most(n2 + n)/2 different priority orderings. Details on OPA algorithm andits
applicability to multiprocessor scheduling are presentedin Chapter 6.

Time Division. Even though length of time intervals, time instants are often modeled
using real numbers, time is not infinitely divisible in actual implementation of a system.
The difference in time between occurrence of different events can not be determined
more precisely than one tick of the system clock. In this thesis, all time values (e.g,
WCET, deadline, and interval length) are assumed to be positive integers.

Critical Instant. The critical instant of a task is the release time at which theinter-
ference on the task from the higher priority tasks is maximized. Consequently, the re-
sponse time of the job released at critical instant is the worst-case response time of the
task. Therefore, a job released at a critical instant is schedulable if and only if the task
set is schedulable. Liu and Layland have proved that the critical instant for uniproces-
sor FP scheduling of any task occurs when the task is releasedsimultaneously with the
release of all its higher priority tasks [LL73].

The analysis of the proposed fault-tolerant scheduling algorithmFTDM in this thesis
for uniprocessor platform also considers the critical instant of each task to derive an

36 CHAPTER 3. MODELS

exact schedulability test. Under fault-tolerant FP scheduling on uniprocessors, where
time redundancy is used to recover from task error, there is one job of each task during
execution of which the occurrence of faults have the greatest impact. In such case, the
errors may occur in that particular job of the task and/or in any job of its higher priority
tasks. To recover from the errors in such situation, the execution of the backups causes
the response-time of that particular job to be the maximum.

Ghoshet al. showed that, when faults occur and time redundancy is used totolerate
faults in uniprocessor RM scheduling, the critical instantis when all tasks are released
simultaneously [GMMS98]. This result can be easily extended for FTDM scheduling
(i.e., DM fault-tolerant scheduling on uniprocessor) as follows: if the completion of job
J of a task is delayed by∆ time units due to the occurrence of some faults inJ or in
its higher-priority jobs, then some other lower priority job J ′ of some other task will be
delayed by at most∆ time unit if bothJ andJ ′ are released simultaneously. Therefore,
the exact schedulability test for the proposedFTDM scheduling considers that all the
tasks are released at the same time and without loss of generality it is assumed that all
the tasks are released at time zero.

Unfortunately, the critical instant which is known for uniprocessor FP scheduling is
not applicable to global FP scheduling. Lauzac et. al showedthat a task does not have
its worst-case response time when released simultaneouslywith all the higher priority
tasks under the global FP scheduling [LMM98b]. In multiprocessor scheduling, the
response time of a job that is released simultaneously with all other higher priority tasks
may not be the largest because this scenario may not cause allthe processors to be
busy executing the higher priority tasks for the largest time interval (i.e., interference)
over which a lower priority task is awaiting execution. Thisis demonstrated using the
following example.

Example 3.1. Consider four sporadic tasks with parameters(Ci, Di, Ti) as follows:
τ1(1, 1, 4), τ2(1, 2, 5), τ3(2, 3, 4), andτ4(1, 4, 4). Assume that tasks are given deadline-
monotonic priorities and scheduled onm = 2 processors using globalFP scheduling.
Also assume that all tasks are simultaneously released at time zero and all jobs arrive as
quickly as possible (i.e., strictly periodically). The global FP scheduling of these tasks
is shown in Figure 3.1.

The first jobJ1
4 of the lowest priority taskτ4 completes its execution at timet = 2

(response-time is 2 time units). However, the second jobJ2
4 of taskτ4 is released at time

t = 4 and completes its execution att = 7 (response-time is 3 time units). Consequently,
the worst-case response time of taskτ4 is not necessarily equal to the response time of
its first job. In other words, the critical instant of a task isnot the time instant when all
the higher priority tasks are released at the same time in global FPscheduling.

Given the sporadic nature of the tasks, finding the job that suffers the maximum inter-
ference due to the execution of the higher priority jobs can not be determined easily for
global FP scheduling. Not knowing the critical instant for analyzing global FP schedu-
lability of a task requires some pessimism to be introduced in the schedulability analysis.
As will be evident later, introduction of such pessimism during schedulability analysis
results in sufficient schedulability test for global FP scheduling.

3.2. RESOURCE MODEL 37

Figure 3.1: The release time and deadline of each job is shown using upward and downward
arrow, respectively. The second job of taskτ4 has larger response time than its first job. Critical
instant for globalFPscheduling is not the instant when all the tasks are released at the same time.

3.2 Resource Model

In this thesis, the only resource the tasks are assumed to share is the computing platform.
Scheduling on multiprocessors considers the availabilityof m identical unit-capacity
processors. In this thesis, multiprocessors and multicores are synonymous since the
proposed schedulability analysis and theory for multiprocessors is also applicable to
multicores havingm identical cores hosted on the same chip.

Task preemptions, migrations, context-switches, scheduling decisions incurs over-
head and are extrinsic to the task model at hand. The costs of such different kinds of
overhead are assumed to be included in the WCET of each task. This is because, at
least for now, there is no analytical method available to calculate the cost of such over-
heads for sporadic task systems considering different processor architectures, operating
systems, and so on. There have been effort to calculate such overheads for specific ar-
chitecture and operating system based onempirical study using strictly periodic task
systems [BCA08, BBA10]. Moreover, the preemption and migration overhead due to
the loss of cache affinity is dependent on the working set sizeof individual task. And,
the working set size of different tasks of different applications are different. Although
such issues are not addressed in this thesis, one can rely on experimental studies (sim-
ilar to [BCA08, BBA10]) to measure these overhead costs considering the application,
operating system, and the target hardware platform. The designer of a real-time system
can inflate the WCET of each task after experimentally measuring the cost of different
overheads by executing the tasks on the target platform.

38 CHAPTER 3. MODELS

3.3 Fault Model

Designing fault-tolerant scheduling algorithm needs to guarantee that all the tasks dead-
lines are met when faults occur even under the worst-case load condition. No fault-
tolerant system, however, can tolerate an infinite number and arbitrary types of faults
within a particular time interval based on time redundancy.The scheduling guarantee in
fault-tolerant system is thus given under the assumption ofa certain fault model.

This thesis considers (i) tolerating task errors for uniprocessor scheduling, and (ii)
tolerating both task errors and processor failures for multiprocessor scheduling. The pro-
posed uniprocessor fault-tolerant scheduling algorithmFTDM considers toleratingf task
errors within all possible time intervals of lengthDmax whereDmax is the maximum
relative deadline of any task in the task set. The proposed multiprocessor fault-tolerant
scheduling algorithmFTGS considers toleratingf task errors within all possible time
intervals of lengthDmax and also considers tolerating at mostρ permanent processor
failures during the lifetime of the system.

In this thesis, the fault model considered is very strong in the sense that multiple
faults (that cause errors) can occur at any time, in any task,and even during the execution
of the backups. The faults can also occur in bursts; however,the number of task errors
that can be recovered is bounded byf within any possible interval of lengthDmax.

The fault model considers tolerating transient hardware faults due to which the task
error is also transient. Transient errors are short lived and would not reappear upon re-
executing the task. This is a reasonable assumption since itcan be implemented simply
by resetting the processor before re-execution. The fault model also considers software
fault due to which the task error is transient. When a softwarefault is manifested as
a transient error, then such error can be recovered using simple re-execution. In such
case, it is expected that the same error would not occur if thesoftware (task) is simply
re-executed. Software faults that result in permanent taskerrors are also considered in
the fault model. If the effect of a software fault is manifested as a permanent error,
then simple re-execution of the same task can not mitigate such permanent erroneous
behavior. In such case, a diverse implementation of the taskhas to be executed as backup
to recover from the error and such backup may have different WCET than the primary.

Tolerating permanent processor failure is also consideredin the fault model for the
proposed fault-tolerant scheduling on multiprocessors. The effect of such failures is
mitigated by executing the backup of the task that was executing on the faulty processor
on a different (non-faulty) processor. The fault model for permanent processor failures
covers those hardware faults that are continuous/stable and causes permanent error. Each
of the processors in a multiprocessor system is assumed to befail-stop processors: it is
either working correctly or ceases functioning.

If a system is designed to tolerate transient error or permanent processor failures,
then either re-execution or diverse backup is effective. However, if the system also
needs to tolerate permanent error due to software faults, then all the backups must be
different (i.e., implemented diversely) and we have to pay for this costly approach for
tolerating such software faults using time redundancy.

3.3. FAULT MODEL 39

Time redundancy is considered for tolerating multiple faults. When fault occurs
during execution of a task and an error is detected, either the faulty task is simply re-
executed or a diverse implementation of the same task is executed. The diverse imple-
mentation of the same task is considered to achieve diversity as is used in N-version pro-
gramming [Avi85]. A backup of a task, which is a diverse implementation, has the same
period, priority, and deadline as the original task but may have a different WCET than
the primary. The schedulability analysis of the fault-tolerant algorithms has to consider
such different WCETs for different backups of the same task.

In order to tolerate task errors even during the recovery operations (i.e., when a
backup is executing) multiple backups are considered for each task. The multiple back-
ups of the same task are ordered based on some design decision(i.e., the first backup is
executed whenever the primary fails, the second backup is executed whenever the first
backup fails, and so on). For example, the system designer may prefer to run a partic-
ular implementation of a task as the primary, and then another implementation (e.g., an
exception handler) as the backup if an error is detected in the primary, and so on.

An error is assumed to be detected at the end of execution of a task’s primary or
backup. This is required for the worst-case schedulabilityanalysis since the detection of
an error at the end of execution corresponds to larger wastedCPU time in comparison
to the situation when the error is detected in the middle of the execution. There is no
fault propagation: one fault is assumed to affect at most onejob, either its primary or
one of its backups. It is also assumed that, during the execution of each primary or
backup of a task, at most one fault could affect this execution. This assumption is also
essential for the worst-case schedulability analysis because the overhead for executing
the backup, after an error is detected, does not depend on thenumber of errors affecting
that particular primary or backup. If more than one error affect a task’s primary or
backup, then only one additional backup is activated to recover from those task errors.

Both the proposedFTDM andFTGS scheduling algorithms consider toleratingf task
errors in each of the all possible intervals of lengthDmax. Within any time interval of
lengthDmax, thef task errors may occur in the same job of a task — affecting that
job’s primary and backups. Therefore, the task model is extended to considerf different
backups for each task. The WCET of the primary copy of taskτi isCi and the WCET of
each of thef backup copies of taskτi is denoted byEki for k = 1, 2, . . . f . All the
jobs of the same task have the same WCET for the primary copies and the WCET of
thekth backup copy of different jobs of the same task are equal fork = 1, 2, . . . f . If a
task errors are detected in jobJji (one error in the primary copy and(a−1) errors in the
backup copies), the total execution requirement for jobJji isCi+

∑a

k=1E
k
i . Note that

for a maximum ofa task errors affecting a particular jobJji , theath backup copy is the
non-faulty execution of jobJji under the assumed fault model. Moreover, the following
must hold for each constrained-deadline taskτi ∈ Γ for all i = 1, 2, . . . n:

Ci +

f
∑

k=1

Eki ≤ Di (3.2)

40 CHAPTER 3. MODELS

It is assumed that a combination of software and hardware error-detection mechanisms
are available to detect task error. There are many software and hardware based error-
detection mechanisms as is discussed in Section 2.2.2. Perfect error detection coverage
is assumed for simplicity of the schedulability analysis. However, a probabilistic anal-
ysis of fault-tolerant schedulability with imperfect error detection coverage can be ad-
dressed similar to [BPSW99] and such an analysis is not the addressed in this thesis. It
is also assumed that the error-detection and fault-tolerance mechanisms are themselves
fault-tolerant. The error detection overhead is considered as part of the WCET of the
task. In summary, the fault model considered in this thesis has reasonable representativ-
ity and very general to tolerate a variety of faults in hardware/software.

4
Goals and Contributions

The complexity of hardware and software in computerized system is increasing due to
the “push-pull” effect between the development of new software for existing hardware
and the advancement in hardware technology for forthcomingsoftware. On one hand,
high-speed processors pull the development of new softwarewith more functionalities
(possibly with added complexities), and on the other hand, application software with
new functionalities push the industry to come up with more powerful processors (with
added complexities).

Due to the increased complexity of real-time systems both interms of hardware and
software, the design of such systems is becoming more challenging. One of the main
challenges is to utilize the processing platform efficiently while satisfying all the timing
constraints of real-time systems. The increasing frequency of the occurrences of tran-
sient faults in increasingly-complex hardware and the increasing likelihood of having
more bugs in complex software require effective and cost-efficient fault-tolerant mecha-
nisms in today’s computerized systems. Due to the size, weight and power constraints in
many safety-critical embedded systems, the integration ofmultiple functionalities hav-
ing different criticality levels on the same hardware platform requires developing new
criticality- and certification-cognizant scheduling algorithms. In order to ensure that the
non-functional behaviors of real-time systems are acceptable, the design of the system
requires appropriate modeling, effective analysis, and proper verification.

The overall goal of this thesis, considering the research questionsQ1, Q2 andQ3 in
Section 1.1 (page 3), is to design and analyze resource-efficient scheduling algorithms
that can be used to satisfy the timing, reliability and criticality constraints. The major
contributions to achieve this goal in this thesis are listedbelow (contributionsC1 andC2
addressQ1; contributionsC3 andC4 addressQ2, and contributionC5 addressesQ3):

41

42 CHAPTER 4. GOALS AND CONTRIBUTIONS

C1 Density-Bound-Based Test (Chapter 5) –A new fixed-priority assignment pol-
icy, calledISM-DS, for constrained-deadline sporadic tasks is proposed. Theproposed
priority assignment policy addresses the problem of determining the fixed-priority or-
dering of the sporadic tasks to be scheduled using global FP scheduling. According to
the ISM-DS policy, a subset of the tasks (referred to as heavy tasks) is assigned the
highest fixed priority and the remaining tasks (referred to as light tasks) are assigned
slack-monotonic priorities. The density threshold, basedon which a task is classified as
being either heavy or light, is calculated based on the number of processors. In order
to address the schedulability testing problem, a sufficientdensity-bound-based schedu-
lability test is derived by analyzing global FP scheduling using theISM-DS priority
assignment policy. This test is shown to dominate the density-bound-based state-of-the-
art schedulability test for global FP scheduling of constrained-deadline tasks.

Based on schedulability analysis of theISM-DS policy, another priority assignment
policy, calledISM-DS[ξ], is proposed. PolicyISM-DS[ξ] assigns fixed-priorities to the
tasks in a way that is similar to theISM-DS policy, but using a threshold densityξ which
is selected from the set of all the densities of the tasks. To address the schedulability
testing problem, the threshold densityξ is selected in such a way that the task set become
schedulable using global FP scheduling. It is also proved that the schedulability test for
global FP scheduling based on theISM-DS[ξ] priority assignment policy dominates
the density-bound test for theISM-DS priority assignment policy. Simulation results
show that the fraction of randomly-generated task sets deemed schedulable using the
schedulability test for theISM-DS[ξ] priority-assignment policy is significantly higher
than that of the density-bound test for theISM-DS priority assignment policy.

C2 Iterative Test (Chapter 6) – A new response-time-based iterative test, called the
IA-RT test, is proposed for global FP scheduling of constrained-deadline sporadic
tasks. TheIA-RT test addresses the schedulability testing problem while determin-
ing the priorities of the tasks using a multiprocessor extension of the Audsley’s optimal
priority assignment scheme. Finding such a priority ordering is important since many
of the traditional priority-assignment policies (e.g., the deadline-monotonic policy) per-
form poorly for global FP scheduling of constrained-deadline tasks, and also because
the optimal priority assignment for such task systems is notknown at present time.

TheIA-RT test also deals with the challenge of reducing the pessimismin approx-
imating the worst-case (i.e., critical instant) for globalFP scheduling. TheIA-RT test
is derived based on a crucial observation (regarding the schedulability analysis) which
is used to derive an improvement in order to reduce the pessimism in the interference
computation as caused by the higher priority tasks on each lower priority task. The
observation is that, if a number ofm′ tasks andm′ processors,0 ≤ m′ < m, are not
considered during the schedulability analysis of a lower priority task τi, then the pes-
simism of the interference computation due to the higher priority tasks can be reduced.
Based on this observation, a novel criterion is proposed which finds a set ofm′ tasks and
m′ processors that will not be considered during the global FP schedulability analysis of
a lower priority taskτi. By computing an upper bound on the interference of each lower
priority taskτi ∈ Γ, the response-time-basedIA-RT test is derived. TheIA-RT test

43

does not only dominates but also empirically outperforms the state-of-the-art iterative
test for global FP scheduling of constrained-deadline sporadic tasks.

C3 Uniprocessor Fault-Tolerant Scheduling (Chapter 7) –A fault-tolerant schedul-
ing algorithm for uniprocessors, calledFTDM, based on the DM priority assignment
policy is proposed. The proposed scheduling algorithm considers a very general fault
model such that multiple faults can occur in any task and at any time (even during recov-
ery). TheFTDM algorithm considers time-redundant execution of the tasksas backup to
recover from occurrences of maximumf task errors within each of all possible time in-
tervals of lengthDmax. In order to resolve the interdependency between meeting timing
constraints and achieving fault-tolerance using time redundancy, precise schedulability
analysis ofFTDM algorithm is conducted. An exact schedulability test is derived based
on the maximum total workload requested within the release time and absolute deadline
of the job of each task released at the critical instant. To calculate this maximum total
workload, assuming occurrences of multiple faults, a noveltechnique to compose the
execution time of the higher priority jobs is used.

The only work that deals with a similar fault model as theFTDM algorithm is pro-
posed by Aydin [Ayd07], but considers EDF priority and the exact test in [Ayd07] has
an exponential run-time complexity. On the other hand, the run time-complexity to
evaluate the exact schedulability test of the proposedFTDM algorithm isO(n · N̂ · f2),
whereN̂ is the maximum number of jobs (generated by then periodic tasks) released
within any time interval of lengthDmax. No previous work has derived an exact fault-
tolerant uniprocessor schedulability test that has a lowertime complexity than that is
presented in this thesis for the assumed fault model. The proposed schedulability test
can be applied to partitioned multiprocessor scheduling during assignment of the tasks
to the processors so that a maximum off task errors can be tolerated on each processor.

C4 Multiprocessor Fault-Tolerant Scheduling (Chapter 8) –A fault-tolerant FP sche-
duling algorithm for multiprocessors, calledFTGS, based on global scheduling paradigm
assuming an arbitrary fixed-priority ordering of the tasks is proposed. The fault model
of FTGS algorithm is as general as theFTDM algorithm. In addition, theFTGS algo-
rithm also considers tolerating permanent processor failures in its fault model. More
specifically, theFTGS scheduling considers toleratingρ permanent processor failures
within the lifetime of the system, in addition to toleratinga maximum off task errors
that can occur within any interval equal toDmax. No other work considers a powerful
fault model for multiprocessor scheduling as is assumed fortheFTGS algorithm.

The schedulability analysis of theFTGS algorithm does not only resolve the interde-
pendency between timeliness and achieving fault toleranceusing time redundancy, but
also addresses the priority assignment problem, which is common even for traditional
(non-fault-tolerant) global FP scheduling. To that end, a sufficient schedulability test
for FTGS scheduling with a time-complexity ofO(n2 · f2 ·max{N̂ ,m · f, f2}) is de-
rived. The schedulability test for theFTGS algorithm can be combined with Audsley’s
optimal priority assignment algorithm to search for a priority ordering in case the test is
not satisfied for the given priority ordering of the tasks.

44 CHAPTER 4. GOALS AND CONTRIBUTIONS

The mathematical expression of theFTGS schedulability test incorporates different
parameters from the system models:f (number of task errors),ρ (number of processor
failures) andm (number of available processors) along with the parametersof the task
set. The system designers can play around with different values of these parameters to
make trade-off between fault resilience and resource requirement of the system. While
most of the previous work consider tolerating a task error using techniques intended for
tolerating processor failures (a wasteful approach in terms of resources), theFTGS algo-
rithm distinguishes between task errors and processors failures to efficiently utilize the
computing resources while at the same time achieving fault-tolerance.

C5 Multiprocessor Scheduling of Mixed-Criticality Systems (Chapter 9) – A certifi-
cation-cognizant FP multiprocessor scheduling algorithm, calledMSM, for constrained-
deadline sporadic tasks having different criticality levels is proposed. The proposed
MSM scheduling algorithm is based on a global FP scheduling paradigm with an addi-
tional feature — runtime monitoring of the criticality behavior — that determines when
the system switches to a higher criticality behavior1. Upon detection of criticality switch
to a higher criticality behavior, tasks relevant only to that criticality behavior are dis-
patched for execution. The run-time monitoring capabilityenables theMSM algorithm to
address both the deadline and criticality aspects ofMC tasks. A sufficient response-time-
based schedulability test of theMSM algorithm is proposed. This schedulability test can
be used to verify whether the timing constraints of the tasksat each criticality levels are
met, or not, thereby facilitating certification.

The main objective for deriving the schedulability test forthe MSM scheduling is
to make the test applicable with Audsley’s OPA algorithm so that the fixed priority as-
signment of theMC tasks can be determined. Finding such a priority ordering isimpor-
tant because many of the heuristic priority-assignment policies, for example, criticality-
as-priority-assignment (CAPA), perform poorly for FP scheduling of mixed criticality
tasks. While many other earlier work consider only two different criticality levels, the
MSM algorithm considers an arbitrary number of criticality levels (which is important
since the tasks in many practical systems have more than two criticality levels). This
is the first published work, on global FP scheduling ofMC tasks on multiprocessors.
Although this work considers FP scheduling, it can be easilyextended for any other
work-conserving scheduling algorithm. The time complexity to evaluate the schedu-
lability test forMSM algorithm, combined with the OPA algorithm for a task set with
L criticality levels, isO(n2 · L ·TL

max), which is pseudo-polynomial for any fixed value
of L that is reasonable for practical mixed-criticality systems. For example, the time
complexity for dual-criticality system (i.e.,MC system with only two criticality levels) is
O(n2 · T 2

max) which is pseudo-polynomial in the representation of the task set. Simula-
tion result shows that the schedulability test forMSM algorithm combined with Audsley’s
OPA algorithm significantly outperforms the schedulability test forMSM scheduling us-
ing other traditional priority assignment (e.g., deadline-monotonic, CAPA) policies.

1The criticality behavior of the system at each time instant isdetermined based on the actual execution
time of the active job of each task at that time instant.

5
Density-Bound-Based Test

A new fixed-priority assignment policy, calledImproved Slack-Monotonic Density Sep-
aration (ISM-DS), for global FP scheduling of a set of constrained-deadlinesporadic
tasks is presented in this chapter. Based on a threshold density, that only depends on the
number of processors, the priority assignment policyISM-DS assigns slack-monotonic
priority to a subset of the tasks while each of the other tasksis assigned the highest
fixed-priority. A sufficient density-bound-based schedulability test is derived for global
FP scheduling where the priorities are assigned according to policy ISM-DS. The
derived density-bound test dominates the state-of-the-art density-bound test for global
FP scheduling of constrained-deadline sporadic tasks.

Based on the schedulability analysis of priority assignment policyISM-DS, another
priority assignment policy, calledISM-DS[ξ], is proposed. PolicyISM-DS[ξ] assigns
the priorities similar to policyISM-DS except that the threshold densityξ is searched
from the set of densities of all the tasks. Considering the schedulability testing prob-
lem, the aim for searching the threshold densityξ is to guarantee the schedulability of
the tasks for theISM-DS[ξ] priority assignment policy. It is proved that the schedula-
bility test of global FP scheduling usingISM-DS[ξ] as the priority assignment policy
dominates that of using theISM-DS priority assignment policy. Empirical investigation
using randomly generated task sets shows surprising improvement of the schedulability
test for policyISM-DS[ξ] over that of using policyISM-DS.

45

46 CHAPTER 5. DENSITY-BOUND-BASED TEST

5.1 Introduction

It has become obvious that continuously increasing the clock speeds of uniprocessors
to provide more performance is impossible due to power consumption and heat dissipa-
tion limits. The processor industry has adopted multicore architectures to provide the
growing demand of computation power. While real-time scheduling of sporadic tasks
on uniprocessors is considered to be mature enough, real-time scheduling theory for
multiprocessors is still young and has recently received considerable attention.

The main design goal of many global [ABJ01, Bak06, BCL05, And08a, BCL09,
BC07, GSYY09, DB11b] and partitioned [DL78, LBOS95, LDG04,AJ03, FBB06,
LMM98a, LGDG03, OB98, OS95b] fixed-priority scheduling algorithms is to derive
a schedulability testthat when satisfied implies that all the deadlines are met. The
global scheduling approach is being seriously considered for many practical systems
since different techniques, e.g., inter-core prefetching[KST11], locked-cache [SMR11],
push-assisted migration [SMRM09], have been proposed to reduce the overhead due to
migration. The FP scheduling policy is the preferred scheduling policy in the industry
due to its flexibility, ease of implementation and debugging[ABB96, SG90, SLR86,
XP00, AS06]. Almost all commercial real-time kernel / operating systems (e.g. Vx-
Works, RT-Linux, RT-Mach), languages (e.g. Ada95) supportfixed-priority scheduling.
These observations motivate the design and analysis of global FP scheduling algorithms
in this thesis. The following real-time scheduling problemis addressed in this chapter:

Given a collection ofn constrained-deadline sporadic tasks, is it possi-
ble to meet all the task deadlines when the tasks are FP scheduled on
m identical, unit-capacity processors?

Challenges.As already pointed out in Chapter 1 that there are two major research chal-
lenges in the context of global FP scheduling: (i)priority assignment problem, and (ii)
schedulability testing problem.The optimal FP ordering for constrained-deadline tasks
scheduled on uniprocessors is known [LW82]: deadline-monotonic priority ordering is
the optimal FP ordering in such case. However, the optimal FPordering of global mul-
tiprocessor scheduling of constrained-deadline tasks is still unknown [DB11a]. More-
over, it has already been shown by Dhall and Liu [DL78] that the utilization bound of
global FP scheduling of implicit-deadline task based on rate-monotonic priority order-
ing is 0%. This result can easily be extended to show that the density bound of global
FP scheduling of constrained-deadline tasks according to deadline-monotonic priority
assignment policy is also 0%. To achieve higher utilization/density bound, researchers
have proposed new fixed-priority assignment policy with non-zero utilization/density
bound [ABJ01, Bak06, BCL05, And08a, Lun02].

Deriving an effective schedulability test is equally important as deriving a “good”
fixed-priority ordering since hard real-time system needs to apply schedulability test be-
fore the system is in mission. The challenge during the schedulability analysis of global
FP scheduling in order to derive a schedulability test involves correctly predicting the
worst-case runtime behavior and analyzing this worst-casebehavior. Unfortunately, the

5.1. INTRODUCTION 47

worst-case (known as critical instant, see Section 3.1) forglobal FP scheduling of spo-
radic tasks is not known [LMM98b]. However, several interesting schedulability anal-
ysis techniques have been proposed by researchers to analyze global FP scheduling to
derive sufficient schedulability test. The amount of pessimism used during such schedu-
lability analysis determines the utilization/density bound for different fixed-priority as-
signment policies proposed in [ABJ01, Lun02, BCL05, Bak06,And08a].

Contributions. One of the most expressive ways to derive a schedulability test for
implicit- and constrained-deadline tasks is in terms of itsutilization boundand den-
sity bound, respectively. It has already been proved that neither global nor partitioned
FP scheduling can have a utilization bound greater than0.5m on m processors for
implicit-deadline task systems [ABJ01, CFH+04]. There exists a partitioned FP schedul-
ing algorithm, calledR-BOUND-MP-NFR, having utilization bound of0.5m [AJ03].
However, the state-of-the-art utilization bound of globalFP scheduling ism+1

3 for
m ≤ 6 (RM-US[13] scheduling [BCL05]) and 2m

3+
√
5

form > 6 (SM-US[2
3+

√
5
] schedul-

ing [And08a]) for implicit-deadline sporadic task systems. The state-of-the-art density
bound of global FP multiprocessor scheduling of constrained-deadline tasks ism+1

3
where priorities are assigned based onDM-DS[1

3] priority assignment policy [BCL05].

This chapter presents a new priority assignment policy, called ISM-DS, and de-
rives a corresponding density bound for global FP scheduling. It is also proved that
the density bound of global FP scheduling using policyISM-DS is higher than that
of DM-DS[1

3] for constrained-deadline task sets. The density bound of the proposed
priority assignment policyISM-DS becomes the utilization bound for implicit-deadline
task sets. It will be shown that the utilization bound using priority assignment pol-
icy ISM-DS is higher than that of bothRM-US[13] and SM-US[2

3+
√
5
] for implicit-

deadline task systems for any finitem ≥ 2.

TheISM-DS priority assignment policy assigns priorities to the tasksbased on some
threshold density: each task having density greater than the threshold density is assigned
the highest fixed-priority and the remaining tasks are assigned lower, slack-monotonic
priorities. The threshold density for policyISM-DS depends only on the number of pro-
cessors and does not consider the parameters (e.g. density)of the tasks in a task set. By
considering density of the tasks in addition to the number ofprocessors, the threshold
density can be searched from the set of densities of all the tasks. To this end, another
priority assignment policy, calledISM-DS[ξ], is proposed where the threshold density
ξ is searched from the set of densities of the tasks in a given task set. If such a threshold
densityξ can be found, then the task set is schedulable using global FPscheduling based
on priority assignment policyISM-DS[ξ]. It is shown that, the schedulability test for
global FP scheduling using priority assignment policyISM-DS[ξ] dominates that of the
density-bound test derived forISM-DS policy.

Organization. Section 5.2 presents related work. Then, some important parameters of
the task model is presented in Section 5.3. The priority assignment policyISM-DS and
its corresponding density bound for global FP scheduling ofconstrained-deadline spo-
radic tasks is proposed in Section 5.4. Then, the priority assignment policyISM-DS[ξ]

48 CHAPTER 5. DENSITY-BOUND-BASED TEST

is proposed in Section 5.5. Empirical investigation using randomly generated task sets
to compare the derived schedulability tests for priority assignment policyISM-DS[ξ]
andISM-DS is presented in Section 5.6. Then, a utilization based test for implicit-
deadline tasks based on priority assignment policyISM-DS is presented in Section 5.7.
The schedulability analysis of global FP scheduling usingISM-DS priority assignment
policy enables the derivation of a utilization bound for uniprocessor slack-monotonic
scheduling in Section 5.8. Finally, Section 5.9 summarizesthis chapter.

5.2 Related Work

While the well-known RM priority assignment is optimal for uniprocessor FP schedul-
ing of implicit-deadline tasks [LL73], it is is not optimal for global FP scheduling on
multiprocessors due to so called the “Dhall’s effect” [DL78]. Dhall and Liu showed that
global multiprocessor scheduling of implicit-deadline tasks under RM priority assign-
ment has system utilization 0% asm → ∞. The problem due to Dhall’s effect is the
existence of a task with high utilization but having a relatively lower RM priority.

In order to circumvent Dhall’s effect, many of the work around global scheduling
have considered intelligent fixed-priority assignment policy based on hybrid-priority as-
signment (HPA) scheme. In HPA scheme, each task in a subset ofthe tasks is given
the highest fixed priorities while the remaining tasks are assigned some other, lower
fixed priorities. The HPA policy has been used in the development of numerous global
FP scheduling algorithms and their corresponding schedulability tests, the first being the
RM-US[m

3m−2] algorithm proposed by Andersson, Baruah and Jonsson [ABJ01]. That

algorithm was shown to have a utilization bound ofm
2

3m−2 onm processors for implicit-
deadline tasks. TheRM-US[m

3m−2] algorithm manages to avoid the Dhall’s effect by
assigning the highest fixed priority to the tasks having utilization greater than m

3m−2
while the rest of the tasks are assigned priorities according to the traditional RM pol-
icy. Lundberg [Lun02] later showed that using RM hybrid priority assignment scheme,
RM-US can achieve a utilization bound of approximately0.374m.

In [Bak06], Baker presented an analysis of global FP scheduling. Baker’s analysis
is general for any fixed-priority scheduling and arbitrary-deadline task systems. Based
on a derivation of the minimum amount of interference in an interval that can cause a
task’s deadline to be missed, Baker showed that, for implicit-deadline sporadic task sets,
the utilization bound of RM scheduling ism(1−umax)

2 + umin, whereumax andumin
are the maximum and minimum utilization of any task in the task set, respectively. The
RM scheduling is studied for uniform multiprocessors (i.e., processors having different
speeds) by Baruah and Goossens in [BG03a], and it is shown that the utilization bound
is m

3 for implicit-deadline tasks onm unit-capacity processors if no task has utilization
greater than1/3.

Bertogna et al. [BCL05] proposed an algorithm, calledRM-US[1
3], which is an

improvement of the algorithmRM-US[m
3m−2] in [ABJ01] for implicit-deadline spo-

radic task systems. Based on schedulability analysis of thedeadline-monotonic pri-

5.3. PARAMETERS OF TASK MODEL 49

ority assignment, Bertogna et al. proved that the utilization bound of the a HPA-based
RM-US[1

3] algorithm ism+1
3 for implicit-deadline tasks. TheRM-US[13] algorithm as-

signs the highest priority to the tasks having utilization greater than1/3 while the rest of
the tasks are given the traditional RM priority. The authorsalso showed that if the total
density of a constrained-deadline task set is not greater than m+1

3 (i.e., density-bound),
then all deadlines are met usingDM-DS[13] priority assignment policy. According to
DM-DS[13], if a task’s density is greater than13 , then it is given the highest fixed-priority,
otherwise, it is given the traditional DM priority.

Andersson [And08a] proposed theSM-US[2
3+

√
5
] priority assignment policy based

on a slack-monotonic HPA scheme that has a utilization boundof 2m
3+

√
5

for global

FP scheduling of implicit-deadline sporadic task systems.According toSM-US[2
3+

√
5
],

each task having utilization greater than2
3+

√
5

is given the highest fixed priority while
the rest of the tasks are assigned slack-monotonic priorities.

The state-of-the-art utilization bound for global FP multiprocessor scheduling of
implicit-deadline sporadic tasks ism+1

3 for m ≤ 6 (RM-US[13] scheduling [BCL05])
and 2m

3+
√
5

for m > 6 (SM-US[2
3+

√
5
] scheduling [And08a]). The state-of-the-art den-

sity bound for global FP multiprocessor scheduling of constrained-deadline sporadic
tasks ism+1

3 (DM-DS[1
3] scheduling [BCL05]). In this thesis, a new slack-monotonic

HPA policy, calledISM-DS, for constrained-deadline sporadic task sets is proposed.
It is proved that the density bound for global FP scheduling of constrained-deadline
sporadic tasks using policyISM-DS ism·min{ 12 , 3m−2−

√
5m2−8m+4

2m−2 }, which is higher
than the density bound ofDM-DS[1

3] scheduling for constrained-deadline sporadic task
sets. The density bound of global FP scheduling using policyISM-DS becomes the uti-
lization bound for implicit-deadline task sets. The boundm·min{ 12 , 3m−2−

√
5m2−8m+4

2m−2 }
for global FP scheduling of implicit-deadline task systemsis higher than that of both the
RM-US[13] andSM-US[2

3+
√
5
] scheduling for any finitem ≥ 2.

5.3 Parameters of Task Model

The task model considered in this chapter is constrained-deadline sporadic task system
where each taskτi ∈ Γ is characterized by a triple(Ci, Di, Ti). Please see Section 3.1
(page 33) for details of the task model.

Theslackof each taskτi is defined to be equal to(Di − Ci). Note that slack of an
implicit-deadline taskτi is (Ti−Ci). Taskτi has higher Slack-Monotonic (SM) priority
than taskτj only if the following condition1 is satisfied:

(Di − Ci) < (Dj − Cj)

Without any loss of generality, the tasks in setΓ are assumed to be sorted based on
decreasing priority order (i.e.,τ1 is the highest priority task andτn is the lowest priority

1Ties, i.e.,(Di − Ci) = (Dj − Cj), can be broken arbitrarily.

50 CHAPTER 5. DENSITY-BOUND-BASED TEST

task). For a given priority ordering of the tasks, the execution of a taskτk can only be
interfered by the higher-priority tasks in global FP scheduling. In other words, whether
taskτk meets its deadline or not depends only on the tasks in setHPk ∪ {τk}. The task
setΓk is defined as follows:

Γk
def
= HPk ∪ {τk}

whereτk is the lowest priority task inΓk andHPk = {τ1, . . . , τk−1} for k = 1, 2 . . . n.
Note thatΓj ⊆ Γk for 1 ≤ j ≤ k ≤ n. The total densityδksum of the task setΓk is
defined as follows:

δksum =
∑

τi∈Γk

δi =
∑

τi∈Γk

Ci
Di

for k = 1, 2 . . . n. Themaximum densityandminimum densityof a sporadic task system
Γk are denoted respectively asδkmax and δkmin such thatδkmin ≤ δi ≤ δkmax for all
τi ∈ Γk. Formally,

δkmax = max
τi ∈Γk

{δi}

δkmin = min
τi ∈Γk

{δi}

Thetotal utilizationUkof the task setΓk is given as follows:

Uk =
∑

τi∈Γk

ui =
∑

τi∈Γk

Ci
Ti

for k = 1, 2 . . . n. Themaximum densityandminimum densityof a sporadic task system
Γk are denoted respectively asukmax andukmin such thatukmin ≤ δi ≤ ukmax for all
τi ∈ Γk. Formally,

ukmax = max
τi ∈Γk

{ui}

ukmin = min
τi ∈Γk

{ui}

5.4 Constrained-Deadline Tasks: Density-Bound

In this section, the priority assignment policyISM-DS and a corresponding density-
bound-based schedulability test for constrained-deadline task systems are presented.
The proposed priority-assignment policyISM-DS is based on aslack-monotonicHPA
policy that works as follows: if the density of a task is not greater than athreshold den-
sity, sayδts, then the task is assigned a priority according to the slack-monotonic policy;
otherwise, the task is given the highest fixed priority.

The main challenge for such HPA policy is to find the thresholddensityδts which
determines the two subsets of the task set such that tasks in one subset are given the
slack-monotonic priorities and each of the tasks in the other subset is given the highest
fixed-priority, where ties are broken arbitrarily at runtime. The threshold densityδts for

5.4. CONSTRAINED-DEADLINE TASKS: DENSITY-BOUND 51

policyISM-DS is determined based on the schedulability analysis of a class of task sets,
called “special” task sets. A task set is said to be “special on m processors” based on
twoparticular properties (defined shortly in subsection 5.4.2).

The threshold density used for policyISM-DS is 3m−2−
√
5m2−8m+4

2m−2 wherem is
the number of processors,m ≥ 2. Thus, given the number of processorsm, the thresh-
old density forISM-DS is computed and all the tasks are assigned the fixed priorities
according to the slack-monotonic HPA policy. It is proved that the density bound of
global FP scheduling of constrained-deadline sporadic tasks using policyISM-DS is
m·min{ 12 , 3m−2−

√
5m2−8m+4

2m−2 }. It is easy to see that this density bound is larger than
that of the state-of-the-artDM-DS[1

3] scheduling proposed in [BCL05].
The proof strategy to derive the density bound is as follows.First, it will be shown

that a “special” task setΓk (which is a subset of the original task setΓ) is schedulable by
global FP scheduling based on slack-monotonic priority assignment (subsection 5.4.2).
Second, two general conditions are derived when satisfied imply that the entire task set
Γ is schedulable using a slack-monotonic HPA policy using some threshold densityδts
(subsection 5.4.3). Finally, the value of the threshold density δts for policyISM-DS and
the corresponding density bound for global FP scheduling ofthe entire task set is derived
(subsection 5.4.4). The following results and definitions in subsection 5.4.1 will be used
in the remainder of this section.

5.4.1 Prior Results and Useful Definitions

When analyzing the schedulability of a lower priority taskτj using any global FP schedul-
ing within the interval[t1, t2), its schedulability depends on the amount of work done by
the higher priority tasks within[t1, t2). By assuming that a job of an implicit-deadline
sporadic taskτj arrives att1 and misses its deadline (which is the first missed deadline
in the schedule) att2 such thatt2 = t1 + Tj , the analysis by Andersson in [And08a]
proved that the maximum amount of execution required within[t1, t2) by a higher pri-
ority taskτi ∈ HPj is Ci + (Tj − Ci)Ci

Ti
, wheneverujmax ≤ m

2m−1 andU j ≤ m2

2m−1 .
This result by Andersson [And08a] is given in Lemma 5.1.

Lemma 5.1(Based on [And08a]). Consider globalFPscheduling of an implicit-deadline
sporadic task systemΓj onm processors by assuming thatujmax ≤ m

2m−1 , U j ≤ m2

2m−1
and that all the tasks inHPj are schedulable. When analyzing the schedulability of the
lowest priority taskτj within [t1, t2), the maximum amount of execution by all the higher
priority tasks during[t1, t2) is at most:

∑

τi∈HPj

Ci + (L− Ci)
Ci
Ti

(5.1)

whereL = t2 − t1 = Tj .

Proof. Eq. (5.1) is derived by Andersson in [And08a] (please see Eq.(16) in reference
[And08a] for this derivation).

52 CHAPTER 5. DENSITY-BOUND-BASED TEST

By considering the constrained relative deadline instead of implicit relative deadline
and considering density instead of utilization, the proof and result of Lemma 5.1 are
directly applicable to constrained-deadline task systems. Corollary 5.2 is the adaptation
of Lemma 5.1 for constrained-deadline task systems and willbe used later in this section
to upper bound the work of the tasks inHPj within an interval[t1, t2).

Corollary 5.2 (Based on Lemma 5.1). Consider globalFPscheduling of a constrained-
deadline sporadic task systemΓj on m processors by assuming thatδjmax ≤ m

2m−1 ,

δjsum ≤ m2

2m−1 and that all the tasks inHPj are schedulable. When analyzing the schedu-
lability of the lowest priority taskτj within [t1, t2), the maximum amount of execution
by all the higher priority tasks during[t1, t2) is at most:

∑

τi∈HPj

Ci + (L− Ci)
Ci
Di

(5.2)

whereL = t2 − t1 = Dj .

Proof. Eq. (5.2) can be derived similar to the derivation of Eq. (5.1) by considering
constrained relative deadline instead of implicit relative deadline.

Function Fm(x) : The following function in Eq. (5.3) is used in the remainder of this
chapter:

Fm(x) =
m(1− x)
2− x + x (5.3)

wherem ∈ Z
+ and0 ≤ x ≤ m

2m−1 . Two important features of the function in Eq. (5.3)
are given in Lemma 5.3.

Lemma 5.3. Considera, b, x, c andd such that0 ≤ a ≤ b ≤ x ≤ c ≤ d ≤ m
2m−1 for

any integerm > 0. The following two inequalities hold:

min{Fm(b),Fm(c)} ≤ Fm(x) (5.4)

min{Fm(a),Fm(d)} ≤ min{Fm(b),Fm(c)} (5.5)

Proof. Proof is given in Appendix A (page 219).

Corollary 5.2 and Lemma 5.3 are used in the remainder of this chapter. The global
FP schedulability analysis of task setΓ presented in this section is based on the schedu-
lability analysis of a class of task sets called “special” task sets. A task set is said to be
“special onm processors” based ontwo particular properties defined in Definition 5.1.
It will be shown in Theorem 5.1 that a task set that is special onm processors is schedu-
lable using global slack-monotonic scheduling, denoted byGSSM, onm processors. The
GSSM scheduling is global FP scheduling where all the tasks are assigned fixed priorities
based on slack-monotonic priority assignment policy.

5.4. CONSTRAINED-DEADLINE TASKS: DENSITY-BOUND 53

5.4.2 “Special” Task Set and its Schedulability

In this subsection, the two properties of a sporadic task systemΓk that is “special” onm
processors are formally presented. It will be proved that all the deadlines of the special
task systemΓk are met using algorithmGSSM onm processors.

Definition 5.1 (Special Task System). A constrained-deadline sporadic task system
Γk is special onm processor if it satisfies the following two properties:

Property 1: δkmax ≤ m
2m−1

Property 2: δksum ≤ min{Fm(δkmin) , Fm(δkmax)}

According to Property 1, the maximum density of any task inΓk, that is special onm
processors, is not greater thanm2m−1 . According to Property 2, the total density of the
special task systemΓk is not greater than the minimum ofFm(δkmin) andFm(δkmax).
Before the global slack-monotonic schedulability analysis of a special task setΓk is
presented, the following Lemma 5.4 (proof is in Appendix A, page 220) is required.

Lemma 5.4. Consider sporadic task systemΓk that is special onm processors. The
following inequality holds form ≥ 1

min{Fm(δkmin) , Fm(δkmax)} ≤
m2

2m− 1
(5.6)

Slack-Monotonic Global Schedulability Analysis of SpecialTask System

It will be proved that a sporadic task systemΓk that is special onm processors is schedu-
lable usingGSSM on m processors. First, by assuming that all the tasks inHPj meet
their deadlines, it is shown in Lemma 5.5 that all the jobs of the lowest priority task
τj of task setΓj , which is special onm processors, complete by their deadlines using
GSSM scheduling ofΓj onm processors. Then, by inductively applying Lemma 5.5 on
special task setΓj for j = 1, 2, . . . k, it is proved that special task systemΓk is also
schedulable onm processors using global scheduling algorithmGSSM.

Lemma 5.5. Consider sporadic task setΓj that is special onm processors. If all the
tasks inHPj meet deadlines usingGSSM onm processors, then all the jobs of taskτj also
meet their deadlines whenΓj = HPj ∪ {τj} is scheduled usingGSSM onm processors.

Proof. This Lemma is proved using induction. Let’s assume that all the (l − 1) jobs
of τj have met their deadlines usingGSSM scheduling algorithm. It will be proved that
the lth job of τj also meets the deadline. Using induction onl ≥ 1, the correctness of
Lemma 5.5 then immediately follows. For a special task setΓj , we haveδjmax ≤ m

2m−1

(from Property 1 of Definition 5.1) andδjsum ≤ m2

2m−1 (from Property 2 of Definition 5.1
and Eq. (5.6) of Lemma 5.4). Remember that all the tasks inHPj are schedulable using
GSSM onm processors (premise of this lemma).

54 CHAPTER 5. DENSITY-BOUND-BASED TEST

Let thelth job of taskτj be released at timer. This job requiresCj units of execution
time before its deadline (r +Dj). Therefore, when considering the schedulability of the
lth job within the interval[r, r +Dj), Corollary 5.2 can be applied by settingL =
(r+Dj)− r = Dj . And, according to Eq. (5.2) of Corollary 5.2, the maximum amount
of execution required by the higher priority tasks inHPj during[r, r +Dj) is at most:

∑

τi∈HPj

Ci + (Dj − Ci)
Ci
Di

(5.7)

The amount of processor capacity left unused by the tasks inHPj during the interval
[r, r +Dj) onm processors is therefore at least

m ·Dj −
∑

τi∈HPj

(Ci + (Dj − Ci)δi) (5.8)

In the worst case (i.e., all them processors are available at the same time)1
m

of this
unused capacity can be used byτj . Consequently, the amount of processing capacity
available to thelth job of τj during the interval[r, r +Dj) onm processors is at least

1

m

[

m ·Dj −
∑

τi∈HPj

(Ci + (Dj − Ci)δi)
]

To guarantee that thelth job of τj meets its deadline, this capacity needs to be at least
as large as the execution time ofτj ; that is, we must have,

Cj ≤
1

m

[

m ·Dj −
∑

τi∈HPj

(Ci + (Dj − Ci)δi)
]

(5.9)

In the remaining part of this proof, it is shown that Eq. (5.9)holds; which guarantees
that thelth job of τj meets its deadline. Since task setΓj is special onm processors,
according to Property 2 of special task set we have

δjsum ≤ min{Fm(δjmin) , Fm(δjmax)} (5.10)

For taskτj ∈ Γj , we haveδjmin ≤ δj ≤ δjmax. Thus, according to Property 1 of special
task systemΓj , we also have0 ≤ δjmin ≤ δj ≤ δjmax ≤ m

2m−1 . And using Eq. (5.4) of
Lemma 5.3, it follows that

min{Fm(δjmin) , Fm(δjmax)} ≤ Fm(δj) (5.11)

5.4. CONSTRAINED-DEADLINE TASKS: DENSITY-BOUND 55

From Eq. (5.10) and Eq. (5.11), we haveδjsum ≤ Fm(δj) which is equivalent to

≡
∑

τi∈HPj∪{τj}
δi ≤

m(1− δj)
2− δj

+ δj [from Eq. (5.3)]

≡
∑

τi∈HPj

δi ≤
m(1− δj)
2− δj

≡
∑

τi∈HPj

δi(2− δj) ≤ m(1− δj)

≡ δj ≤ 1− 1

m

∑

τi∈HPj

δi(2− δj)

≡ δj ≤
1

m

[

m−
∑

τi∈HPj

[

δi + δi(1− δj)
]

]

≡ Cj
Dj

≤ 1

m

[

m−
∑

τi∈HPj

[Ci
Di

+
Ci
Di

(
Dj − Cj
Dj

)
]

]

⇒ (According to slack-monotonic priorities

∀i ∈ HPj : (Di − Ci) ≤ (Dj − Cj))

Cj
Dj

≤ 1

m

[

m−
∑

τi∈HPj

[Ci
Di

+
Ci
Di

(
Di − Ci
Dj

)
]

]

≡ Cj ≤
1

m

[

m ·Dj −
∑

τi∈HPj

[CiDj

Di

+ Ci −
C2
i

Di

]

]

≡ Cj ≤
1

m

[

m ·Dj −
∑

τi∈HPj

[

Ci + (Dj − Ci)δi
]

]

≡ Eq. (5.9)

Since the inequality in Eq. (5.9) is true, it can be concludedthat thelth job of taskτj
meets its deadline usingGSSM.

Based on Lemma 5.5, now it will be proved in Theorem 5.1 that the constrained-deadline
sporadic task setΓk that is special onm processors is schedulable usingGSSM on
m processors.

Theorem 5.1. A constrained-deadline sporadic task systemΓk that is special on total
m processors is schedulable usingGSSM scheduling onm processors.

Proof. Remember thatΓj ⊆ Γk for j ≤ k. Thus, it follows thatδjsum ≤ δksum and
δjmax ≤ δkmax. Therefore, from Property 1 and Property 2 of special task set in Defini-
tion 5.1, it is evident that ifΓk is special onm processors, thenΓj is also special onm

56 CHAPTER 5. DENSITY-BOUND-BASED TEST

processors forj ≤ k. Therefore, using induction onj = 1, 2, . . . k and applying Lemma
5.5 to special task setΓj , it is easy to see that the special task systemΓk is schedulable
onm processors usingGSSM scheduling.

According to Theorem 5.1, a special task set is schedulable usingGSSM algorithm on
m processors. The ultimate objective is to find the threshold density for slack-monotonic
HPA policy for an arbitrary task set to be scheduled onm processors based on global
FP scheduling algorithm. Two general conditions that can imply the global FP schedu-
lability of an arbitrary constrained-deadline sporadic task setΓ for slack-monotonic
HPA policyISM-US, based on some threshold densityδts, are now proposed.

5.4.3 Slack-Monotonic Hybrid Priority Assignment

According to the slack-monotonic HPA policyISM-DS, the priorities to the tasks are
assigned based on some threshold densityδts such that each of the tasks having density
not greater thanδts are given the slack-monotonic priorities and each task having density
greater thanδts is given the highest fixed priority. Using such hybrid policy, the sporadic
task setΓ is visualized as the union of two setsΓ = ΓL ∪ ΓH such that the tasks in set
ΓL have the slack-monotonic priorities and each task in setΓH has the highest fixed
priority2. No task in setΓL has higher priority than that of any task in setΓH .

The main challenge for slack-monotonic HPA policy is to find the value ofδts to
determine the setsΓL andΓH . It will be evident shortly that the value ofδts for pri-
ority assignment policyISM-DS depends only on the number of processors. Before
the threshold densityδts for the priority assignment policyISM-DS is determined, two
general conditions, denoted asC1 andC2, in Lemma 5.6 that can imply the schedulabil-
ity of a task set based on HPA-based priority assignment policy ISM-DS are presented.
The proof strategy in Lemma 5.6 is based on the notion ofpredictable scheduling algo-
rithm proposed by Ha and Liu in [HL94] and used in [And08a] as follows.

Predictability (from [HL94, And08a]): A job is characterized by its arrival time, its
deadline, its minimum execution time and its maximum execution time. The execution
time of a job is unknown but it is no less than and greater than its minimum and maxi-
mum execution time, respectively. A scheduling algorithmA is predictableif for every
setJ of jobs, the following fact

scheduling all jobs inJ byA with execution times equal to their maximum
execution times causes all the deadlines to be met

implies that

scheduling all jobs inJ by A with execution times being within at least
their minimum execution times and at most their maximum execution times
causes all the deadlines to be met.

2The subscripts ‘L’ and ‘H’ are used to refer to light and heavytasks, respectively.

5.4. CONSTRAINED-DEADLINE TASKS: DENSITY-BOUND 57

This notion of predictable scheduling algorithm implies that it is only needed to analyze
the schedulability of the jobs considering the WCET of the jobs. Since a sporadic task
set generates a set of jobs, the notion of predictability canbe extended in a straightfor-
ward manner to algorithms for scheduling sporadic task systems. Ha and Liu’s work
also implies that global static-priority scheduling of sporadic tasks on multiprocessors
is predictable [And08a].

Lemma 5.6. Let δts be the threshold density that is used to determine the setsΓL and
ΓH such thatΓ = ΓL ∪ ΓH for the HPA policyISM-DS. The sporadic task setΓ is
schedulable using globalFP scheduling if the following two conditionsC1 andC2 are
satisfied

(C1) |ΓH | < m

(C2) ΓL is special on(m− |ΓH |) processors

Proof. It will be shown that if conditionsC1andC2are true for HPA policyISM-DS that
usesδts as the threshold density, then the task setΓ is schedulable using global FP schedul-
ing. Consider the following task setΓ′

H such that

Γ′
H = {τ ′i | τi ∈ ΓH , C

′
i = Di, D

′
i = Di and T ′

i = Ti}

Note that each taskτ ′i ∈ Γ′
H has density 1 and|Γ′

H | = |ΓH |. We letk = |Γ′
H | = |ΓH |.

Now consider the task setΓ′ = ΓL ∪ Γ′
H that is to be scheduled onm processors

using global FP scheduling whereISM-DS is used for priority assignment. According
to policy ISM-DS that uses the threshold densityδts, each of the tasks inΓ′

H is given
the highest priority and the tasks inΓL are given the slack-monotonic priorities.

When scheduling the task setΓ′, then at mostk = |Γ′
H | processors are busy to

execute the tasks in setΓ′
H at any time instant since these are the highest priority tasks

each with density 1. All these tasks inΓ′
H are schedulable onk processors (one task will

get one processor whenever it arrives) since|Γ′
H | = |ΓH | = k < m according toC1.

Therefore, the number of processors that arealwaysavailable for executing the tasks in
setΓL is at least(m− k) = (m− |ΓH |).

According toC2, the tasks in setΓL are special on(m − |ΓH |) processors. Since
|ΓH | = k and at least(m − k) processor are always available for executing the tasks
in setΓL, the task setΓL is schedulable usingGSSM on (m − k) processors according
to Theorem 5.1. Consequently, the task setΓ′ is schedulable on totalm processors
using global FP scheduling where priorities are assigned based on policyISM-DS if
conditionsC1 andC2 are satisfied.

The predictability of global FP scheduling has the following consequence: if the jobs
of a taskτi in a constrained-deadline task set are schedulable using global FP scheduling
algorithmA onm processors considering WCET equal toC ′

i such thatC ′
i = Di, then

the jobs ofτi are also schedulable considering its WCET equal toCi using algorithmA
onm processors. Since the jobs of the tasks inΓ′ = ΓL∪Γ′

H (where each taskτ ′i ∈ Γ′
H

hasC ′
i = Di) is global FP schedulable onm processors using priority assignment

58 CHAPTER 5. DENSITY-BOUND-BASED TEST

policy ISM-DS, the predictability of global FP scheduling implies that the jobs of the
tasks inΓ = ΓL ∪ ΓH are also global FP scheduling using priority assignment policy
ISM-DS wheneverC1 andC2 are true.

Guided by the two conditions (C1 andC2) of Lemma 5.6, the following general and an
important observation regarding the HPA policy can be made.

Observation 5.1. The HPA policy can guarantee the schedulability of a task setusing
global FP scheduling ifk tasks are given the highest fixed priority and the remaining
(n−k) tasks are globalFPschedulable on at most(m−k) processors using some other
fixed-priority assignment, for somek, 0 ≤ k < m.

This observation will be used in this and other chapters. Now, based on the two
general conditions (C1 andC2) of Lemma 5.6, the threshold densityδts for priority as-
signment policyISM-DS and its corresponding density bound of global FP scheduling
of an constrained-deadline sporadic task setΓ is presented in subsection 5.4.4.

5.4.4 Density Bound for PolicyISM-DS

In this section, the threshold density used forISM-DS priority assignment policy is
proposed and the corresponding density bound for global FP scheduling of constrained-
deadline sporadic tasks is derived. The value ofδts is defined based on the solution of
the equationFm(δts)= m · δts wherem is some integer constant,m > 1. One of the
solutions ofFm(δts)= m · δts is δts = 3m−2−

√
5m2−8m+4

2m−2 for m > 1. The value ofδts
for policy ISM-DS, wherem > 0, is δts = B(m) andB(m) is defined as follows:

B(m) =

{

1 if m = 1
3m−2−

√
5m2−8m+4

2m−2 if m > 1
(5.12)

Note that the threshold densityB(m) can be determined based on the number of pro-
cessorsm. The two following inequalities in Eq. (5.13) and Eq. (5.14)hold forB(m)
andB(m′) where1 ≤ m′ ≤ m:

B(m) ≤ m

2m− 1
≤ m′

2m′ − 1
(5.13)

B(m) ≤ B(m′) (5.14)

The proofs that Eq. (5.13) and Eq. (5.14) hold are given in Lemma A.1 and Lemma A.2
in the Appendix A (page 221, 222). Based on the threshold density B(m), the priority
assignment policyISM-DS is given as follows:

ISM-DSPriority Assignment Policy: Given the number of processorsm, the threshold
densityδts = B(m) is calculated based on Eq. (5.12). The priorities to the tasks in set
Γ are assigned as follows:

5.4. CONSTRAINED-DEADLINE TASKS: DENSITY-BOUND 59

If δi > B(m), then taskτi has the highest fixed priority (ties broken ar-
bitrarily), otherwise, ifδi ≤ B(m), then taskτi is given slack-monotonic
priority.

Example 5.1. As an example of the way fixed priorities are assigned using the priority
assignment policyISM-DS, consider the following constrained-deadline task systemto
be scheduled onm = 3 processors based on global FP scheduling where the parameters
of each taskτi(Ci, Di, Ti) are as follows:

Γ
def
= {τ1 = (1, 2, 3) τ2 = (2, 3, 5) τ3 = (7, 100, 100)

τ4 = (1, 25, 50) τ5 = (2, 9, 10)}

The threshold densityδts is equal toB(3) = 0.5 for m = 3. The densities of the five
tasks areδ1 = 0.5, δ2 ≈ 0.67, δ3 = 0.07, δ4 = 0.04, andδ5 ≈ 0.23. Sinceδ2 > B(3),
task τ2 is assigned the highest fixed priority and each of the remaining tasks having
density not greater thanB(3) is assigned the slack-monotonic priorities. The slack, i.e.,
(Di − Ci), of the remaining tasksτ1, τ3, τ4 andτ5 are respectively 1, 93, 24, and 7.
Therefore, the final fixed priority ordering of all the tasks according toISM-DS is given
as (highest-priority task listed first):τ2, τ1, τ5, τ4, τ3

The global FP scheduler dispatches the tasks based on the priority assignment given
by policy ISM-DS. Now the schedulability test in terms ofdensity boundof global
FP scheduling for the priority assignment policyISM-DS is given in Theorem 5.2.

Theorem 5.2(Density-Bound-Based Test). An constrained-deadline sporadic task set
Γ is schedulable using globalFPscheduling that assigns the priorities based on policy
ISM-DS if the following condition, form ≥ 2, holds:

δnsum ≤ m ·min{1/2, B(m)}

whereδnsumis the total density of the task setΓ.

Proof. Given the task setΓ and the number of processorsm, the two subsetsΓL and
ΓH based on the threshold densityδts = B(m) are determined such thatΓ = ΓL ∪ΓH .
Remember that based on policyISM-DS the tasks in setΓL andΓH are given the slack-
monotonic and the highest fixed priorities, respectively. It will be shown that if the total
densityδnsum ≤ m ·min{1/2, B(m)}, then the two general conditionsC1 andC2 of
Lemma 5.6 hold; which guarantee the schedulability ofΓ using global FP scheduling.

(C1 holds) It is easy to see thatB(m) ≥ min{1/2, B(m)}. Then it follows that each
task inΓH has density greater thanmin{1/2, B(m)} since each task inΓH has density
greater thanδts = B(m) for priority assignment policyISM-DS. Since the total density
(i.e., δnsum) of task setΓ is not greater thanm · min{1/2, B(m)} according to the
premise, the number of tasks that are given the highest priority is less thanm (C1 holds).

(C2 holds) To show thatC2 of Lemma 5.6 holds, it will be shown thatΓL is special
onm′ processors wherem′ = (m − |ΓH |). Let DL be the total density of all the tasks

60 CHAPTER 5. DENSITY-BOUND-BASED TEST

in ΓL. Also let δmaxL andδminL be the maximum and minimum density of any task
in setΓL, respectively. To show thatΓL is special onm′ processors, it will be shown
that Property 1 and Property 2 (given in Definition 5.1, page 53) of special task set are
satisfied. In other words, we have to show that the following two inequalities hold:

Property 1 δmaxL ≤
m′

2m′ − 1

Property 2 DL ≤ min{Fm′(δminL), Fm′(δmaxL)}

(Property 1 holds for ΓL) According to the priority assignment policyISM-DS, no
task inΓL has density greater than the threshold densityδts = B(m). So, we have
δmaxL ≤ B(m). Moreover, from Eq. (5.13), we haveB(m) ≤ m′

2m′−1 . Consequently,

δmaxL ≤ m′

2m′−1 , and thus, Property 1 is satisfied forΓL.

(Property 2 holds for ΓL) The total density of the tasks inΓH is greater than (|ΓH | ·
min{1/2, B(m)}) because each task inΓH has density greater thanδts = B(m) and
B(m) ≥ min{1/2, B(m)}. Since the total density of task setΓ is not greater than
m ·min{1/2, B(m)} according to the premise, the total density of the tasks in set ΓL
is at mostm′ ·min{1/2, B(m)} wherem′ = (m− |ΓH |). Therefore, Eq. (5.15) holds.

DL ≤ m′ ·min{1/2, B(m)} (5.15)

Based on the threshold densityδts = B(m) of priority assignment policyISM-DS, we
haveδmaxL ≤ B(m) since the density of any task in setΓL is not greater thanB(m).
Moreover, from Eq. (5.14), we haveB(m) ≤ B(m′). Thus,δmaxL ≤ B(m′).

It follows from Eq. (5.13) thatB(m′) ≤ m′

2m′−1 (by replacingm by m′ in the left-

hand side inequality in Eq. (5.13)). Therefore,δmaxL ≤ B(m′) ≤ m′

2m′−1 . Because
0 ≤ δminL ≤ δmaxL, the inequality in Eq. (5.16) holds.

0 ≤ δminL ≤ δmaxL ≤ B(m′) ≤ m′

2m′ − 1
(5.16)

Based on Eq. (5.16) and from Eq. (5.5) of Lemma 5.3, the following inequality holds:

min{Fm′(0) , Fm′(B(m′))} ≤ min{Fm′(δminL) , Fm′(δmaxL)} (5.17)

From the function definition given in Eq. (5.3), we have

Fm′(0) =
m′(1− 0)

2− 0
+ 0 = m′/2 = m′ · 1/2 (5.18)

It follows from Eq. (5.12) thatB(m′) = 1 whenm′ = 1. Thus, by settingx = B(m′)
in Eq. (5.3) whenm′ = 1, we haveFm′(B(m′))=F1(1)= 1 = m′.
And for m′ > 1, we haveFm′(B(m′)) = m′ ·B(m′) because one of the solutions

5.4. CONSTRAINED-DEADLINE TASKS: DENSITY-BOUND 61

of functionFm′(x) = m′x in terms ofx is x = B(m′). Thus, for anym′ ≥ 1, the
following inequality holds:

Fm′(B(m′)) ≥ m′ ·min{1, B(m′)} (5.19)

It follows from Eq. (5.18) and Eq. (5.19) that

min{Fm′(0), Fm′(B(m′))} ≥ m′ ·min{1/2,B(m′)} (5.20)

Then it follows from Eq. (5.20) and the fact thatB(m) ≤ B(m′) in Eq. (5.14) that

m′ ·min{1/2,B(m)} ≤ min{Fm′(0), Fm′(B(m′))} (5.21)

Thus, it now follows from Eq. (5.15) and Eq. (5.21) that

DL ≤ min{Fm′(0), Fm′(B(m′)) } (5.22)

Finally, from Eq. (5.17) and Eq. (5.22), we have

DL ≤ min{Fm′(δminL), Fm′(δmaxL) } (5.23)

Therefore, Property 2 is satisfied for task setΓL (i.e., C2 holds). Consequently, if
δnsum ≤ m ·min{1/2, B(m)}, then the task setΓ is schedulable using global FP schedul-
ing where priorities are assigned based onISM-DS policy.

The density boundm ·min{1/2, B(m)} of global FP scheduling of constrained-deadline
sporadic tasks, for any finitem ≥ 2, using policyISM-DS is greater than or equal to the
state-of-the-art density boundm+1

3 for DM-DS[1
3] scheduling. Figure 5.1 illustrates

the density bounds ofDM-DS[1
3] andISM-DS for m = 2, . . . 16. The x-axis in Fig-

ure 5.1 represents the number of processors and the y-axis represents the density bound
normalized by number of processors.

30 %

40 %

50 %

 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

D
en

si
ty

 b
ou

nd
 /

m

Number of processors (m)

ISM-DS
DM-DS

Figure 5.1: Density bounds ofDM-DS[1
3
] andISM-DS.

62 CHAPTER 5. DENSITY-BOUND-BASED TEST

The total density of the task set in Example 5.1 (page 59) is≈ 1.499. The density
boundm ·min{1/2, B(m)} usingISM-DS policy for m = 3 is 1.5. Therefore, the
task set in Example 5.1 is global FP schedulable usingISM-DS priority assignment
policy. TheDM-DS[1

3] scheduling can not guarantee the schedulability of the taskset
in Example 5.1 since the density boundm+1

3 for DM-DS[1
3] is≈ 1.33.

5.5 PolicyISM-DS[ξ]: Searching the Threshold

The threshold density used for priority assignment policyISM-DS depends only on
the number of processors and does not use any information (e.g., density) of individual
task of the given task set. Using the density information of individual task in addition
to the information about the number of processors, a better threshold density can be
searched from the set of densities of the tasks for assigningthe priorities based on slack-
monotonic HPA policy. This new priority assignment policy is calledISM-DS[ξ] where
the threshold densityξ is searched among the densities of the tasks in a task set. It will
be shown that the schedulability test of global FP scheduling using policyISM-DS[ξ]
dominates and empirically performs much better than that ofusingISM-DS.

Remember that based on the Observation 5.1 (page 58), the HPApolicy can guar-
antee the schedulability of a task set using global FP scheduling if k tasks are given the
highest fixed priorities and the remaining(n − k) tasks are global FP schedulable on
(m−k) processors using some other fixed priority assignment, for somek, 0 ≤ k < m.
The proposed priority assignment policyISM-DS[ξ] is based on a similar technique
used for priority assignment in priority-driven scheduling, calledEDF(k), proposed by
Goossens et al. [GFB03] for implicit-deadline tasks. InEDF(k) scheduling, the jobs of
thek highest utilization tasks are given the highest priority and the jobs of the remain-
ing (n − k) lowest utilization tasks are given the EDF priorities for some appropriate
selection ofk, 0 ≤ k < m. Inspired by the priority assignment scheme forEDF(k)

scheduling, the slack-monotonic HPA policyISM-DS[ξ] for constrained-deadline spo-
radic tasks is defined as follows:

1. Each of thek highest density tasks is given the highest fixed priority,
and

2. the remaining (n−k) lowest density tasks are given the slack-monotonic
priorities for somek such that0 ≤ k < m.

The challenge forISM-DS[ξ] priority assignment policy is to find an appropriatek,
where0 ≤ k < m, to guarantee the schedulability. Note that after the valueof k is
known, the density of the(k + 1)th highest density task is the threshold densityξ for
priority assignment policyISM-DS[ξ]. For example, ifk = 0, then the largest den-
sity of any tasks in the task set is used as the threshold density (i.e., all tasks are given
SM priority). If k = 1, then the second largest density of the tasks in a task set is used
as the threshold density (i.e., only the largest density task is assigned the highest-fixed

5.5. POLICYISM-DS[ξ]: SEARCHING THE THRESHOLD 63

priority and the remaining tasks are given the slack-monotonic priorities). The chal-
lenge is how to find suchk, if exists, that would guarantee the schedulability of the
entire task set. The pseudocode to search suchk, wherek < m, for the priority assign-
ment policyISM-DS[ξ] is presented in algorithmFind(ξ)in Figure 5.2. Algorithm
Find(ξ)determines if there is somek, 0 ≤ k < m, such that entire task set is schedu-
lable using the priority assignment policyISM-DS[ξ]. The search for thek in algorithm
Find(ξ)is guided by the following schedulability condition given in Theorem 5.3.

Theorem 5.3. A constrained-deadline sporadic task setΓ is schedulable using global
FPscheduling algorithm according to the priority assignmentpolicyISM-DS[ξ] if the
set of(n − k) lowest density tasks of task setΓ is special on(m − k) processors for
somek, where0 ≤ k < m.

Proof. Using policyISM-DS[ξ], the(k + 1)
th highest density task in task setΓ is used

as the threshold densityδts for somek, 0 ≤ k < m. The threshold densityδts decides
the tasks in setΓL andΓH that are respectively given the slack-monotonic and the
highest fixed priorities such thatΓ = ΓL ∪ ΓH .

Note that, using policyISM-DS[ξ], the number of tasks having the highest fixed
priority is |ΓH | = k for somek where0 ≤ k < m. Consequently, conditionC1
of Lemma 5.6 is satisfied for policyISM-DS[ξ]. According to Lemma 5.6, the value
of k has to be chosen such that the conditionC2 of Lemma 5.6 holds to guarantee the
schedulability of task setΓ using global FP scheduling. In other words, task setΓ can be
guaranteed to be schedulable using global FP scheduling according to policyISM-DS[ξ]
wheneverΓL is special on(m−k) processors, whereΓL contains all the(n−k) lowest
density tasks from setΓ.

Deriving a k, if one exists, that satisfies Theorem 5.3 is straightforward. One such
example algorithm (calledFind(ξ)) that searches (if exists) the value ofk is presented
in Figure 5.2. The algorithmFind(ξ)returnsTrue if it can find somek such that the
set of(n− k) lowest density tasks from setΓ is special on(m− k) processors such that
0 ≤ k < m, otherwise, it returnsFalse.

In line 1–2, algorithmFind(ξ)in Figure 5.2 initializes local variablesΓL andΓH
asΓL = Γ andΓH = ∅ to consider first whether all the tasks inΓ are special on
m processors (checked during the first iteration of theFor loop in line 3–12).

TheFor loop in line 3–12 iterates at mostm times for the iterative variablek that
iterates form0 to (m − 1). In each iteration of theFor loop, it is checked that whether
the(n− k) lowest density tasks in setΓL are special on(m− k) processors. Note that
in order to determine whetherΓL is special on (m− k) processors, both Property 1 and
Property 2 (Definition 5.1, page 53) of special task system have to be satisfied. If the
task setΓL is special on(m − k) processors (condition at line 4 is true), then slack-
monotonic priorities are assigned to the tasks inΓL (line 5), each of the tasks inΓH is
assigned the highest fixed priority (line 6) and the algorithm returnsTrue (line 7).

During a particular iteration of theFor loop, if the task setΓL is not special on
(m − k) processors (condition at line 4 is false), then the highest density task, say
τts ∈ ΓL, is extracted fromΓL (line 9) and is included in setΓH (line 10). Note that at

64 CHAPTER 5. DENSITY-BOUND-BASED TEST

Algorithm Find(ξ)

1. ΓH = ∅
2. ΓL = Γ
3. For k = 0 to (m− 1)
4. If ΓL is special on(m− k) processorsThen
5. Print “All tasks in ΓL are assigned slack-monotonic priority”
6. Print “All tasks in ΓH are assigned the highest fixed priority”
7. Return True
8. End If
9. Findτts such thatδts is the largest density in setΓL
10. ΓH = ΓH ∪ {τts}
11. ΓL = Γ− ΓH
12.End For
13.Print “Priority Assignment Fails”
14.Return False

Figure 5.2: Slack-monotonicHPA by searching the threshold

the beginning of thekth iteration of theFor loop, the largest density of the tasks inΓL is
the(k+1)th largest density of the tasks in the entire task setΓ. At the beginning of each
iteration of theFor loop, totalk largest density tasks are in setΓH and the remaining
(n − k) lowest density tasks are in setΓL. If the task setΓL is not special on(m − k)
processors for anyk, such that0 ≤ k < m, then policyISM-DS[ξ] fails to assign the
fixed priorities to the tasks inΓ (line 13) and the algorithm returnsFalse(line 14). By
sorting the tasks in setΓ in order of increasing densities of the tasks, it is not difficult to
see that algorithmFind(ξ)can be implemented using at mostO(n · log n) operations.

The schedulability test in Theorem 5.3 for global FP scheduling using priority as-
signment policyISM-DS[ξ] dominates that of the density-bound test in Theorem 5.2.
Now it will be shown that any task set deemed schedulable based on Theorem 5.2 is also
deemed schedulable using Theorem 5.3, and not conversely.

Assume a contradiction where a task setΓ is not guaranteed schedulable based on
Theorem 5.3 for priority assignment policyISM-DS[ξ] but schedulable using Theorem
5.2 for ISM-DS priority assignment policy. IfΓ is not guaranteed to be schedulable
underISM-DS[ξ] based on schedulability test in Theorem 5.3, then there exist no k
such that the set of(n−k) lowest density tasks is special on(m−k) processors for any
k < m (according to the contrapositive of Theorem 5.3).

WhenΓ is schedulable underISM-DS based on Theorem 5.2, the proof of the
schedulability condition in Theorem 5.2 guarantees that there exists a task setΓL that is
special on(m− |ΓH |) processors and|ΓH | < m. So, there exists somek such that the
set of(n − k) lowest density tasks is special on(m − k) processors for somek < m
(contradiction!). Therefore, any task set schedulable usingISM-DS based on Theorem
5.2 is also schedulable usingISM-DS[ξ] based on Theorem 5.3.

It will be shown using the following Example 5.2 that the converse is not true; that

5.6. EMPIRICAL INVESTIGATION 65

is, there is a task set that is global FP schedulable based on the schedulability test in
Theorem 5.3 forISM-DS[ξ] policy but is not guaranteed to be schedulable based on the
density-bound test in Theorem 5.2 forISM-DS priority assignment policy.

Example 5.2. Considern = 11 tasks in setΓ = {τ1, . . . τ11} such thatδ1 = . . . =
δ10 = 0.40 andδ11 = 0.15. Thus, the total density of task setΓ is δnsum = 4.15. The
task setΓ is to be scheduled using global FP scheduling onm = 10 processors.

Notice that Property 1 of special task system is satisfied fortask setΓ because
δnmax = 0.4 < m/(2m − 1) for m = 10. Sincem = 10, δnmax=0.40 andδnmin=0.15,
we haveFm(δnmin) ≈ 4.745 and Fm(δnmax) = 4.150. Consequently, it is true that
min{Fm(δnmin), Fm(δnmax)} = 4.150 andδnsum ≤ min{Fm(δnmin), Fm(δnmax)} holds.
So, the entire task setΓ is special onm = 10 processors and global FP schedulable
based on Theorem 5.3 forISM-DS[ξ] priority assignment policy.

However, the schedulability test in Theorem 5.2 is not satisfied for Γ (i.e., den-
sity boundm ·min{1/2, B(m)} = 4.116 < δnsum). Consequently, the schedulability
of Γ usingISM-DS policy can not be guaranteed. So, the schedulability test for policy
ISM-DS[ξ] in Theorem 5.3 dominates that of in Theorem 5.2 forISM-DS.

5.6 Empirical Investigation

In this section, empirical investigation into the two proposed schedulability tests for pri-
ority assignment policiesISM-DS andISM-DS[ξ] is presented. In order to measure the
improvement of these proposed tests over the state-of-the-art DM-DS[1

3] test, simula-
tion using randomly generated task sets is conducted. The well-known metric, called
acceptance ratio, is used to evaluate the effectiveness (in terms of determining schedu-
lability of randomly generated task sets) of the three priority assignment policies and
schedulability tests given in Table 5.1.

Priority Assignment Policy Schedulability Test Used

DM-DS[1
3] The density boundm+1

3 (proved in [BCL05]) is
used as the schedulability test.

ISM-DS The density boundm · min{1/2, B(m)} proved
in Theorem 5.2 is used as the schedulability test.

ISM-DS[ξ] Algorithm Find(ξ)in Figure 5.2 is used as the
schedulability test.

Table 5.1: Different priority assignment policies and the associated schedulability tests.

The acceptance ratio of a schedulability test is the percentage of the randomly generated
task sets that are deemed schedulable using that schedulability test at a particular uti-
lization level. All the randomly generated task sets generated at a particular utilization
level have the same total utilization. The acceptance ratios of the three priority assign-
ment policies and schedulability tests in Table 5.1 are presented in this section. Before
presenting the experimental results, the task set generation algorithm is presented next.

66 CHAPTER 5. DENSITY-BOUND-BASED TEST

5.6.1 Task Sets Generation Algorithm

TheUUnifast algorithm (given in Figure 5.3), which was originally proposed by Bini
and Buttazzo [BB05] to generate utilizations of a task set tostudy uniprocessor schedul-
ing, is adapted by Davis and Burns in [DB09] to generate utilizations of a task set to
study multiprocessor scheduling.

Algorithm UUnifast(n, U)

1. SumU= U
2. For (i=0 to n-1)
3. nextSumU = SumU * pow(rand(),1/(n-i));
4. U[i]=SumU-nextSumU;
5. SumU=nextSumU;
6. End For
7. U[n]=SumU;

Figure 5.3: The UUnifast algorithm [BB05]. The functionpow(x,y) returns xy and
rand() returns a random number in the range [0,1].

Based on theUUnifast algorithm, Davis and Burns proposed the following three steps
(called theUUnifast-Discard algorithm) to generate a task set with cardinalityn
and total utilizationU to study scheduling on multiprocessors:

• Step 1: TheUUnifast algorithm with parametersn andU is used to generate
task utilization values in the range[0, U].

• Step 2: If the utilization of a task is greater than 1, then the utilization values
produced so far are discarded. If the total number of such discarded partial task
sets exceeds some limit, sayDISCARDlim, then the algorithm exits by reporting
failure, otherwise, Step 1 is re-executed.

• Step 3: If the utilization of no task is greater than 1, then a set ofn valid utilization
values are generated and the algorithm exits by reportingsuccess.

The derivation of this task set generation algorithm to study multiprocessor scheduling
is motived by the following reason as pointed out by Davis andBurns in [DB11b]:

“A task set generation algorithm should be unbiased . . . and . .. should
allow task sets to be generated that comply with a specified parameter set-
ting. That way the dependency of priority assignment policy/ schedulability
test effectiveness on each task set parameter can be examined by varying
that parameter, while holding all other parameters constant, avoiding any
confounding effects.”

It is proved in [DB09, DB11b] that theUUnifast-Discard algorithm generates an
unbiased (i.e., uniformly distributed [BB05]) task set with cardinalityn where each
task’s utilization is in the range[0,min{U, 1}] and total utilization of the task set isU .

5.6. EMPIRICAL INVESTIGATION 67

In this thesis, theUUnifast-Discard algorithm is used to generaten utiliza-
tion values of a task set usingDISCARDlim = 1000. Once a set ofn utilizations
{u1, u2, . . . un} of a task set is generated, the other parameters of each taskτi in the
task set are generated as follows:

• The minimum inter-arrival timeTi of each taskτi is generated from the uniform
random distribution within the range[10ms, 1000ms].

• The WCET of taskτi is set toCi = ui · Ti.

• The relative deadlineDi of taskτi is generated from the uniform random distri-
bution within the range[Ci, Ti].

Each of the experiments is characterized by a pair(m,n) wherem is the number of
processors andn is the cardinality of task set. For each experiment(m,n), task sets
are generated at 40 different utilization levels:{0.025m, 0.5m, . . . 0.975m,m}. A total
of 1000 task sets at each of the 40 utilization levels using the UUnifast-Discard
algorithm with parametersn andU are generated. Each of the 1000 task sets generated
at a particular utilization level, sayU , has cardinalityn and total utilization equal to
U . The schedulability of each of the 1000 task sets generated at each utilization level
are determined based on the schedulability test for each of the three priority assignment
policies in Table 5.1 and the acceptance ratio for each test is computed.

5.6.2 Result Analysis

A series of experiments are conducted using randomly generated task sets for different
pairs of(m,n) wherem ∈ {2, 4, 8, 16} andn ∈ {2.5m, 5m, 10m}. The acceptance
ratios of three experiments with parameters(m = 4, n = 10), (m = 4, n = 20), and
(m = 4, n = 40) are given in Figure 5.4–5.6. And, the acceptance ratios of three
experiments(m = 8, n = 20), (m = 8, n = 40), and(m = 8, n = 80) are given in
Figure 5.7–5.9. The important trends and observations based on these experiments are
presented in this section; and the results of other experiments follow a similar trend.

Observation 1: The schedulability test of theISM-DS[ξ] priority assignment policy
significantly outperforms that of bothDM-DS[1

3] and ISM-DS priority assignment
policies. In the experiment(m = 4, n = 20) in Figure 5.5, the acceptance ratio at
utilization level 0.275m is approximately 0% using the schedulability tests for both
DM-DS[1

3] andISM-DS priority assignment policies while the acceptance ratio ofthe
schedulebality test forISM-DS[ξ] poiority assignment policy is more than 70%. This
is due to the improved priority assignment policyISM-DS[ξ] that searches the thresh-
old density by taking into consideration of the densities ofthe tasks in addition to the
number of processors.

Observation 2: The acceptance ratios for all the tests decreases as the number of tasks
in a task set increases wherem is constant. This is because the total density of the
task set at each utilization level generally increases as the number of tasks in a task set

68 CHAPTER 5. DENSITY-BOUND-BASED TEST

0 %

20 %

40 %

60 %

80 %

100 %

 0.2 0.4 0.6 0.8 1

A
cc

ep
ta

nc
e

R
at

io

Utilization / m

m=4, n=10 (Constrained-Deadline)

ISMDS[ξ]
ISMDS
DMDS

Figure 5.4: Acceptance ratios for experiments with(m = 4, n = 10).

0 %

20 %

40 %

60 %

80 %

100 %

 0.2 0.4 0.6 0.8 1

A
cc

ep
ta

nc
e

R
at

io

Utilization / m

m=4, n=20 (Constrained-Deadline)

ISMDS[ξ]
ISMDS
DMDS

Figure 5.5: Acceptance ratios for experiments with(m = 4, n = 20).

0 %

20 %

40 %

60 %

80 %

100 %

 0.2 0.4 0.6 0.8 1

A
cc

ep
ta

nc
e

R
at

io

Utilization / m

m=4, n=40 (Constrained-Deadline)

ISMDS[ξ]
ISMDS
DMDS

Figure 5.6: Acceptance ratios for experiments with(m = 4, n = 40).

5.6. EMPIRICAL INVESTIGATION 69

0 %

20 %

40 %

60 %

80 %

100 %

 0.2 0.4 0.6 0.8 1

A
cc

ep
ta

nc
e

R
at

io

Utilization / m

m=8, n=20 (Constrained-Deadline)

ISMDS[ξ]
ISMDS
DMDS

Figure 5.7: Acceptance ratios for experiments with(m = 8, n = 20).

0 %

20 %

40 %

60 %

80 %

100 %

 0.2 0.4 0.6 0.8 1

A
cc

ep
ta

nc
e

R
at

io

Utilization / m

m=8, n=40 (Constrained-Deadline)

ISMDS[ξ]
ISMDS
DMDS

Figure 5.8: Acceptance ratios for experiments with(m = 8, n = 40).

0 %

20 %

40 %

60 %

80 %

100 %

 0.2 0.4 0.6 0.8 1

A
cc

ep
ta

nc
e

R
at

io

Utilization / m

m=8, n=80 (Constrained-Deadline)

ISMDS[ξ]
ISMDS
DMDS

Figure 5.9: Acceptance ratios for experiments with(m = 8, n = 80).

70 CHAPTER 5. DENSITY-BOUND-BASED TEST

increases. This conclusion is made based on another set of experiments that verifies that
the fact the total density of task set at each utilization level generally increases due to the
increase in cardinality of the task set. Thenormalized average densityof 1000 task sets
at each utilization level is computed for experiments(m = 8, n) for five different values
of n = 10, 20, 40, 60, 80. The normalized average density is calculated as follows: the
total density of 1000 task sets at each utilization level is first divided by 1000 to compute
the average density which is then divided bym.

Figure 5.10 plots the normalized average density on the y-axis and the normalized
utilization level on the x-axis for experiments withm = 8 andn = 10, 20, 40, 60, 80.
Similar result is also shown in Figure 5.11 for experiments with m = 4 and n =
8, 10, 20, 30, 40.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0.2 0.4 0.6 0.8 1

A
ve

ra
ge

 D
en

si
ty

/m

Utilization / m

m=8 (Constrained-Deadline)

n=80
n=60
n=40
n=20
n=10

Figure 5.10: Increase in normalized average density with the increase in task set cardinality for
experiments withm = 8 andn = 10, 20, 40, 60, 80.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0.2 0.4 0.6 0.8 1

A
ve

ra
ge

 D
en

si
ty

/m

Utilization / m

m=4 (Constrained-Deadline)

n=40
n=30
n=20
n=10

n=8

Figure 5.11: Increase in normalized average density with the increase in task set cardinality for
experiments withm = 4 andn = 8, 10, 20, 30, 40.

5.6. EMPIRICAL INVESTIGATION 71

It is evident that the average density of a task set increasesas the number of tasks
in a task set increases for each utilization level and fixed number of processors. Since
the three schedulability tests in Table 5.1 highly depend onthe total density of a task
set and because a constrained-deadline task set with relatively higher density is more
difficult to schedule, the acceptance ratio decreases as thenumber of tasks in a task set
increases for a given number of processors.

Observation 3: The acceptance ratios of the two schedulability tests forDM-DS[1
3] and

ISM-DS priority assignment policies increase slightly due to the increase in number of
processors while the task set cardinality does not change (compare the acceptance ratios
for experiments(m = 4, n = 20) and(m = 8, n = 20) in Figure 5.5 and Figure 5.7,
respectively). This is because the normalized average density of a task set decreases as
the number of processors increases while keeping the task set cardinality constant. Fig-
ure 5.12 plots the normalized average density against the normalized utilization level for
experiments withn = 40 andm = 2, 4, 8, 16. It is evident that for a given cardinality
of the task set, the normalized average density of a task set decreases at each utilization
level with the increase in number of processors. Consequently, the acceptance ratio of
the density-based tests for policiesDM-DS[1

3] andISM-DS increases with the increase
in number of processors for some fixed cardinality of the tasksets.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0.2 0.4 0.6 0.8 1

A
ve

ra
ge

 D
en

si
ty

/m

Utilization / m

n=40 (Constrained-Deadline)

m=2
m=4
m=8

m=16

Figure 5.12: Decrease in normalized average density with the increase in number of processors
for experiments with task set cardinalityn = 40 andm = 2, 4, 8, 16.

Observation 4: The acceptance ratios of schedulability test forISM-DS[ξ] priority as-
signment policy decreases noticeably with the increase in number of processors while
keeping the task set cardinality constant (compare the acceptance ratios ofISM-DS[ξ] pri-
ority assignment policy for experiments(m = 4, n = 40) and (m = 8, n = 40) in
Figure 5.6 and Figure 5.8, respectively). If the number of processors increases from one
experiment to another, the total utilization of the task sets generated at each normalized
utilization level also increases. Task set with relativelylarger total utilization also has
relatively larger total density. Consequently, the numberof tasks with relatively larger

72 CHAPTER 5. DENSITY-BOUND-BASED TEST

individual density in a task set increases as the total density of the task set increases
while the task set cardinality remains constant. If the individual density of each task in
a task set is relatively larger, then the algorithmFind(ξ)in Figure 5.2 often fail to find
anyk, 0 ≤ k < m, such that the set of(n−k) lowest density tasks is special on(m−k)
processors. In other words, task set having higher number ofhigh density tasks suffers
from Dhall’s effect and can not be guaranteed schedulable using the schedulability test
for ISM-DS[ξ] priority assignment policy.

5.7 Implicit-Deadline Tasks: Utilization Bound

The priority assignment policyISM-DS is also applicable to implicit-deadline task sets.
Note that the density and utilization of implicit-deadlinetask systems are the same. The
schedulability test for implicit-deadline tasks is calledthe utilization-bound test which
is given in Theorem 5.4 (proof is obvious by consideringDi = Ti in Theorem 5.3).

Theorem 5.4. An implicit-deadline sporadic task systemΓ is schedulable using global
FPscheduling that assigns the priorities based on policyISM-DS if the following con-
dition, form ≥ 2, holds:

Un ≤ m ·min{1/2, B(m)}

whereUnis the total utilization of the task setΓ.

Example 5.3. As an example of the way fixed priorities are assigned using the priority
assignment policyISM-DS, consider the following implicit-deadline task system to be
scheduled onm = 3 processors based on global FP scheduling where the parameters of
each taskτi(Ci, Ti) are as follows:

Γ
def
= {τ1 = (1, 2) τ2 = (2, 3) τ3 = (7, 100)

τ4 = (1, 25) τ5 = (2, 9)}

The threshold density or utilizationδts is equal toB(3) = 0.5. The utilizations of the
five tasks areu1 = 0.5, u2 ≈ 0.67, u3 = 0.07, u4 = 0.04, andu5 ≈ 0.23. Since
u2 > B(3), taskτ2 is assigned the highest fixed priority. The slack of tasksτ1, τ3, τ4
andτ5 are respectively 1, 93, 24, and 7. Therefore, the final fixed priority ordering of all
the tasks are as follows (highest-priority task listed first): τ2, τ1, τ5, τ4, τ3.

The utilization boundm ·min{1/2, B(m)} of global FP scheduling, for any finite
m ≥ 2, using policyISM-DS is higher than the state-of-the-art utilization boundsm+1

3
and 2m

3+
√
5

of RM-US [13] and SM-US[2
3+

√
5
] scheduling, respectively. Figure 5.13

illustrates the utilization bounds ofRM-US[13], SM-US[2
3+

√
5
] andISM-DS for m =

2, . . . 16. The x-axis in Figure 5.13 represents the number of processors and the y-
axis represents the utilization bound normalized by numberof processors for different

5.7. IMPLICIT-DEADLINE TASKS: UTILIZATION BOUND 73

30 %

40 %

50 %

 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

U
til

iz
at

io
n

bo
un

d
/ m

Number of processors (m)

ISM-DS
SM-US
RM-US

Figure 5.13: Utilization bounds ofRM-US[1
3
], SM-US[2

3+
√
5
] andISM-DS.

priority assignments. Notice that the proposed bound is same as forRM-US [13] when
m = 2 and the same as forSM-US[2

3+
√
5
] whenm =∞.

The total utilization of the task set in Example 5.3 is≈ 1.499. The utilization bound
m ·min{1/2, B(m)} usingISM-DS policy for m = 3 is 1.5. Therefore, the task
set in Example 5.3 is global FP schedulable usingISM-DS priority assignment policy.
NeitherRM-US [13] norSM-US[2

3+
√
5
] can guarantee the schedulability of this task set

since the utilization bound for these policies are≈ 1.33 and1.14, respectively.

5.7.1 Independent and Scale Invariant Priority Assignment

In this subsection, the best achievable utilization bound of global FP scheduling of
implicit-deadline task sets, where no task’s utilization is in the range(1− 1√

2
,
√
2−1] ≈

(0.293, 0.414], is proposed for the class of fixed-priority assignment policies that are in-
dependent and scale invariant. A priority assignment scheme is independent[AJ03] if
the priority of a taskτi depends only on its own parameters, i.e., the priorities of tasks
are assigned according to the functionprioi = f(Ti, Ci). A priority assignment scheme
is scale-invariant[AJ03] if the relative priority order of the tasks does not change when
the Ti andCi of all the tasks are multiplied by the same positive constant. In other
words,f(Ti, Ci) is scale invariant if and only if the following holds for allA > 0:

f(Ti, Ci) < f(Tj , Cj)⇔ f(A · Ti, A · Ci) < f(A · Tj , A · Cj)

Andersson and Jonsson showed in [AJ03] that the utilizationbound for global FP schedul-
ing of implicit-deadline task set using an independent and scale-invariant priority assign-
ment scheme can not be greater than(

√
2−1)m ≈ 0.414m. The problem of determining

such an independent and scale-invariant priority assignment scheme with a utilization
bound of(

√
2− 1)m for global FP scheduling is still open.

In the First International Real-Time Scheduling Open Problems Seminar held in
conjunction with the 22nd Euromicro Conference on Real-Time Systems (ECRTS) in
Belgium, 2010, Andersson presented a conjecture regardingthis open problem [And10]:

74 CHAPTER 5. DENSITY-BOUND-BASED TEST

the utilization bound of slack-monotonic HPA policy using(
√
2 − 1) as the threshold

utilization is(
√
2− 1)m for implicit-deadline task systems (called, theSM-US[

√
2− 1]

priority assignment scheme). TheSM-US[
√
2 − 1] priority assignment policy assigns

the highest fixed priority to each task having utilization greater than(
√
2− 1) and each

of the remaining tasks is assigned lower, slack-monotonic priorities. While the problem
of proving this conjecture is still open for arbitrary task sets, this problem is closed in
this thesis for task sets in which no task has utilization within the range(1− 1√

2
,
√
2−1].

Theorem 5.5. An implicit-deadline sporadic task setΓ is schedulable using global
FPscheduling underSM-US[

√
2− 1] priority assignment policy, if the following condi-

tion, form ≥ 2, holds:
Un ≤ m · (

√
2− 1)

whereui ≤ (1− 1√
2
) or ui > (

√
2− 1) for eachτi ∈ Γ.

Proof. The proof is given in Appendix A (page 223).

If the utilization-bound test in Theorem 5.4 can not guarantee the global FP schedula-
bility of an implicit-deadline task set where no task’s utilization is in the range(1 −
1√
2
,
√
2 − 1] ≈ (0.293, 0.414], then Theorem 5.5 can be used to test the schedula-

bility of the task set. For such task sets, where no task’s utilization is in the range
(1 − 1√

2
,
√
2 − 1], we have at our disposal a priority-assignment scheme that attains

the best utilization bound possible for the class of independent and scale invariant fixed-
priority assignment schemes for global FP scheduling.

The utilization bound ofISM-DS priority assignment policy for arbitrary task sets is
greater thanm·(

√
2−1) wheneverm ≤ 9. Therefore, the utilization bound ofm·(

√
2−

1) for SM-US[
√
2−1] priority assignment policy is useful to test the schedulability only

for task set where no task’s utilization is in the range(1− 1√
2
,
√
2− 1] andm ≥ 10. No

task sets with total utilizationm · (
√
2− 1) for m ≥ 10 passes the utilization bound test

for theISM-DS priority assignment policy. However, such task set with total utilization
m · (
√
2−1) passes the utilization bound test of theSM-US[

√
2−1] priority assignment

policy if no task’s utilization is in the range(1− 1√
2
,
√
2− 1].

m = 16 m = 32

n = 3m 2.8% 0%
n = 5m 13.1% 1.9%
n = 8m 67.6% 43.4%
n = 10m 89.5% 79.4%
n = 15m 99.6% 98.4%

Table 5.2: Acceptance ratios, based on the schedulability test in Theorem 5.5, of the1000 ran-
domly generated task sets each with total utilizationm(

√
2− 1).

The acceptance ratios using the schedulability test in Theorem 5.5 of 1000 randomly
generated task sets, each with total utilizationm · (

√
2 − 1) for m = 16, 32 andn =

5.8. UNIPROCESSOR SLACK-MONOTONIC SCHEDULING 75

3m, 5m, 8m, 10m, 15m, are computed and presented in Table 5.2. As the number of
tasks in a task set, each having a total utilizationm(

√
2 − 1) increases, the possibility

of having a task with utilization greater than1− 1√
2

decreases and the acceptance ratio
increases.

5.8 Uniprocessor Slack-Monotonic Scheduling

It has been proved by Andersson in [And08b] that the utilization bound foruniprocessor
slack-monotonic scheduling of implicit-deadline task setis 50%. The schedulability
analysis of “special” task system on multiprocessors proposed in this thesis (Section
5.4.2, page 53) enables the derivation of a higher utilization bound for uniprocessor
slack-monotonic scheduling compared to that of the state-of-the-art result in [And08b].

First, it will be shown below that the density bound for slack-monotonic scheduling
of constrained-deadline tasks on uniprocessor isF1(δ

n
min). Then, the corresponding

utilization boundF1(u
n
min) for implicit-deadline tasks is shown to dominate the state-

of-the-art bound of 50% for slack-monotonic uniprocessor scheduling.

Consider a task systemΓ that is special on uniprocessor (i.e.m = 1). According
to Property 1 of special task systemΓ (Definition 5.1, page 53), we haveδnmax ≤ 1
becausem/(2m − 1) = 1 for m = 1. Therefore, special task systemΓ is in fact an
arbitrary task system for uniprocessor slack-monotonic scheduling wheneverm = 1
since there is no restriction on the maximum density of individual task. Note that we
have0 < δnmin ≤ δnmax ≤ 1 whereδnmin andδnmax are the minimum and maximum
density of any task inΓ, respectively.

For m = 1, the functionF1(x) is increasing within[0, 1] sinceF ′
1(x) = 1 −

1
(2−x)2 > 0 within (0, 1). Consequently,min{F1(δ

n
min),F1(δ

n
max)} = F1(δ

n
min) since

δnmin ≤ δnmax. It is obvious from Property 2 of special task systemΓ that form = 1 that

δnsum ≤ min{F1(δ
n
min),F1(δ

n
max)} = F1(δ

n
min) (5.24)

Using Theorem 5.1, the special task setΓ is schedulable usingGSSM (i.e., uniproces-
sor slack-monotonic scheduling whenm = 1). Therefore, the density bound for unipro-
cessor slack-monotonic scheduling of constrained-deadline task isF1(δ

n
min). Evidently,

the utilization bound for uniprocessor slack-monotonic scheduling of implicit-deadline
task sets isF1(u

n
min).

The current state-of-the-art utilization bound for SM uniprocessor scheduling of
implicit-deadline tasks is 50% which is proposed in [And08b]. It will now be shown
thatF1(u

n
min) > 50%. Since the functionF1(x) is increasing within[0, 1], we have

F1(u
n
min) > F1(0) sinceunmin > 0. Note thatF1(0) =

1(1−0)
2−0 + 0 = 1/2 = 50%.

Therefore,F1(u
n
min) > 50%. The proposed utilization boundF1(u

n
min) for the unipro-

cessor slack-monotonic scheduling is higher than that of the state-of-the-art result in
[And08b].

76 CHAPTER 5. DENSITY-BOUND-BASED TEST

5.9 Summary

The preciseness of schedulability analysis for global FP scheduling is important in order
to reduce the resource requirement by applying the corresponding schedulability test.
Moreover, the efficiency of a schedulability test is also important in order to quickly
determine if a task set is schedulable on a particular platform. Efficiency in evaluating
a test enables the system designers to quickly apply the testfor different choices of the
parameters, e.g., different periods of each task, number ofprocessors, and so on.

The density bound test for global FP scheduling based on theISM-DS priority as-
signment policy is efficient: the total density can be computed in linear time and can be
compared against the density bound in constant time. This test enables the designer to
quickly determine, for a given number of processors, whether the timing constraints of
a set of constrained-deadline sporadic tasks are met or not.In addition, the test also can
be used to find the sufficient number of processors for meetingthe timing constraints of
a sporadic task set. The schedulability test using theISM-DS priority assignment policy
is proved to dominate the state-of-the-art density-bound test. The utilization bound test
based on the priority assignment policyISM-DS is also higher than other existing uti-
lization bounds for global FP scheduling of implicit-deadline sporadic tasks. It is proved
that the best possible utilization bound for scale invariant and independent priority as-
signment policy is achievable forSM-US[

√
2−1] priority assignment policy if no task’s

utilization is in the range(1− 1√
2
,
√
2−1]. This test is highly effective for task sets with

m > 9 and higher cardinality. The uniprocessor slack monotonic scheduling is shown
to have a utilization bound higher that the state-of-the-art 50% untilization bound.

The priority assignment policyISM-DS[ξ] is derived based on the schedulability
analysis of the global FP scheduling for theISM-DS priority assignment policy. The
schedulability test proposed for theISM-DS[ξ] priority assignment policy dominates
the density-bound test proposed for global FP scheduling for theISM-DS priority as-
signment policy. Searching the threshold densityξ from the set of densities of the tasks
in a task set using algorithmFind(ξ)is efficient and can be done inO(n · log n) time.

The simulation result shows significant improvement of the schedulability test for
theISM-DS[ξ] priority assignment policy over the density-bound test proposed in this
chapter. However, the performance of all the considered tests decreases as the cardinality
increases for a given number of processors. This is because the total density of a task set
increases with the increase in cardinality while the numberof processors is fixed. The
performance of the schedulability test for theISM-DS[ξ] priority assignment policy
decreases if the number of processors increases for some fixed cardinality due to Dhall’s
effect. This is because the number of tasks having relatively larger individual density
increases with the increase in number of processors while the number of tasks in a task
set is fixed. In contrast, the density bound tests perform relatively better if the number
of processors increases for a given cardinality of the task set since the average density
of task set decreases in such case.

6
Iterative Tests

This chapter presents three newiterative schedulability testsfor global FP scheduling of
constrained-deadline sporadic task systems. Iterative schedulability test involves testing
oneschedulability condition for each task in a task set to determine whether its deadlines
are met. One of the main challenges in deriving an iterative schedulability test is iden-
tifying the worst-case runtime behavior, i.e., called the critical instant. A job released
at the critical instant suffers the maximum interference from the higher priority tasks.
However, the critical instant is not yet known for global FP scheduling. To overcome
this limitation, pessimism is introduced during the schedulability analysis to safely ap-
proximate the worst-case. The endeavor in this chapter is toreduce the different sources
of pessimism in the state-of-the-art schedulability analysis and propose better iterative
schedulability tests for global FP scheduling.

Another challenge for global FP scheduling is the problem ofassigning the fixed
priorities to the tasks since the optimal priority orderingin such case is still unknown.
Each of the new schedulability tests proposed in this chapter combines the schedulability
test for each task with finding its fixed priority using the principle of Audsley’s priority
assignment policy. Finding the priority assignments for all the tasks implies that the
task set is schedulable using global FP scheduling. It is shown that the proposed tests
dominate and empirically perform better than the state-of-the-art iterative schedulability
test for constrained-deadline sporadic tasks.

77

78 CHAPTER 6. ITERATIVE TESTS

6.1 Introduction

In many real-time systems, e.g., avionics, spacecraft and automotive, it is important
to efficiently use the processing resources due to size, weight and power constraints.
Reducing the resource requirement (e.g., number of processors) of such systems would
significantly cut costs for mass production, for example, ofcars, trucks or aircrafts.
However, if the pessimism in the schedulability analysis for such systems is large, then
a relatively higher number of processors is required to meetthe deadlines. The endeavor
in this chapter is to reduce such pessimism by proposing better iterative schedulability
tests for global FP scheduling.

Global FP scheduling of constrained-deadline sporadic tasks systems is important
not only for CPU scheduling but also in other domains, for example, scheduling real-
time flows in WirelessHART networks designed for industrialprocess control and moni-
toring. WirelessHART is an open wireless sensor-actuator network standard specifically
designed for industrial process control to avoid severe economic loss or environmen-
tal threats, reduce production inefficiency, enhance equipment monitoring and mainte-
nance [WHA]. The analysis of global FP scheduling has been applied to the end-to-
end delay analysis and priority assignment of the periodic real-time flow scheduling on
multiple communication channels of WirelessHART networks[SXLC11a, SXLC11b].
Improvement of global FP schedulability analysis and the priority assignment policy
would result in less pessimistic end-to-end delay calculation and would enhance the
schedulability of the real-time flows transmitted over multiple communication channels
in WirelessHART networks; and consequently, better control and monitoring of indus-
trial processes can be attained.

Since the optimal priority assignment for global FP scheduling on a multiprocessor
system (at present time) is unknown, the quality (e.g., minimum number of processors
required) of many previously proposed global FP schedulability tests depends on the
actual priority ordering of the tasks. Therefore, determining a good priority ordering
is as important as deriving a good schedulability test. In this chapter, novel priority
assignment schemes and the corresponding schedulability tests for scheduling such task
systems on multiprocessors are proposed and demonstrated,using proof and simulation,
that the schemes are superior to prior schemes.

Three new iterative schedulability tests for global FP scheduling are proposed: each
test combines schedulability analysis of each task with priority assignment using Auds-
ley’s approach such that successful priority assignment implies the schedulability of the
task. In other words, if all the tasks are assigned priorities using this combination, then
the task set is also schedulable. Each of these iterative tests dominates the state-of-the-
art iterative test for global FP scheduling of constrained-deadline sporadic tasks.

State-of-the-art Iterative Test. The basic idea of iterative schedulability test is thatone
condition is tested for each lower-priority taskτi ∈ Γ. The schedulability analysis of
each taskτi is performed within an interval, called theproblem window, such that one
job of the taskτi is assumed to be released at the beginning of the problem window. One
flavor of iterative test is based on computing the upper boundon theresponse-timeof

6.1. INTRODUCTION 79

taskτi: the problem window size is initially set toCi, then the response-time of taskτi
within the problem window is calculated; and, if the computed response-time of taskτi
is greater than the length of the problem window, then the size of the problem window
is reset to the response-time just computed, and the processis repeated until the length
of the problem window is not greater than the relative deadline of taskτi. The itera-
tive schedulability test proposed by Guan et al. in [GSYY09]for global FP scheduling,
called theRTA-LC test, is the state-of-the-art response-time based iterative schedulabil-
ity test1. TheRTA-LC test derives an upper bound on the response time of each taskτi
using the response time of each higher priority tasks in setHPi.

Another flavor of iterative test is based ondeadline-analysiswhere the length of the
problem window of taskτi is set equal to its relative-deadlineDi and the schedulability
analysis of taskτi with this problem window is considered. In deadline-based analysis,
an upper bound on the interference due to all the higher priority tasks on taskτi in an
interval of lengthDi is computed. Then, based on the interference within the problem
window, the minimum available time to execute taskτi in the problem window is cal-
culated. The iterative schedulability test proposed by Davis and Burns in [DB11b] for
global FP scheduling, called theDA-LC test, is the state-of-the-art iterative schedulabil-
ity test based on deadline-analysis.

It has been shown in [DB11b] that, for anygiven FP ordering of the tasks, the
RTA-LC test dominates theDA-LC test. Nevertheless, the work in [DB11b] derives
an effective joint priority assignment policy and schedulability test by combining the
DA-LC test with multiprocessor extension of Audsley’s optimal priority assignment
(OPA) algorithm2 [Aud01]. However, theRTA-LC test can not be combined with
the OPA algorithm to findanotherpriority ordering when the task set does not sat-
isfy theRTA-LC test for thegivenpriority assignment [DB11b]. It is empirically shown
in [DB11b] that the combination of OPA andDA-LC test, called theODA-LC test in this
thesis, outperforms theRTA-LC test regardless of what heuristic priority assignment
policy (e.g., deadline-monotonic) the latter uses. TheODA-LC test is the state-of-the-art
iterative schedulability test for global FP scheduling of constrained-deadline sporadic
tasks.

Contributions. The main contribution in this chapter is to identify the sources of pes-
simism in the analysis of state-of-the-artODA-LC test and applying techniques to reduce
such pessimism. In this chapter, three new iterative schedulability tests (each domi-
nates theODA-LC test) are proposed by increasingly improving theODA-LC test. The
overview of the main techniques for deriving the three testsis briefly presented below.

• The H-ODA-LC Test: This test combines the HPA policy with theODA-LC test.
Regarding the optimality of theODA-LC test (as claimed in [DB11b]), it is ob-
served that (i) optimality is only claimed under the assumption that the entire task
set and all the processors are involved when theODA-LC test is applied for de-
termining the fixed-priority ordering of all the tasks, and (ii) the details of the

1The name “RTA-LC” test (response-time analysis with limited carry-in tasks) is introduced in [DB11b].
2The Audsley’s OPA algorithm, adapted for multiprocessors, ispresented in Section 6.2.1.

80 CHAPTER 6. ITERATIVE TESTS

schedulability analysis of theODA-LC test in [DB11b] imply that, if not all tasks
and processors are included in the analysis, the upper boundon the interference
due to the higher priority tasks on a lower priority task may be lowered. Based
on this finding, the first new iterative schedulability test,called HPA-applied
ODA-LC (H-ODA-LC) test, which dominates theODA-LC test is proposed.

In H-ODA-LC test, at mostm′ largest-density tasks are given the highest fixed
priorities and the remaining(n − m′) tasks are given other, lower, fixed prior-
ities for somem′, 0 ≤ m′ < m. While the OPA algorithm is not (as shown
in [DB11b]) applicable to theRTA-LC test, the HPA policy is indeed applicable
to theRTA-LC test. The HPA policy combined with theRTA-LC test resulted in
HPA-appliedRTA-LC (H-RTA-LC) test which dominates theRTA-LC test.

• TheIA-DA Test: The second contribution is proposing a novel idea to furtherim-
prove theH-ODA-LC test. The purpose of assigning the highest fixed priorities
to them′ largest-density tasks in theH-ODA-LC test is to reduce the pessimism
involved in the interference computation of the higher priority tasks on a lower
priority task. However, Observation 5.1 (page 58, Chapter 5) does not necessar-
ily imply that the highest-density tasks are the best candidates for assigning the
highest fixed priorities for the HPA-based priority assignment policy.

It will be shown that it is not necessarily the highest-density tasks that may cause
the maximum interference on a lower priority task. This crucial observation
motivates the design of a new deadline-analysis-based iterative test, called the
Interference-Aware Deadline-Analysis(IA-DA) test, for global FP scheduling of
constrained–deadline sporadic tasks. A newcriterion for identifying the tasks that
are mostly responsible for pessimistic computation of interference on each lower-
priority task is proposed. Based on this criterion, a novel priority-assignment
technique, based on the principle of Audsley’s OPA algorithm, is proposed. It is
proved that if all the tasks are successfully assigned priorities using the proposed
priority-assignment policy, then all deadlines of the tasks are met. It is also proved
that theIA-DA test dominates theH-ODA-LC test.

• The IA-RT Test: It will be evident later that theIA-DA test essentially applies
the deadline-based analysis to determine whether a taskτi can be assigned (based
on Audsley’s algorithm) a particular priority level. While adeadline-based anal-
ysis considers a problem window of lengthDi, a response-time based schedula-
bility analysis considers a problem window smaller thanDi. And, the way the
interference on a lower priority task is approximated for global FP scheduling
(e.g., inDA-LC test) implies that a problem window larger than the responsetime
of a the analyzed task is more pessimistic for interference computation.

TheIA-DA test is improved by considering a response-time based test3 to deter-
mine whether a lower priority taskτi can be assigned a particular priority level

3The response-time based test that will be used forIA-RT test isnot the OPA-incompatibleRTA-LC test;
rather an OPA-compatible response-time-based test proposedin [DB10] is used.

6.2. AN ANALYSIS FRAMEWORK 81

based on the OPA algorithm. This new test is calledInterference-Aware Response-
Time(IA-RT) test which dominates theIA-DA test and significantly outperforms
the state-of-the artODA-LC test in simulation.

Organization. The rest of the chapter is organized as follows: Section 6.2 presents
a schedulability analysis framework, an overview of Audsley’s OPA algorithm and its
applicability to multiprocessors. Section 6.3 presents the related works and the two
state-of-the-artRTA-LC andODA-LC iterative schedulability tests. TheH-ODA-LC,
IA-DA, IA-RT tests are presented in Sections 6.4 – 6.6, respectively. Simulation results
are presented in Section 6.7 before summarizing the resultsin Section 6.8.

6.2 An Analysis Framework

In this section, an overview of the schedulability analysisframework to derive an itera-
tive schedulability test of global FP scheduling is presented. The schedulability analysis
of a generic job of a lower priority taskτi in the problem window of taskτi is considered.
The iterative schedulability test of taskτi is derived by computing theworkload, inter-
fering workload, total interfering workloadandinterferenceof the higher priority tasks
within the problem window. Before techniques to compute these terms are presented,
their definitions are formally presented.

Workload. Theworkloadof a higher priority taskτk within the problem window of task
τi is the cumulative length of intervals during which taskτk executes in that window.
In [BCL09, BC07, GSYY09], the work done by a job of a higher-priority task τk is
considered as “carry-in” work within the problem window of alower-priority taskτi if
a job of taskτk is released before the beginning of the window and executes (partially
or fully) within the window. If a higher-priority task is considered to constitute carry-in
work, then its worst-case interference on the lower-priority task is higher than that of its
non-carry-in counterpart. In the remainder of this chapter, the higher priority taskτi is
called a “carry-in task” (CI) if it is considered to have carry-in work within the problem
window of a lower priority taskτk; otherwise,τi is called a “non-carry-in task” (NC).

Interfering Workload. The interfering workloadof a higher priority taskτk is the cu-
mulative length of the intervals during which jobs of taskτk execute and job of taskτi is
ready but not executing within the problem window of taskτi. TheCI andNC interfer-
ing workloads of each higher priority taskτk are determined based on the upper bound
on theCI andNC workloads of taskτk within the problem window, respectively.

Total Interfering Workload. The total interfering workloadis the sum of interfering
workload of all the higher priority tasks within the problemwindow. It is proved by
Guan et al. in [GSYY09] that there are at most(m−1) carry-in tasks within the problem
window of any lower priority task for global FP scheduling ofconstrained-deadline
sporadic tasks. The total interfering workload is calculated by adding theCI interfering
workloads of(m− 1) carry-in tasks and theNC interfering workloads of the remaining

82 CHAPTER 6. ITERATIVE TESTS

higher priority tasks. The(m− 1) carry-in tasks from the set of higher priority tasks are
selected such that the total interfering workload is maximized.

Interference. The interferenceon a job of taskτi within the problem window is the
cumulative length of the intervals during which the job of task τi within its problem
window is ready but not executing. The interference of the higher priority tasks on task
τi within the problem window is calculated based on total interfering workload. Once
the interference of the higher priority tasks within a problem window calculated, the
amount of available execution time for the lower priority task τi within the problem
window can be determined. Finally, based on the available execution time of a lower
priority taskτi, sufficient schedulability test for taskτi is derived.

In deadline-based analysis (e.g.,DA-LC test), the length of the problem window is
equal toDi (i.e., the relative deadline of taskτi). If the difference betweenDi and the
interference within a problem window of lengthDi is not smaller than the execution
timeCi of taskτi, then taskτi meets its deadline. On the other hand, the response-time
based analysis (e.g.,RTA-LC test) initially sets the length of the problem window toCi.
Then based on the interference within the current problem window, the response-time
of taskτi is calculated. If the response-time is greater than the length of the current
problem window, the length of the problem window is incremented (a new problem
window is considered), and this process continues until (i)the computed response time
is greater than the deadline (deadline may be missed), or (ii) the computed response time
is exactly equal to the length of the current problem window (deadline is met).

The iterative schedulability tests proposed in [BCL09, BC07, GSYY09] assumes
that the priority ordering of the tasks is known before applying the test. However, there
is a class of iterative schedulability test, called OPA-compatible tests, that are applicable
not only for task sets with known priority ordering but also can be used to search for pri-
ority ordering combined with Audsley’s OPA algorithm [Aud01]. Finding a priority or-
dering using OPA algorithm is important because the optimalfixed-priority ordering for
global FP scheduling is not known. If a task set is not guaranteed to be schedulable for a
given priority ordering, then to ensure the schedulabilityof the tasks for that given prior-
ity ordering it may require to increase the number of processors or even re-specification
of the parameters of the tasks. Applying Audsley’s OPA algorithm, combined with a
schedulability test, could avoid such costly approach by finding another priority order-
ing for which the task set passes the schedulability test. The details of the Audsley’s
OPA algorithm and the conditions for a schedulability test to be OPA-compatible are
presented next.

6.2.1 Audsley’s OPA Algorithm

Audsley’s OPA algorithm, originally proposed for uniprocessors in [Aud01], is ex-
tended by Davis and Burns for priority assignment in global FP multiprocessor schedul-
ing [DB09]. All the proposed iterative schedulability tests (H-ODA-LC, IA-DA and
IA-RT) in this chapter use the principle of Audsley’s OPA algorithm for priority assign-

6.2. AN ANALYSIS FRAMEWORK 83

ment. In this subsection, the necessary conditions that must be satisfied for a schedu-
lability test to be OPA-compatible are presented. Then, thepseudo-code for OPA algo-
rithm is formally presented in Figure 6.1.

Andersson and Jonsson [AJ] concluded that Audsley’s OPA algorithm can not be
applied to determine the optimal priority ordering for global FP scheduling even if an
exact schedulability test (e.g., exact feasibility test for periodic tasks is proposed by Cucu
and Goossens in [CGG11]) were known. The basis for this conclusion by Andersson and
Jonsson is the following observation for implicit-deadline tasks [AJ]:

“For fixed priority preemptive global multiprocessor scheduling, there exist
task sets for which the response time of a task depends not only onTi and
Ci of its higher priority tasks, but also on the relative priority ordering of
those tasks.”

However, this observation does not exclude the possibilityof using Audsley’s OPA al-
gorithm for sufficient schedulability test of global multiprocessor scheduling as is first
pointed out in [DB09]. With respect to the applicability of Audsley’s OPA algorithm,
Davis and Burns [DB09, DB11b] categorize a global FP schedulability testS as being
either OPA-compatible or OPA-incompatible. An OPA-compatible testS implies that
Audsley’s OPA algorithm can be applied to find priority assignment using testS. The
clause “using testS” in the last sentence is very critical and also the basis for claiming
the optimality of the priority assignment according to the combination of the schedu-
lability testS and the OPA algorithm.If an OPA-compatible test S can not find a
priority ordering using the combination of OPA algorithm an d the schedulability
testS for a task set, it does not necessarily imply that there is no priority ordering
for which the task set is global FP schedulable. The adjective “optimal” in finding a
priority ordering of a task set, based on the OPA algorithm and an OPA-compatible test
S, must not lead to the following confusion:

The optimal fixed-priority assignment for global multiprocessor scheduling
(an exciting and important result) is now known.

Applying the OPA algorithm using an OPA-compatible testS essentially finds an opti-
mal priority ordering only with respect to testS: if a task set satisfies an OPA-compatible
schedulability testS for some priority ordering, then that OPA-compatible testS can
find such a priority ordering using the OPA algorithm.

Conditions for OPA-Compatibility (from [DB09, DB11b])

A schedulability testS for global FP scheduling is OPA-compatible if the following
three conditions are satisfied:

• Condition 1: The schedulability of a taskτi may, according to test S, be depen-
dent on the set of higher priority tasks, but not on the relative priority ordering of
those tasks.

84 CHAPTER 6. ITERATIVE TESTS

• Condition 2: The schedulability of a taskτi may, according to test S, be depen-
dent on the set of lower priority tasks, but not on the relative priority ordering of
those tasks.

• Condition 3: When the priorities of any two tasks of adjacent priority are swapped,
the task being assigned the higher priority can not become unschedulable accord-
ing to test S, if it was previously schedulable at the lower priority. (As a corollary,
the task being assigned the lower priority can not become schedulable according
to test S, if it was previously unschedulable at the higher priority).

Audsley’s OPA Algorithm for Multiprocessors

The OPA algorithm given in Figure 6.1 assigns fixed priorities to the tasks in setA to
be scheduled on̂m processors based on some global FP schedulability testS that is
OPA-compatible. Unlike the representation in [DB09, DB11b], the parameters (task set
A, number of processorŝm and the OPA-compatible testS) of the OPA algorithm are
made explicit here.

Algorithm OPA(Task set A, number of processorsm̂, Test S)

1. for each priority levelPL, lowest first
2. for each priority-unassigned taskτ ∈ A
3. If τ is schedulable on̂m processors at priority levelPL
4. according to schedulability testS with all other priority-
5. unassigned tasks assumed to have higher priorities, Then
6. assignτ to priority PL
7. break (continue outer loop)
8. return “failure”
9. return “success”

Figure 6.1: Audsley’s OPA algorithm for multiprocessors.

The OPA algorithm assigns priority to each task in setA starting from the lowest-
priority level. In order to be used, the FP schedulability testS has to be OPA-compatible
(i.e., needs to satisfy Conditions 1–3 given above). If the function call OPA(Γ,m, S)
returns “success”, then all deadlines of the tasks inΓ are met onm processors according
to the priorities assigned by the OPA algorithm in Figure 6.1. Initially, all the tasks in
setA are priority-unassigned. The objective of the OPA algorithm is to assign priority to
each of the tasks in setA starting from the lowest priority level (i.e., the lowest priority
task is determine first and the highest priority task is determined last).

The for loop in line 1 iterates for each of the priority level,denoted byPL, starting
from the lowest priority level. For each priority level in line 1, one priority-unassigned
task is searched using the inner loop in line 2 for assigning the priority at that priority
level. Whether or not a (priority-unassigned) task, say taskτ , can be assigned the par-
ticular priority levelPL is determined in line 3–5 by applying the testS and assuming

6.3. RELATED WORK 85

the higher priorities for all other (priority-unassigned)tasks. If such a taskτ is found,
then that task is assigned the current priority level and thepriority assignment for next
higher priority level starts (starting from the outer loop).

If no task can be assigned the current priority level, the inner loop terminates and
line 8 returns “failure”. If the outer loop terminates afterassigning priorities for each of
the tasks in setA, then the algorithm returns “success”. The OPA algorithm performs
at mostn(n + 1)/2 schedulability tests in contrast to exhaustively applyingthe test for
n! different fixed-priority orderings of the tasks. The following theorem guarantees that
algorithm OPA in Figure 6.1 always finds a priority assignment of the tasks if there
exists some priority ordering that makes the task set to satisfy the schedulability testS.

Theorem 6.1(from [DB09]). The Optimal Priority Assignment (OPA) algorithm is an
optimal priority assignment policy for any globalFP schedulability test S compliant
with Conditions 1-3.

While Theorem 6.1 is undoubtedly true, it isnot correct to say that if algorithm OPA in
Figure 6.1 can not find a priority ordering using the OPA-compatible schedulability test
S, then there is no other priority ordering that can make the task set schedulable.

6.3 Related Work

Several iterative tests are already been proposed in the literature for global FP schedul-
ing of constrained-deadline sporadic tasks [Bak06, BC07, BCL09, GSYY09, DB11b]. A
recent survey by Davis and Burns of different schedulability tests for global FP schedul-
ing can be found in [DB11a]. Empirical investigations in [Bak06, BCL09, DB11b] show
that such tests are highly effective in determining the schedulability of task sets having
a total density / utilization beyond the state-of-the-art bound for implicit- / constrained-
deadline tasks.

The basis of the schedulability analysis in many iterative tests is determining the
interference on each lower priority task due to its higher priority tasks within a problem
window. However, unlike the uniprocessor FP scheduling, the exact interference calcu-
lation for multiprocessor FP scheduling is difficult since the critical instant for global
FP scheduling of sporadic tasks is not known (please see section 3.1). Consequently, an
upper bound on the interference of the higher priority taskson each lower priority task
with the problem window is calculated to derive a sufficient schedulability test. Based
on Baker’s seminal work in [Bak06], several works [BCL09, BC07, GSYY09] have pro-
posed iterative schedulability tests for constrained-deadline sporadic task systems based
on bounding the amount of interference due to each of the higher priority tasks within
the problem window of a lower priority task.

Many global FP schedulability analysis of a lower-prioritytask τi considers that
all the higher-priority tasks to have carry-in work within the problem window [BCL09,
BC07]. Baruah’s global EDF schedulability analysis in [Bar07] limits the number of
higher-priority tasks considered to have carry-in work to(m− 1), wherem is the num-
ber of processors. TheRTA-LC test proposed by Guan et al. [GSYY09] employs the

86 CHAPTER 6. ITERATIVE TESTS

same carry-in task limitation as the analysis in [Bar07] to improve the response-time
analysis proposed in [BC07] for global FP scheduling of constrained-deadline sporadic
tasks. The test in [GSYY09] computes the upper bound on the response time of a task
based on the response time of the higher priority tasks. Recently, inspired by the works
in [BC07, Bar07, GSYY09], Davis and Burns [DB11b] proposed atest that also con-
siders(m− 1) tasks having carry-in work to improve the deadline-based schedulability
analysis in [BCL09] for global FP scheduling of constrained-deadline sporadic tasks.
This improved test proposed by Davis et al. in [DB11b] is calledDA-LC test (deadline-
analysis with limited carry-in).

TheRTA-LC test dominates theDA-LC test for any given fixed-priority ordering
of the constrained-deadline tasks [DB11b]. However, Daviset al. [DB09, DB11b] ad-
dressed the problem of finding an effective priority assignment using Audsley’s OPA
algorithm [Aud01] for the class of schedulability tests that are OPA-compatible. To that
end,RTA-LC is proved not to be OPA-compatible whileDA-LC is proved to be OPA-
compatible [DB11b]. It is empirically shown that OPA combined with DA-LC tests
(i.e., theODA-LC test) is currently the best combination of priority-assignment policy
and schedulability test for global FP scheduling [DB11b]. The state-of-the-art response-
time basedRTA-LC test and deadline-basedODA-LC test are now presented in Subsec-
tion 6.3.1 in details to identify the pessimism in their schedulability analysis and to
propose theH-ODA-LC, IA-DA andIA-RT tests in Sections 6.4 – 6.6, respectively.

6.3.1 State-of-the-art Iterative Tests

TheRTA-LC is the response-time-based test and theDA-LC test is a deadline-analysis-
based test. TheRTA-LC test calculates an upper bound on the response time of each
task. The response time of taskτi determined using theRTA-LC test is denoted byRi.
Remember thatHPi is the set of all the higher-priority tasks of taskτi. In order to un-
derstand theRTA-LC andDA-LC tests, we need to know how the workload, interfering
workload, total interfering work, and interference withinthe problem window of any
job of a lower priority taskτi are calculated in [GSYY09] and [DB11b], respectively.
The following equations Eq. (6.1) – (6.9) are presented in a different form than that are
used in [GSYY09, DB11b] in order to show the similarities anddifferences between the
DA-LC andRTA-LC tests.

Workload. There are at most(m− 1) tasks with carry-in workload within the problem
window of each lower priority taskτi in global FP scheduling [GSYY09]. Whether task
τk ∈ HPi is aCI task or aNC task depends on theCI andNC workload of that task in
the problem window. The upper bound on the workloads of taskτk ∈ HPi within any
interval of lengtht is denoted byWNCk (t) andWCIk (t) wheneverτk is aNC task andCI task,
respectively. TheNC workloadWNCk (t) of taskτk for bothRTA-LC andDA-LC tests is
given as follows [GSYY09, DB11b]:

WNCk (t) = ⌊t/Tk⌋ · Ck +min(Ck, t− ⌊t/Tk⌋ · Tk) (6.1)

6.3. RELATED WORK 87

However, theCI workload for theRTA-LC test and theDA-LC tests are computed
differently. The value ofCI workloadWCIk (t) of taskτk in an interval of lengtht for the
RTA-LC test is given as follows [GSYY09]:

WCIk (t) = Akt · Ck +min(Ck, t+Rk − Ck −Akt · Tk) (6.2)

whereAkt = ⌊(t+Rk−Ck)/Tk⌋. Note thatRk is an upper bound on the response time
of the higher priority taskτk ∈ HPi andRk has to be calculated beforeRi is calculated.
The dependence on the response time of the higher priority taskτk when calculating the
CI workloadWCIk (t) for analyzing the schedulability of lower-priority taskτi makes the
RTA-LC test OPA-incompatible. This is because the response-time of higher priority
taskτk depends on the relative priority ordering of the task inHPi (violates Condition 1
given in page 83). The value ofCI workloadWCIk (t) of taskτk in an interval of lengtht
for theDA-LC test is given as follows [DB11b]:

WCIk (t) = Akt · Ck +min(Ck, t+Dk − Ck −Akt · Tk) (6.3)

whereAkt = ⌊(t+Dk −Ck)/Tk⌋. Given the length of the problem windowt, the value
of WCIk (t) for theDA-LC test is calculated only using the static parameters4 of taskτk.

Interfering Workload: Similar to workload,ICIk,i(t) andINCk,i(t) denote the upper bounds
on the interfering workload of taskτk on any job of taskτi within the problem window
of lengtht wheneverτk is aCI task andNC task, respectively. An upper bound on the
interfering workload of a higher priority task within the problem window is the work-
load of the higher priority task within that problem window.However, it is pointed out
in [BC07, GSYY09, DB11b] that it is sufficient to consider theinterfering workload of
a higher priority task limited to at most(t− Ci + 1) within the problem window sizet.
Thus,ICIk,i(t) andINCk,i(t) for bothDA-LC andRTA-LC tests are given as follows:

ICIk,i(t) = min(WCIk (t), t− Ci + 1) (6.4)

INCk,i(t) = min(WNCk (t), t− Ci + 1) (6.5)

TheCI interfering workload of higher priority taskτk is never smaller than itsNC inter-
fering workload. In other words,ICIk,i(t) ≥ INCk,i(t). The difference between theCI and
NC interfering workload of taskτk within the problem window of lengtht is denoted by
IDIFFk,i (t) and given as follows:

IDIFFk,i (t) = ICIk,i(t) − INCk,i(t) (6.6)

The value ofIDIFFk,i (t) determines whether the higher priority taskτk has to be considered
as aCI task orNC task within the problem window of lengtht.

Total Interfering Workload. The upper bound on total interfering workload on taskτi
due to all the higher priority tasks in setψ is denoted asIi(t, ψ,m); whereψ ⊆ HPi,

4The static parameters describe characteristics of a task that apply independent of other tasks.

88 CHAPTER 6. ITERATIVE TESTS

the length of the problem window ist, and the tasks are scheduled onm processors.
Total interfering workloadIi(t, ψ,m) is the sum of the interfering workload of all tasks
in setψ where at most(m− 1) tasks are considered asCI tasks. The(m− 1) carry-in
tasks from setψ are those tasks that have the largest value ofIDIFFk,i (t). The value of
Ii(t, ψ,m) is calculated as follows for both theDA-LC andRTA-LC tests:

Ii(t, ψ,m) =
∑

τk∈ψ
INCk,i (t) +

∑

τk∈Max(ψ,m−1)

IDIFFk,i (t) (6.7)

whereMax(ψ,m−1) is the set of(m−1) tasks from setψ that have the largest values
of IDIFFk,i (t).

Interference. The term interference is an integer and all them processors are busy
executing tasks fromψ while taskτi is interfered by the higher priority tasks inψ ⊆ HPi.
Thus, based on the schedulability analysis in [BC07, GSYY09, DB11b], an upper bound
on interference due to the tasks inψ on any job of taskτi within the problem window of
lengtht is ⌊Ii(t,ψ,m)

m
⌋.

The RTA-LC test: TheRTA-LC test [GSYY09], which computes an upper bound on
the response time of each lower priority taskτi ∈ Γ, is recursively given as follows:

R
(h+1)
i ← Ci +

⌊

Ii(Rhi ,HPi,m)

m

⌋

(6.8)

This can be solved by searching iteratively the least fixed point starting withR0
i = Ci

for the right-hand side of Eq. (6.8). Thus, this recursion starts withR0
i = Ci and

stops when either (i)R(h+1)
i > Di (i.e., taskτi can not be guaranteed schedulable) or

(ii) Rh+1
i = Rhi (i.e., taskτi is schedulable with response timeRi = Rh+1

i). Note
that in order compute the response time of taskτi using Eq. (6.8), the response time
of each higher priority taskτk ∈ HPi must be known. It is not difficult to see that the
computational complexity of theRTA-LC test is pseudo-polynomial and the dependency
on knowing the response time of the higher priority taskτk ∈ HPi to compute the
response time of taskτi makes theRTA-LC test OPA-incompatible.

DA-LC Test: TheDA-LC test [DB11b] for each lower priority taskτi ∈ Γ with relative
deadlineDi ≤ Ti is given as follows:

Di ≥ Ci +
⌊

Ii(Di,HPi,m)

m

⌋

(6.9)

This can be solved by calculating the interference of the higher priority tasks inHPi within
the problem window of lengthDi. It is not difficult to see that the computational com-
plexity of theDA-LC test is polynomial and the test is OPA-compatible.

ODA-LC Test: TheDA-LC test is OPA-compatible and can be used to find the FP or-
dering of the tasks using the Audsley’s OPA algorithm presented in Figure 6.1. The

6.4. THEH-ODA-LC TEST 89

ODA-LC test (combination of OPA andDA-LC test) works as follows [DB11b]:

If the call OPA(Γ,m,DA-LC) in Figure 6.1 returns “success”, then all the
tasks meet deadlines using global FP scheduling onm processors based on
the priority assignment determined by the OPA algorithm.

According to theODA-LC test, the OPA algorithm in Figure 6.1 essentially applies the
DA-LC test in Eq. (6.9) to determine whether a priority-unassigned task can be assigned
a particular priority level by assuming the higher priorities for all the other priority-
unassigned tasks. It will be evident shortly that, theH-ODA-LC test (proposed in next
section) is based on applying the HPA policy where not all thehigher priority tasks and
all them processors are considered when determining the priority level of a priority-
unassigned task based on theDA-LC test.

6.4 TheH-ODA-LC Test

In this section, the HPA policy is applied to improve the priority assignment policies
for two state-of-the-art iterative schedulability tests:ODA-LC test proposed by Davis et
al. [DB11b] and OPA-incompatibleRTA-LC test proposed by Guan et al. [GSYY09].

The OPA algorithm in Figure 6.1 reveals an interesting fact:the priority-assignment
determined by the combination of the OPA algorithm and an OPA-compatible schedu-
lability testS only claims to be optimal under the assumption that this combination is
applied to theentiretask set and toall processors (Theorem 3 in [DB11b]). An intuitive
question to ask is then whether it would be possible to obtaina more effective priority
assignment for an OPA-compatible test if the combination ofthe OPA algorithm and
the OPA-compatible test was applied to find the priorities ofa subset of the entire task
set to be scheduled on a lower number of processors while the remaining tasks are as-
signed fixed priorities using some other mechanism (e.g., the highest fixed priority as
is proposed forISM-DS policy in Chapter 5). By carefully studying the equations of
the OPA-compatibleDA-LC test presented in subsection 6.3.1, it is realized that there is
indeed room for improvement.

In this section, the HPA policy is considered to improve the priority assignment
policy for theODA-LC test. This is based on a crucial observation:the amount of
interference calculated based on theDA-LC test on a lower priority task can be
reduced by not including all the tasks and all the processorsin the schedulability
test. The HPA policy combined with theODA-LC test is called theH-ODA-LC test.
Moreover, the HPA policy can also be applied to the OPA-incompatibleRTA-LC test.
The HPA policy combined with theRTA-LC test is called theH-RTA-LC test which
dominates theRTA-LC test.

6.4.1 Applying HPA Policy toODA-LC Test

In this subsection, by applying the HPA policy to theODA-LC test an improved fixed-
priority assignment policy and the schedulability test, called H-ODA-LC test, is pro-

90 CHAPTER 6. ITERATIVE TESTS

posed. When computing the total interfering workloadIi(Di,HPi,m) in Eq. (6.9),
for testing the schedulability of the lower priority taskτi on m processors using the
DA-LC test, the higher priority tasks are inHPi and the number ofCI tasks considered
is (m − 1). The improved priority-assignment policyH-ODA-LC is based on the fol-
lowing observation of Eq (6.9): if one task, sayτh, is removed fromHPi and also the
number of processors is reduced fromm to (m − 1), and apply theDA-LC test on this
smaller task set and reduced number of processors, then the interference on taskτi de-
pends on the the higher priority tasks in set(HPi −{τh}) and on(m−2) carry-in tasks.
To understand the importance of this observation, considerthe following example.

Example 6.1. Consider four tasks inΓ = {τ1, . . . τ4} to be scheduled onm = 3 proces-
sors using global FP scheduling. The parameters(Ci, Di, Ti) of the four tasks are as fol-
lows: (23, 33, 33), (106, 210, 214), (58, 216, 217), and(46, 60, 64). TheODA-LC test
by calling algorithm OPA(Γ,3,DA-LC) returns “failure” because no task inΓ can be
assigned the lowest priority level. This is because, when the schedulability of each
τi ∈ Γ is checked for priority assignment as the lowest priority level (line 3-5 of OPA
algorithm in Figure 6.1), the calculation ofIi(Di,HPi ,m) using Eq. (6.7) considers
(m − 1) = 2 tasks inHPi asCI tasks and the remaining task inHPi asNC tasks. The
value ofIi(Di,HPi,m) for each of the four tasks was large (pessimistic) enough to vio-
late theDA-LC test in Eq. (6.9), and no task is decided to be assigned the lowest priority
and the OPA algorithm returns “failure”.

Now consider hybrid-priority assignment in which the highest-density taskτ4 is
given the highest fixed priority. The call OPA({τ1, τ2, τ3}, 2, DA-LC) by removing
τ4 from Γ and reducing the number of processors fromm = 3 tom = 2 returns “suc-
cess” (taskτ3 is assigned the lowest priority, tasksτ1 andτ2 are assigned the highest
fixed priorities). Therefore, the task setΓ is schedulable onm = 3 processors (follows
from Observation 5.1 following Lemma 5.6). This is because,when OPA({τ1, τ2, τ3},
2, DA-LC) is called, the calculation ofI3(D3, {τ1, τ2},m = 2) in Eq. (6.7) considers
only (m − 1) = 1 task in {τ1, τ2} asCI task and one task in{τ1, τ2} asNC task.
In this case,I3(D3, {τ1, τ2},m = 2) was small enough to satisfy theDA-LC test
in Eq. (6.9) andτ3 is assigned the lowest priority. The other two tasks,τ1 and τ2,
are trivially assigned the highest fixed priority since there are two processors. Hence,
OPA({τ1, τ2, τ3}, 2, DA-LC) returns “success”. Sinceτ4 is assigned the highest fixed
priority and OPA({τ1, τ2τ3}, 2, DA-LC) returns “success”, this instance of HPA guar-
antees thatΓ is schedulable onm = 3 processors (from Observation 5.1).

The important conclusion from this example is that,if the schedulability of Γ can
not be decided onm processors by applying theODA-LC test to theentire task set
Γ and to all m processors, it does not necessarily mean that there is no feasible
priority assignment for Γ based on theDA-LC test. The lesson learned is that the
upper bound on interferenceIi(Di,HPi,m), calculated based onDA-LC using Eq. (6.7),
may be lowered by not including all the tasks and all the processors in the corresponding
schedulability test. The HPA policy can exploit this because it provides “separation of
concerns” in the sense that (i) theODA-LC test can be applied (due to the predictability

6.4. THEH-ODA-LC TEST 91

of global FP scheduling) only to the(n − m′) lowest-density tasks to be scheduled
on (m − m′) processors, and (ii) the remainingm′ highest-density tasks are assigned
(without any concern) the highest fixed priorities for somem′, 0 ≤ m′ < m. This is the
main principle in developing the improvedH-ODA-LC test.

Based on Observation 5.1, the entire task setΓ is global FP schedulable if the
(n−m′) lowest-density tasks are schedulable using theODA-LC test on(m−m′) pro-
cessors. Note that theH-ODA-LC test dominates theODA-LC test (i.e., whenm′ = 0,
H-ODA-LC is equivalent to theODA-LC test; and Example 1 shows the superior-
ity of H-ODA-LC to the ODA-LC test). Figure 6.2 shows the pseudocode for the
H-ODA-LC test. Each of them′ highest density tasks is assigned the highest fixed
priority in line 4 of Figure 6.2 and the remaining(n −m′) tasks are tested for schedu-
lability using theODA-LC test on(m − m′) processors in line 6. If the OPA returns
“success” (in line 6) for somem′, 0 ≤ m′ < m, then the task setΓ is decided to be
FP schedulable.

Algorithm H-ODA-LC(Γ ,m)

1. form′ = 0 to (m− 1)
2. if(m′ > 0) then
3. τh ← the highest-density task inΓ
4. assignτh the highest fixed priority
5. Γ = Γ− {τh} // one task is removed
6. if OPA(Γ,m−m′, DA-LC) returns “success” then
7. return “schedulable”
8. return “schedulability can not be determined” // when thefor loop ends

Figure 6.2: TheH-ODA-LC test

Remember that the OPA algorithm can not be applied to theRTA-LC test since it is
OPA-incompatible [DB11b]. However, HPA policy is applicable to theRTA-LC test
as follows (called, theH-RTA-LC test):assign them′ highest-density tasks the highest
fixed priorities and the fixed-priority ordering of the remaining (n−m′) lowest-density
tasks remains the same as the original fixed-priority ordering that is given for the entire
task setΓ. Using Observation 5.1 following Lemma 5.6, the entire tasksetΓ is global
FP schedulable if the(n−m′) lowest-density tasks are feasible using theRTA-LC test
on (m−m′) processors for somem′, 0 ≤ m′ < m. For a given priority assignment for
Γ, it is not hard to see that theH-RTA-LC test dominates theRTA-LC test.

It is empirically shown in [DB11b] that theODA-LC test significantly performs
better that theRTA-LC test. Therefore, it is expected that theH-ODA-LC test also
guarantees such improvement over theH-RTA-LC test. TheIA-DA schedulability test
proposed in next section further improves theH-ODA-LC test.

92 CHAPTER 6. ITERATIVE TESTS

6.5 TheIA-DA Test

A new priority assignment policy and schedulability test, called theIA-DA test, is pro-
posed in this section. TheH-ODA-LC test in Section 6.4 is developed by observing that
if not all the higher-priority tasks and all the processors are included when applying the
DA-LC test to a lower-priority task, the pessimism in the estimation of the upper bound
on interference due to the higher-priority tasks on a lower priority task can be reduced.
The basic idea for applying the HPA policy inH-ODA-LC test is to keep some tasks and
processors “separate” from the schedulability analysis ofa lower priority task. Notice
that theH-ODA-LC test “separates” a total ofm′ highest-density tasks, here referred
to as “separated tasks”, and “separates” a total ofm′ processors, here referred to as
“separated processors”, from the schedulability analysis of the remaining(n − m′)
lowest-density tasks. The separated tasks and processors are not considered while eval-
uating theDA-LC test for a lower-priority task. Therefore,the number ofCI tasks when
applying theDA-LC test to each of the(n−m′) lower-priority tasks in theODA-LC test
is limited to at most(m−m′ − 1) rather than(m− 1) for somem′, 0 ≤ m′ < m.

In this section, a new and novel criterion is proposed to determine the set of tasks that
are separated when analyzing the schedulability of a lower-priority task. The proposed
criterion for separating tasks is special in the sense that it is not based on “highest den-
sity” and separatesdifferent set of tasks for each lower priority tasks. The “separation”
of tasks and processors has nothing to do with partitioned multiprocessor scheduling —
the separation only exists as a means for reducing the pessimism of interference due to
the higher-priority tasks on a lower-priority task.

Based on this new criterion, a new priority-assignment algorithm and the corre-
spondingIA-DA test for global FP scheduling is presented. First, an overview of the
proposed priority-assignment policy is presented in subsection 6.5.1. Then, in subsec-
tion 6.5.2, the elegant criterion for finding the set of separated tasks for a lower-priority
task is proposed. Finally, the algorithmic details of the priority-assignment policy and
theIA-DA test based on this new criterion is proposed in subsection 6.5.3.

6.5.1 Overview of theIA-DA Test

In this subsection, an overview of the priority assignment for theIA-DA test is pre-
sented. TheIA-DA test checks whether all the tasks are successfully assignedpriorities
while at the same time also verifies the schedulability of thetasks. If all the tasks are
assigned priority, then it is also guaranteed that all the tasks meet their deadlines.

The proposed priority-assignment policy applies the principle of Audsley’s OPA
algorithm: it assigns priorities to the tasks starting5 from lowest-priority levelPL=1
to the highest priority levelPL=n. At each priority levelPL, all tasks that are not yet
assigned any priority are called thepriority-unassigned tasks. The objective is to assign

5In this chapter, it is assumed without loss of generality thata task having priority level 1 (n) has the lowest
(highest) fixed priority. This simplifies the mathematical reasoning in proving the correctness and domination
of theIA-DA test.

6.5. THEIA-DA TEST 93

fixed priority to one of the priority-unassigned tasks at each priority level. Each of the
priority-unassigned tasks at each priority level is checked for priority assignment using
theDA-LC test until one such task satisfying theDA-LC test is found.

Each of the priority-unassigned tasks when selected as a candidate for priority as-
signment is called thetarget task. Given a target task at priority levelPL, theIA-DA test
temporarilyseparatesm′ processors and separatesm′ tasks from the set of other priority-
unassigned tasks where0 ≤ m′ < m. Unlike the previously proposedH-ODA-LC test,
them′ separated tasks arenot assigned any priority when separated, and more impor-
tantly, the criterion for selecting the separated tasks isnotbased on the “highest density”.
A new criterion for selecting the tasks for separation for each target task at each priority
level is proposed (the criterion will be presented in Subsection 6.5.2).

After separatingm′ tasks for a particular target task at priority levelPL, it is checked
(using theDA-LC test in Eq. (6.9)) whether or not the target task can be assigned pri-
ority level PL. The separated tasks and separated processors are not considered while
evaluating theDA-LC test for the target task. If the target task passes theDA-LC test at
priority level PL, then the task is assigned priority levelPL. If the target task does not
pass theDA-LC test at priority levelPL, then another priority-unassigned task is selected
as the target for priority assignment at priority levelPL. If no priority-unassigned task
can be assigned priority levelPL, the priority assignmentfails. If all tasks are assigned
priorities, then the priority assignmentsucceeds.

When a target task can not be assigned priority levelPL, the corresponding separated
tasks and separated processors are no more considered “separated”. These tasks along
with other priority-unassigned tasks are considered as candidates for selecting the next
target task at priority levelPL. Similarly, if a target task is assigned priority levelPL,
then the corresponding separated tasks and separated processors are no more considered
“separated”. And, these tasks are also considered as candidates for target task at next
priority level. Thus, the separated tasks and separated processors for each target task are
temporary in the sense thatpriority assignment for each new target task always starts
with all them processors and all the priority-unassigned tasks.

6.5.2 New Criterion for Separation

In this subsection, the elegant criterion for separating the tasks for each target taskτi
is designed. Remember thatH-ODA-LC test separatesm′ highest-densitytasks from
Γ and then applies theODA-LC test to the remaining(n − m′) lowest density tasks
using(m −m′) processors for somem′, 0 ≤ m′ < m. Note that thesameset ofm′

highest-density tasks having the highest fixed priorities are always kept separated from
all the (n −m′) lowest-density tasks inH-ODA-LC test. These separatedm′ highest-
density tasks are “constant” in the sense that the same set ofm′ highest density tasks are
kept separated when determining the priorities of the(n −m′) lowest-density tasks on
(m−m′) processors based on theODA-LC test.

The reason for separating the highest density tasks inH-ODA-LC test is the feelings
that the tasks that are responsible the most, for the pessimism involved in the interfer-

94 CHAPTER 6. ITERATIVE TESTS

ence calculation using theDA-LC test applied to taskτi, are the highest-density tasks.
However, by studying the details of the proposedH-ODA-LC test, a very interesting
fact is observed:it is not necessarily the pessimism of the interference estimation
due to the highest-density tasks that may cause some lower priority task τi to fail
the DA-LC test. To see why, consider the following example:

Example 6.2. Consider four tasks inΓ = {τ1, . . . τ4} to be scheduled onm = 3
processors using global FP scheduling. The parameters(Ci, Di, Ti) of the four tasks
are as follows:(26, 51, 54), (11, 14, 25), (32, 33, 37), and(19, 25, 29). The densities
areδ1 = 0.509, δ2 = 0.785, δ3 = 0.967, andδ4 = 0.760. The task setΓ does not
pass theH-ODA-LC test. In particular, none of the tasks inΓ can be assigned the lowest
priority level by separatingm′ highest-density tasks for anym′ = 0, 1, 2.

However, there exits a valid fixed priority assignment that would make task setΓ
global FP schedulable. Consider that the two tasks{τ3, τ4} are separated along with
m′ = 2 processors. The other two tasks{τ1, τ2} are schedulable on(m − m′) = 1
processor by assigning the two lowest priority levelsPL=1 andPL=2 to tasksτ1 andτ2,
respectively. Then, the two separated tasksτ3 andτ4 are assigned the highest priority
levelsPL=3 andPL=4, respectively. These two highest priority tasksτ3 and τ4 are
trivially schedulable since we havem = 3 processors; and these two highest priority
tasks uses at most two processors at any time. Evidently, at least one processor is always
available for executing the two lowest priority tasksτ1 andτ2. Consequently, the entire
task set is global FP schedulable based on observation 5.1.Note that the two separated
tasks τ3 and τ4 are not the two highest density tasks.

The lesson learned is that “separation” based on the HPA policy is effective; how-
ever, the best criterion to separate the tasks from the schedulability analysis of the lower
priority tasks is not necessarily should be based on “highest density”. Another important
fact is that the (constant) set ofm′ highest-density tasks may not be thebestset of sep-
arated tasks when checking the schedulability for each of the lower-priority tasks using
theDA-LC test. A new criterion for separating the tasks when considering the priority
assignment of a target task using theDA-LC test is proposed for this purpose. As will
be evident nowthe proposed criterion separates different sets of tasks for each possible
target task at each priority level.

Proposed Separation Criterion

Consider a target taskτi at priority levelPL whereHPi is the set of all the higher-
priority tasks ofτi. Assume that taskτi does not pass theDA-LC test when applying
the DA-LC test by considering all the tasks fromHPi and all them processors. So,
according to Eq. (6.9), the upper bound on interference, i.e., ⌊ Ii(Di,HPi,m)

m
⌋, that taskτi

suffers due to the tasks inHPi is greater than(Di − Ci).
Now, separatingm′ tasks from setHPi and separatingm′ processors may able

taskτi to pass theDA-LC test. The objective is to separate thosem′ tasks fromHPi
such that the interference⌊ Ii(Di,HPi,m)

m
⌋ is maximally reduced. And,m′ processors

6.5. THEIA-DA TEST 95

are also kept separated in such case. IfSEP is the set ofm′ separated tasks selected
from setHPi, then the value of (new) interference on any job of taskτi (after sep-
aration) is⌊ Ii(Di,HPi−SEP,m−m′)

m−m′ ⌋ where the computation of total interfering workload
Ii(Di,HPi−SEP,m−m′) considers(m−m′−1) carry-in tasks from set(HPi−SEP).
The challenge is to find setSEP such that the value of (new) interference, which is
⌊ Ii(Di,HPi−SEP,(m−m′))

m−m′ ⌋, becomes as small as possible whereSEP is the set ofm′ sep-
arated tasks selected from setHPi. In other words, the problem to solve is the follow-
ing: What is the best way to separatem′ tasks from setHPi such that the value of
Ii(Di,HPi,m) is maximally reduced for somem′ > 0?

Note that when taskτi fails to pass theDA-LC test before separation of any task
from HPi, the value ofIi(Di,HPi,m) depends on(m− 1) carry-in tasks from setHPi.
Let cis andncs respectively denote the sets ofCI tasks andNC tasks from setHPi
such thatHPi = (cis ∪ ncs). According to Eq. (6.7),cis = Max(HPi,m − 1),
and then obviouslyncs = (HPi − cis). Separating each of them′ tasks fromHPi is
equivalent to separating that task either fromcis or ncs.

First, the criterion for separating exactlyonetask fromHPi, particularly, separating
one task either from setcis or ncs is considered. Then, based on this criterion of
separating one task, the criteria for separating subsequent tasks is presented.

(Separation of one task)Whenm′ = 1, either oneCI-task or oneNC-task is sep-
arated and this task is selected either from setcis or ncs, respectively. Remember
that it is also needed to separatem′ = 1 processor. Thus, the number ofCI tasks after
separation is at most(m−m′− 1) = (m− 2) when applying theDA-LC test to taskτi
considering the non-separated tasks fromHPi and(m−m′) processors.

When separating aCI-taskτk, whereτk ∈ cis ⊆ HPi, the value ofIi(Di,HPi,m)
is reduced byICIk,i(Di) (i.e., the carry-in interfering workload of taskτi) according to
Eq. (6.7). In order to maximally reduce the value ofIi(Di,HPi,m) by separating exactly
oneCI task fromcis, the best criterion is to select the task fromcis that has the
largestvalue of carry-in interfering workload. The largest value of interfering carry-in
workload of any task incis is given as follows:

max
τk∈cis

{ICIk,i(Di)}

Separating aNC-task τj , whereτj ∈ ncs ⊆ HPi, hastwo effects. First, separating
theNC taskτj from ncs reduces the value ofIi(Di,HPi,m) by INCj,i(Di) (i.e., the non
interfering carry-in workload ofτj). Second, one of theCI tasks fromcis becomes a
newNC task since, after separation, there are at most(m−2) carry-in tasks. TheCI task
from cis that becomes aNC task is the one with theminimumvalue of the difference
between its carry-in and non carry-in interfering workloadamong all the tasks incis.
This is because, after separation, theMax function in Eq. (6.7) would consider(m− 2)
carry-in tasks that have the largest values of the difference between the carry-in and non
carry-in interfering workload. Thus, separating aNC-taskτj fromncs reduces the value
of Ii(Di,HPi,m) by the following amount:

96 CHAPTER 6. ITERATIVE TESTS

INCj,i(Di) + min
τd∈cis

{IDIFFd,i (Di)}

where min
τd∈cis

{IDIFFd,i (Di)} is theminimumvalue of the difference between the carry-

in and non carry-in interfering workload for any task incis. Note that the value of
min
τd∈cis

{IDIFFd,i (Di)} is completelyindependentof the NC task τj that is selected for

separation fromncs. Thus, in order to maximally reduceIi(Di,HPi,m) by separating
exactly oneNC task fromncs, the best criterion is to select theNC task fromncs that
has thelargest value of non carry-in interfering workload. The largest value of non
carry-in interfering workload of any task inncs is given as follows:

max
τj∈ncs

{INCj,i(Di)}

The criterion to determine whether to separate aCI task or aNC task, whenm′ = 1, is
determined as follows.

Criterion For Separating One Task: Whenm′ = 1, the taskτa ∈ cis that satisfies
ICIa,i(Di) = max

τk∈cis
{ICIk,i(Di)} is selected for separation if

max
τk∈cis

{ICIk,i(Di) } >
(

max
τj∈ncs

{INCj,i(Di) }+ min
τd∈cis

{IDIFFd,i (Di) }
)

(6.10)

otherwise, taskτb ∈ ncs satisfyingINCb,i(Di) = max
τj∈ncs

{INCj,i(Di) } is selected for

separation.

(Separation of more than one task)If m′ > 1, then one task from setHPi = (cis ∪
ncs) is first separated using the criterion in Eq. (6.10). Then, this separated task, say
taskτs, is removedfrom eithercis or ncs depending on whetherτs ∈ cis or τs ∈
ncs, respectively. Now separating the next task is the same as separating one new task
from the updated set(cis ∪ ncs) = HPi − {τs} using the criterion in Eq. (6.10). The
pseudocode for selecting them′ tasks from setHPi for separation is given in Figure 6.3.
The algorithmSelect(ψ,m′, τi, t) in Figure 6.3 returnsm′ separated tasks selected
from setψ considering the target taskτi and a problem window of sizet.

The algorithm in Figure 6.3 has four parameters. The first parameterψ is the set of
higher priority tasks of the target taskτi, the second parameterm′ is the number of tasks
that need to be separated from setψ, the third parameterτi is the target task, and finally,
the fourth parametert is the length of the problem window. It will be evident later that
the proposed priority assignment assignment policy for theIA-DA test separatesm′

higher priority tasks from setHPi by callingSelect(HPi,m′, τi, Di) before applying
theDA-LC test for the target taskτi considering the problem window of lengthDi.

The set ofCI tasks andNC tasks from setψ are determined in line 1–2 of Figure 6.3
where setMax(ψ,m′−1) is defined in Eq. (6.4). Each iteration of the loop in line 3–13
selects one task from(cis ∪ ncs) for separation. The task to be separated during each

6.5. THEIA-DA TEST 97

Algorithm Select(ψ, m′, τi, t)

// ψ is the set of higher priority tasks ofτi
// m′ tasks needs to be separated from setψ
// The target task isτi
// The problem window is of lengtht

1. cis =Max(ψ,m′ − 1)
2. ncs = ψ − cis
3. Forg = 1 tom′ // each iteration separates one task

4. Find the taskτa ∈ cis whereICIa,i(t) = max
τk∈cis

ICIk,i(t)

5. Find the taskτb ∈ ncs whereINCb,i(t) = max
τj∈ncs

INCj,i(t)

6. Find the taskτc ∈ cis whereIDIFFc,i (t) = min
τd∈cis

IDIFFd,i (t)

7. If (ICIa,i(t) > INCb,i(t) + IDIFFc,i (t)) Then
8. cis = cis− {τa}
9. Else
10. cis = cis− {τc}
11. ncs = (ncs ∪ {τc})− {τb}
12. End If
13. End For
14. Returnψ − (ncs ∪ cis)

Figure 6.3: Algorithm for selecting the tasks for separation

iteration is either aCI task fromcis or aNC task fromncs. TheCI taskτa ∈ cis
having thelargestcarry-in interfering workload is determined in line 4. TheNC task
τb ∈ ncs having thelargestnon carry-in interfering workload is determined in line 5.
TheCI taskτc ∈ cis having thesmallestvalue of the difference between its carry-in
and non carry-in interfering workload is determined in line6.

The condition in line 7 (based on the criterion in Eq. (6.10))determines whether
separation of theCI taskτa or separation of theNC taskτb would maximally reduce the
value ofIi(t, ψ,m). If the CI taskτa is separated, i.e., condition in line 7 is true, then
τa is removed from setcis in line 8. If theNC taskτb is separated, i.e., condition in line
7 is false, then theCI taskτc determined in line 6 becomes aNC task, and thus taskτc is
first removed from setcis in line 10. Then, taskτc is included in setncs, and finally,
theNC taskτb is removed from setncs in line 11. Separation of the subsequent task in
next iteration uses these updated sets ofCI andNC tasks. When the for loop exits, the
set of totalm′ separated tasks inψ − (cis ∪ ncs) is returned in line 14.

98 CHAPTER 6. ITERATIVE TESTS

Lemma 6.1 now shows that the proposed separation criterion of algorithmSelect in
Figure 6.3 isbetter in terms of reducing the pessimism in interference estimation for
the DA-LC test in comparison to that of the separation criterion that is based on the
“highest-density” policy as proposed for theH-ODA-LC test.

Lemma 6.1. If task τi passes theDA-LC test by separatingm′ highest-density tasks
from setHPi of higher priority tasks, thenτi also passes theDA-LC test by separat-
ing the tasks returned by algorithmSelect(HPi,m′, τi, Di) from setHPi, where
DA-LC test in both cases after separation uses(m − m′) processors and the non-
separated tasks from setHPi .

Proof. LetSEPdensity is the set ofm′ highest-density tasks from setHPi andHdensity =
(HPi − SEPdensity). Let SEPnew is the set ofm′ tasks returned by the algorithm
Select(HPi,m′, τi, Di) andHnew = (HPi − SEPnew). If τi passes theDA-LC test
by separating the tasks inSEPdensity from HPi, then according to theDA-LC test in
Eq. (6.9), the following holds:

⌊

Ii(Di, Hdensity,m−m′)

m−m′

⌋

≤ (Dk − Ck)

Note that the interfering workload of each taskτk ∈ HPi for theDA-LC test is calcu-
lated based on static parameters of the taskτk (i.e., independent of other tasks inHPi).
AlgorithmSelect at each stage separates from setHPi the task that maximally reduces
Ii(Di,HPi,m). Since the total interfering workload is the sum of interfering workload
of the non-separated tasks, algorithmSelect maximally reducesIi(Di,HPi,m) by
separatingm′ tasks from setHPi, and we must have

Ii(Di, Hnew,m−m′) ≤ Ii(Di, Hdensity,m−m′)

Consequently, the following also holds
⌊

Ii(Di, Hnew,m−m′)

m−m′

⌋

≤ (Dk − Ck)

which implies that taskτi also passes theDA-LC test.

The two tasks (i.e.,τ3 andτ4), separation of which makes the task set in Example 6.2
(page 94) schedulable, can be determined using the separation criterion of theSelect
algorithm presented in Figure 6.3; but can not be determinedusing the “highest-density”
based separation criterion. Thus, the proposed separationcriterion isbetter in terms
of reducing the amount of pessimism in calculating the interference due to the higher
priority tasks on a lower priority task. Now the details of the priority assignment pol-
icy for global FP scheduling based on this new separation criterion is presented. The
IA-DA test, presented in Subsection 6.5.3, essentially combinesthe schedulability test
and priority assignment of the tasks. And, successful priority assignment of all the tasks
implies that the task set is schedulable using global FP scheduling.

6.5. THEIA-DA TEST 99

6.5.3 Priority Assignment Algorithm: the IA-DA Test

The development of the priority assignment algorithm for theIA-DA test takes the ad-
vantage of the HPA policy based on the elegant separation criterion proposed in last
subsection, applies theDA-LC test to each target task, and uses the basic idea of OPA
algorithm for assigning the fixed priorities to the tasks. The priority assignment to the
tasks inΓ starts from the lowest priority levelPL = 1 ends at the highest priority level
PL = n. The pseudocode of the priority assignment policy of theIA-DA test is pre-
sented in Figure 6.4.

Algorithm IA-DA(Γ ,m)

1. ΓU= Γ
2. ForPL = 1 to (n−m)
3. For eachτi ∈ ΓU //a new task is selected as target task
4. HPi = ΓU−{τi}
5. Form′ = 0 to (m− 1) //m′ tasks fromHPi will be separated
6. H = HPi − Select(HPi,m′, τi, Di)

7. If (

⌊

Ii(Di,H,m−m′)
m−m′

⌋

+ Ci ≤ Di) Then

8. Taskτi is assigned priority levelPL
9. ΓU = ΓU − {τi}
10. If (PL= n−m) Then
11. //there arem tasks left inΓU
12. Each task inΓU is assigned one unique
13. priority level between(n−m+ 1) to n
14. Return “Schedulable”
15. Else
16. Break and go to next priority level (line 2)
17. End If
18. End If
19. End For
20. End For
21. Return “Failure”
22. End For

Figure 6.4: TheIA-DA test

Initially, all tasks are considered as potential target tasks for priority assignment at
the lowest priority levelPL=1. All the tasks in setΓ are stored in variableΓU (set of
priority-unassigned tasks) in line 1. Each iteration of theloop in line 2–22 represents
one priority level starting from the lowest priority levelPL=1 to the highest priority
levelPL=(n-m). Note that priority assignment of the finalm priority-unassigned tasks
is trivial since these tasks are assigned them highest priority levels. Therefore, the loop
in line 2–22 runs from 1 to(n−m) and tries to assign one priority-unassigned task one
priority level.

100 CHAPTER 6. ITERATIVE TESTS

At each priority levelPL, the inner loop in line 3–20 considers one-by-one priority-
unassigned task from setΓU until one such task is assigned the priority levelPL. During
each iteration of the loop in line 3–20, a new taskτi ∈ ΓU is selected as a target task in
line 3. The set of other priority-unassigned tasksHPi = (ΓU − {τi}) is determined in
line 4. If the target taskτi is eventually assigned the priority levelPL, then the tasks in
setHPi will have higher priorities than taskτi.

For a given target taskτi, the algorithm (temporarily) separatesm′ tasks from setHPi
and it also separatesm′ processors. During each iteration (using the iterative variable
m′ = 0, . . . (m − 1)) of the loop in line 5–19, a total ofm′ tasks from setHPi are
separated in line 6 by calling algorithmSelect(HPi,m′, τi, Di). The other non-
separated, priority-unassigned tasks from setHPi are stored in setH in line 6 where
H = (HPi − Select(HPi,m′, τi, Di)). Notice that the set of separated tasks for each
target task may bedifferent. Next theDA-LC test is applied in line 7 to determine if the
target taskτi can be assigned priority levelPL by assuming the higher priorities of the
tasks in setH. In such case, theDA-LC test uses(m − m′) processors and only the
higher priority tasks in setH.

If theDA-LC test in line 7 is satisfied, then taskτi is assigned priority levelPL in line
8 and removed from the set of priority-unassigned tasks in line 9. If the current priority
levelPL is equal to(n −m), i.e., condition in line 10 is true, then there are exactlym
(priority-unassigned) tasks inΓU after τi is removed fromΓU in line 9. And, each of
thesem priority-unassigned tasks inΓU is assigned one unique priority level between
PL=(n-m+1) andPL=n in line 12–13 (note that these are them highest priority tasks
and are always schedulable). At this point, all tasks are assigned priorities and the
algorithm returns “schedulable” in line 14. If the current priority level PL is less than
(n − m), i.e., the condition in line 10 is false, then the priority assignment for next
priority level starts (jumping from line 16 to line 2).

If the DA-LC test for taskτi in line 7 is never satisfied for anym′, 0 ≤ m′ < m,
then the for loop in line 5–19 exits; and the loop in line 3–20 selects another new target
task. If nonew task can be selected as a target task at line 3, then the for loop in line
3–20 exits. Since at this stage there isno task that is assigned the current priority level
PL, the algorithm returns “Failure” in line 21.

Notice that if a target task can not be assigned priority level PL, the correspond-
ing separated processors and separated tasks areno more considered “separated”. And,
these tasks along with other priority-unassigned tasks areconsidered as candidates for
selecting the next target task at the current priority level. Similarly, if a target task
is assigned priority levelPL, the separated tasks along with other priority-unassigned
tasks are considered as candidates for selecting the targettasks at next priority level. In
other words,the priority assignment for each new target task starts withall the priority-
unassigned tasks, i.e., setΓU , and all them processors. It is not difficult to see that the
time complexity of algorithmIA-DA is polynomial.

Correctness of theIA-DA Test: The correctness of the priority assignment policy of
the IA-DA test is proved in Theorem 6.2 by showing that if theIA-DA test in Fig-

6.5. THEIA-DA TEST 101

ure 6.4 successfully assigns the priorities, then all the deadlines are met. The following
Lemma 6.2 will be used in Theorem 6.2.

Lemma 6.2. Consider four positive integersw, x, y, andz. The following holds:
⌊

w

x

⌋

+ y ≤ z if and only if w ≤ x · (z − y + 1)− 1

Proof. (if part) It will be shown that, ifw ≤ x · (z − y + 1) − 1, then⌊w
x
⌋ + y ≤ z.

Sincew ≤ x · (z − y + 1)− 1, then the following (due to integer assumption) is true

w < x · (z − y + 1) ≡ w

x
< (z − y + 1)

⇒ (since

⌊

w

x

⌋

≤ w

x
)

⌊

w

x

⌋

< (z − y + 1)

⇒ (since

⌊

w

x

⌋

and(z − y + 1) are integers)
⌊

w

x

⌋

≤ (z − y) ≡
⌊

w

x

⌋

+ y ≤ z

(only if part) It will be shown that, if⌊w
x
⌋+ y ≤ z, thenw ≤ x · (z− y+1)− 1 holds.

Since,⌊w
x
⌋+ y ≤ z and(w

x
− 1) < ⌊w

x
⌋, the following is true

(
w

x
− 1) + y < z ≡ w < x · (z − y + 1)

⇒ (sincex · (z − y + 1) is an integer)

w ≤ x · (z − y + 1)− 1

Theorem 6.2. If algorithm IA-DA in Figure 6.4 returns “schedulable”, then all the
tasks in setΓ meet deadlines using globalFPscheduling onm processors according to
the priorities assigned byIA-DA.

Proof. If algorithm IA-DA in Figure 6.4 returns “schedulable”, then each of the tasks
in Γ is assigned a unique priority level between1 to n. It will be proved that each task
that is assigned a priority level using algorithmIA-DA meets all the deadlines.

If a taskτi is assigned any priority levelPL between(n − m + 1) andn in line
12–13 of Figure 6.4, then taskτi is one of them highest-priority tasks. Since we have
m processors, each task assigned any priority level between(n −m + 1) andn meets
all its deadlines. Now consider a taskτi that is assigned priority levelPL such that
1 ≤ PL < (n−m+ 1). It will be shown that taskτi meets all the deadlines.

102 CHAPTER 6. ITERATIVE TESTS

SincePL < (n−m+1), taskτi is assigned priority in line 8 of theIA-DA algorithm
in Figure 6.4. This implies that the condition in line 7 is true and the following holds:

⌊

Ii(Di, H,m−m′)

m−m′

⌋

+ Ci ≤ Di (6.11)

whereH = [HPi − Select(HPi,m′, τi, Di)] and the setHPi (determined in line 4) is
the set of all tasks having higher priorities than that of task τi.

Since Eq. (6.11) holds, the maximum interference that any job of taskτi suffers
due to the higher priority tasks inH is ⌊ Ii(Di,H,m−m′)

m−m′ ⌋. According to Lemma 6.2,
Eq. (6.11) holds, if and only if,

Ii(Di, H,m−m′) ≤ (m−m′) · (Di − Ci + 1)− 1 (6.12)

Therefore,the upper bound on the total interfering workload due to the tasks inH within
the problem window of any job of taskτi is [(m−m′) · (Di − Ci + 1)− 1].

Notice that after taskτi is assigned priority levelPL, the corresponding separated
tasks (i.e., tasks in set[HPi − H]) are considered as target tasks at next higher priority
levels and are ultimately assigned higher priority levels than taskτi. Thus, taskτi suf-
fers interference not only from the tasks in setH but also from the “separated” tasks
returned by the algorithmSelect(HPi,m′, τi, Di). The upper bound on interfering
workload due to each of the tasks returned by the algorithmSelect(HPi,m′, τi, Di)
is (Di − Ci + 1) according to Eq. (6.4) and Eq. (6.5) as given in page 87. Thus,
the total interfering workload due to all them′ separated tasks, determined by calling
Select(HPi,m′, τi, Di), is at most[m′ · (Dk − Ck + 1)]. Thus, the total interfering
workload due to all the higher priority tasks inHPi = H ∪ Select(HPi,m′, τi, Di) on
any job of taskτi is at most:

[(m−m′) · (Dk − Ck + 1)− 1] + [m′ · (Dk − Ck + 1)]

= m · (Dk − Ck) + (m− 1)

Because interference is an integer and all them processors are simultaneously busy
executing the tasks inHPi when taskτi is interfered, the interference that any job of
task τi suffers (based on similar reasoning in [BC07, GSYY09, DB11b]) is at most
⌊m(Dk−Ck)+(m−1)

m
⌋ = (Dk −Ck). Consequently, any job of taskτi meets its deadline.

If IA-DA in Figure 6.4 returns “schedulable”, then all the tasks inΓ meet deadlines
using global FP scheduling onm processors according to the priorities assigned by
IA-DA. TheIA-DA test dominates theH-ODA-LC test as is given in next theorem.

Theorem 6.3. If task setΓ is schedulable using theH-ODA-LC test, thenΓ is also
schedulable using theIA-DA test, and not conversely.

Proof. Proof in given in Appendix A (page 224).

6.6. THEIA-RT TEST 103

6.6 TheIA-RT Test

The algorithm for theIA-DA test in Figure 6.4 applies theDA-LC test in line 7 for
target taskτi by considering the higher priorities of the tasks in setH using(m −m′)
processors and a problem window of lengthDi. Remember that the response-time-
basedRTA-LC test dominates the deadline-analysis-basedDA-LC test. However, the
RTA-LC test can not be applied in line 7. This is because the responsetimeRk for each
taskτk ∈ H has to be known before applying theRTA-LC test for taskτi in line 7. This
way theRTA-LC test being OPA-incompatible can not be used in line7 in Figure 6.4
for the IA-DA test. However, there is another response-time test proposed by Davis
and Burns in [DB10], called theD-RTA-LC test, which uses the same schedulability
analysis as theDA-LC test but uses a problem window that is never larger than that
of considered for theDA-LC test. TheD-RTA-LC test is OPA-compatible and domi-
nates theDA-LC test. Based on these observations, theIA-DA test is further improved
by using theD-RTA-LC test and the proposed criterion for separating the tasks when
determining the schedulability and priority of each targettaskτi.

In this chapter, theIA-DA test is improved by incorporating theD-RTA-LC test
rather than using theDA-LC test to determine whether a target task can be assigned
a particular priority level. First, theD-RTA-LC test is presented in subsection 6.6.1.
Then, theIA-RT test and its priority assignment policy are proposed in subsection 6.6.2.

6.6.1 TheD-RTA-LC Test

The D-RTA-LC test [DB10] is similar to theRTA-LC test except that it uses the
CI workload computation of theDA-LC test (given in Eq. (6.3)) instead that of the
RTA-LC test (given in Eq. (6.2)). The details of theD-RTA-LC test are given below:

Workload. TheNC workloadWNCk (t) of τk in an interval of lengtht is given as follows:

WNCk (t) = ⌊t/Tk⌋ · Ck +min(Ck, t− ⌊t/Tk⌋ · Tk) (6.13)

TheCI workloadWCIk (t) of τk in an interval of lengtht is given as follows:

WCIk (t) = Akt · Ck +min(Ck, t+Dk − Ck −Akt · Tk) (6.14)

whereAkt = ⌊(t+Dk − Ck)/Tk⌋.
Interfering Workload: The CI andNC interfering workloadICIk,i(t) andINCk,i(t) are
given as follows:

ICIk,i(t) = min(WCIk (t), t− Ci + 1) (6.15)

INCk,i(t) = min(WNCk (t), t− Ci + 1) (6.16)

104 CHAPTER 6. ITERATIVE TESTS

The difference between theCI andNC interfering workload of taskτk within the prob-
lem window of lengtht is denoted byIDIFFk,i (t) such that:

IDIFFk,i (t) = ICIk,i(t) − INCk,i(t) (6.17)

Total Interfering Workload. The upper bound on total interfering workload due to all
the tasks in setψ ⊆ HPi is denoted byIi(t, ψ,m). The value ofIi(t, ψ,m) is calculated
as follows:

Ii(t, ψ,m) =
∑

τk∈ψ
INCk,i (t) +

∑

τk∈Max(ψ,m−1)

IDIFFk,i (t) (6.18)

whereMax(ψ,m−1) is the set of(m−1) tasks from setψ that have the largest values
of IDIFFk,i (t).

Interference. An upper bound on interference due to the tasks inψ on any job of task
τi within the problem window of lengtht is ⌊Ii(t, ψ,m)/m⌋.
The D-RTA-LC Test: The D-RTA-LC test [DB10], which involves computing the
upper bound on the response time of each taskτk ∈ Γ, is recursively given as follows
for finding the response timeRi of taskτi:

R
(h+1)

i ← Ci +

⌊

Ii(R
h

i ,HPi,m)

m

⌋

(6.19)

Note that, in contrast to theRTA-LC test that computesRi using Eq. (6.8), the response-
timeRi of taskτi based on Eq. (6.19) does not need to know the response time of the
higher priority tasksτk ∈ HPi. It is not difficult to see that the three conditions for
OPA-compatibility (page 83) are satisfied for theD-RTA-LC test.

6.6.2 Priority Assignment Algorithm: the IA-RT Test

The IA-RT test is presented in Figure 6.5. The algorithmIA-RT in Figure 6.5 has
two parameters: the task setΓ and the number of processorsm. It determines whether
the task set is schedulable onm processors by finding appropriate priority ordering
of the tasks inΓ. The algorithmIA-RT in Figure 6.5 is similar to the algorithm
IA-DA in Figure 6.4 with two major difference: (i) the OPA-compatible response time
testD-RTA-LC in Eq. (6.19) is used to determine whether a target task can beassigned
certain priority level, and (ii) them′ separated tasks are redetermined each time the size
of the problem window changes.

Initially, all tasks are considered as potential target tasks for priority assignment at
the lowest priority levelPL=1. All the tasks in setΓ are stored in variableΓU (set of
priority-unassigned tasks) in line 1. Each iteration of theloop in line 2–29 represents
one priority level starting from the lowest priority levelPL=1 to the highest priority
levelPL=(n-m).

At each priority levelPL, the loop in line 3–27 considers priority-unassigned task
from ΓU until one such task is assigned the priority levelPL. During each iteration of

6.6. THEIA-RT TEST 105

Algorithm IA-RT(Γ ,m)

1. ΓU= Γ
2. ForPL = 1 to (n−m)
3. For eachτi ∈ ΓU
4. HPi=ΓU−{τi}
5. Form′ = 0 to (m− 1)

6. R
0

i = Ci
7. Forh = 0 to∞
8. H = HPi − Select(HPi ,m′, τi, R

h

i)

9. R
(h+1)

i ← Ci +

⌊

Ii(R
h

i ,H,m−m′)
m−m′

⌋

10. If R
(h+1)

i = R
h

i Then
11. Taskτi is assigned priority levelPL
12. ΓU = ΓU − {τi}
13. If (PL= n−m) Then
14.
15. Each task inΓU is assigned one unique
16. priority level between(n−m+ 1) to n
17. Return “Schedulable”
18. Else
19. Break and Go to next priority level (line 2)
20. End If
21. End If

22. If R
(h+1)

i > DiThen
23. Break and go to next iteration in line 5
24. End If
25. End For // loop with variableh in line 7 ends
26. End For // loop with variablem′ in line 5 ends
27. End For // loop with variableτi in line 3 ends
28. Return “Failure”
29.End For // loop with variablePL in line 2 ends

Figure 6.5: TheIA-RT test

the loop in line 3–27, a new taskτi ∈ ΓU is selected as a target task in line 3. The set of
other priority-unassigned tasksHPi = (ΓU − {τi}) is determined in line 4. If the target
taskτi is eventually assigned the priority levelPL, then the tasks inHPi will have higher
priorities than taskτi.

For a given target taskτi, the algorithm (temporarily) separatem′ tasks from set
HPi considering the length of the current problem window and it also separatesm′

processors. During each iteration (using the iterative variablem′ = 0, . . . (m−1)) of the

106 CHAPTER 6. ITERATIVE TESTS

loop in line 5–26, the response time of taskτi is calculated based on theD-RTA-LC test
in Eq. (6.19) by separating total ofm′ tasks from setHPi in line 8.

The initial value of the problem windowR
0

i is set toCi in line 6. Remember that
in response-time-based analysis if the response time of task τi is greater than the length
of the current problem window, the size of the problem windowis increased until the
problem window is not greater than the relative deadline of the task. The for loop in
line 7–25 determines the response time of taskτi for each possible size of the prob-
lem window. A total ofm′ tasks is separated from setHPi by considering the current

problem window of sizeR
h

i (i.e., for the current value of the loop variableh) by calling

the algorithmSelect(HPi,m′, τi, R
h

i). The other non-separated, priority-unassigned

tasks are stored in setH in line 8 whereH = (HPi − Select(HPi,m′, τi, R
h

i)). The

size of the new problem windowR
(h+1)

i is calculated in line 9 based on Eq. (6.19). If
the length of the new problem window size has not increased (i.e., the response time
calculation converges), then the target taskτi can be assigned priority levelPL.

If the D-RTA-LC test in line 10 is satisfied, then taskτi is assigned priority level
PL in line 11 and removed from the set of priority-unassigned tasks in line 12. If the
current priority levelPL is equal to(n−m), i.e., condition in line 13 is true, then there
are exactlym (priority-unassigned) tasks inΓU afterτi is removed fromΓU in line 12.
And, each of thesem priority-unassigned tasks inΓU is assigned one unique priority
level betweenPL=(n-m+1) andPL=n in line 15–16 (note that these are them highest
priority tasks and are always schedulable). At this point, all tasks are assigned priorities
and the algorithm returns “schedulable” in line 17. If the current priority levelPL is less
than(n−m), i.e., the condition in line 13 is false, then the priority assignment for next
priority level starts (jumping from line 19 to line 2).

If the D-RTA-LC test for taskτi in line 10 is not satisfied for currentm′ and the

new problem window sizeR
(h+1)

i > Di in line 22, then separating one more tasks is
considered by jumping from line 23 to line 5 in next iteration. If theD-RTA-LC test for
taskτi in line 10 is never satisfied for anym′, 0 ≤ m′ < m, then the for loop in line
5–26 exits, and the next iteration of loop in line 3 begins by selecting another new target
task. If no new task can be selected as a target task at line 3, then the for loop in line
3–27 exits. Since at this stage there isno task that is assigned the current priority level
PL, the algorithm returns “Failure” in line 28.

The correctness of theIA-RT test follows from the correctness of theIA-DA test
proved in Theorem 6.2. Moreover, theIA-RT test dominates theIA-DA test since

Ii(R
h

i , H,m−m′) in line 10 is never greater thanIi(Di, H,m−m′) as is used for the
IA-DA test. In next section, the simulation results to compare thethree proposed tests
(H-ODA-LC, IA-DA, andIA-RT) with the state-of-the-artODA-LC test are presented.

6.7. EMPIRICAL INVESTIGATION 107

6.7 Empirical Investigation

In this section, empirical investigation into the performance of the proposed schedula-
bility tests of global FP scheduling is presented. The derivation of theoretical result,
for example, dominance of one schedulability test over another, does not demonstrate
the average improvement of one test over another. Experimental investigation of an it-
erative schedulability test is highly effective in comparing different schedulability tests
using randomly generated task sets. TheODA-LC test proposed by Davis and Burns
[DB11b] is the sate-of-the-art iterative global FP schedulability test for constrained-
deadline tasks. Each of the three tests (i.e.,H-ODA-LC, IA-DA, andIA-RT) proposed
in this chapter dominates theODA-LC test. To quantitatively measure the improvement
of the proposed tests over the state-of-the-artODA-LC test, simulation using randomly
generated task sets are conducted. The empirical investigation into the following four
schedulability tests in Table 6.1 are presented in this section.

ODA-LC Test The OPA algorithm in Figure 6.1 combined with
the DA-LC test (proposed by Davis and Burns
[DB11b]).

H-ODA-LC Test The algorithm in Figure 6.2 (proposed in this the-
sis, page 91).

IA-DA Test The algorithm in Figure 6.4 (proposed in this the-
sis, page 99).

IA-RT Test The algorithm in Figure 6.5 (proposed in this the-
sis, page 105).

Table 6.1: Different Iterative Schedulability Tests

The metric, calledacceptance ratio, is used to evaluate the effectiveness of each
schedulability test. The acceptance ratio of a schedulability test is the percentage of
the randomly generated task sets that are deemed schedulable using that schedulability
test at a given utilization level. The larger the value of acceptance ratio at a utilization
level, the better is the test in determining the global FP schedulability of task sets at that
utilization level.

The UUnifast-Discard algorithm presented in subsection 5.6.1 (page 66) is
used to generaten utilization values of a task set with cardinalityn and total utilization
U . Once a set ofn utilizations{u1, u2, . . . un} of a task set is generated, the other
parameters of each taskτi are generated as follows:

• The minimum inter-arrival timeTi of each taskτi is generated from the uniform
random distribution within the range[10ms, 1000ms].

• The WCET of taskτi is set toCi = ui · Ti.
• The relative deadlineDi of taskτi is generated from the uniform random distri-

bution within the range[Ci, Ti].

108 CHAPTER 6. ITERATIVE TESTS

Each of the experiments is characterized by a pair(m,n) wherem is the number
of processors andn is the cardinality of task set. For each experiment(m,n), task sets
are generated at 40 different utilization levels:{0.025m, 0.5m, . . . 0.975m,m}. A total
of 1000 task sets at each of the 40 utilization levels using the UUnifast-Discard
algorithm with parametersn andU (whereU is the utilization level) are generated. Each
of the 1000 task sets generated at a particular utilization level, sayU , has cardinality
n and total utilization equal toU . The schedulability of each of the 1000 task sets
generated at each utilization level are determined based onthe schedulability test for
each of the four priority assignment policies in Table 6.1 and the acceptance ratio for
each test is computed.

6.7.1 Result Analysis

A series of experiments for different pairs of(m,n) wherem ∈ {2, 4, 8, 16} andn ∈
{10, 20, 40, 60, 80, 160} for constrained-deadline tasks are conducted. The acceptance
ratios at each of the 40 utilization levels for each of the fours tests in Table 6.1 are
calculated for each experiment. The important trends and observations based on these
experiments are presented in this section.

In each graphs presented in this section, the x-axis represents the system utiliza-
tion U/m for utilization levelU and the y-axis represents the acceptance ratio. The
acceptance ratios of all tests are around 100% at relativelylow utilization level (e.g.,
U ≤ 0.3m) and 0% at very high utilization level (e.g.,U > 0.85m). The acceptance
ratios for system utilization between 30% to 85%, which correspond to the utilization
levels between0.3m and0.85m, are plotted.

The impact of task set cardinality on the theoretically bestIA-RT schedulability
test is first discussed based on experimental results. It will be evident that when the
cardinality of the task set is≈ 5m, then the acceptance ratio of theIA-RT test becomes
relatively small, and it is concluded thatn = 5m represents the worst-case parameter
setting regarding the task set generation algorithm for theproposed schedulability tests.
Then, the comparison among all the four schedulability tests in Table 6.1 is presented to
see the improvement of the proposed tests over the state-of-the-artODA-LC test for task
set cardinality equal to5m.

Impact of n on theIA-RT Test

In order to measure the impact of task set cardinality in determining the schedulability
of random task sets using theIA-RT test for some givenm, the acceptance ratios for
experiments with(m = 4, n) wheren = 8, 10, 12, 15, 20 are presented in Figure 6.6.
The acceptance ratios of theIA-RT test at each utilization level decreases as the task
set size increases from8 to 20 for a givenm. It seems to be more difficult to schedule
task sets with larger cardinality. This reason can be explained as follows: as the car-
dinality of the task set increases, the number of tasks having relatively large utilization
also increases. Each of such heavy utilization tasks in the worst-case may occupy one

6.7. EMPIRICAL INVESTIGATION 109

processor and leaving relative fewer number of free processors for other tasks. Conse-
quently, the other tasks can not be decided to be schedulableusing theIA-RT test on
an insufficient number of processors.

0 %

20 %

40 %

60 %

80 %

100 %

 0.4 0.6 0.8

Ac
ce

pt
an

ce
 R

at
io

Utilization / m

Variation in n for a given m=4

n=8
n=10
n=12
n=15
n=20

Figure 6.6: Acceptance ratios of theIA-RT test for experiments withm = 4 and n =

8, 10, 12, 15, 20.

When the cardinality is increased from8 to 20 form = 4, the decrease in acceptance
ratios of theIA-RT test, due to having relatively higher number of large utilization
tasks, only tells one-side of the story. If the cardinality of the task sets is increased
beyond a certain number (e.g.,n ≥ 5m), then the trend is reversed: acceptance ratio at
each utilization level increases with the increase in number of tasks in a task set. The
acceptance ratios for experiments with(m = 4, n) wheren = 20, 40, 60, 80, 100 for the
IA-RT test are presented in Figure 6.7.

0 %

20 %

40 %

60 %

80 %

100 %

 0.4 0.6 0.8

Ac
ce

pt
an

ce
 R

at
io

Utilization / m

Variation in n for a given m=4

n=100
n=80
n=60
n=40
n=20

Figure 6.7: Acceptance ratios of theIA-RT test for experiments withm = 4 and n =

20, 40, 60, 80, 100.

In such case, the acceptance ratios of theIA-RT test increases as the task set size in-
creases for a givenm. This phenomenon can be explained as follows: as the cardinality

110 CHAPTER 6. ITERATIVE TESTS

of each task set increases beyond5m, the number of high utilization tasks starts decreas-
ing since the total utilization of the task set is now distributed across higher number of
tasks. A low utilization task uses less computing resource and provides more opportu-
nity for other tasks to execute on the processors. And, task set with smaller number of
high utilization tasks does not suffer much from Dhall’s effect.

The conclusion from these experiments is that(m, 5m) seems to be the worst-case
parameters for the experimental setup. To compare the improvement of the proposed
tests in comparison to the state-of-the-artODA-LC test, results related to the experi-
mental parametern = 5m are only presented in this section. The experiments with
m = 4, 8, 16 andn = 3m, 10m are given in the Appendix B.

Observation 1: Remember that the average total density of task set increases as the
cardinality of task set increases for a fixed number of processors (please see Figure 5.10
and Figure 5.11 in Chapter 5). While the acceptance ratio of the density-based tests pro-
posed in Chapter 5 decreases with the increase in task set cardinality for a fixed number
of processors, the iterative testIA-DA shows a different trend: the acceptance ratio de-
creases untiln = 5m and then increases again. This demonstrates that iterativetests are
highly effective for scheduling tasks with large total density where the cardinality of a
task set is relatively large.

Experiments with (m, 5m)

The acceptance ratios of all the four tests in Table 6.1 with experimental parameters
(m, 5m) are presented in Figure 6.8—6.10 wherem = 4, 8, 16 are considered.

Observation 2: The acceptance ratios for theIA-DA andIA-RT tests do not differ
noticeably althoughIA-RT test theoretically dominates theIA-DA test. The two plots
for theIA-DA andIA-RT tests in Figure 6.8—6.10 are completely overlapping (i.e.,
difficult to see them separately). By looking at the raw acceptance ratio numbers of
these two tests, it is found that those values are the same foralmost all utilization lev-
els and differ very insignificantly in the remaining utilization levels. TheIA-DA test
runs in polynomial time while theIA-RT test runs in pseudo-polynomial time. Given
the polynomial time complexity of theIA-DA test and the fact that its performance is
equivalent to theIA-RT test, theIA-DA test is the preferable iterative schedulability
test. The discussion regarding theIA-DA test is thus also valid for theIA-RT test.

Observation 3: The improvement of the proposed three tests in this chapter over the
state-of-the-artODA-LC test is noticeable at higher utilization levels. The improvement
in acceptance ratio of the proposed tests at higher utilization levels is due to improved
priority assignment policy based on the HPA policy. By prudently separating the prob-
lematic tasks from the schedulability analysis of a target task, significant fraction of the
randomly generated task sets pass one or more of the proposedtests but do not pass
theODA-LC test. The proposedIA-DA tests performs much better than the proposed
H-ODA-LC test. This demonstrates the effectiveness of the novel separation criteria pro-
posed for theIA-DA test in comparison to the highest-density based separationcriteria
proposed for theH-ODA-LC test.

6.7. EMPIRICAL INVESTIGATION 111

0 %

20 %

40 %

60 %

80 %

100 %

 0.4 0.6 0.8

Ac
ce

pt
an

ce
 R

at
io

Utilization / m

m=4, n=20 (Constrained-Deadline)

IA-RT
IA-DA

H-ODALC
ODALC

Figure 6.8: Acceptance ratios for experiments with(m = 4, n = 5m = 20).

0 %

20 %

40 %

60 %

80 %

100 %

 0.4 0.6 0.8

Ac
ce

pt
an

ce
 R

at
io

Utilization / m

m=8, n=40 (Constrained-Deadline)

IA-RT
IA-DA

H-ODALC
ODALC

Figure 6.9: Acceptance ratios for experiments with(m = 8, n = 5m = 40).

0 %

20 %

40 %

60 %

80 %

100 %

 0.4 0.6 0.8

Ac
ce

pt
an

ce
 R

at
io

Utilization / m

m=16, n=80 (Constrained-Deadline)

IA-RT
IA-DA

H-ODALC
ODALC

Figure 6.10: Acceptance ratios for experiments with(m = 16, n = 5m = 80).

112 CHAPTER 6. ITERATIVE TESTS

The IA-DA test significantly outperforms the state-of-the-artODA-LC test. For
example, the acceptance ratio of theIA-DA test at0.6m utilization level for (m =
8, n = 40) in Figure 6.9 is 38.5% while that of for theODA-LC test is 16.4% (i.e.,
an improvement in acceptance ratio of more than 134%). Similarly, the acceptance
ratio of theIA-DA test at0.6m utilization level for (m = 4, n = 20) in Figure 6.8
is approximately 47.3% while that of for theODA-LC test is approximately 19.3% (an
improvement in acceptance ratio of more than 145%).

Observation 4: The differences in acceptance ratio between theODA-LC test and each
of the other three proposed tests decreases as the number of processors increases. And,
the acceptance ratios at each utilization level decreases for each of the four tests as
the number of processors increases. For example, the plots of the acceptance ratios of
IA-DA test in Figure 6.8—6.10 are becoming relatively “healthier”with decreasingm.
This is due the way the task sets are generated for the experiments. When the number
of processors is large, the number of tasks in a task set for experiments with(m, 5m) is
also relatively larger (one additional processor causes the cardinality to increase by 5).

Given that the number tasks in a task set is larger, the interference on the problem
window of each target task is still too large even after separating at most0, 1, . . . (m −
1) problematic tasks. There are too many problematic tasks such that separation can
not sufficiently reduce interference. And, each lower priority task suffers interference
from a relatively larger number of higher priority tasks each of which contributes to the
computation of interference. The interference is possiblyrelatively higher on a lower
priority task for task sets with larger cardinality. Therefore, the acceptance ratio of all
the tests decreases at each utilization level with increasingm.

6.8 Summary

This chapter proposes three different iterative schedulability tests for global FP schedul-
ing: H-ODA-LC test,IA-DA test, andIA-RT test. Each of these proposed tests domi-
nates the state-of-the-artODA-LC schedulability test. All these proposed tests is based
on HPA policy which is effective in reducing the amount of pessimism in the calculation
of interference when analyzing the schedulability of a particular task. It has been shown
that separating the highest-density tasks, as is done for the proposedH-ODA-LC test,
is not the best choice of separated tasks for the HPA policy. Anovel strategy to find
the best set of separated tasks when considering the schedulability analysis of a lower
priority task is proposed for theIA-DA and theIA-DA tests.

Both the proposedIA-DA andIA-RT tests perform significantly better than the
state-of-the-artODA-LC test. While the time complexity in evaluating theIA-DA test
is polynomial, the time complexity in evaluating theIA-RT test is pseudo-polynomial.
Although theIA-RT test dominates theIA-DA test, empirical investigation shows that
the performance difference between these two tests is insignificant. This finding implies
that one should apply the polynomial-timeIA-DA test first before applying the pseudo-
polynomialIA-RT test to determine the FP schedulability of a task set.

7
Fault-Tolerant Scheduling on

Uniprocessor

A fault-tolerant deadline-monotonic (FTDM) scheduling of constrained-deadline spo-
radic tasks for tolerating multiple task errors on uniprocessor is presented in this chap-
ter. Time-redundant execution of backup tasks is considered to recover from task errors.
Each task has multiple backups that are scheduled one-by-one until the output of the
task is correct. The fault model thatFTDM scheduling considers is very powerful in the
sense that it includes multiple hardware or software faultsthat can cause errors at any
time, in any task, and even during the recovery. Tolerating atask error by executing its
backup means that the task is able to produce its correct output before the deadline.

The schedulability analysis of theFTDM scheduling is based on computing the work-
load of each task and its higher priority tasks within an interval equal to the relative dead-
line of the task under study. The schedulability analysis oftheFTDM scheduling derives
an exact test considering at mostf task errors within each of all possible intervals of
length equal to the maximum relative deadline of any task.

7.1 Introduction

The importance of dependability on computer systems is increasing as computers are
taking a more active role in everyday control applications.Fault-tolerance in such sys-
tems is an important aspect to guarantee the correctness of the application even in the
event of faults. In many safety-critical systems, use of time redundancy is considered
as a cost-efficient means to achieve fault-tolerance. In such systems, when a task error

113

114 CHAPTER 7. FAULT-TOLERANT SCHEDULING ON UNIPROCESSOR

is detected, the backup of the task is executed. However, dueto the additional real-time
requirements, it is essential that exploitation of time as ameans for tolerating faults must
not compromise the timeliness guarantee in the system.

The two requirements, achieving fault-tolerance through time redundancy and meet-
ing the deadlines of the tasks, seem to be antagonistic. To guarantee both the correctness
and timeliness of dependable real-time systems, it is necessary to design fault-tolerant
scheduling algorithm and to derive appropriate schedulability test. An algorithm, called
Fault-Tolerant Deadline-Monotonic (FTDM) scheduling, is proposed and its schedula-
bility analysis is presented in this chapter. The proposedFTDM scheduling algorithm
is based on FP scheduling on uniprocessor where the tasks aregiven the Deadline-
Monotonic (DM) priorities. However, theFTDM scheduling and its schedulability anal-
ysis are also applicable to arbitrary fixed-priority assignment of the tasks.

The fault model (presented in Section 3.3) of theFTDM algorithm considers the
occurrences of at mostf task errors within each of the all possible intervals of length
Dmax whereDmax is the largest relative deadline of any task in the sporadic task set
Γ. There is no assumption regarding the distribution of the faults or on minimum inter-
arrival time of the faults that could cause task errors. Relaxing these assumptions allow
to consider many different situations, for example, where (i) a single job of a particular
task is affected by multiple faults, (ii) different jobs of different tasks might be affected
by multiple faults, (iii) faults that may occur in bursts, and (iv) the inter-arrival time of
consecutive faults is not predictable.

TheFTDM scheduling considers passive backups: no backup is dispatched until a
task error is detected. Each task is considered to have one primary and several backups,
where a backup could be same as the primary or could be a diverse implementation of the
same task. The worst-case execution time of the backups associated with a particular
task may be different. The backups associated with a particular task have the same
priority as the primary and these backups are scheduled byFTDM algorithm one-by-one
until the no task error is detected. The time-redundant execution of backups to recover
from task errors takes additional CPU time. TheFTDM algorithm requires to ensure
that the correct output of each job of each task is generated before its deadline even if
execution of backups are required to tolerate task errors.

The objective of the schedulability analysis of theFTDM algorithm is to derive a
schedulability test that needs to be verified to ensure that all the deadlines are met.
The outcome of the schedulability analysis ofFTDM algorithm is the derivation of an
exactschedulability test. The exact test is derived for each task(an iterative test) and
based on computing the maximum total workload requested within the release time and
deadline of any job of each task. To calculate the maximum total workload considering
occurrences of task errors, a novel technique tocomposethe execution time of the higher
priority jobs is used.

The only work that deals with a similar fault model as theFTDM algorithm is ad-
dressed by Aydin [Ayd07], but considered EDF priority and the exact test in [Ayd07]
has an exponential run-time complexity. On the other hand, the run time-complexity to
evaluate the exact schedulability test of the proposedFTDM algorithm isO(n · N̂ · f2),

7.2. SYSTEM MODEL 115

whereN̂ is the maximum number of jobs (generated by then periodic tasks) released
within any time interval of lengthDmax. No previous work has derived an exact fault-
tolerant uniprocessor schedulability test that has a lowertime complexity than that is
presented in this thesis for the assumed fault model.

TheFTDM algorithm does not consider tolerating processor failures. Fault-tolerant
multiprocessor scheduling algorithm for tolerating both task errors and processor fail-
ures is proposed in Chapter 8. However, the uniprocessor schedulability analysis of
FTDM algorithm is applicable to partitioned multiprocessor scheduling in which each
processor executes (preassigned) tasks based on uniprocessor FP scheduling algorithm.
The exact uniprocessor schedulability condition of theFTDM algorithm can be applied
during task-to-processor assignment phase in partitionedmultiprocessor scheduling. To
determine whether an unassigned task can be feasibly assigned to a processor, the pro-
posed exact test forFTDM scheduling can be used to guarantee that each processor can
tolerate up tof task errors within any time interval equal to the maximum relative dead-
line of the tasks assigned to that particular processor.

The rest of the chapter is organized as follows: the system model and theFTDM al-
gorithm are presented in Section 7.2. Then, the related workon fault-tolerant schedul-
ing on uniprocessor is presented in Section 7.3. The problemstatement is formally
given in Section 7.4. The schedulability analysis of one lower priority task under the
FTDM scheduling is presented in Section 7.5. Then, in Section 7.6, the exact test of
the entire task set is derived. The pseudocode of the exact test forFTDM scheduling is
presented in Section 7.7 and its applicability to the multiprocessor setting is discussed.
Section 7.8 summarizes this chapter.

7.2 System Model

The task and fault models forFTDM scheduling are presented in Section 3.1 and Section
3.3, respectively. The salient features of the models are reiterated here for readability.
A set ofn constrained-deadline sporadic tasksΓ ={τ1, τ2, . . . , τn} is considered where
each taskτi ∈ Γ is characterized by WCETCi, relative deadlineDi, and periodTi. At
mostf task errors due to a variety of hardware and software faults may occur within
each of the all possible time intervals of lengthDmax. The f task errors may occur
in the same job or may occur in different jobs of different tasks. The WCET of the
primary of taskτi isCi and the WCET of each of thef backups of taskτi is denoted by
Eki wherek = 1, 2, . . . f .

Scheduler Model. The FTDM scheduling is uniprocessor FP scheduling where each
task’s primary or backup is executed based on DM priority ordering. And, each backup
of taskτi has the same priority as that of taskτi. TheFTDM scheduling works as follows.
For each taskτi, whenever a job of tis task is released, the primary executesfirst. If an
error is detected at the end of execution of the primary, the first backup of the task
becomes ready for execution. Again an error may be detected at the end of execution of
this backup which in turn would trigger the execution of nextbackup, and so on. Each

116 CHAPTER 7. FAULT-TOLERANT SCHEDULING ON UNIPROCESSOR

task is considered to havef different backups in case all thef task errors occur in the
same job of the task.

Remember that during the execution of a particular primary or backup of a task, at
most one fault could affect this execution; and each error isassumed to be detected at
the end of execution of a primary or backup (please see the fault-model in Section 3.3).
It is assumed that there is no fault propagation: one error can affect exactly one primary
or backup. If the cumulative execution demand within an interval of lengthDmax due to
f task errors is maximum, then it is necessary that all thef task errors occur within that
interval. If totalk task errors,k ≤ f , affect a particular job of taskτi, then the execution
time required for recovery ismaximizedif the first error affect the primary and each of
the subsequent(k − 1) errors affect each subsequent backup of the same job of taskτi.

The exactFTDM schedulability condition has to check that whether all the tasks
deadlines are met or not if the occurrences of task errors is not worse than the assumed
fault model. Since there are many different combinations ofthe occurrence of task errors
that could affect the execution of the tasks in an interval oflengthDmax, algorithm
FTDM must guarantee that the schedule is fault-tolerant for eachsuch combination. In
other words, all tasks must met their deadlines for any combination of errors affecting
the different jobs of different tasks. The different combination of errors lead to the
notion offault pattern.

Fault-Pattern. Remember that there are a maximum ofN̂ jobs released within any in-
terval of lengthDmax. There are different possibilities of the occurrences of thef errors
affecting theN̂ jobs. One possibility is that all thef errors occur in one of thêN jobs.
Another possibility is that different number of errors occur in different jobs. Each such
possibility of error occurrence is called afault patternin [Ayd07, LMM00]. Given the
jobs in setA, any possible combination ofk errors that can affect the jobs in setA is
denoted byk-fault-pattern. For example, ifk = 0, no error occurs within the jobs in set
A. If k = 1 and|A| = 5, then there are 5 different 1-fault-patterns since the single error
due to the fault may affect any one of the five jobs in setA.

To achieve fault-tolerance, it has to be ensured that all thejobs released in any inter-
val of lengthDmax meet the deadlines forf -fault patterns. The question that arises is:
what are the different possible fault patterns that one mustconsider forFTDM schedula-
bility analysis ofN̂ jobs released within a time interval of lengthDmax? In other words,
in how many ways thef task errors could affect thêN jobs that are released within any
time interval of lengthDmax. It is already pointed out in [Ayd07] that the number of dif-

ferent fault patterns is given by the binomial coefficient
(

N̂+f -1
f

)

= Ω((N̂
f
)f) = O(N̂f),

which is exponential [CLRS01]. TheFTDM schedulability analysis on uniprocessor con-
sidering this exponential number of different fault patterns may not be computationally
practical if f are large. To overcome this problem, a dynamic-programing technique
is used to find an exactFTDM schedulability condition. The time complexity of this
technique for evaluating the exact test isO(n · N̂ · f2).

7.3. RELATED WORK 117

7.2.1 Traditional DM Scheduling

Leung and Whitehead proved that DM is an optimal fixed-priority scheduling algorithm
on uniprocessor for constrained-deadline sporadic tasks [LW82]. Necessary and suffi-
cient (exact) schedulability condition for uniprocessor DM scheduling have been derived
in [JP86, ABR+93, ABRW91] without considering occurrences of faults. The exact
DM schedulability condition proposed in [ABR+93] is derived by assuming that all
tasks are released at time 0 (i.e., critical instant for uniprocessor fixed-priority schedul-
ing [LL73]). In [ABR+93], the response-time of each taskτi ∈ Γ is given as follows:

Rh+1
i = Ci +

i−1
∑

j=1

Cj ·
⌈

Rhi
Tj

⌉

(7.1)

The iteration starts withR0
i = Ci and terminates ifRh+1

i = Rhi (schedulable) or
Rh+1
i > Di (unschedulable). The exact schedulability test of the entire task setΓ is

essentially applying the test in Eq. (7.1) for each task.
The exact analysis as given in Eq (7.1) is not directly applicable for the exact fault-

tolerant schedulability analysis of theFTDM scheduling because the worst-case fault
pattern considering the assumed fault model, for which the workload within the problem
window is maximum, is not known in advance. In this chapter, an exact schedulability
condition forFTDM scheduling is derived by computing the exact amount of execution
that needs to be completed within the release time and deadline of each task for the
assumed fault model.

7.3 Related Work

Many approaches exist in the literature for tolerating faults in real-time tasks. Tradi-
tionally, processor failures (permanent faults) are tolerated using Primary and Backup
(PB) approach in which the primary and backups of each task are scheduled on two
different processors [GMM94, OS94, BMR99, AOSM01, KLLS05b, KLLS05a]. Next
chapter deals with algorithm for tolerating permanent processor failures. The discussion
of related work for tolerating processor failures is postponed until next chapter.

Ghosh, Melhem and Mossé proposed fault-tolerant uniprocessor scheduling of ape-
riodic tasks considering transient faults by inserting enough slack in the schedule to
allow for the re-execution of tasks when an error is detected[GMM95]. They assumed
that the occurrences of two faults are separated by a minimumdistance. Pandya and
Malek analyzed fault-tolerant RM scheduling on a uniprocessor for tolerating one fault
and proved that the minimum achievable utilization bound is50% [PM98]. The authors
also demonstrated the applicability of their scheme for tolerating multiple faults if two
faults are separated by a minimum time distance equal to maximum periodTmax of a
task set. In this thesis, the proposedFTDM algorithm can toleratef task errors within
each of all possible time intervals equal to lengthDmax and no restriction is placed in
time distance between occurences of two consecutive faultswithin Dmax.

118 CHAPTER 7. FAULT-TOLERANT SCHEDULING ON UNIPROCESSOR

Ghoshet al. derived a utilization bound for RM uniprocessor schedulingfor tolerat-
ing single and multiple transient faults using a concept of backup utilization [GMMS98].
To toleratef transient faults, the utilization of the backup is set tof times the maximum
utilization of any task given that a fault model similar to the one in this thesis is used.
Such reservation of backup can lead to schedule task sets only having very small to-
tal utilization in the fault-free case. Whereas the recoveryscheme in [GMMS98] allows
backups to execute at a priority higher than that of the faulty task, the recovery scheme in
this thesis executes backups at the same priority as the faulty task. Sinha and Suri [SS99]
later showed that the proposed protocol in [GMMS98] is in fact faulty.

Liberato, Melhem and Mossé derived both exact and sufficientfeasibility condi-
tions for toleratingf transient faults for a set of aperiodic tasks using EDF schedul-
ing [LMM00]. They showed that for a set ofn aperiodic tasks in which a maximum of
f faults could occur, the exact test can be evaluated inO(n2 · f) time using a dynamic
programming technique. However, the authors of [LMM00] consider backup of a faulty
task simply as a re-execution of the primary copy and do not consider the execution of a
diverse implementation of a task possibly having a different execution time as backup.

Burns, Davis, and Punnekkat derived an exact fault-tolerant feasibility test for any
fixed-priority system using backup that could be simple re-execution or a diverse imple-
mentation of the same task [BDP96]. This work is extended in [PBD01] to provide the
exact schedulability tests employing check-pointing for fault recovery. In [MdALB03],
de A Lima and Burns proposed an optimal fixed-priority assignment to tasks for fault-
tolerant scheduling based on re-execution. The fixed priorities of the tasks can be
determined inO(n2) time for a set ofn periodic tasks. The schedulability analysis
in [BDP96, MdALB03] require the information about the minimum time distance be-
tween any two consecutive occurrences of transient faults within the schedule, and only
considers simple re-execution orexactlyone different implementation when an error is
detected. In the latter case, the execution time of the backup is the same regardless of the
number of errors affecting a particular job. This is in contrast to the proposed method in
this thesis where each backup for a particular job may have different execution time.

Based on thelast chance strategyof Chetto and Chetto [CC89] (in which backups
execute at late as possible), software faults are toleratedby considering two versions of
each periodic tasks: a primary and a backup [HSW03]. Backups are scheduled as late as
possible using a backward RM algorithm (schedule from backward in time). Similar to
the work in [MdALB03], the work in [HSW03] considers that there is only one backup
for each task and therefore does not have the provision for considering different backups
of the same task if more than one fault affect the same task.

Santoset al. in [SSO05] derived a schedulability condition for determining the com-
binations of faults in jobs that can be tolerated using fault-tolerant RM scheduling of
periodic tasks. The work in [SSO05] is based a notion, calledk-RM schedulable (origi-
nally proposed in [SUSO04]). Byk-RM schedulable, the authors mean that there are at
leastk free time slots available between the release time and deadline of each task. In
order to guarantee that the system can tolerate multiple transient faults for any combina-
tion of faults, all possible fault patterns has to be considered in their derived condition

7.4. PROBLEM FORMULATION 119

which gives an intractable time complexity. Moreover, the authors assumed that a fault
can occur only in the primary copy of a job.

A fault-burst model is recently defined by Many and Doose in [MD11] as a bounded
time interval during which the execution of the tasks are disturbed due to the occurrences
of faults for which the distribution of the faults is unknown. Although [MD11] assumes
arbitrary number of faults in a fault burst, the proposed recovery strategy in fact con-
siders a finite number of errors to be tolerated within an interval of lengthDmax where
only one job of each task is assumed to be faulty. In contrast,the proposedFTDM algo-
rithm considers that multiple jobs of the same task can be disturbed due to burst of faults
within an interval of lengthDmax.

Aydin in [Ayd07] proposed aperiodic and periodic task scheduling based on an exact
EDF feasibility analysis in which a backup of a task can be different from the primary.
Aydin considers a fault model in which a maximum off transient errors could occur
in tasks of the aperiodic task set. The schedulability analysis in [Ayd07] is based on
processor demand analysis proposed by Baruah et al. in [BRH90]. For periodic task
systems, the proposed exact feasibility test in [Ayd07] is evaluated inO(N̂2

hyper ·f2hyper)
time, whereN̂hyper is the number of jobs released within the first hyper-period (i.e. least
common multiple of all the tasks periods) andfhyper is the number of task errors that
can occur within the first hyper-period.

In this thesis, the derived exact DM feasibility condition has run-time complexity of
O(n · N̂ · f2) whereN̂ is the maximum number of jobs of then sporadic tasks released
within a time interval of lengthDmax, andf is the maximum number of task errors that
can occur within any time interval of lengthDmax. Therefore, the (pseudo-polynomial)
time complexity of the proposed exact test is more efficient than the exponential time-
complexity of the exact EDF test proposed in [Ayd07].

In summary, most of the work related to developing fault-tolerant scheduling algo-
rithms using time redundancy consider a fault model that is not as general as the fault
model considered in this thesis. In many other works, a relatively restricted fault model
is considered, assuming, for example, that

• the inter-arrival time of two faults must be separated by a minimum distance
[GMM95, PM98, BDP96, MdALB03, PBD01]

• at most one fault may occur in one task [PBD01, HSW03]

• the backup is simply the re-execution of the original task (i.e., does not consider
diverse implementation of the task) [GMM95, PM98, PBD01, LMM00, MD11]

7.4 Problem Formulation

The uniprocessor fault-tolerant scheduling algorithmFTDM proposed in this thesis is
based on an exact schedulability analysis of the tasks. An occurrences of a maximum
of f task errors within each of all possible time intervals of lengthDmax is considered.
Thef task errors could be distributed over any subset of jobs thatare eligible to execute

120 CHAPTER 7. FAULT-TOLERANT SCHEDULING ON UNIPROCESSOR

within the time interval of lengthDmax. Note that a job is eligible to execute between
its release time and its deadline. The problem addressed in this chapter is:

Is the task setΓ FTDM-schedulable if a maximum off task errors occur
within any time interval of length equal to Dmax?

The exact schedulability condition of task setΓ for the fault-tolerant scheduling algo-
rithm FTDM can be derived based on exact feasibility condition of each taskτi ∈ Γ, for
i = 1, 2, . . . n. If a maximum off task errors can occur within a time interval of length
Dmax, then the maximum number of such errors that can occur withinany time interval
of lengthDi, for i = 1, 2, 3, . . . n, can be at mostf . Following this, the last problem
statement can be re-written as:

Is task τi FTDM-schedulable if a maximum off task errors occur within
any time interval of length equal toDi, for i = 1, 2, . . . n?

If the exact schedulability condition for each taskτi ∈ Γ can be determined, then the ex-
act schedulability condition for the entire task setΓ follows immediately. To ensure that
taskτi is FTDM-schedulable on uniprocessor, the critical instant for which the workload
imposed by the higher-priority tasks on taskτi is maximized needs to be considered in
the fault-tolerant schedule. Under the assumed fault model, the critical instant in the
uniprocessor fault-tolerant schedule is when all the tasksare released at the same time
(as discussed in Section 3.1). In this chapter, without lossof generality, it is assumed
that all the tasks are released simultaneously at time zero.In order to derive the exact
schedulability condition of taskτi, it is sufficient to derive the exact schedulability con-
dition for the first job of each taskτi ∈ Γ. The first job of taskτi become eligible for
execution at time 0 and must finish its execution (including any possible execution of
backup due to faults) before timeDi. Consequently, the problem addressed can finally
be re-written as:

Is the first job of task τi FTDM-schedulable if a maximum off task
errors occur within the time interval [0, Di), for i = 1, 2, . . . n?

In the rest of this chapter, the exact schedulability condition of taskτi refers to the exact
schedulability condition of the first job ofτi unless otherwise specified. During the
schedulability analysis, the following considerations and assumptions are made:

• The critical instant for each task is at time zero where all the tasks are simultane-
ously released for the first time.

• Considering the critical instant, the workload within the time interval[0, Di) is
maximized if the jobs of each sporadic task is arrived as quickly as possible
(strictly periodic task set).

• Considering the critical instant and strictly periodic releases of the jobs of each
task, the jobJji of taskτi is released at timerji = Ti · (j− 1) and has its deadline
atdji = rji +Di.

7.5. LOAD FACTORS AND COMPOSABILITY 121

• An error is assumed to be detected at the end of execution of the primary or
backup. This assumption is necessary for the worst-case schedulability analy-
sis since it corresponds to larger wasted CPU time in comparison to the situation
when the error is detected in the middle of execution.

• There is no fault propagation. One fault is assumed to affectat most one job either
the primary or the backup. And, any primary or backup is affected by at most one
fault since multiple faults affecting the same primary or backup does not cause
any increase in recovery workload according to theFTDM scheduling.

The exact schedulability analysis of taskτi within the interval[0, Di) is presented in
Section 7.5. In order to find the worst-case workload required to be completed within
an interval[0, Di) on behalf of the higher priority sporadic tasks, it is not difficult to
see that the work within the interval is maximized under the assumption that the jobs of
the tasks arrive as quickly as possible (as is assumed above). In order to find the exact
schedulability condition, the maximum total work completed within [0, Di) by the jobs
of the tasks{τ1, τ2 . . . τi} is calculated based on twoload factors.

In subsection 7.5.1, the first load factor that is equal to themaximum work that needs
to be completed by a job of taskτi in [0, Di) is calculated. Then in subsection 7.5.2, the
second load factor that is equal to the maximum work that needto be completed within
[0, Di) by the higher priority jobs of the tasks{τ1, τ2 . . . τi−1} is calculated. This sec-
ond load factor is calculated as follows. First, the different subsets of higher priority
jobs such that all the jobs in each such subset are released atthe same time at some time
instant within[0, Di) are determined. Then, based on each of these different subsets, the
execution requirement of all the higher-priority jobs is abstracted by means of twocom-
positiontechniques, calledvertical compositionandhorizontal composition, to find the
maximum work completed by the higher priority jobs within[0, Di) in subsection 7.5.2.

7.5 Load Factors and Composability

In this section, the fundamental theoretical building blocks for the schedulability analy-
sis of taskτi within the time interval[0, Di) in terms of load factors and compositions
are derived. To determine whether the first job of taskτi is schedulable, the amount of
execution completed by higher-priority jobs within[0, Di) needs to be calculated. Note
that the maximum amount of execution completed by the higher-priority jobs depends
on different fault patterns affecting these higher-priority jobs. By subtracting the max-
imum amount of execution completed by the higher- priority jobs within [0, Di) from
Di, the maximum available time for execution of taskτi within [0, Di) can be derived.
To determine whether the available execution time for taskτi is enough for its complete
execution within[0, Di), it is needed to know the maximum amount of execution re-
quired to be completed by the first job of taskτi. This amount of execution depends on
the number of task errors exclusively affecting taskτi within [0, Di).

When analyzing the schedulability ofτi, theworst-case workloadwithin [0, Di) is
the maximum execution completed by the jobs of the tasks in set { τ1, τ2 . . .τi} that

122 CHAPTER 7. FAULT-TOLERANT SCHEDULING ON UNIPROCESSOR

are released within[0, Di). Remember that at mostf task errors could occur within
[0, Di). To find this worst-case workload required to be completed within [0, Di) by the
jobs of the tasks in set {τ1, τ2 . . .τi}, one has to consider (i) the occurrences ofk task
errors affecting the jobs of the higher-priority tasks (including their backups), and (ii)
the occurrences of(f − k) task errors exclusively affecting the first job of taskτi and
its backups, fork = 0, 1, 2, . . . f . In summary, to find the worst-case workload within
[0, Di), the following two workload factors are determined:

1. Load-Factor-i: Execution time required by taskτi when(f − k) errors ex-
clusively affect the first job of taskτi, for k = 0, 1, 2 . . . f .

2. Load-Factor-HPi: Execution time required by the higher-priority jobs within
[0, Di) whenk errors affect these higher-priority jobs in this interval,for k =
0, 1, 2 . . . f .

The worst-case workload within[0, Di) can now be defined as the sum of these two
load factors such that this sum is maximized for somek, 0 ≤ k ≤ f . To meet the
deadline of taskτi, the complete execution of taskτi (including the execution of its
backups) must take place within the interval[0, Di). However, parts of the execution of
jobs released within[0, Di) and having higher priority than the priority of taskτi may
take place outside the interval[0, Di). If the execution of any higher-priority job takes
place outside the interval[0, Di), the execution time beyond time instantDi must not be
accounted in the calculation ofLoad-Factor-HPi. This is to avoid overestimating
the amount of worst-case workload within the interval[0, Di) and to derive an exact
schedulability test forFTDM scheduling.

If the sum ofLoad-Factor-i and Load-Factor-HPi, i.e., the maximum
workload in[0, Di), is not greater thanDi, then taskτi has enough time to finish its com-
plete execution within[0, Di). Thus, based on the values of the two workload factors, the
exact schedulability condition for taskτi is derived in this thesis. The calculation of the
two workload factors (that is, value ofLoad-Factor-i andLoad-Factor-HPi)
are presented in subsection 7.5.1 and subsection 7.5.2, respectively.

7.5.1 Calculation ofLoad-Factor-i

The value ofLoad-Factor-i is the execution time required by taskτi when(f − k)
task errors exclusively affect taskτi, for k = 0, 1, 2 . . . f . If an error is detected after
executing of the primary of the first job taskτi, then the first backup of taskτi is ready
for execution. If an error is detected at the end of executionof a backup of taskτi, then
the next backup of taskτi is ready for execution. Remember that the WCET of thebth

backup of taskτi is denoted byEbi , for b = 1, 2 . . . f . The total execution time required
due to the(f−k) errors affecting the primary and backups of a particular jobof taskτi is
denoted byC (f − k)

i . The value ofLoad-Factor-i is equal toC(f − k)
i and has to be

calculated for allk = 0, 1, 2, . . . f . The value ofC(f − k)
i can be recursively calculated

7.5. LOAD FACTORS AND COMPOSABILITY 123

using Eq. (7.2) as follows:

C
(f − k)
i =







Ci if (f − k) = 0

E
(f−k)
i + C

(f − k − 1)
i if (f − k) > 0

(7.2)

The value ofC(f − k)
i is set equal toCi when(f−k) is equal to 0. When(f−k) is equal

to 0, only the execution time of the primary copy of taskτi is considered in Eq. (7.2). In
the recursive part of Eq. (7.2), the execution time of the(f − k)th backup of taskτi and
the execution time due to a total of(f − k− 1) task errors affecting taskτi are added to
find the value ofC(f − k)

i . Using Eq. (7.2), starting fromk = f, (f − 1), . . . 0, the value

C
(f − k)
i can be calculated for all(f − k) = 0, 1, 2 . . . f using a total ofO(f) addition

operations. The taskτi must completeC(f − k)
i units of execution within the interval

[0, Di) to tolerate(f − k) task errors that exclusively affect the first job of taskτi. The
calculation ofLoad-Factor-i is now demonstrated using an example.

Example 7.1. Consider a task set {τ1, τ2, τ3} given in Table 7.1 forf=2. The first
column in Table 7.1 represents the name of each task. The second and third columns
represent the relative deadline and period of each task, respectively. The WCET of
the primary copy of each task is given in the fourth column. The fifth and sixth columns
represent the WCET of the first and second (sincef = 2, at most two errors can occur in
the same job of any task for the assumed fault model) backups of each task, respectively.
Note that the WCET of a backup of a task may be equal to, greateror smaller than
the WCET of the primary of the corresponding task. Using Eq.(7.2), the amount of

τi Di Ti Ci E1
i E2

i

τ1 10 10 3 2 3
τ2 15 15 3 4 2
τ3 40 40 9 8 6

Table 7.1: Example task set withf=2 backups for each task

execution time required for each taskτi due to (f − k) task errors exclusively affecting
taskτi is calculated in Eq.(7.3) for k = 0, 1, 2 andf = 2 as follows:

For taskτ1, For taskτ2, For taskτ3,

C0
1 = C1 = 3 C0

2 = C2 = 3 C0
3 = C3 = 9

C1
1 = E1

1 + C0
1 = 5 C1

2 = E1
2 + C0

2 = 7 C1
3 = E1

3 + C0
3 = 17 (7.3)

C2
1 = E2

1 + C1
1 = 8 C2

2 = E2
2 + C1

2 = 9 C2
3 = E2

3 + C1
3 = 23

The task set in Table 7.1 is used in the rest of this chapter as the running example. The
calculation of the value ofLoad-Factor-HPi is presented in next subsection.

124 CHAPTER 7. FAULT-TOLERANT SCHEDULING ON UNIPROCESSOR

7.5.2 Calculation ofLoad-Factor-HPi

The value ofLoad-Factor-HPi is the maximum execution time completed within
[0, Di) by the jobs having higher priority than the priority of taskτi, whenk errors
affect these higher-priority jobs within[0, Di). If the execution of some of these higher-
priority jobs takes place outside[0, Di), then only the execution that takes place within
[0, Di) must be considered in the calculation ofLoad-Factor-HPi. This is a very
crucial issue in determining the value ofLoad-Factor-HPi, as can be seen in the
following example.

Example 7.2. Consider the first job of taskτ2 in Table 7.1 that is to be scheduled within
the interval(0, 15] sinceD2 = 15. Assume that jobs of the only higher priority taskτ1
are released as soon as possible:J1

1 andJ2
1 are the jobs that are released within the

interval [0, 15) and have higher priority than the priority of taskτ2. The primary of each
of the jobsJ1

1 andJ2
1 executes within the interval[0, 3) and[10, 13), respectively.

0 2 4 6 8 10 12 14 16 18 20 t

-

↓ ↓ ↓

J1
1 J2

1 J2
1 J2

1

First

Fault

Second

Fault

Execution time by jobsJ1
1

andJ2
1 within [0, 15) is 8

� -

Figure 7.1: Schedule of jobsJ1
1 andJ2

1 . The downward vertical arrows denotes the arrival time
of the jobs ofτ1. The two errors occur in the primary and the first backup of jobJ2

1 . The maximum
amount of total execution by the jobsJ1

1 andJ2
1 due to the two errors is equal to 11. However, the

amount of maximum total execution by the jobsJ1
1 andJ2

1 within the interval[0, 15) is 8, not 11.

Now, consider a 2-fault pattern in which the first and the second errors affect the
primary and the first backup of jobJ2

1 , respectively. The detection of the second error in
the first backup of jobJ2

1 triggers the execution of the second backup of jobJ2
1 . The first

and second backups of jobJ2
1 executes within the interval[13, 15) and[15, 18), respec-

tively. The schedule of the jobsJ1
1 andJ2

1 including the execution of the backups for
the considered 2-fault pattern is shown in Figure 7.1. The total execution time required
by the higher-priority jobsJ1

1 andJ2
1 is (3 + 3 + 2 + 3) = 11 time unit (including time

for recovery). Notice that, the second backup of jobJ2
1 executes outside the interval

[0, D2). The maximum execution time by the jobsJ1
1 andJ2

1 within the interval[0, D2)
is equal to(3 + 3 + 2) = 8, not11 for the considered 2-fault pattern.

When calculating the worst-case workload in[0, Di) to derive the exactFTDM schedu-
lability test of taskτi, the value ofLoad-Factor-HPi must not be overestimated. To

7.5. LOAD FACTORS AND COMPOSABILITY 125

calculate the value ofLoad-Factor-HPi, the jobs that are released within interval
[0, Di) and have higher priority than the priority of taskτi need to be determined. The
set of jobs having higher-priority than the priority of taskτi is denoted by a setHPJi
such that each job in setHPJi is released within the interval[0, Di). That is, the set
HPJi is defined in Eq. (7.4) as follows:

HPJi = {Jqp | p < i andrqp < Di} (7.4)

whererqp = Tp · (q − 1) andq = 1, 2, According to Eq. (7.4), if jobJqp ∈ HPJi,
then taskτp has shorter deadline (that is, higher priority1) than taskτi and the release
time of jobJqp (that is, value ofrqp defined in Eq. (3.1)) is less thanDi. Each of the
higher-priority jobs in setHPJi is eligible for execution at or after its release time within
[0, Di). In the case of our running example, the setsHPJi for i = 1, 2, 3 are determined
for the three tasks in Table 7.1.

Example 7.3. Using Eq.(7.4) for the task set in Table 7.1 we have,

[0, D1) = [0, 9) and HPJ1 = ∅
[0, D2) = [0, 15) and HPJ2 = {J1

1 , J2
1 } (7.5)

[0, D3) = [0, 20) and HPJ3 = {J1
1 , J2

1 , J3
1 , J4

1 , J1
2 , J2

2 , J3
2 }

Remember that̂N is the maximum number of jobs that are released within the time
interval[0, Dmax). Therefore, the number of jobs having higher priority than the priority
of taskτi that are released within[0, Di) is at mostN̂ . If the release time of a higher-
priority job Jqp is earlier thanDi, thenJqp is included inHPJi. Therefore, the time

complexity to find the setHPJi isO(N̂).
When considering theFTDM schedulability of the first job of taskτi, the value of

Load-Factor-HPi for a k-fault pattern such that thek errors affect the jobs in set
HPJi needs to be calculated fork = 0, 1, . . . f . The value ofLoad-Factor-HPi is
a measure of how much computation is completed within the interval [0, Di) by the
higher-priority jobs in setHPJi due to thek-fault pattern. The amount of computation
completedby the jobs in setHPJi within [0, Di) depends on how much workload is
requestedby the jobs inHPJi due to thek-fault pattern. Aydin in [Ayd07] used a
dynamic programming technique to compute the maximum workload requested by a set
of aperiodic tasks due to ak-fault pattern. Using an approach similar to that in [Ayd07],
the maximum workload requested by a set of higher-priority jobs that are all released at
a particular time instantt within the time interval[0, Di) is computed.

The maximum workload requested by a set of jobs in setA, all released at a partic-
ular time instantt, is denoted by functionLk(A) for a k-fault pattern2. Note that the
value ofLk(A) is the maximum workload requested by the jobs in setA, not the actual

1Ties between the deadlines of two tasks can be broken arbitrarily.
2The jobs in setA are released at timet. The time instantt is not included in functionLk(A) and can be

understood from the context. Although the value ofLk(A) can be calculated independent oft, the contextt
is important for the schedulability analysis as will be evident shortly.

126 CHAPTER 7. FAULT-TOLERANT SCHEDULING ON UNIPROCESSOR

amount of execution by the jobs in setA within [0, Di) because some of the work-
load may need to be executed after[0, Di). The functionLk(A) is defined recursively
(similar to [Ayd07], but the difference being that all the jobs in setA have the same
release time) in Eq. (7.6) and Eq. (7.7). The basis of the recursion is defined in Eq. (7.6)
considering exactly one jobJyx exists in setA, for k = 0, 1, 2, . . . f , as follows

Lk({J
y
x }) = Ckx (7.6)

The value ofLk({Jyx }) represents the amount of execution time requested by jobJyx
whenk errors exclusively affect the primary and backups of jobJyx . Remember that the
value ofCkx is defined in Eq. (7.2) as the maximum amount of execution timerequired
by the taskτx whenk errors exclusively affect a particular job of this task. Thevalue of
Ckx in the right hand side of Eq. (7.6) can be calculated using Eq.(7.2) inO(f) time,
for all k = 0, 1, 2 . . . f .

By assuming that the value ofLk(A) is known, the value ofLk(A ∪ {Jyx }) is com-
puted recursively, fork = 0, 1, 2 . . . f , as follows:

Lk(A ∪ {Jyx }) =
k

max
q=0

{

Lq(A) + Lk−q({J
y
x })

}

(7.7)

In Eq. (7.7), the value ofLk(A ∪ {Jyx }) is maximum for one of the(k + 1) possible
values ofq, where0 ≤ q ≤ k, for the right hand side of Eq. (7.7). The value ofq
is selected such that, ifq errors occur in the jobs in setA and (k − q) errors occur
exclusively in jobJyx , thenLk(A ∪ {Jyx }) is at its maximum for someq, 0 ≤ q ≤ k.
The working of Eq. (7.7) is now demonstrated using an example.

Example 7.4. Consider the lowest-priority taskτ3 given in Table 7.1. The jobs, having
higher priority than the priority of taskτ3, that are released at timet = 0 are in the set
A={J1

1 , J1
2 }. To determine the maximum workload requested by the higher-priority jobs

in setA={J1
1 , J1

2 } due to ak-fault pattern, one needs to calculate the value ofLk(A). To
calculateLk(A), the base in Eq.(7.6) for each of the jobs in setA need to be computed
considering the occurrences ofk errors exclusively affecting that job. Sincef is equal
to 2, the possible values ofk are 0, 1 and 2.

According to Eq.(7.3), the maximum execution time required for jobJ1
1 is C0

1 =3,
C1

1 =5 andC2
1 =8 for k = 0, k = 1 and k = 2 errors exclusively affecting jobJ1

1 ,
respectively. The maximum execution time required for jobJ1

2 is C0
2 =3, C1

2 =7 and
C2

2 =9 for k = 0, k = 1 and k = 2 errors exclusively affecting jobJ1
2 , respectively

(according to Eq.(7.3)). Using the base of the recursion in Eq.(7.6), we have

L0({J1
1 }) = C0

1 = 3 L1({J1
1 }) = C1

1 = 5 L2({J1
1 }) = C2

1 = 8

L0({J1
2 }) = C0

2 = 3 L1({J1
2 }) = C1

2 = 7 L2({J1
2 }) = C2

2 = 9

Using Eq.(7.7), the value ofLk(A) for k = 0, 1, 2 and A={J1
1 ,J1

2 } can be calculated

7.5. LOAD FACTORS AND COMPOSABILITY 127

as follows:

L0({J
1
1 , J1

2 }) =
0

max
q=0

{

Lq({J
1
1 }) + L0−q({J

1
2 })

}

= L0({J
1
1 }) + L0({J

1
2 })

= 3 + 3 = 6

L1({J
1
1 , J1

2 }) =
1

max
q=0

{

Lq({J
1
1 }) + L1−q({J

1
2 })

}

= max
{

L0({J
1
1 }) + L1({J

1
2 }) ,

L1({J
1
1 }) + L0({J

1
2 })

}

= max {3 + 7, 5 + 3} = 10

L2({J
1
1 , J1

2 }) =
2

max
q=0

{

Lq({J
1
1 }) + L2−q({J

1
2 })

}

= max
{

L0({J
1
1 }) + L2({J

1
2 }) ,

L1({J
1
1 }) + L1({J

1
2 }) ,

L2({J
1
1 }) + L0({J

1
2 })

}

= max {3 + 9, 5 + 7, 8 + 3} = 12

The maximum amount of workload requested by the jobs in set A={J1
1 ,J1

2 } is L0(A)=6,
L1(A)=10, andL2(A)=12 for k = 0, 1 and2-fault-patterns, respectively.

Time complexity to calculateLk(A ∪ {Jyx }): There are(|A|+1) jobs in set (A∪ {Jyx }).
For each one of the(|A|+ 1) jobs, evaluating the base case using Eq. (7.6) can be done
using Eq. (7.2) inO(f) steps for allk = 0, 1, 2, . . . f . Therefore, evaluating the base for
all the jobs in set (A∪ {Jyx }) requires [(|A|+ 1) ·O(f)]= O(|A| · f) operations.

For the recursive step, if the value ofLk(A) is known, then there are(k + 1) pos-
sibilities for the selection ofq in Eq. (7.7) to computeLk(A ∪ {Jyx }) for a givenk,
0 ≤ k ≤ f . Therefore, computingLk(A ∪ {Jyx }) requiresO(k) operations (k+1 addi-
tions andk comparisons) for a particulark and given thatLk(A) is known. Given that
the values ofLk(A) are known for allk = 0, 1, 2, . . . f , then computingLk(A ∪ {Jyx })
for all k = 0, 1, . . . f requires totalO(0 + 1 + 2 . . . f)=O(f2) operations.

Starting with one job in setA, a new jobJyx is considered when computing the value
ofLk(A ∪ {Jyx }). By including one jobJyx in the setA at each step, the set (A∪{Jyx }) is
finally formed. Therefore, for all the jobs in the set (A∪{Jyx }), the total time complexity
to recursively compute the value ofLk(A ∪ {Jyx }) is equal to[(|A| + 1) · O(f2)] =
O(|A| · f2). Consequently, the total time complexity for the base and recursive steps to
computeLk(A ∪ {Jyx }) isO(|A| · f + |A| · f2)= O(|A| · f2).

As mentioned before, the value ofLoad-Factor-HPi is the maximum execution
completed within the interval[0, Di) by the jobs having higher priorities than the priority
of taskτi for ak-fault pattern. The maximum execution completed by the set of higher-
priority jobs within [0, Di) may not be same as the maximum workload requested by

128 CHAPTER 7. FAULT-TOLERANT SCHEDULING ON UNIPROCESSOR

this set of higher-priority jobs for ak-fault pattern.
Remember that the value ofLk(A) is calculated considering that all the jobs in set

A are released at the same time, say at timet. Consider that the setA contains the jobs
having higher priority than the priority of taskτi and all the jobs in setA are released
at timet. If the value ofLk(A) is greater than (Di − t), then the maximum amount of
work completed by the higher-priority jobs in setA within the interval[0, Di) is at most
(Di − t) using the work-conserving algorithmFTDM. If Lk(A) is less than or equal to
(Di − t), then the maximum amount of work that can be completed by thejobs in set
A within the interval[0, Di) is at mostLk(A). This crucial observation is later used to
compose the workload of the higher priority jobs within the interval[0, Di).

In order to find the amount of execution completed by the jobs of the higher-priority
tasks within the time interval[0, Di), the higher-priority jobs released at different time
instants within the time interval[0, Di) arecomposed. A composed task is not an actual
task in the system rather a way to represent the execution of acollection of higher-
priority jobs in a compact (composed) way. The execution time of a composed task
(formally defined later) represents the maximum amount of execution within the inter-
val [0, Di) if the jobs represented by the composed tasks have exclusiveaccess to the
processor within the interval[0, Di). In other words, the execution time of a composed
task is the amount of maximum execution within the interval[0, Di) if only the jobs
represented by the composed task are allowed to execute within the interval[0, Di).

The composition of the higher-priority tasks are done in twosteps: first byverti-
cal compositionand then byhorizontal composition. Each vertically-composed task
abstracts the higher-priority jobs that are all released ata particular time instant within
[0, Di). Each horizontally-composed task abstracts the higher-priority jobs that are ab-
stracted by more than one vertically-composed task. Horizontal composition is pre-
sented next following vertical composition.

Vertical Composition

Consider a set of all jobs that are released at time instantt, t < Di and have higher
priority than the priority of taskτi. To compactly represent these higher-priority jobs, a
vertically-composed task, denoted byV{t} , is defined such that the composed taskV{t}

abstracts the set of higher-priority jobs that are all released at timet where0 ≤ t <
Di. The execution time of the composed taskV{t} (formally calculated later) denotes
the maximum amount of execution that can be completed within[0, Di) by the higher-
priority jobs that are released at timet such that only the jobs represented byV{t} are
allowed to execute within[0, Di). One vertically-composed task is formed for each time
instant within[0, Di) at which new higher-priority jobs are released.

Example 7.5. Consider the schedulability of taskτ3 in Table 7.1. The first job of task
τ3 is released at time 0 and has its deadline by timeD3 = 40. The tasksτ1 andτ2 are
the higher-priority tasks ofτ3. The releases of the higher-priority jobs at different time
instants within the interval[0, 40) is shown in Figure 7.2 using downward arrows by
assuming strictly periodic arrival of the jobs.

7.5. LOAD FACTORS AND COMPOSABILITY 129

0 5 10 15 20 25 30 35 40 t

-

↓ ↓ ↓

↓ ↓ ↓ ↓

τ2

τ1

V{0} V{10} V{15} V{20} V{30}
�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

Deadline ofτ3

Figure 7.2: Five vertically-composed tasks are shown using vertically long ovals at timeinstants
0, 10, 15, 20, and 30. Each vertically-composed task at timet abstracts all the newly released
higher-priority jobs of taskτ3 that are released at timet within the time interval[0, 40).

New jobs of the higher-priority tasks are released at time instants 0, 10, 15, 20 and 30.
At each of these five time instants, a vertically-composed task is formed (that abstracts
the released jobs shown in each oval in Figure 7.2). The five composed tasks are denoted
byV{0} ,V{10},V{15},V{20} andV{30} in Figure 7.2.

To form the vertically-composed tasks, the different time points in [0, Di) where new
jobs of the higher-priority tasks are released need to be determined. The set of time
points, denoted bySi, where jobs having higher priority than the priority of taskτi are
released within the interval[0, Di) is given by Eq. (7.8) as follows:

Si = {k · Tj | j = 1 . . . (i− 1), k = 0 . . .

⌊

Di

Tj

⌋

} − {Di} (7.8)

Each of the time points in setSi are less thanDi and are nonnegative integer multiples
of the periods of the higher-priority taskτj for j = 1, 2, . . . (i− 1) assuming the critical
instant (i.e., all the tasks first arrives at time 0). Since the higher-priority jobs released at
or beyond time instantDi will not execute prior to time instantDi, it is necessary that
all the time points in setSi are less thanDi (that is, before the deadline of the first job
of taskτi). At each of the time points in setSi, new higher-priority jobs are released by
assuming that jobs of the higher priority tasks are releasedas quickly as possible.

Example 7.6. Consider the task set given in Table 7.1. Using Eq.(7.8), we have

S1 = {}
S2 = {0, 10} − {15} = {0, 10} (7.9)

S3 = {0, 10, 15, 20, 30, 40} − {40} = {0, 10, 15, 20, 30}

The jobs having higher priorities than that of taskτi are released at each of the time
points in setSi. Remember that there are at mostN̂ jobs released within any interval of
lengthDmax. The time points inSi are integer multiples of the periods of the higher-
priority tasks. Therefore, the run-time complexity to computeSi isO(N̂).

130 CHAPTER 7. FAULT-TOLERANT SCHEDULING ON UNIPROCESSOR

During the schedulability analysis of taskτi, we have to consider each time point
in setSi where some new higher-priority jobs of taskτi are released. For eachs ∈ Si,
a vertically-composed taskV{s} is formed. In the case of the example in Table 7.1,
when analyzing the schedulability of taskτ3, one vertically-composed task for eachs ∈
S3 ={0,10,15,20,30} is formed (see the five vertically-composed tasks in Figure 7.2).

The vertically-composed taskV{s} for s ∈ Si abstracts the set of higher-priority jobs
from setHPJi that are all released at times. To find the execution time of a vertically-
composed task at times ∈ Si, the higher-priority jobs in setHPJi that are released at
time instants need to be determined. The setReli,s denotes the higher-priority jobs of
taskτi that are released at times. The setReli,s is given in Eq. (7.10) as follows:

Reli,s = {Jqp | Jqp ∈ HPJi andrqp = s} (7.10)

The setReli,s contains the jobs that are released at times and are of higher priority
than taskτi. If job Jqp is in setReli,s, then jobJqp is in setHPJi and the release time of
job Jqp is equal to time instants, that is,s is equal torqp. The condition in Eq. (7.10) is

to be evaluated for each job in setHPJi. Since there are at most̂N jobs released within
any time interval of lengthDmax, the number of jobs in setHPJi isO(N̂). The jobJqp
∈ HPJi is stored in setReli,s if the release timerqp is equal tos. By selecting one by
one jobJqp from setHPJi, the jobJqp can be stored in the appropriate setReli,s such
that the release timerqp of job Jqp is equal tos. Therefore, the time complexity to find

Reli,s for all s ∈ Si is equal toO(N̂).

Example 7.7. Consider the example task set in Table 7.1. Since there are nohigher-
priority jobs of taskτ1, the setHPJ1 = ∅. For tasksτ2 and τ3 we haveS2 ={0, 10}
andS3 ={0, 10, 15, 20, 30}, respectively, according to Eq.(7.9). The set,Reli,s, of
higher-priority jobs released at different time instants ∈ Si for i = 2 and i = 3 are
given in Eq.(7.11)as follows:

Rel2,0 = { J1
1 } Rel2,10 = { J2

1 }

Rel3,0 = { J1
1 , J1

2 } Rel3,10 = {J2
1 }

Rel3,15 = {J2
2 } Rel3,20 = {J3

1 }

Rel3,30 = {J3
2 , J4

1 }

(7.11)

The jobs in setReli,s are of higher priority than that of the taskτi and all these higher-
priority jobs are released at times. For eachs ∈ Si, the vertically-composed taskV{s}

abstracts the jobs in setReli,s. What follows next is the technique to calculate the
execution time of a vertically-composed taskV{s} .

The execution time of the vertically-composed taskV{s} is denoted by the function
w(k,{s}) for a k-fault pattern only affecting the jobs in setReli,s. If no jobs other
than the jobs in setReli,s are allowed to execute within the interval[0, Di), then the
value ofw(k,{s}) represents the maximum amount of execution that can be com-
pleted by the jobs in setReli,s within the interval[0, Di) for ak-fault pattern.

7.5. LOAD FACTORS AND COMPOSABILITY 131

The value ofLk(Reli,s) is the maximum amount of workload requested by the jobs
abstracted by the vertically-composed taskV{s} . The set of jobs released at times can
complete, using work conserving algorithmFTDM, at most(Di − s) amount of work
within [0, Di) if Lk(Reli,s) is greater than(Di − s). Otherwise, the maximum amount
of work completed by the set of jobs released at times is Lk(Reli,s). To this end, the
execution time ofV{s} for k = 0, 1, 2, . . . f is defined in Eq. (7.12) as follows:

w(k,{s})=min {Lk(Reli,s) , (Di − s) } (7.12)

The valuew(k,{s}) represents the maximum amount of execution completed by the
jobs released at times within the interval[0, Di) if no jobs other than the jobs in set
Reli,s are allowed to execute within the interval[0, Di). The calculation ofw(k,{s})
is shown next for the running example.

Example 7.8. Consider the task set in Table 7.1. When considering the schedulability
of taskτ1, there is no higher-priority jobs of taskτ1. Therefore, no vertically-composed
task is formed since setS1 is empty.

Fors = 0 andk = 0 For s = 10 andk = 0
w(0,{0}) w(0,{10})
= min{L0(Rel2,0), Di − 0} = min{L0(Rel2,10), Di − 10}
= min{L0(Rel2,0), 15− 0} = min{L0(Rel2,10), 15− 10}
= min{L0({ J1

1 }), 15} = min{3, 15} = 3 = min{L0({ J2
1 }), 5} = min{3, 5} = 3

Fors = 0 andk = 1 For s = 10 andk = 1
w(1,{0}) w(1,{10})
= min{L1(Rel2,0), Di − 0} = min{L1(Rel2,10), Di − 10}
= min{L1(Rel2,0), 15− 0} = min{L1(Rel2,10), 15− 10}
= min{L1({ J1

1 }), 15} = min{5, 15} = 5 = min{L1({ J2
1 }), 5} = min{5, 5} = 5

Fors = 0 andk = 2 For s = 10 andk = 2
w(2,{0}) w(2,{10})
= min{L2(Rel2,0), Di − 0} = min{L2(Rel2,10), Di − 10}
= min{L2(Rel2,0), 15− 0} = min{L2(Rel2,10), 15− 10}
= min{L2({ J1

1 }), 15} = min{8, 15} = 8 = min{L2({ J2
1 }), 5} = min{8, 5} = 5

Table 7.2: Calculation ofw(k,{s}) for vertical composition at eachs ∈ S2 for k = 0, 1, 2.
The left column show the execution timew(k,{0}) of the vertically-composed taskV{0} for
k = 0, 1, 2 faults and the right column show the execution timew(k,{10}) of the vertically-
composed taskV{10} for k = 0, 1, 2 faults.

When considering the schedulability of taskτ2, there are higher-priority jobs that
are released within[0, D2). To find the vertical compositions of the higher-priority jobs,

132 CHAPTER 7. FAULT-TOLERANT SCHEDULING ON UNIPROCESSOR

the following information is used:

S2 = {0, 10} from Eq.(7.9)

D2 = 15 from Table 7.1

Rel2,0 = { J1
1 } for s = 0 from Eq.(7.11)

Rel2,10 = { J2
1 } for s = 10 from Eq.(7.11)

Two vertically-composed tasks are formed since there are two time points in setS2 =
{0, 10}. The two vertically-composed tasks areV{0} and V{10}. For each vertically-
composed task, the amount of execution time in[0, D2) can be determined fork = 0, 1, 2
(sincef = 2) using Eq. (7.12). The value ofw(k,{s}) for the composed taskV{s}

using Eq.(7.12)is calculated in Table 7.2 fork = 0, 1, 2 ands = 0, 10.
When considering the schedulability of taskτ3, there are higher-priority jobs that

are eligible for execution within[0, D3). To find the vertical compositions of the higher-
priority jobs, the following information is used:

S3 = {0, 10, 15, 20, 30} from Eq.(7.9)

D3 = 40 from Table 7.1

Rel3,0 = { J1
1 , J1

2 } for s = 0 from Eq.(7.11)

Rel3,10 = { J2
1 } for s = 10 from Eq.(7.11)

Rel3,15 = { J2
2 } for s = 15 from Eq.(7.11)

Rel3,20 = { J3
1 } for s = 20 from Eq.(7.11)

Rel3,30 = { J4
1 , J3

2 } for s = 30 from Eq.(7.11)

Five vertically-composed tasks are formed since there are five time points inS3 at each
of which new higher-priority jobs are released. The five vertically-composed tasks are
V{0} , V{10}, V{15}, V{20} and V{30}. For each vertically-composed taskV{s}, the value
of w(k,{s}) for k = 0, 1, 2 is given in each row of Table 7.3 fork = 0, 1, 2 and
s = 0, 10, 15, 20, 30.

V{s} k = 0 k = 1 k = 2
V{0} w(0,{0})=6 w(1,{0})=10 w(2,{0})=12
V{10} w(0,{10})=3 w(1,{10})=5 w(2,{10})=8
V{15} w(0,{15})=3 w(1,{15})=7 w(2,{15})=9
V{20} w(0,{20})=3 w(1,{20})=5 w(2,{20})=8
V{30} w(0,{30})=6 w(1,{30})=10 w(2,{30})=10

Table 7.3: The value ofw(k,{s}) for eachs ∈ S3 and fork = 0, 1, 2. Thek faults affect the
higher-priority jobs that are released at times ∈ S3.

7.5. LOAD FACTORS AND COMPOSABILITY 133

Run-time complexity for vertical composition: CalculatingReli,s for all s ∈ Si
needs totalO(N̂) operations. CalculatingLk(Reli,s) for setReli,s requiresO(|Reli,s|·
f2) operations for allk = 0, 1, 2, . . . f . There are at most̂N jobs that are released
within any time interval of lengthDmax. Therefore, the number of total jobs having
higher priority than the priority of taskτi that are released in all the time points in
setSi is equal toO(N̂). In other words,

∑

s∈Si
|Reli,s| = O(N̂). Therefore, the

computational complexity of all the vertical compositionsin all time pointss ∈ Si is
[O(N̂)+O(

∑

s∈Si
|Reli,s| · f2)]=O(N̂ · f2).

For eachs ∈ Si, a vertically-composed taskV{s} is formed. The vertically-composed
taskV{s} has execution timew(k,{s}) considering ak-fault pattern fork = 0, 1, 2 . . . f .
Within the interval[0, Di), there may be more than one vertically-composed task. In
our running example, there are five vertically-composed task within [0, D3) as shown
in Figure 7.2 for the schedulability analysis of taskτ3. The higher-priority jobs repre-
sented by two or more vertically-composed tasks will execute in [0, Di). Notice that
the execution of the jobs represented by two or more vertically-composed tasks may
not be completely independent. Some jobs in one vertically-composed task may in-
terfere or be interfered by the execution of some jobs in another vertically-composed
task within[0, Di). By considering such effect of one composed task over another, the
vertically-composed tasks are further composed using horizontal composition to calcu-
lateLoad-Factor-HPi.

Horizontal Composition

A horizontally-composed task is formed by composing two or more vertically-composed
tasks. To see how this composition works, consider two different time pointss1 ands2
in setSi such thats1 < s2. For these two time points, two vertically-composed tasks
V{s1} andV{s2} are formed during vertical composition. A horizontally-composed task,
denoted byH{s1, s2} , is formed by composing the two vertically composed tasksV{s1}

andV{s2} . The taskH{s1, s2} abstracts all the jobs of the higher-priority tasks than the
priority of taskτi that are released at time instantss1 ands2.

The execution time of this new horizontally-composed taskH{s1, s2} is denoted by
w(k,{s1, s2}) and must not be greater than (Di−s1). This is because the earliest time
at which the jobs represented by the the composed taskH{s1, s2} can start execution is
at times1 sinces1 < s2. Note that, if0 ∈ {s1, s2}, thenw(k,{s1, s2}) must not
be greater thanDi. The value ofw(k,{s1, s2}) represents the maximum execution
exclusively by the jobs released at times1 ands2 within the time interval[0, Di).

When considering the schedulability of taskτi, there are a total of|Si| time in-
stants at each of which a vertically-composed task is formed. To calculate the value of
Load-Factor-HPi, one has to find the final horizontally-composed taskHSi

with
execution timew(k,Si) for all k = 0, 1, 2 . . . f . The value ofw(k,Si) is the amount
of execution completed by the higher-priority jobs that arereleased within the time in-
stants in setSi in [0, Di). Since setSi contains all the time instants where jobs of
higher-priority task are released, the value ofw(k,Si)is Load-Factor-HPi.

134 CHAPTER 7. FAULT-TOLERANT SCHEDULING ON UNIPROCESSOR

To find the horizontally-composed taskHSi
, total (|Si|−1) horizontal compositions

are needed. Starting with two vertically-composed tasks, anew horizontally-composed
task is first formed. This horizontally-composed task is further composed with a third
vertically-composed task to form the second horizontally-composed task. This process
continues until all the vertically-composed tasks are considered in the horizontal com-
positions. Note that a vertically-composed task has no priority associated with it. The
jobs (primary and backups) abstracted by a vertically-composed tasks have DM priori-
ties. Therefore, the order of execution of the jobs abstracted by a horizontally-composed
task is determined by the DM priorities of the jobs that are abstracted by the constituent
vertically-composed tasks.

The first horizontally-composed task abstracts all higher-priority jobs released at two
points that are in setSi. The last (final) horizontally-composed task abstracts allthe jobs
that are released at all time points in setSi. For example, the five vertically-composed
tasks in Figure 7.2 are composed horizontally as shown in Figure 7.3.

0 5 10 15 20 25 30 35 40 t

-

↓ ↓ ↓

↓ ↓ ↓ ↓

τ2

τ1

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

H{0,10}

H{0,10, 15}

H{0,10,15, 20}

H{0,10,15,20,30}

V{0} V{10} V{15} V{20} V{30} Deadline ofτ3

Figure 7.3: Four horizontal compositions (horizontally longer ovals) are shown for the five
vertically-composed tasks (vertically longer ovals). The four horizontally-composed tasks are
H{0,10}, H{0,10, 15}, H{0,10, 15, 20} andH{0,10,15,20,30}. The execution time ofH{0,10,15,20,30}is the value
of Load-Factor-HPi.

The technique to find the execution time of a horizontally-composed task is demon-
strated next. If there arec time points in the setSi, then the setSi is represented as
Si={s1, s2 . . . sc} wheresi < si+1. According to Eq. (7.8), the setSi contains the time
point 0 and therefore,s1 = 0. The firstx time points inSi is denoted by set

p(x) = {sl | l ≤ x andsl ∈ Si}

Therefore, the setp(x) ={s1, s2 . . . sx} for x = 1, 2 . . . c. For example, we have
p(1) ={s1}={0}, p(2) ={s1, s2}={0, s2}, andp(c) ={s1, s2 . . . sc}=Si.

We start composing the first two vertically-composed tasks horizontally. The hor-
izontal composition of the first two vertically-composed tasksV{s1} andV{s2} is de-
noted by the composed taskHp(2)=H{s1, s2} . The execution time ofV{s1} andV{s2}
arew(k,{s1}) andw(k,{s2}), respectively (can be computed using Eq.(7.12)). The

7.5. LOAD FACTORS AND COMPOSABILITY 135

execution time ofHp(2)is denoted byw(k,p(2)) = w(k,{s1, s2}) and is given in
Eq. (7.13) as follows, fork = 0, 1, 2, . . . f :

w(k,p(2)) =
k

max
q=0

{

min
{

[w(q,{s1})+ w(k-q,{s2})], Di

}

}

(7.13)

The calculation of the value ofw(k,p(2))in Eq. (7.13) considers the sum of the exe-
cution time of tasksV{s1} andV{s2} considering respectivelyq and(k − q) fault pattern
such that the sum is maximized for someq, 0 ≤ q ≤ k. Since the amount of execution
within the interval[0, Di) by the higher-priority jobs released at times1 ands2 can not
be greater than (Di−s1) = (Di−0) =Di, the minimum of this sum (for someq) andDi

is determined to be the value ofw(k,p(2)) in Eq. (7.13). This is because the earliest
time that higher-priority jobs can start execution is at times1 = 0.

By assuming that the value ofw(k,p(x)) is known for the horizontally-composed
tasksHp(x), a new horizontally-composed taskHp(x+1)=Hp(x) ∪ {sx+1} is formed. The
execution timew(k,p(x+1)) of the horizontally-composed taskHp(x+1)is given in
Eq. (7.14), fork = 0, 1, 2, . . . f , as follows:

w(k,p(x+1)) = w(k,p(x) ∪ {sx+1})

=
k

max
q=0

{

min
{

[w(q,p(x))+ w(k-q,{sx+1})], Di

}

}

(7.14)

The execution timew(k,p(x+1)) of the new horizontally-composed taskHp(x+1) is
calculated by finding the sum of the execution time of the horizontally composed task
Hp(x) and the execution time of a new vertically-composed taskV{sx+1} . The value of
this sum is maximized by consideringq fault-pattern in taskHp(x) and (k − q) fault-
pattern in taskV{sx+1} , for someq, 0 ≤ q ≤ k. Since the amount of execution within
the interval[0, Di) can not be greater than (Di − s1) = (Di − 0) = Di, the minimum of
this sum (for someq) andDi is the value ofw(k,p(x+1)) in Eq. (7.14).

Using Eq. (7.14), the execution timew(k,Si) of the final horizontally-composed
taskHSi

=Hp(|Si|) can be determined, fork = 0, 1, 2 . . . f . The value ofw(k,Si) is
the value ofLoad-Factor-HPi for k = 0, 1, 2 . . . f . Before the calculation of the
execution time of horizontally-composed task is demonstrated using an example, the
run-time complexity of horizontal composition is derived.

Run time complexity of horizontal compositions:There are total(|Si| − 1) horizon-
tal composition for|Si| vertically-composed tasks when considering the schedulability
analysis of taskτi. When considering the schedulability of a taskτi, for each horizontal
composition, there are(k+1) possibilities forq, 0 ≤ q ≤ k, in Eq. (7.14). For each value
of q, there is one addition and one comparison operation. Therefore, total (2·(k+1)) op-
erations are needed for one horizontal composition for eachk. For allk = 0, 1, 2 . . . f ,
each horizontal composition requires total[2+4+6+ . . . 2 · (f+1)]=O(f2) operations.
Given all the|Si| vertical compositions, there are a total of[(|Si|−1) ·O(f2)]=O(|Si| ·
f2) operations for all the (|Si|−1) horizontal compositions. Note that|Si|=O(N̂) since
there are at most̂N time instants where new higher-priority jobs are released.Therefore,

136 CHAPTER 7. FAULT-TOLERANT SCHEDULING ON UNIPROCESSOR

finding theLoad-Factor-HPi for one taskτi isO(N̂ · f2). The time complexity to
find the execution time of vertically-composed tasks isO(N̂ ·f2). Therefore, total time
complexity for the vertical and horizontal composition when considering the schedula-
bility of task τi isO(N̂ · f2 + N̂ · f2)=O(N̂ · f2).
Now the calculation ofLoad-Factor-HPi (that is, the value ofw(k,Si)) using our
running example is presented.

Example 7.9. For task τ1, we haveS1 = ∅ from Eq. (7.9). Therefore, no vertical
composition, and hence no horizontal composition is needed.

For task τ2, we haveS2 = {0, 10}. Using vertical composition, we have two
vertically-composed tasksV{0} andV{10}. The execution timew(k,{s}) of the vertically-
composed task fors = 0 andk = 0, 1, 2 fault patterns arew(0,{0})=3, w(1,{0})=5,
andw(2,{0})=8 (given in the first column of Table 7.2 in page 131). Similarly, the
execution timew(k,{s}) of the vertically-composed task fors = 10 andk = 0, 1, 2
fault patterns are determined asw(0,{10})=3, w(1,{10})=5 andw(2,{10})=5
(given in the second column of Table 7.2 in page 131).

The two vertically-composed tasksV{0} andV{10} are horizontally-composed asH{0, 10}

and its execution timew(k,{0,10}) using Eq.(7.13) is calculated in Table 7.4 for
k = 0, 1, 2. Form Table 7.4, when considering the schedulability of task τ2, the amount
of execution completed by the higher-priority jobs within[0, 15) is 6, 8 and 11 fork=0,
1 and 2 errors affecting only the jobs of the higher-prioritytask, respectively.

For task τ3, we haveS3 = {0, 10, 15, 20, 30}. Using vertical composition, we
have five vertically-composed tasksV{0} , V{10}, V{15}, V{20} and V{30}. The execution
time of the vertically-composed tasks fork = 0, 1, 2 are given in Table 7.3. Us-
ing Eq. (7.13) and Eq.(7.14), the execution time of the four horizontally composed
tasks formed using the five vertically-composed tasksV{0} , V{10},V{15} V{20} and V{30}

is calculated. The execution time of the horizontally-composed taskH{0, 10, 15, 20, 30}is
w(k,{0,10,15,20,30}) that is calculated using Eq.(7.14), for k = 0, 1, 2 (given
in the fourth row of each Table 7.5-Table 7.7).

By composingV{0} and V{10} horizontally, the new horizontally-composed task is
H{0,10} is formed using Eq.(7.13). The execution time of the horizontally-composed task
H{0,10} is w(k,{0,10}) and calculated using Eq.(7.13) for k = 0, 1, 2 (given in the
first row of each Table 7.5-Table 7.7).

Then, the first horizontally-composed taskH{0, 10} and the vertically-composed task
V{15} are composed to form the second horizontally-composed taskH{0, 10, 15}. The ex-
ecution time ofH{0,10,15} is w(k,{0,10,15}) and determined using Eq.(7.14) for
k = 0, 1, 2 (given in the second row of each Table 7.5-Table 7.7). This process contin-
ues and finally the horizontally-composed taskH{0, 10, 15, 20}and the vertically-composed
taskV{30} are composed into the final horizontally-composed task thatisH{0, 10, 15, 20, 30}.
The execution time of the four horizontally-composed tasksare given in Table 7.5, Ta-
ble 7.6 and Table 7.7 fork = 0, k = 1 andk = 2 fault patterns, respectively.

The amount of execution timew(k,{0,10,15,20,30}) of the final horizontally-
composed taskHSi

is the exact value ofLoad-Factor-HPi due to ak-fault-pattern.

7.5. LOAD FACTORS AND COMPOSABILITY 137

ForH{0, 10} andk = 0
w(0,{0,10}) = w(0,{0}∪{10})
=

0
max
q=0

{

min{w(q,{0})+ w(k-q,{10}), Di }
}

= min
{

[w(0,{0})+ w(0,{10})], Di

}

= min{[3 + 3], 15} = min{6, 15}
}

= 6

ForH{0,10} andk = 1
w(1,{0,10}) = w(1,{0}∪{10})
=

1
max
q=0

{

min{w(q,{0})+ w(1-q,{10}), Di }
}

= max
{

min{[w(0,{0})+ w(1,{10})], Di },
min

{

[w(1,{0})+ w(0,{10})], Di }
}

= max
{

min{[3 + 5], 15},min{[5 + 3], 15}
}

= max
{

min{8, 15},min{8, 15}
}

= 8

ForH{0,10} andk = 2
w(2,{0,10}) = w(2,{0}∪{10})
=

2
max
q=0

{

min{w(q,{0})+ w(2-q,{10}), Di }
}

= max
{

min{[w(0,{0})+ w(2,{10})], Di },

min{[w(1,{0})+ w(1,{10})], Di }
min{[w(2,{0})+ w(0,{10})], Di }

}

= max
{

min{[3 + 5], 15},min{[5 + 5], 15},min{[8 + 3], 15}
}

= max
{

min{8, 15},min{10, 15},min{11, 15}
}

= 11

Table 7.4: Calculation ofw(k,{0,10}) for horizontally-composed taskH{0, 10} for k = 0, 1, 2.

Composed task Execution time for 0-fault pattern
H{0, 10} w(0,{0,10})=9
H{0,10,15} w(0,{0,10,15})=12
H{0,10,15,20} w(0,{0,10,15,20})=15
H{0,10,15,20,30} w(0,{0,10,15,20,30})=21

Table 7.5: The execution time due to 0-fault pattern of the four horizontally-composed tasks
H{0, 10}, H{0, 10, 15 }, H{0, 10, 15, 20}, andH{0, 10, 15, 20, 30}

The value ofw(k,{0,10,15,20,30}) represents the amount of execution time
within [0, 40) by all the higher-priority jobs due to thek-fault-pattern. Table 7.5-

138 CHAPTER 7. FAULT-TOLERANT SCHEDULING ON UNIPROCESSOR

Composed task Execution time for 1-fault pattern
H{0, 10} w(1,{0,10})=13
H{0,10,15} w(1,{0,10,15})=16
H{0,10,15,20} w(1,{0,10,15,20})=19
H{0,10,15,20,30} w(1,{0,10,15,20,30})=25

Table 7.6: The execution time due to 1-fault pattern of the four horizontally-composed tasks
H{0, 10}, H{0, 10, 15 }, H{0, 10, 15, 20}, andH{0, 10, 15, 20, 30}

Composed task Execution time for 2-fault pattern
H{0, 10} w(2,{0,10})=18
H{0,10,15} w(2,{0,10,15})=21
H{0,10,15,20} w(2,{0,10,15,20})=24
H{0,10,15,20,30} w(2,{0,10,15,20,30})=30

Table 7.7: The execution time due to 2-fault pattern of the four horizontally-composed tasks
H{0, 10}, H{0, 10, 15 }, H{0, 10, 15, 20}, andH{0, 10, 15, 20, 30}

Table 7.7 show that the execution completed by the higher-priority jobs within[0, 40) is
21, 25, and 30 fork=0,1 and 2-fault patterns, respectively (shown in the shaded fourth
row in each of the Table 7.5-Table 7.7).

It is easy to realize at this point that the way the composition technique is applied to
calculate the execution time of the final horizontally composed task can also be applied
to any fixed-priority task system and to any length of the interval rather than[0, Di).
Based on the value of theLoad-Factor-HPi, the exactFTDM schedulability condi-
tion of taskτi is derived in Section 7.6.

7.6 Exact Schedulability Test

The exact schedulability condition forFTDM scheduling of a sporadic task setΓ is de-
rived based on the exact schedulability condition of each task τi for i = 1, 2 . . . n. The
exact schedulability condition of taskτi depends on the amount of execution required
by taskτi and its higher-priority jobs within the interval[0, Di) considering at most
f errors that could occur within[0, Di).

By considering (f − k) faults exclusively affecting taskτi and thek-fault pat-
tern affecting the higher-priority jobs of taskτi within the interval[0, Di), the sum
of Load-Factor-i andLoad-Factor-HPi can be calculated such that it is max-
imized for somek, 0 ≤ k ≤ f . This sum is consequently the worst-case workload
within [0, Di). The value ofLoad-Factor-i isC(f − k)

i and can be calculated using
Eq. (7.2), fork = 0, 1, 2, . . . f . The value ofLoad-Factor-HPi is w(k,Si) and
can be calculated using Eq. (7.14), fork = 0, 1, 2, . . . f .

7.6. EXACT SCHEDULABILITY TEST 139

The maximum total workload within[0, Di) is denoted byTLoadi which is equal
to the sum ofLoad-Factor-i andLoad-Factor-HPi such that this sum is max-
imum for somek, 0 ≤ k ≤ f . The functionTLoadi is defined in Eq. (7.15):

TLoadi =
f

max
k=0
{ C(f − k)

i + w(k,Si)} (7.15)

Using Eq. (7.15), the maximum total workload within the interval [0, Di) can be deter-
mined. The total load is equal to the sum of the execution timerequired by taskτi if
(f − k) errors exclusively affect the taskτi and the execution time within the interval
[0, Di) by the jobs having higher priority than the taskτi due tok-fault pattern, such
that, the sum is maximum for somek, 0 ≤ k ≤ f .

Run-time complexity to compute the total load:Calculating the value ofC(f − k)
i for

all k = 0, 1, 2, . . . f can be done inO(f) steps. The value ofw(k,Si) is the execu-
tion time of the final horizontally-composed task and can be calculate inO(N̂ · f2)
time for all k = 0, 1, 2, . . . f . In Eq. (7.15), there are (f + 1) possible values for
the selection ofk, 0 ≤ k ≤ f . EvaluatingTLoadi in Eq. (7.15) requires a total of
(f + 1) addition operations andf comparisons to find the maximum. Given the val-
ues ofC(f − k)

i andw(k,Si) for all k = 0, 1, 2, . . . f , finding the value ofTLoadi
requiresO(f) steps. Therefore, the total time complexity for evaluatingTLoadi is
[O(f)+O(N̂ · f2)+O(f)]=O(N̂ · f2).
Based on the value ofTLoadi, the necessary and sufficient schedulability condition of
taskτi in FTDM scheduling is proposed in Theorem 7.1.

Theorem 7.1. Taskτi ∈ Γ is FTDM-schedulable if and only ifTLoadi ≤ Di.

Proof. (if part) It will be shown using proof by contradiction that ifTLoadi ≤ Di, then
taskτi is FTDM-schedulable. The value ofTLoadi is the sum of two workload factors:
Load-Factor-i andLoad-Factor-HPi. The value ofLoad-Factor-i is the
maximum execution time required by the taskτi if (f−k) errors exclusively occur in the
first job of taskτi. The value ofLoad-Factor-i is given byC(f − k)

i in Eq. (7.2) for
k = 0, 1, 2, . . . f . The value ofLoad-Factor-HPi is the execution completed within
the interval[0, Di) by the jobs having higher priority than the priority of taskτi. The
value ofLoad-Factor-HPi is given byw(k,Si) which is equal to the execution
time of the final horizontally-composed taskHSi

considering ak-fault pattern affecting
the jobs of the higher-priority tasks within the interval[0, Di), for k = 0, 1, 2, . . . f .
The value ofw(k,Si) is the maximum amount of work that can be completed by the
higher-priority jobs within[0, Di).

Now, assume a contradiction, that is, that some job of taskτi misses it deadline
whenTLoadi ≤ Di. This assumption implies that the first job of taskτi misses its
deadline (due to the first job being released at a critical instant). When the first job of
taskτi misses its deadline at timeDi, the processor must be continuously busy within
the entire interval[0, Di). This is because, if the processor was idle at some time instant

140 CHAPTER 7. FAULT-TOLERANT SCHEDULING ON UNIPROCESSOR

within [0, Ti), thenτi could not have missed its deadline sinceFTDM scheduling is based
on work-conserving DM scheduling.

In case thatτi misses its deadline, the processor either executes taskτi or its higher-
priority jobs at each time instant within[0, Di). The time required for executing the
higher-priority jobs within[0, Di) isLoad-Factor-HPiwhich is given byw(k,Si).
Note thatw(k,Si) is less than or equal toDi (because of themin function) accord-
ing to Eq. (7.14). The total time required for completing theexecution of taskτi is
Load-Factor-i considering(f − k) errors that could affect the first job of task
τi. Sinceτi misses it deadline atDi, the complete execution of taskτi can not have fin-
ished by timeDi. Therefore, the sum ofLoad-Factor-i andLoad-Factor-HPi,
denoted byTLoadi, must have been greater thanDi (which is a contradiction!). There-
fore, if TLoadi≤ Ti, then taskτi is FTDM-schedulable.

(only if part) It will be shown that, ifτi is FTDM-schedulable, thenTLoadi ≤ Ti .
The amount of work on behalf of taskτi (including execution of its backup) completed in
theFTDM schedule in[0, Di) is Load-Factor-i. Since when analyzing the schedu-
lability of taskτi, the amount of execution on behalf of the jobs (including execution of
their backups) having higher priority than taskτi that is completed byFTDM scheduling
is exactly equal toLoad-Factor-HPi within [0, Di).

Since the work completed by algorithmFTDM on behalf of the jobs in (HPJi ∪ {J1
i })

in [0, Di) is equal to the sum ofLoad-Factor-i andLoad-Factor-HPi, the
total loadTLoadi is less than or equal toDi whenever taskτi is FTDM schedulable.
Therefore, if taskτi is fault-tolerantFTDM-schedulable, thenTLoadi≤ Di.

The exact schedulability test forFTDM scheduling of taskτi is given in Theorem 7.1.
The time complexity for evaluating the exact test is same as the time complexity for
evaluating Eq. (7.15). Therefore, the necessary and sufficient condition for checking the
schedulability of taskτi can be evaluated in timeO(N̂ · f2). The exact schedulability
condition for the entire task setΓ is now given in the following Corollary 7.1.

Corollary 7.1. Task setΓ ={τ1, τ2, . . . , τn} is FTDM-schedulable if, and only if, task
τi is FTDM-schedulable using Theorem 7.1 for alli = 1, 2, . . . n.

Note that Corollary 7.1 is the application of Theorem 7.1 foreach one of then tasks
in setΓ. Therefore, the exact schedulability condition for the entire task set can be
evaluated inO(n · N̂ · f2) time. TheFTDM-schedulability of the running example task
set given in Table 7.1 is now demonstrated.

Example 7.10. We have to apply Theorem 7.1 to all the three tasks given in Table 7.1.
For taskτi, the value ofTLoadi for i = 1, 2, 3 has to be computed. The taskτ1 being
the highest priority task is triviallyFTDM-schedulable.

Consider the schedulability of taskτ2. Remember that,w(k,Si) is the execu-
tion time of the final horizontally-composed task and is equal to Load-Factor-HPi.
For taskτ2, we haveS2 = {0, 10}. By horizontal composition, the final horizontally-
composed taskH{0,10} has execution time equal tow(0,S2) = 6, w(1,S2) = 8, and
w(2,S2) = 11 for k = 0, k = 1 and k = 2 fault-patters within interval[0, 15)

7.7. ALGORITHM FOR THEFTDM SCHEDULABILITY TEST 141

(given in Table 7.4), respectively. For taskτ2, we also haveC0
2 =3, C1

2 =7 andC2
2 =9

for k = 0, k = 1 and k = 2 fault-patterns, respectively, which are the values of
Load-Factor-i using Eq.(7.3). For taskτ2 andf = 2, the calculation ofTLoad2

using Eq.(7.15)is given below:

TLoad2 =
2

max
q=0

{

C
(2 − q)
2 + w(q,{0,10})

}

= max
{

[C2
2 + w(0,{0,10})], [C1

2 + w(1,{0,10})],

[C0
2 + w(2,{0,10})]

}

= max
{

[9 + 6], [7 + 8], [3 + 11]
}

= 15

SinceTLoad2= 15 ≤ D2 = 15, taskτ2 is FTDM-schedulable using Theorem 7.1.
Consider the schedulability of taskτ3. We haveS3 = {0, 10, 15, 20, 30}. By hor-

izontal composition, the final horizontally-composed taskH{0,10,15,20,30}has execution
time equal tow(0,S3)=21, w(1,S3)=25, andw(2,S3)=30 for k = 0, k = 1 and
k = 2 fault-patterns, within interval[0, 40) (given in the fourth shaded row in Ta-
ble 7.5–Table 7.7), respectively. For taskτ3, we also haveC0

3 =9, C1
3 =17 andC2

3 =23
for k = 0, k = 1 and k = 2 fault-patterns, respectively, which are the values of
Load-Factor-i using Eq.(7.3). For taskτ3 andf = 2, the calculation ofTLoad3

using Eq.(7.15)is given below:

TLoad3 =
2

max
q=0

{

C
(2 − q)
3 + w(q,{0,10,15,20,30})

}

= max
{

[C2
3 + w(0,{0,10,15,20,30})],

[C1
3 + w(1,{0,10,15,20,30})],

[C0
3 + w(2,{0,10,15,20,30})],

}

= max
{

[21 + 23], [25 + 17], [30 + 9]
}

= 44

SinceTLoad3= 44 ≥ D3 = 40, taskτ3 is notFTDM-schedulable using Theorem 7.1.
Therefore, the task set given in Table 7.1 is notFTDM-schedulable using Corollary 7.1.

Based on the necessary and sufficient schedulability condition in Corollary 7.1, the
pseudocode of the schedulability test forFTDM scheduling is now algorithmically pre-
sented in Section 7.7.

7.7 Algorithm for the FTDM Schedulability Test

In this section, the exact test for fault-tolerant scheduling algorithmFTDM based on the
exact schedulability condition derived in Corollary 7.1 ispresented. First, the pseu-
docode of the algorithmCheckFeasibility(τi, f)is given in Figure 7.4. The al-
gorithmCheckFeasibility(τi, f)checks theFTDM schedulability of a taskτi by

142 CHAPTER 7. FAULT-TOLERANT SCHEDULING ON UNIPROCESSOR

considering occurrences off task errors in any jobs of the tasks in set {τ1, τ2, . . .τi}
released within the interval[0, Di). Next, the algorithmFTDM-Test(Γ, f)that checks
the schedulability of the entire task setΓ based on the schedulability of each taskτi ∈ Γ
is presented in Figure 7.5.

Algorithm CheckFeasibility(τi, f)

1. Find theHPJi using Eq. (7.4)
2. Find theSi using Eq. (7.8)
3. For all s ∈ Si
4. For k = 0 to f
5. Findw(k,{s}) using Eq. (7.12)
6. End For
7. End For
8. For x = 2 to |Si|
9. For k = 0 to f
10. Findw(k,p(x-1)∪{sx}) using Eq. (7.14)
11. End For
12.End For
13. For k = f to 0

14. FindC(f − k)
i using Eq. (7.2)

15. End For
16.For k = 0 to f
17. If [C(f − k)

i +w(k,Si)] > Di then
18. return False
19. End If
20.End For
21. return True

Figure 7.4: Pseudocode of AlgorithmCheckFeasibility(τi, f)

In line 1 of AlgorithmCheckFeasibility(τi, f)in Figure 7.4, the jobs having
higher priority than the priority of taskτi are determined using Eq. (7.4). In line 2,
the time instants at each of which higher-priority jobs are released within the interval
[0, Di) are determined using Eq. (7.8). Using the loop in line 3–7, the execution time
w(k,{s}) of each vertically-composed taskV{s} is derived for each points ∈ Si. The
value ofw(k,{s}) is determined for eachk = 0, 1, 2, . . . f at line 5 using Eq. (7.12).

Using the loop in line 8–12, the vertically-composed tasks are composed further us-
ing horizontal compositions. The loop at line 8 iterates total (|Si| − 1) times. Each
iteration of this loop calculates the execution time of one horizontally composed task
Hp(x)=Hp(x-1)∪{sx} , for x = 2, 3, . . . |Si|. The execution timew(k,p(x-1)∪{sx})
of the horizontally-composed taskHp(x-1)∪{sx} is calculated at line 10 using Eq. (7.14)
for a k-fault pattern,k = 0, 1, 2, . . . f . The execution timew(k,Si) of the final

7.7. ALGORITHM FOR THEFTDM SCHEDULABILITY TEST 143

horizontally-composed taskHSi
is the value ofLoad-Factor-HPi, for k = 0, . . . f .

Using the loop in line 13–15, the value ofC(f − k)
i is determined in line 14 using

Eq. (7.2) fork = 0, 1, . . . f . Remember that the value ofC(f − k)
i isLoad-Factor-i.

In line 16–20, the exact schedulability condition forτi is checked by consideringk errors
affecting the jobs of the higher-priority tasks and(f−k) errors exclusively affecting the
taskτi, for k = 0, 1, 2, . . . f . In line 17, the value ofTLoadi is calculated by summing
Load-Factor-i andLoad-Factor-HPi and this sum is compared against the rel-
ative deadline of taskτi. If this sum is greater thanDi, then taskτi is notFTDM schedu-
lable and the algorithmCheckFeasibility(τi, f)returns False at line 18. If the
condition at line 17 is false for allk = 0, 1, 2 . . . f , then taskτi isFTDM-schedulable and
the algorithmCheckFeasibility(τi, f)returns True at line 21. Next, using the al-
gorithmCheckFeasibility(τi, f)the algorithmFTDM-Test(Γ, f)is presented in
Figure 7.5.

Algorithm FTDM-Test(Γ, f)

1. For all τi ∈{τ1, τ2, . . . , τn}
2. If CheckFeasibility(τi, f)= False then
3. return False
4. End If
5. End For
6. return True

Figure 7.5: Pseudocode of AlgorithmFTDM-Test(Γ, f)

Using the loop in line 1–5 of algorithmFTDM-Test(Γ, f) given in Figure 7.5, the
FTDM-schedulability of taskτi is checked. The algorithmFTDM-Test(Γ, f), based
on algorithmCheckFeasibility(τi, f), checks theFTDM schedulability of task
τi ∈ Γ at line 2. If the condition at line 2 is true for any taskτi (the algorithm
CheckFeasibility(τi, f)returns False), then the task setΓ is notFTDM-schedulable.
In such case, the algorithmFTDM-Test(Γ, f) returns False (line 3). If the condition at
line 2 is false for taskτi, for all i = 1, 2, . . . n (CheckFeasibility(τi, f)returns
True for each task), then the task setΓ is FTDM-schedulable. In such case, the algo-
rithmFTDM-Test(Γ, f) returns True (line 6). Given a task setΓ and the number of task
errorsf that can occur within any possible interval of lengthDmax, the fault-tolerant
schedulability of the task set using theFTDM algorithm can be exactly determined using
algorithmFTDM-Test(Γ, f) in O(n · N̂ · f2) time. The applicability of exact unipro-
cessor schedulability test forFTDM scheduling to multiprocessor platform is presented
in subsection 7.7.1.

144 CHAPTER 7. FAULT-TOLERANT SCHEDULING ON UNIPROCESSOR

7.7.1 Multiprocessor Scheduling

The uniprocessorFTDM schedulability analysis is applicable to multiprocessor parti-
tioned scheduling. The exact test ofFTDM scheduling can be applied during the task
assignment phase of a partitioned multiprocessor scheduling algorithm in which the run
time dispatcher in each processor executes tasks in DM priority order using uniprocessor
FTDM scheduling.

Consider a multiprocessor platform consisting ofm identical processors. The ques-
tion addressed is as follows:

Is there an assignment of the tasks of setΓ onm processors such that each
processor can toleratef task errors within a time interval equal to the max-
imum relative deadline of the tasks assigned to each processor?

Partitioned multiprocessor task scheduling is typically based on a bin-packing algo-
rithm for task assignment to the processors. When assigning anew task to a processor,
a uniprocessor schedulability condition is used to check whether or not an unassigned
task and all the previously assigned tasks in a particular processor are schedulable using
uniprocessor scheduling, for example, DM scheduling algorithm. If the answer is yes,
the unassigned task can be assigned to the processor. In order to extend the partitioned
multiprocessor scheduling to fault-tolerant scheduling,we can apply the exact schedula-
bility condition derived in Corollary 7.1 when trying to assign a new task to a processor
in partitioned scheduling. The following principle discusses how the exact schedulabil-
ity condition derived in Corollary 7.1 can be applied to the First-Fit heuristic for task
assignment on multiprocessors.

An idea to assign tasks to multiprocessors:Consider the First-Fit heuristic for
task assignment to processors. Given a task set{τ1, τ2, . . . , τn}, the tasks are to be
assigned tom processors in increasing order of (given) task index. That is, taskτ1 is
considered first, then taskτ2 is considered, and so on. Using the First-Fit heuristics, the
processors of the multiprocessor platform are also indexedfrom 1 . . .m. An unassigned
task is considered to be assigned to processor in increasingorder of processor index.
An unassigned task is assigned to the processor with the smallest index on which it is
schedulable.

Following the First-Fit heuristic, taskτ1 is trivially assigned to the first processor.
For taskτ2, the necessary and sufficient schedulability condition in Corollary 7.1 is
applied to a set of tasks {τ1, τ2} considering at mostf errors that could occur in an
interval of lengthDmax (whereDmax is the maximum relative deadline of the tasks
in set {τ1, τ2}). If the schedulability condition is satisfied, thenτ2 is assigned to the
first processor. Otherwise,τ2 is trivially assigned to the second processor. Similarly,
for each unassigned taskτi, the schedulability condition in Corollary 7.1 is first checked
considering the already assigned tasks including taskτi on the processor with index 1. If
taskτi and all the previously assigned tasks to the first processor areFTDM schedulable
using the exact condition in Corollary 7.1, thenτi is assigned to the first processor. If
the exact condition is not satisfied, the schedulability condition is checked for the second
processor and so on.

7.8. SUMMARY 145

If taskτi can not be assigned to any processor, then task setΓ can not be partitioned
on the given multiprocessor platform. If all the tasks are assigned to the multiprocessor
platform, then task setΓ is FTDM schedulable on each processor. For a successful par-
tition of the task setΓ, each processor can toleratef errors that can occur in any tasks
within a time interval equal to the maximum relative deadline of the tasks assigned to
each particular processor. The successful assignment of the tasks tom processors also
guarantees that total(m · f) task errors (each processor tolerating at mostf errors) can
be tolerated within each of all possible time intervals of lengthDmax whereDmax is
the largest relative deadline of all the tasks.

7.8 Summary

This chapter presents the analysis ofFTDM scheduling algorithm that can be used to
guarantee the correctness and timeliness property of real-time applications on unipro-
cessor. The correctness property of the system is addressedby means of fault-tolerance
so that the system functions correctly even in the presence of faults. The timeliness
property is addressed by deriving a necessary and sufficientschedulability condition for
theFTDM scheduling algorithm on uniprocessor.

The proposed algorithmFTDM-Test(Γ, f) can verify theFTDM-schedulability of
constrained-deadline sporadic task sets. The time complexity to evaluate the test is
O(n · N̂ ·f2), wheren is the number of tasks in the periodic task set,N̂ is the maximum
number of jobs released within any time interval of lengthDmax, andf is the maximum
number of task errors that can occur within any time intervalof lengthDmax.

The fault model considered for theFTDM schedulability analysis is general enough in
the sense that multiple task errors due to various hardware and software faults can occur
in any job, at any time and even during the recovery operation. There is no restriction
posed on the inter-arrival time between the occurrences of any two consecutive faults.
The only restriction of the fault model is that a maximum off task errors could occur
within any time interval of lengthDmax. Such a fault model does not require to know
the distribution of the faults and also covers faults where they may arrive in bursts.

No other work has proposed an exact fault-tolerant schedulability analysis of spo-
radic tasks having constrained deadlines considering sucha general fault model as is
used in this chapter. If an efficient (in terms of time complexity) and exact schedula-
bility test is needed, then the scheduling algorithmFTDM provides better computational
efficiency than that of proposed for fault-tolerant EDF scheduling algorithm in [Ayd07].
The proposed exact uniprocessor schedulability conditioncan be applied to task schedul-
ing on multiprocessors based on partitioned approach.

8
Fault-Tolerant Scheduling on

Multiprocessors

In this chapter, a fixed-priority multiprocessor scheduling algorithm, called Fault-Tolerant
Global Scheduling (FTGS), is proposed for tolerating both task errors and processorfail-
ures. The major strength ofFTGS algorithm is the fault model it assumes; a variety of
software and hardware faults that may lead to task errors or processor failures are con-
sidered. The main contribution is the derivation of a sufficient schedulability test for the
proposedFTGS algorithm that exploits time redundancy to tolerate faults. This schedu-
lability test when satisfied guarantees that all the deadlines of the real-time tasks are met
even in the presence of task errors and processor failures.

The novelty of the proposed schedulability test is that the resilience of resource-
constrained embedded real-time systems can be determined for different combinations
of task errors and processor failures. The schedulability test for theFTGS algorithm is
OPA-compatible: if a task set does not satisfy the schedulability test for a given priority
ordering of the tasks, then a priority ordering for which thetaskset may satisfy the
schedulability test can be searched using multiprocessor extension of Audsley’s optimal
priority assignment algorithm.

8.1 Introduction

There are numerous works that have addressed fault-tolerance for partitioned and global
scheduling on multiprocessors [OS94, GMM94, TKK95, BMR99,CYKT07, KLR10,
BGJ06, LLMM99]. In fault-tolerant scheduling, each task isconsidered to have one pri-

147

148 CHAPTER 8. FAULT-TOLERANT SCHEDULING ON MULTIPROCESSORS

mary and one or more backups. In partitioned fault-tolerantscheduling, a task allocation
algorithm assigns the primary and backups of each task to distinct processors at design
time. In case of a task error or processor failure detected atrun time, the backup of the
affected task is executed on a different non-faulty processor to which it is assigned.

One interesting observation of the task allocation algorithms proposed in [OS94,
GMM94, TKK95, BMR99, CYKT07, KLR10] is that these algorithms do not take into
account any difference between task errors and processor failures when assigning the
tasks to the processors. These allocation algorithms pessimistically assume that tolerat-
ing a task error is equivalent to tolerating a processor failure. This pessimism requires
relatively higher number of processors for successfully assigning all the primary and
backups even when only task errors are to be tolerated. Such over provisioning of com-
puting resources (i.e., processors) may restrict the use ofpartitioned method for many
resource-constrained embedded real-time systems like automotive and avionics where
weight, volume and space are limited. And more importantly,increasing the number of
processors also increases the probability of having more faults in the system.

One of the consequences of the rising trend of transient faults in computer electron-
ics (as pointed out by Baumann in [Bau05]) is the possibilityof having higher number of
task errors. It is therefore important to develop resource efficient fault-tolerant schedul-
ing algorithm to tolerate task errors. Global scheduling algorithm does not require allo-
cation of tasks to processors. The main motivation of the work in this chapter is based
on an important observation: the global scheduler can simply dispatch the backup of the
faulty task to any processor even to the processor on which the task has encountered a
task error. This is because transient errors are short livedand tolerating such errors using
global scheduling does not need the backups to be executed ondifferent processors.

In this chapter, aFault-TolerantGlobal Scheduling algorithm, calledFTGS, to tol-
erate both task errors and processor failures is proposed. The algorithmFTGS not only
can tolerate task errors but also can withstand processor failures. Global scheduling can
tolerate processor failure just by assuming the task executing on the faulty processor has
encountered an error. In other words, a processor failure can be viewed from the global
scheduler’s point of view as a task error. The treatment to tolerate the processor failure
usingFTGS algorithm is same as tolerating a task error — dispatching the primary and
the backups of the tasks only to the non-faulty processors. By tolerating processor fail-
ure it means that the effect of permanent processor failure is mitigated by executing the
tasks on non-faulty processors while meeting all the deadlines of the tasks.

Time-redundancy is considered to tolerate both task errorsand processor failures.
In order to ensure that all the deadlines of the application tasks are met while achiev-
ing fault-tolerance, the schedulability analysis ofFTGS algorithm derives a sufficient
schedulability test that when satisfied for a task set guarantees that all the deadlines are
met. One of the novel properties of the proposed schedulability test is that the number
of task errors and the number of processor failures areseparatelyincorporated in to the
mathematical expression of the schedulability test. This property enables the system de-
signer to independently judge the robustness of the schedule in terms of tolerating only
task errors, only processor failures, or tolerating both.

8.2. RELATED WORK 149

Another important property of the schedulability test for theFTGS scheduling al-
gorithm is that it is OPA-compatible. If the proposed schedulability test is not satisfied
for a task set for a given priority ordering, then another priority assignment for which
the task set may satisfy the schedulability test can be determined. This an important
property since the optimal priority assignment for global FP scheduling is not known.

TheFTGS scheduling and its corresponding schedulability test consider a very gen-
eral fault model in the sense that,multiple errorscan occur in any task, at any time, in
any processor, and even during the recovery operations. In many other works regard-
ing fault-tolerant scheduling on multiprocessors, a relatively restricted fault model is
considered, assuming, for example, that

• the inter-arrival time of two faults must be separated by a minimum distance
[GMM94, TKK95, LLMM99]

• at most one fault may affect each task [LLMM99, GMM94]

• the recovery operation is simply the re-execution (i.e., does not consider a differ-
ent implementation of the same task) [CYKT07, KLR10]

For the proposed algorithm, tolerating a maximum off task errors within each possible
interval of lengthDmax, whereDmax is the largest relative deadline of a constrained-
deadline sporadic task set is considered. In addition, tolerating at mostρ permanent pro-
cessor failures during the life time of the system is also considered in the fault model.
The assumed fault model does not put any restriction betweenthe occurrences of con-
secutive task errors or processor failures. Any job of any task may suffer from multiple
errors at any time. The backups of each task could simply be the re-execution of the
primary or execution of a diverse implementation of the task.

The rest of this chapter is organized as follows: Section 8.2presents related work.
Section 8.3 presents the system models and theFTGS algorithm. In Section 8.4, the
fault-tolerant schedulability problem is formally stated. The fault-tolerant global schedu-
lability analysis considering only task errors is presented in Section 8.5–8.7. This analy-
sis is then extended for tolerating processor failure in Section 8.8. Finally, Section 8.10
concludes the chapter.

8.2 Related Work

The fault-tolerant partitioned scheduling algorithms aretraditionally based on Primary-
Backup (PB) paradigm with the main aim for tolerating permanent processor failures
[GMM94, TKK95, BMR99, CYKT07, KLR10]. In PB approach, each task is consid-
ered to have a primary and one or more backups. The primary andbackups of each
task are statically assigned (partitioned) to different processors at design time. Both task
errors and processor failures are tolerated in the same way —by executing the backup
of the affected task on adifferentprocessor.

A backup may beactiveor passive. An active backupalwaysexecutes regardless
of any error in its corresponding primary while a passive backup only executes after

150 CHAPTER 8. FAULT-TOLERANT SCHEDULING ON MULTIPROCESSORS

the primary fails. Active backups are always executed even if the primary encounters no
fault. Active backup policy utilizes more processing resource and energy but can provide
better fault-tolerance for low-laxity (shorter deadline)tasks. In contrast, passive backup
policy consumes less processing resource but may not provide enough fault-tolerance
for the low-laxity tasks. Considering the wide ranges of resource-constrained embedded
real-time systems, passive backups is considered forFTGS algorithm: the backup is
only executed if an error is detected.

The work in [BT83] considers the allocation of a set of periodic tasks to a number
of processors by assuming the same WCET of ther backups and does not consider
minimizing the number of processors. The works in [OS94, OS95a] consider allocation
of primary and multiple backups using RM first-fit [OS94] and RM next-fit [OS95a]
heuristics. Both these algorithms requires at least twice the number of processors than
that of required for some optimal allocation algorithm. Thework in [CYKT07] proposes
efficient allocation algorithm by simple modification of thefirst-fit, best-bit and worst-fit
heuristics for minimizing the number of processors requireto successfully assign a task
set where each task has fixed number of replicas.

The works in [OS94, BMR99, CYKT07] consider active backups to tolerate only
processor failures based on partitioned scheduling ofstrictly periodic real-time tasks.
The task allocation algorithm proposed by Oh and Son in [OS94] considers multiple
diverse backups of each task while the algorithm proposed byChenet al. in [CYKT07]
considers the backups simply as replicated copies of the primary. The task allocation
algorithm proposed by Bertossiet al. in [BMR99] is based on RM first-fit bin pack-
ing heuristic to assign the primary and exactlyone backup of each periodic task to
the processors. Multiple active backups of the periodic tasks are considered by Kim
et al. in [KLR10] for tolerating multiple processor failures; however, the backups are
duplicates of the primary. None of these works consider sporadic task model and do
not explicitly address the issue of tolerating only task errors. Task assignment with
replication to achieve fault tolerance in heterogeneous processor processors are consid-
ered [ZQQ11, EB08].

Fault-tolerant scheduling of aperiodic tasks based on PB approach is proposed in
[GMM94, TKK95]. Instead of considering active backup, passive backup [GMM94]
or partially-active backup [TKK95] are found to be effective for fault tolerance. More-
over, in order to efficiently utilize the processors, the scheduling algorithms in [GMM94,
TKK95] consider backup-backupoverloadingand backupdeallocationtechniques. In
backup-backup overloading, two backup copies of two different primary copies over-
lapped in time on the same processor if their corresponding primaries are assigned in
two different processors. Primary-backup overloading is considered in [AOSM01] and
shown to have better schedulability than backup-backup overloading. In primary-backup
overloading, the primary of a task can be scheduled onto the same or overlapping time
interval with the backup of another task on a processor. These works considers only
one backup copy for each task and assumes that there is a minimum separation interval
between occurrences of consecutive processor failures. The work in [BFM97] consider
RM first-fit policy for allocating periodic tasks to tolerateone processor failure using

8.3. SYSTEM MODELS AND THEFTGS SCHEDULING 151

PB approach by determining whether a task should use active or passive backup. The
idea of [BFM97] is augmented with backup deallocation and overloading for implicit
deadline task set in [BMR99]. To tolerate more processors failure at a certain time,
the processors are statically [MM98] and dynamically [AOMS00] divided into disjoint
logical groups such that one processor failure can be tolerated in each group.

There are very few works that have addressed fault-tolerance for global scheduling
[BGJ06, LLMM99]. Fault-tolerant global scheduling based on probabilistic fault model
is proposed by Bertenet al. for global EDF scheduling in [BGJ06]. The algorithm
in [BGJ06] considers simple re-execution of the tasks to tolerate only task errors based
on EDFk scheduling that is proposed by Goossenset al. in [GFB03]. The task model
used in [BGJ06] is periodic and the deadline of each task is considered to be equal to its
period. The pFair scheduling proposed by Baruahet al. in [BCPV96] for periodic task
model is augmented with fault tolerance by Liberatoet al. in [LLMM99]. However,
the work in [LLMM99] considers exactly one backup for each task. Moreover, the
schedulability test in [LLMM99] requires that there is a minimum separation between
the occurrences of two consecutive task errors. There is no work that addresses fault-
tolerant global scheduling that considers sporadic task model, fixed-priority, deadline of
the tasks being less than or equal to the periods, and considers both processor failures
and task errors using multiple and diverse backups. The proposedFTGS scheduling
algorithm presented in this chapter possesses all these characteristics.

8.3 System Models and theFTGS Scheduling

Fault-tolerant scheduling of a set of constrained-deadline sporadic tasks on a multipro-
cessor platform consisting ofm identical processors/cores is considered. The task and
fault models forFTDM scheduling are presented in Section 3.1 and Section 3.3, respec-
tively. The salient features of the models are reiterated here for better readability. A
set ofn constrained-deadline sporadic tasksΓ ={τ1, τ2, . . . , τn} is considered, where
each taskτi ∈ Γ is characterized by WCETCi, relative deadlineDi, and periodTi. A
number off task errors due to a variety of hardware and software faults that may occur
within each of the all possible time intervals of lengthDmax is considered. Within any
time interval of lengthDmax, thef task errors may occur in the same jobs or may oc-
cur in different jobs of different tasks. Each task has one primary andf backups. The
WCET of the primary of taskτi is Ci and the WCET of each of thef backups of task
τi is denoted byEki wherek = 1, 2, . . . f .

When there are(f − c) task errors affecting the primary and subsequent(f − c− 1)
backups of the same job of taskτi, the total execution requirement of the job of this task
is denoted byC(f − c)

i and recursively calculated using Eq. (8.1) as follows:

C
(f − c)
i =

{

Ci if (f − c) = 0

E
(f−c)
i + C

(f − c− 1)
i if (f − c) > 0

(8.1)

whereE(f−c)
i is the WCET of the(f − c)th backup of taskτi. Thus, starting fromk =

152 CHAPTER 8. FAULT-TOLERANT SCHEDULING ON MULTIPROCESSORS

f, (f − 1), . . . 0, all the valuesC0
i , C

1
i , . . . C

f
i for taskτi can be recursively calculated

using totalO(f) addition operations (and for all tasksO(n · f) addition operations are
needed). Note that the WCET, relative deadline, and inter-arrival time of each task
τi must satisfyCfi ≤ Di ≤ Ti.

The FTGS algorithm does not only capable of tolerating task errors but also can
mitigate the effect of permanent processor failures. TheFTGS algorithm considers mit-
igating the effect ofρ permanent processor failures during the lifetime of the system.
The effect of processor failure is mitigated inFTGS algorithm by executing the backup
of the affected task on a non-faulty processor. The backup insuch case may be the
re-execution of the primary.

Fault-Tolerant Mechanism and Algorithm FTGS: Each sporadic task generates an
infinite number of jobs having a minimum inter-arrival time between successive jobs.
The fault-tolerant mechanism based on time-redundancy forFTGS scheduling works
as follows. For each job of a task, the primary executes first.Whenever a task error
or processor failure is detected, the first backup of the affected task becomes ready to
execute. The priority of the backup is same as that of its primary. Again, a task error
or processor failure may be detected during the execution ofthe backup which in turn
would trigger the execution of next backup and so on.

The scheduler is always made aware of all the non-faulty processors in the system.
Such awareness can be achieved usingfail-signaledprocessors. Once a processor fail-
ure is detected, theFTGS scheduler never dispatches any task to this faulty processor.
Moreover, if a task was dispatched to this faulty processor,then the backup of the af-
fected task becomes ready for execution. TheFTGS scheduler stores all the ready (i.e.,
released but not completed) tasks in a global queue and dispatches them highest priority
tasks from this queue onm processors, possibly by preempting, if any, the execution of
a lower priority task. TheFTGS scheduling is based on global FP scheduling paradigm.
Similar to the uniprocessorFTDM scheduling algorithm, it is assumed forFTGS algo-
rithm that a task error is detected at the end of execution of the primary or backup. There
is no fault propagation: one fault is assumed to affect at most one job either a primary
or a backup. And, any primary or backup is assumed to be affected by at most one fault.

8.4 Problem Statement

In this chapter, the following problem is addressed:

Are all the deadlines of sporadic task setΓ met onm processors using
FTGS scheduling if there are maximumf task errors within each of all
possible time intervals of lengthDmax and a maximum ofρ processors
failures during the lifetime of the system?

Note that the maximum number of task errors within any time interval of lengthDk

is alsof , for k = 1, 2, 3, . . . n, becauseDk ≤ Dmax. Following this, the problem
statement for toleratingonly task errors can be re-written as:

8.5. ANALYSIS FOR TOLERATING TASK ERRORS 153

Are all the deadlines of taskτk met onm processors usingFTGS schedul-
ing if there are maximum f task errors within any time interval of
lengthDk, for k = 1, 2, . . . n?

In Sections 8.5–8.7, this later schedulability problem regarding tolerating only task er-
rors is addressed first by proposing an iterative schedulability test — the schedulability
of the entire task set is given in terms of a schedulability test for each of the lower prior-
ity task. Then this schedulability test is extended in Section 8.8 for mitigating the effect
of ρ permanent processors failures.

8.5 Analysis for Tolerating Task Errors

The schedulability analysis presented in this and the following two sections derives a
schedulability test for taskτk ∈ Γ by assuming that all the higher priority tasks inHPk
meet their deadlines usingFTGS scheduling. Then it follows that, if this test is sat-
isfied for all the lower priority tasks inΓ (an iterative test), then the entire task set
Γ is schedulable usingFTGS algorithm. The proposed schedulability analysis in this
chapter follows the same multiprocessors schedulability analysis framework proposed
by Baker in [Bak06]: anecessary conditionwhenever any job of taskτk misses its
deadline is derived. Consequently, if this condition is notsatisfied, then all the jobs
of taskτk meet their deadlines. When analyzing the schedulability of taskτk, the oc-
currences of at mostf task errors within any interval of lengthDk is considered. In
other words, the schedulability test for theFTGS scheduling algorithm is derived based
on deadline-based analysis. In Section 8.8, this schedulability analysis for tolerating
processor failures is extended.

Consider a generic jobJk of task τk. By generic it means thatJk represents an
arbitrary job of taskτk. The interval[rk, dk] is called thescheduling windowof job
Jk. Note that the length of the scheduling window of any job of task τk is Dk. The
computation load within the scheduling window of jobJk is defined to be equal to
the cumulative length of the intervals during which jobJk is ready but not executing
(interference) plus the total execution requirement of jobJk. Notice that the lower
priority tasksτk+1, . . . τn do not contribute to the computation load since they can not
interfere the execution of taskτk in fixed-priority scheduling.

Consider theFTGS schedule of the tasks in set(HPk ∪ {τk}) such that all the jobs
of tasks inHPk meet their deadlines while the jobJk misses its deadline atdk. The
computation load within the scheduling window of jobJk must exceedDk if and only if
job Jk misses its deadline. Without loss of generality, jobJk is considered as acritical
job in the sense that taskτk is not feasible, if and only if, jobJk is not feasible using
FTGS scheduling. It will be evident later from the schedulability analysis that it is not
needed to know where in the schedule this critical jobJk is released. If the computation
load of this critical jobJk within its scheduling window is not greater thanDk, then all
the jobs of taskτk meet deadlines, and conversely.

154 CHAPTER 8. FAULT-TOLERANT SCHEDULING ON MULTIPROCESSORS

The computation load in the scheduling window of jobJk has two contributing fac-
tors: interferenceof the higher priority jobs andself-execution requirementof job Jk.
The interference due to the tasks inHPk and self-execution requirement of jobJk de-
pend on the number of task errors within[rk, dk]. Let there bea errors that affect the
higher priority jobs within[rk, dk] and there areb errors of jobJk within [rk, dk] when
job Jk misses its deadline. Because there are at mostf errors any interval of lengthDk,
we must have(a+ b) ≤ f . The self execution requirement of jobJk is at mostCbk since
job Jk suffers fromb errors (according to Eq. (8.1)).

The interference within [rk, dk] due to all the higher priority jobs inHPk is defined
as the cumulative length of intervals during which tasks of setHPk are executing and job
Jk is ready but not executing. The interference onτk within the interval[rk, dk], where
the higher priority jobs inHPk suffer froma errors in[rk, dk], is denoted byI

a

k([rk, dk]).
Thus, if jobJk misses its deadline, then

I
a

k([rk, dk]) + Cbk > Dk (8.2)

where(a + b) ≤ f andDk is the length of the scheduling window[rk, dk]. Since
(a+ b) ≤ f , the following inequality in Eq. (8.3) holds:

f
max
c=0

{

I
c

k([rk, dk]) + C
(f − c)
k

}

≥ Iak([rk, dk]) + Cbk (8.3)

Therefore, from Eq. (8.2) and Eq. (8.3), it follows that if job Jk misses its deadline, then

f
max
c=0

{

I
c

k([rk, dk]) + C
(f − c)
k

}

> Dk (8.4)

The inequality in Eq. (8.4) is anecessaryunschedulability condition for taskτk. How-
ever, computing the interferenceI

c

k([rk, dk]) of the higher priority jobs on jobJk within
[rk, dk] is difficult. This is because it is not known where in the schedule the jobJk
is released. In other words, thecritical instant — the job of taskτk that suffers the
maximum interference — isunknownfor global multiprocessor scheduling (please see
Example 3.1 and the discussion in page 36). The problem of notknowing the critical
instant for determining the interference on a lower priority job is sidetracked by finding
a safe upper bound on the interference due to the tasks inHPk for global (non fault-
tolerant) multiprocessor scheduling [Bak06, BCL09, GSYY09, DB09]. In order to find
such an upper bound on actual interference, the upper bound on the total interfering
workloadwhich is the sum of the upper bounds ofinterfering workloadof each of the
tasks inHPk has to be determined.

The interfering workload within [rk, dk] of a higher priority taskτi in HPk is de-
fined as the cumulative length of intervals during which taskτi is executing and jobJk is
ready but not executing. Thetotal interfering workload within [rk, dk] of all the higher
priority tasks in a setHPk is defined as the sum of the interfering workload of each task
in setHPk within [rk, dk]. Notice that the total interfering workload within[rk, dk] of

8.6. CALCULATING INTERFERING WORKLOAD 155

the tasks inHPk is equal to(m ·Ick([rk, dk])). This is because when taskτk is interfered,
all them processors are simultaneously busy executing the higher priority tasks. The
idea from [Bak06, BCL09, GSYY09, DB09] in finding the safe upper bound on the total
interfering workload is adopted for the proposed fault-tolerant schedulability analysis of
FTGS in this chapter. Deriving such an upper bound on total interfering workload does
not require us to know the released time of jobJk in the fault-tolerant schedule. How-
ever, the pessimism in deriving the safe upper bound on totalinterfering workload needs
to be reduced as much as possible in order to derive an effective sufficient schedulability
test based on necessary unschedulability test.

The upper bound on the total interfering workload in[rk, dk] due to all the higher
priority tasks inHPk, wherec errors affect the higher priority jobs in[rk, dk], is denoted
by Ick(Dk). Thus, the following inequality holds:

Ick(Dk) ≥ m · I
c

k([rk, dk]) (8.5)

Since interferenceI
c

k([rk, dk]) is an integer, it follows that
⌊

Ick(Dk)

m

⌋

≥ Ick([rk, dk]) (8.6)

Thus from Eq. (8.4) and Eq. (8.6), if jobJk misses its deadline, then the following holds:

f
max
c=0

{⌊

Ick(Dk)

m

⌋

+ C
(f − c)
k

}

> Dk (8.7)

The schedulability test proposed in this chapter forFTGS scheduling is based on the
necessary unschedulability condition in Eq. (8.7) and needs to find the value ofIck(Dk)
for all c = 0, 1, . . . f . In Section 8.6, the upper bound on interfering workload of each
higher priority taskτi in HPk is computed. The upper bound on interfering workload of
all the tasks inHPk are combined to find the value ofIck(Dk) in Section 8.7. Based on
the value ofIck(Dk), the sufficient schedulability tests forFTGS scheduling is proposed.

8.6 Calculating Interfering Workload

The interfering workload of each taskτi in HPk is determined in two steps. First, an
upper bound on theworkload of each taskτi in setHPk within [rk, dk] is determined
(Subsection 8.6.1). Second, an upper bound on the interfering workload of each task
τi within [rk, dk] is calculated based on the upper bound onτi’s workload within[rk, dk]
(Subsection 8.6.2). The value of the upper bound on the totalinterfering workload
(i.e.,Ick(Dk)) is calculated in Section 8.7 by combining the upper bounds on interfering
workload of all the tasksτi in HPk in order to derive the schedulability test of the lower
priority taskτk.

156 CHAPTER 8. FAULT-TOLERANT SCHEDULING ON MULTIPROCESSORS

8.6.1 Workload of taskτi
Theworkloadof taskτi within an interval[x, y] is the amount of time taskτi executes
in [x, y]. The work done by taskτi in [x, y] can be divided into three parts:

1. Carry-in : the contribution of at most one job (called, carry-in job) with release
time earlier thanx and deadline in[x, y].

2. Body: the contribution of the jobs (called, body jobs) with both release time and
deadline in[x, y].

3. Carry-out : the contribution of at most one job (called, carry-out job) with release
time in [x, y] and deadline aftery.

Finding the actual workload of a sporadic taskτi in [x, y] requires to consider all possible
release times for all of its jobs in[x, y]. Instead, an upper bound on the workload of task
τi within [x, y] is calculated. The upper bound on the workload is computed based on
the workload of each of the parts: carry-in, body, and carry-out job of taskτi in [x, y].

Taskτi is called acarry-in task (CI-task) if taskτi is considered to have carry-in
work within the interval[x, y]; otherwise, taskτi is called anon carry-intask (NC-task).
The length of the interval[x, y] id denoted asL whereL = (y − x). It is determined
later whether taskτi must be aCI-task orNC-task. The following notations are used to
denote the carry-in and non carry-in workload of taskτi within any interval of lengthL:

• WNCgi (L, ξ) denotes the upper bound on thenon carry-in workloadof taskτi in
any interval of lengthL such that there areg errors of taskτi in [x, y] and the set
ξ contains all the body and carry-out jobs ofNC-taskτi in [x, y].

• WCIgi (L, ξ) denotes the upper bound on thecarry-in workloadof taskτi in any
interval of lengthL such that there areg errors of taskτi in [x, y] and the setξ
contains all the carry-in, body and carry-out jobs ofCI-taskτi in [x, y].

The calculation ofWNCgi (L, ξ) andWCIgi (L, ξ) are presented next.

Calculating WNCgi (L, ξ)

Since taskτi is aNC-task, there is no carry-in work of taskτi in [x, y]. In order to find
a safe upper bound on the workload ofNC-taskτi in [x, y], it is needed to consider the
densest possible packing of jobs of taskτi in [x, y]. In such case, the released time of the
first job of taskτi in [x, y] coincides withx. Without loss of generality, it is considered
that jobJp+1

i of taskτi has its release time exactly at the beginning of the interval[x, y]
and the subsequent jobs ofτi are released as early as possible (see Figure 8.1).

Considering the densest possible packing of jobs ofNC taskτi, there are at most⌊ L
Ti
⌋

body jobs and one carry-out job released within the interval[x, y] of lengthL. Note that
all the body jobs have their deadlines within the interval[x, y] while the deadline of the
carry-out job is outside the interval. Therefore, the maximum amount of work completed
by the carry-out job in[x, y] is upper bounded by(L− ⌊ L

Ti
⌋Ti).

8.6. CALCULATING INTERFERING WORKLOAD 157

Figure 8.1: Densest possible packing of the jobs ofNC taskτi within an interval of lengthL. The
up-arrow and down-arrow are the released time and deadline of the jobsof taskτi, respectively.

The set of body jobs of theNC-task τi within [x, y] are{Jp+1
i , . . . Jp+Ni } where

N = ⌊ L
Ti
⌋ if L ≥ Ti, otherwise there is no body job. The carry-out job isJp+N+1

i

if Ti is not an integer multiple ofL, otherwise, there is no carry-out job. Therefore,
ξ = {Jp+1

i , . . . Jp+Ni , Jp+N+1
i }.

In order to find the value ofWNCgi (L, ξ), the worst-case occurrences ofg errors
affecting the primary and backups of the jobs in setξ has to be determined. Aydin’s work
in [Ayd07] considered dynamic programming to compute the workload of a collection
of aperiodic tasks scheduled using EDF on uniprocessor suchthat the aperiodic tasks
suffer from a particular number of errors. Inspired by the work in [Ayd07], the value of
WNCgi (L, ξ) is computed based on the workload of each job inξ. Since the jobs in set
{Jp+1
i , . . . Jp+Ni } are from the same taskτi, it follows that

WNCgi (L, {Jp+1
i }) = . . . = WNCgi (L, {Jp+Ni }) = Cgi (8.8)

whereCgi is given according to Eq. (8.1). The Eq. (8.8) essentially calculates workload
of each individual job such that there areg errors effecting this particular job.

It is pointed out earlier that the maximum amount of carry-out work within the in-
terval of lengthL is limited to (L − ⌊ L

Ti
⌋Ti). Thus,WNCgi (L, {Jp+N+1

i }) is given as
follows:

WNCgi (L, {Jp+N+1
i }) = min

{

Cgi ,

(

L−
⌊

L

Ti

⌋

Ti

)}

(8.9)

In order to evaluateWNCgi (L, ξ), the worst-case occurrences ofg errors within[x, y],
affecting the jobs in{Jp+1

i , . . . Jp+Ni , Jp+N+1
i }, has to be considered. The value of

WNCgi (L, ξ) is maximum, for someq, such that there areq errors of job{Jp+1
i } and

there ere(g − q) errors of the jobs in set{Jp+2
i , . . . Jp+N+1

i } where0 ≤ q ≤ g. Thus,

158 CHAPTER 8. FAULT-TOLERANT SCHEDULING ON MULTIPROCESSORS

the value ofWNCgi (L, ξ) is recursively given as follows:

WNCgi (L, ξ) = WNCgi (L, {Jp+1
i } ∪ {Jp+2

i , . . . Jp+N+1
i }) =

g
max
q=0

{

WNCqi (L, {Jp+1
i }) + WNC(g − q)

i (L, {Jp+2
i , . . . Jp+N+1

i })
}

(8.10)

Calculating WCIgi (L, ξ)

Since taskτi is CI-task, there is carry-in work of taskτi in [x, y]. In such case, the
released time of the first job of taskτi in [x, y] is earlier thanx and its deadline is after
x. Lets say the jobJpi of CI-taskτi is the carry-in job in[x, y]. Also letA is the set of
body and carry-out jobs in[x, y]. Therefore,ξ = {Jpi } ∪ A. In order to find the upper
bound on the workload ofCI-taskτi within [x, y], the densest possible packing of the
carry-in, body and carry-out jobs has to be considered. (Remember thatL is the length
of the interval[x, y]).

Figure 8.2: The carry-in jobJp
i suffers fromq errors and executes forCq

i time units starting
from the beginning ofL. The subsequent body and carry-out jobs are released as early aspossible
within an interval of lengthL′ = L− (Cq

i + (Ti −Di)) and are subjected to(a− q) errors.

The value ofWCIgi (L, ξ) is maximum, for someq, such that there areq errors of the
carry-in jobJpi and the remaining(g − q) errors affect the body and carry-out jobs in
A where0 ≤ q ≤ g. The jobJpi executes forCqi time units if there areq errors of
this job. The workloadWCIgi (L, ξ) within [x, y] is maximized for someq (depicted in
Figure 8.2), if the following two conditions are satisfied:

• C1: the carry-in job starts execution exactly at timex and finishes its execution
exactly at its deadline which isdpi = x + Cqi (see the shaded execution of the
carry-in job in Figure 8.2), and

8.6. CALCULATING INTERFERING WORKLOAD 159

• C2: the subsequent jobs (i.e., body and carry-out jobs) are released and execute
as early as possible such that(g − q) errors affect the body and carry out jobs,

where0 ≤ q ≤ g.
To show that these two conditions (i.e.,C1 andC2) result in maximum workload

in [x, y], it will be shown that for any leftward shift of the interval[x, y] up toTi time
units, the amount of workload within the interval[x, y] does not increase as long as
τi has carry-in contribution. Note that since the situation isperiodic (i.e., jobs arrives as
compactly as possible), shifting the interval for exactlyTi time units again produces the
same situation as in Figure 8.2. Therefore, any leftward shift of the interval for at most
Ti time units is considered.

Consider leftward shift of interval[x, y] up to(x − rpi) time units. In such case the
carry-in contribution can not increase and the carry-out can only decrease. Now consider
a leftward shift of[x, y] for more than(x − rpi) time units but less thanTi time units.
Any leftward shift of[x, y] by ∆ time units is equivalent to shifting[x, y] rightward for
(Ti −∆) time units. Thus, the leftward shift of[x, y] for more than(x− rpi) time units
but less thanTi time units is equivalent to shifting[x, y] rightward for more than 0 time
units but less thanTi − (x − rpi) time units. Any rightward shift of the interval[x, y]
cause the carry-in work to decrease while the carry-out workcan only be increased by
the same amount as long as there is carry-in contribution in[x, y]. Evidently, if τi is a
CI-task, then the workload within the interval[x, y] is maximum if the conditionsC1
andC2 are satisfied.

The workload of the carry-in job is given asCqi according to Eq. (8.1). It is
evident from Figure 8.2 that the body and carry-out jobs are released within the in-
terval [rp+1

i , y]. This situation is same as in Figure 8.1 where taskτi is a NC task
within [rp+1

i , y]. The length of the interval[rp+1
i , y], denoted byL′, is given asL′ =

L − (Cqi + (Ti − Di)). And, according to Eq. (8.10), the value ofWNC(g − q)
i (L′, A)

is the worst-case workload of the body and carry-out jobs within the interval[rp+1
i , y]

such that these body and carry-out jobs are subjected to(g − q) errors. Thus, the value
of WCIgi (L, ξ) is given as follows:

WCIgi (L, ξ) =
g

max
q=0

{

Cqi + WNC(g − q)
i (L′, A)

}

(8.11)

whereξ = ({Jpi } ∪ A), setA is the collection of body and carry-out jobs in[rp+1
i , y],

L′ = L− (Cqi + (Ti −Di)) andCqi is given using Eq. (8.1).
Note that the value ofWCIgi (L, ξ) is greater than or equal toWNCgi (L, ξ). This is

because shifting the interval[x, y] leftward for exactly(x− rpi) time units in Figure 8.2
produces the same scenario as in Figure 8.1 forNC-task, and such leftward shift can
only reduce the workload within the interval[x, y]. In next subsection, the upper bound
on interfering workload of taskτi on jobJk based on workload of taskτi in [rk, dk] is
determined. The value of carry-in workload may be reduced further by exploiting the
slack of the carry-in higher priority task similar to the approach in [BCL09]; however,
this issue is not addressed in this thesis.

160 CHAPTER 8. FAULT-TOLERANT SCHEDULING ON MULTIPROCESSORS

8.6.2 Interfering Workload of task τi

The upper bound on interfering workload of each higher priority task τi based on the
upper bound on the workload of taskτi is calculated. Similar to workload, the carry-
in and non carry-in interfering workload of taskτi subjected tog errors in[rk, dk] are
defined as follows:

• INCgi (Dk, c) denotes the upper bound on the interfering workload ofNC-taskτi in
any interval[rk, dk] of lengthDk such that there areg errors of taskτi and there
arec errors of all the higher priority tasks (including taskτi) of τk in [rk, dk].

• ICIgi (Dk, c) denotes the upper bound on the interfering workload ofCI-taskτi in
any interval[rk, dk] of lengthDk such that there areg errors of taskτi and there
arec errors of all the higher priority tasks (including taskτi) of τk in [rk, dk].

In bothINCgi (Dk, c) andICIgi (Dk, c), it is assumed that there arec errors affecting
all the tasks inHPk within [rk, dk] whereg errors,g ≤ c, exclusively affect the higher
priority taskτi ∈ HPk.

A straightforward upper bound on the interference of each task τi in [rk, dk] is the
upper bound on the workload of each taskτi in [rk, dk]. However, this way of bounding
the interference using the upper bound on the workload may bepessimistic as pointed
out in [Bar07, BC07, BCL09] for non-fault-tolerant global multiprocessor scheduling.
This fact is also true for the fault-tolerant schedulability analysis ofFTGS scheduling as
is shown below.

If job Jk misses its deadline when the higher priority jobs suffer from c errors and job
Jk suffer from(f − c) errors, the amount of work completed by jobJk within [rk, dk] is
strictly less thanC(f − c)

k . If job Jk misses its deadline, then all them processors simul-

taneously execute jobs of the higher priority tasks for strictly more than(Dk−C(f − c)
k)

time units. Therefore, if jobJk suffers enough interference in[rk, dk] to miss its dead-
line, then it is sufficient to consider the interfering workload of each taskτi limited to at
most(Dk − C(f − c)

k + 1). Thus, the value ofINCgi (Dk, c) andICIgi (Dk, c) are given
as follows:

INCgi (Dk, c) = min{WNCgi (Dk, ξ), Dk − C(f − c)
i + 1} (8.12)

ICIgi (Dk, c) = min{WCIgi (Dk, ξ), Dk − C(f − c)
i + 1} (8.13)

Similar to workloads, it is not difficult to see that the carry-in interferenceICIgi (Dk, c)
is greater than or equal to the non carry-in interferenceINCgi (Dk, c) for taskτi. Given
the values ofINCgi (Dk, c) andICIgi (Dk, c) for all τi ∈ HPk and for allg = 0, 1, . . . c,
the value of combined interferenceIck(Dk) is calculated in Section 8.7.

It will be discussed shortly that only a subset of all the higher priority tasks inHPk
are considered asCI tasks. However, such a subset must be selected such that the dif-
ference between its total carry-in interfering workload and total non carry-in interfering
workload within[rk, dk] is the largest in comparison to that of any other subset of the

8.6. CALCULATING INTERFERING WORKLOAD 161

higher priority tasks having the same cardinality. The following function and set defini-
tions will be used to determine the set of carry-in tasks in next subsection.

Useful Definitions: Consider a subsetY of the task setHPk such that within the schedul-
ing window ofJk, there areg errors of the tasks inY and there arec errors of the task in
HPk. Note that the occurrences of theg errors are part of the occurrences of thec errors
sinceY ⊆ HPk. We denoteDIFFg(Y,Dk, c) as the maximum difference between the

• total carry-in interfering workload by considering all tasks inY as carry-in tasks,
and

• total non carry-in interfering workload by considering alltasks inY as no carry-in
tasks

within the scheduling window of jobJk where there areg errors of the tasks inY and
there arec errors of the task inHPk. If there is exactly one task in setY , sayY = {τi},
thenDIFFg(Y,Dk, c) is given as

DIFFg({τi}, Dk, c) = ICIig(Dk, c)− INCig(Dk, c) (8.14)

If set Y has more than one task, sayY = X ∪ {τi} whereX is the set of all tasks in
setY except taskτi, then the value ofDIFFg(Y ,Dk, c) is maximized, for someq, such
that there areq errors of the tasks in setX and there are(g − q) errors of the taskτi
within the interval[rk, dk], where0 ≤ q ≤ g. Thus, the value ofDIFFg(Y,Dk, c) can
be recursively calculated as follows:

DIFFg(Y,Dk, c) = DIFFg(X ∪ {τi}, Dk, c)

=
g

max
q=0

{

DIFFq(X,Dk, c) + DIFF(g − q)({τi}, Dk, c)

}

(8.15)

We defineQ(S, a, m̂, c) as a subset of the task setS such thatQ(S, a, m̂, c) hasm̂ tasks
from setS and satisfiesConstraint C1 that is given for setQ(S, a, m̂, c) as follows:

Constraint C1: The tasks in setQ(S, a, m̂, c)

• hasm′ tasks from setS,

• are subjected to the worst-case occurrences ofa errors within[rk, dk],

• where there are at mostc errors that affect the tasks in setS within [rk, dk], and

• the difference between

– the total interfering workload of thesêm tasks considering each task in
Q(S, a, m̂, c) as aCI-task, and

– the total interfering workload of thesêm tasks considering each task in
Q(S, a, m̂, c) as aNC-task

is greater than or equal to that of any other subset ofm̂ tasks from setS.

162 CHAPTER 8. FAULT-TOLERANT SCHEDULING ON MULTIPROCESSORS

Formally, if setQ(S, a, m̂, c) satisfiesConstraint C1, then for any other setB such that
B ⊆ S and|B| = m̂, we have

DIFFa(Q(S, a, m̂, c), Dk, c) ≥ DIFFa(B, Dk, c) (8.16)

The definition of setQ(S, a, m̂, c) is used in the next section to determine the set of
carry-in tasks. Once the set of carry-in and non carry-in tasks are known, the interfering
workloads of all tasks inHPk are combined to findIck(Dk).

8.7 Total Interfering Workload of the Tasks in HPk

In order to find the upper bound on total interfering workloadIck(Dk), the upper bound
on interfering workload in[rk, dk] of all the tasks inHPk have to be combined consider-
ing the worst-case occurrences ofc task errors affecting the tasks inHPk. Whether task
τi should be considered as aCI orNC task has to be determined before combining the in-
terfering workload of individual task. Based on Baruah’s idea in [Bar07] for global EDF,
it has already been shown in [GSYY09, DB11b] that for global fixed-priority schedul-
ing, there are at most(m − 1) higher priority tasks that have carry-in work within the
scheduling window of any lower priority job.

However, selecting the(m − 1) carry-in tasks from setHPk is challenging for two
reasons: (i) there are

(|HPk|
(m−1)

)

= (k−1)!
(m−1)!·(k−m)! possible ways to select a subset of(m−1)

tasks from setHPk, and more importantly, (ii) the carry-in or non carry-in interfering
workload of each taskτi depends on the number of errors affecting taskτi which in
turn depends on the worst-case occurrence of thec errors affecting all the tasks inHPk
within [rk, dk]. To solve the problem of finding(m − 1) carry-in tasks efficiently, the
algorithm, calledFindCITasks, is proposed in Subsection 8.7.1 based on dynamic
programming approach. Given the sets of carry-in and non carry-in tasks, the individual
carry-in and non carry-in interfering workload of all tasksare combined to findIck(Dk)
in Subsection 8.7.2. Finally, the schedulability test forFTGS algorithm based on this
total interfering workload is proposed.

8.7.1 Finding Carry-in SetQ(S, a, m̂, c)

Recall that setQ(S, a, m̂, c) is a subset of̂m tasks from setS and satisfiesConstraint 1.
In this subsection, an algorithm calledFindCITasks that finds the setQ(S, a, m̂, c) is
proposed. Two cases are considered to find the setQ(S, a, m̂, c): Case(i)m̂ = 1, and
Case(ii)m̂ > 1.

Case(i)m̂ = 1: For this case, the aim is to find setQ(S, a, 1, c) such thatConstraint 1
is satisfied. The setQ(S, a, 1, c) is given as follows:

Q(S, a, 1, c) = {τx} (8.17)

8.7. TOTAL INTERFERING WORKLOAD OF THE TASKS INHPK 163

such that taskτx satisfies Eq. (8.18)

DIFFa({τx}, Dk, c) = max
τi ∈ S

{

DIFFa({τi}, Dk, c)

}

(8.18)

which impliesConstraint 1 is satisfied for setQ(S, a, 1, c) .

Case (ii)m̂ > 1: For this case, it is required to find from setS more than one carry-in
tasks that are subjected toa errors within the scheduling window of jobJk. Two steps
are considered to find sucĥm number of tasks from setS:

• Step 1Find exactly one carry-in task from setS.

• Step 2Recursively find(m̂− 1) carry-in tasks from set(S−{τx}) where taskτx
is found in Step 1.

These two steps (i.e.,Step 1andStep 2) have to consider the worst-case occurrences
of a errors that can affect all thesêm tasks within the scheduling window of jobJk.
The worst-case is determined by considering that(a − α) errors exclusively affect the
task determined in Step 1, and the worst-case occurrences ofα errors affecting the other
(m̂ − 1) tasks determined in Step 2 forα = 0, 1, . . . a. For Step 1, the task affected by
(a− α) errors is in the setQ(S, a− α, 1, c) and can be determined using Eq. (8.17).

For Step 2, the other(m̂ − 1) tasks are selected from set(S − Q(S, a− α, 1, c))
considering an occurrences ofα errors affecting these(m̂−1) tasks. This set of(m′−1)
tasks is given byQ(S′, α, m̂− 1, c) whereS′ = (S−Q(S, a− α, 1, c)). The tasks
found in Step 1 and Step 2 for a particularα are given in setSα as follows:

Sα = Q(S, a− α, 1, c) ∪ Q(S′, α, m̂− 1, c) (8.19)

whereS′ = (S−Q(S, a− α, 1, c)) and0 ≤ α ≤ a. The setSα is a potential candidate
for setQ(S, a, m̂, c) which must satisfyConstraint C1 where0 ≤ α ≤ a. Therefore,
the setQ(S, a, m̂, c) for m̂ > 1 is given as follows:

Q(S, a, m̂, c) = Sx (8.20)

where setSx satisfies

DIFFa(Sx, Dk, c) = =
a

max
α=0

{

DIFFa(Sα, Dk, c)

}

(8.21)

which impliesConstraint 1 is satisfied for setSx = Q(S, a, m̂, c). The algorithm
FindCITasks(S, a, m̂, c) in Figure 8.3 determines the setQ(S, a, m̂, c) based on
these two cases: case(i)m̂ = 1 (line 1–5), and case(ii)̂m > 1 (line 6–16).

When m̂ = 1 (line 1–5), the taskτx is selected from setS such that Eq. (8.18)
is satisfied. The taskτx is returned in line 4. When̂m > 1 (line 6–16), the setsSα
for all α = 0, 1, . . . a using Eq. (8.19) have to be determined first. Then, the setSx
which is equal to setQ(S, a, m̂, c) is determined by evaluating Eq. (8.21). The for

164 CHAPTER 8. FAULT-TOLERANT SCHEDULING ON MULTIPROCESSORS

Algorithm FindCITasks(S, a, m̂, c)

1. If (m̂ = 1) Then
2. Find taskτx such that

3. DIFFa({τx}, Dk)=max
τi ∈ S

{

DIFFa({τi}, Dk)

}

4. Return {τx}
5. End If
6. If (m̂ > 1) Then
7. Forα = 0 to a
8. Q(S, a− α, 1, c)= FindCITasks(S, a− α, 1, c)
9. S′ = S −Q(S, a− α, 1, c)
10. Q(S′, α, m̂− 1, c)=FindCITasks(S′, α, m̂− 1, c)
11. Sα = Q(S, a− α, 1, c) ∪ Q(S′, α, m̂− 1, c)
12. End For
13. Find task setSx such that

14. DIFFa(Sx, Dk, c)=
a

max
α=0

{

DIFFa(Sα, Dk, c)

}

15. ReturnSx
16. End If

Figure 8.3: Pseudocode for finding carry-in tasks

loop in line 7–12 runs a total of(a + 1) times for the iterative variableα = 0, . . . a.
For each value ofα, the setQ(S, a− α, 1, c) is determined by recursively calling
FindCITasks(S, a − α, 1, c) in line 8. The setS′ = S −Q(S, a− α, 1, c) is deter-
mined in line 9. The rest of the(m̂ − 1) tasks are determined in line 10 by recursively
callingFindCITasks(S′,α,m̂− 1,c). Finally, the setSα is determined in line 11.

The value ofDIFFa(Sα, Dk, c) can be determined using Eq. (8.15) for allα =
0, 1, . . . a. The setSα that satisfiesConstraint 1 is the setQ(S, a, m̂, c). The set
Q(S, a, m̂, c)= Sx, that satisfiesConstraint 1 for some0 ≤ x ≤ a, is searched in line
13–14 and returned in line 15. The set of(m − 1) carry-in tasks from setHPk, where
the carry-in tasks are affected byq errors and all tasks inHPk are affected byc errors, is
Q(HPk, q,m− 1, c) and can be determined by callingFindCITasks(HPk,q,m−1,c).

The time complexity of algorithmFindCITasks(S, a, m̂, c) is now presented
by assuming that the value ofDIFFg({τi}, Dk, c) is known for allτi ∈ S and for all
g = 0, 1, . . . a. The base case, i.e., when̂m = 1, in line 1–5 can be determined inO(n)
steps since there are at mostn tasks in setS.

Whenm̂ > 1, the setSα has to be determined for allα = 0, 1, . . . a. For each value
of α, the base case in line 1–5 is evaluated totalm̂ times and there are total(m̂ − 1)
set difference operations in line 9. The time complexity foreach call of the base case in
line 1–5 isO(n). The set difference in line 9 can be done in linear time since only one
element is removed from setS. The set union in line 10 can be done in constant time

8.7. TOTAL INTERFERING WORKLOAD OF THE TASKS INHPK 165

since one of the sets has only one element. Thus, for a particularα, the time complexity
to determine the setSα in line 11 isO(n ·m).

The tasks in setSα are potential candidates for the set ofm̂ carry-in tasks while
the tasks in(S − Sα) are potential candidates for the set of non carry-in tasks, for
α = 0, . . . a. The for loop in line 7–12 finds all the potentialCI task setsS1, S2 . . . Sa.
Note that sincea ≤ f , the for loop in line 7–12 runs totalO(f) time. Thus, the time
complexity to find all the setsS1, S2 . . . Sa in line 7–12 isO(n ·m · f).

It is not difficult to see that given the values ofDIFFg({τi}, Dk, c), for all g =
0, 1, . . . a, evaluatingDIFFa(Sα, Dk, c) using Eq. (8.15) has the time complexity of
O(n · f) since there are at mostn elements inSα and the maximum operation in
Eq. (8.15) needs at mostg comparisons for setX ∪ {τi} whereg ≤ c ≤ f . Therefore,
evaluating the value ofDIFFa(Sα, Dk, c) in line 13-14 for allα = 0, . . . a has time
complexityO(n · f2). Thus, the time complexity of the algorithmFindCITasks is
O(n ·m · f + n · f2) = O(n · f ·max{m, f}) if the values ofDIFFg({τi}, Dk, c), for
all g = 0, 1, . . . a and for allτi ∈ S are known.

8.7.2 Total Interfering Workload and Schedulability Test

The total interfering workload, i.e., the value ofIck(Dk) is computed by combining
the upper bound on the interfering workload of all the higherpriority tasks inHPk.
Recall that there are(m − 1) carry-in tasks in setHPk. The worst-case occurrence of
the c errors affecting the tasks inHPk needs to consider the worst-case occurrence of
q errors affecting the(m − 1) carry-in tasks and the worst-case occurrence of(c − q)
errors affecting the(|HPk| − m + 1) non carry-in tasks for someq, 0 ≤ q ≤ c. The
set of(m − 1) carry-in task are given byQ(HPk, q,m− 1, c) according to Eq. (8.20)
and can be determined by callingFindCITasks(HPk, q,m− 1, c) for a particularq,
0 ≤ q ≤ c. And the remaining(|HPk| − m + 1) non carry-in tasks are given by set
(HPk −Q(HPk, q,m− 1, c)).

Before combining the upper bound of the individual interfering workload of all the
tasks inHPk to findIck(Dk), the following problem needs to be solved:Consider a set
Y such that Y ⊆ HPk and assume that it is already known whether τi is a CI task
or NC task for each task τi ∈ Y . What is the upper bound on the total interfering
workload of the tasks in set Y on task τk within [rk, dk] if the tasks in set Y suffer
from g errors and all the tasks in HPk suffers from c errors within [rk, dk]?

The upper bound on the total interfering workload of the tasks in setY on taskτk
within [rk, dk] is denoted asTIg(Y,Dk, c) such that there areg and c errors within
[rk, dk] affecting the tasks in setsY andHPk, respectively (note that theg errors are part
of thec errors sinceY ⊆ HPk). If there is exactly one task in setY , such thatY = {τi},
thenTIg(Y,Dk, c) is given as follows:

TIg(Y,Dk, c) =

{

ICIgi (Dk, c) if τi is aCI-task
INCgi (Dk, c) if τi is aNC-task

(8.22)

whereICIgi (Dk, c) andINCgi (Dk, c) are defined in Eq. (8.13) and Eq. (8.12), respec-

166 CHAPTER 8. FAULT-TOLERANT SCHEDULING ON MULTIPROCESSORS

tively. Now consider the case where the setY has more than one task, sayY = X∪{τi},
whereX is the set of all the tasks inY except taskτi. The value ofTIg(Y,Dk, c) is
maximized, for someq, if there areq errors of the tasks in setX and there are(g−q) er-
rors of the taskτi, where0 ≤ q ≤ g. Thus, the value ofTIg(Y,Dk, c) can be recursively
calculated as follows:

TIg(Y, Dk, c) = TIg(X ∪ {τi}, Dk, c)

=
g

max
q=0

{

TIq(X, Dk, c) + Ψ

}

(8.23)

where Ψ =

{

ICIg−qi (Dk, c) if τi is aCI-task
INCg−qi (Dk, c) if τi is aNC-task

Recall that the upper bound on combined interferenceIck(Dk) is sum of the upper bound
of the individual interfering workload of the higher priority tasks inHPk where these
tasks are affected byc errors within[rk, dk]. The sum of the upper bounds of the indi-
vidual interferences of theCI andNC tasks is maximum, for someq, where there are
q errors of the(m − 1) carry-in tasks and there are the(c − q) errors of the remaining
(|HPk| −m + 1) non carry-in tasks,0 ≤ q ≤ c. Thus, the value ofIck(Dk) is given as
follows:

Ick(Dk) =
c

max
q=0

{

TIq(A,Dk, c) + TIg−q(B,Dk, c)

}

(8.24)

whereA = Q(HPk, q,m− 1, c) is the set of(m−1) carry-in tasks andB = (HPk−A)
is the set of non carry-in tasks. Note that the setA in Eq. (8.24) may be different for
different values ofq, 0 ≤ q < c. The value ofIck(Dk) given in Eq. (8.24) is the upper
bound on the total interfering workload.

Sufficient Schedulability Test. Now based on the necessary unschedulability condi-
tion in Eq. (8.7), the following sufficient schedulability test in Theorem 8.1 for task
τk follows:

Theorem 8.1. A taskτk ∈ Γ is schedulable usingFTGS algorithm if

f
max
c=0

{⌊

Ick(Dk)

m

⌋

+ C
(f − c)
k

}

≤ Dk (8.25)

Proof. This Theorem is proved using contradiction. Assume that some job of taskτk has
missed its deadline while the condition in Eq. (8.25) holds.Remember that jobJk is a
critical job in the sense that taskτk is not feasible usingFTGS if and only if Jk misses
its deadline. Consequently, if at least one job of taskτk misses its deadline, then job
Jk also misses its deadline which implies that Eq. (8.7) holds (contradicts the fact that
Eq. (8.25) holds!).

8.7. TOTAL INTERFERING WORKLOAD OF THE TASKS INHPK 167

The schedulability test of theentire task setΓ is given by iteratively applying Theo-
rem 8.1 on each lower priority taskτk for k = (m+ 1), . . . n.

Corollary 8.1. Sporadic task setΓ is feasible usingFTGS algorithm if

f
max
c=0

{⌊

Ick(Dk)

m

⌋

+ C
(f − c)
k

}

≤ Dk (8.26)

for all k = m+ 1, . . . n.

A concise notation for the iterative schedulability test ofCorollary 8.1 is denoted by
FTGS-Test(Γ, f,m)that when passed for a task setΓ guarantees that all the tasks in
Γ meet their deadlines onm processors even if there aref task errors in any interval of
lengthDmax. The Pseudocode to evaluateFTGS-Test(Γ, f,m)is given in Figure 8.4.

The algorithm in Figure 8.4 starts by calculatingC(f − c)
k for all k = 1, 2, . . . n and

for all (f − c) = 0, 1, . . . f in line 1–6 of Figure 8.4. In other words, the values of
C0
k , C

1
k . . . C

f
k for all k = 1, . . . n is calculated in line 1–6. The for loop in line 7–33

runs total(n−m) times and evaluates the schedulability condition in Eq. (8.26) for each
of the lower priority tasksτk in each iteration fork = m+1, . . . n. When evaluating the
schedulability of taskτk, the carry-in workload and non carry-in workload of each of
the higher priority tasks are determined first in line 8–13. Then, the individual carry-in
interfering workload, non carry-in interfering workload,and their difference for each
higher priority task are determined in line 14–22. Finally,the total interfering workload
of all the higher priority tasks are determined and Eq. (8.26) is evaluated in line 23–32.

The condition in line 28 checks whether the total computation load of the tasks in
HPk∪{τk} in any interval of lengthDk exceedsDk where taskτk is affected by(f − c)
errors, the carry-in tasks are affected byq errors, and the non carry-in tasks are affected
by (c− q) error for allq, c andf such thatq ≤ c ≤ f . If the answer is positive (compu-
tation load is greater than the length of the interval), thentaskτk can not be guaranteed
to be schedulable and the algorithm returns “False” in line 29. If the condition at line
28 is never true, then the for loop at line 7–33 is exited, the algorithm returns “True”
in line 34 and the entire task set is schedulable using theFTGS scheduling. The time
complexity ofFTGS-Test(Γ, f,m)is pseudo-polynomial as is shown next.

Time Complexity. Remember that the self execution time of all then tasks when af-
fected by(f − c) errors can be determined inO(n · f) time. So, line 1–6 runs in
O(n · f) time. The two nested for loops in line 8–13 determine the carry-in and non
carry-in workload of each of the higher priority tasks when considering the schedulabil-
ity of taskτk. All the higher priority tasks are iterated using the iterative variablei for
i = 1, . . . (k − 1) in line 8–13. The carry-in and non carry-in workload of the higher
priority jobs of taskτi that is exclusively affected byg errors are determined in line
10–11 for allg = 0, . . . f . Aydin in [Ayd07] showed that the time complexity to find
the workload of a set of̂N aperiodic tasks isO(N̂ · f) where these jobs are affected by
exactlyf errors. The jobs of a set of sporadic tasks, when arrive as early as possible,
can be considered as a set of aperiodic tasks and there are at most N̂ jobs within the

168 CHAPTER 8. FAULT-TOLERANT SCHEDULING ON MULTIPROCESSORS

Algorithm FTGS-Test(Γ, f,m)

1. Fork = 1 to n
2. C0

k = Ck
3. Forc = (f − 1) to 0

4. C
(f − c)
k =E(f − c)

k + C(f − c− 1)
k

5. End For
6. End For
7. Fork = (m+ 1) to n
8. Fori = 1 to (k − 1)
9. Forg = 0 to f
10. FindWNCgi (Dk, ξ) using Eq. (8.10)
11. FindWCIgi (Dk, ξ) using Eq. (8.11)
12. End For
13. End For
14. Fori = 1 to (k − 1)
15. Forc = 0 to f
16. Forg = 0 to c
17. FindINCgi (Dk, c) using Eq. (8.12)
18. FindICIgi (Dk, c) using Eq. (8.13)
19. FindDIFFg({τi}, Dk, c) using Eq. (8.15)
20. End For
21. End For
22. End For
23. Forc = 0 to f
24. Forq = 0 to c
25. A =FindCITasks(HPk, q,m− 1, c)
26. B = HPk −A
27. I =TIq(A, Dk, c) + TIc−q(B, Dk, c)

28. If (⌊ I
m
⌋+ C

(f − c)
k > Dk) then

29. Return “False”
30. End if
31. End For
32. End For
33. End For
34. Return “True”

Figure 8.4: Pseudocode ofFTGS-Test(Γ, f,m)

scheduling window of each task. Thus, the time complexity tofind the value of carry-in
and non carry-in workload using Eq. (8.10) and Eq. (8.11) isO(N̂ · g) for a particular
g and a particular taskτi. And, thus the time complexity for evaluating Eq. (8.10) and
Eq. (8.11) for allg = 0, 1, . . . f and for all tasks in line 8–13 isO(n · N̂ · f2).

8.8. TOLERATING PROCESSOR FAILURES 169

Based on the workload of each of the higher priority tasks, individual interfering
workload of each higher priority task in line 14–22 is calculated. Given the values of
C

(f − c)
k and the workload of each task, the value of individual carry-in or non carry-in

interfering workload can be calculated using one addition,one subtraction and one com-
parison using using Eq. (8.12) and Eq. (8.13), respectively. The difference between the
carry-in and non carry-in individual interfering workloads of each taskτi is determined
in line 19. The value ofDIFFg({τi}, Dk, c) using Eq. (8.15) is determined in line 19
using only one subtraction operation. Thus, the time complexity to find the individual
carry-in and non carry-in interfering workload and the difference between them for all
c = 0, . . . f , for all i = 1, 2, . . . (k − 1) and for allg = 0, 1, . . . c isO(n · f2).

When evaluating Eq. (8.26) for taskτk, one has to considerc errors affecting the
higher priority tasks inHPk and the remaining(f − c) errors affecting taskτk within an
interval of lengthDk for c = 0, · · · f . Moreover, for a given a value ofc, a total ofq
errors affecting only the(m−1) higher priority carry-in tasks and(c−q) errors affecting
the higher priority non carry-in tasks are considered forq = 0, . . . c. The two nested for
loops in line 23–24 consider each possible values ofc andq where0 ≤ c ≤ f and
0 ≤ q ≤ c. The(m− 1) carry-in tasks are determined by callingFindCITasks(HPk,
q, m − 1, c) in line 25 for particular values ofc andq. The non carry-in tasks from
setHPk are determined in line 26 using one set difference operation. However, it is
not needed to perform this set difference operation since algorithmFindCITasks in
Figure 8.3 can easily determine the set of non carry-in taskswhile determining the set
of carry-in tasks. Remember that the time complexity to find the(m− 1) carry-in tasks
usingFindCITasks is O(n · f · max{m, f}). Given the carry-in and non carry-in
tasks in setsA andB (line 25–26), the total interfering workload of all the tasks in
HPk = A ∪B can be determined using Eq. (8.23).

The total interfering workload of the carry-in tasks and noncarry-in tasks respec-
tively in setsA andB are given asTIq(A, Dk, c) andTIg−q(B, Dk, c) using Eq. (8.23).
The sum ofTIq(A, Dk, c) andTIg−q(B, Dk, c) in line 27 is the total interfering work-
load of the higher priority tasks that are affected byc errors whereq errors affect the
carry-in task and(c − q) errors affect the non carry-in tasks. It is not difficult to see
that the time complexity to find the values ofTIq(A, Dk, c) andTIg−q(B, Dk, c) for a
particularc, wherec ≤ f , using Eq. (8.23) isO(n · f).

Evaluating the condition in line 28–30 can be done in constant time. Thus, the time
complexity to evaluate the condition in line 28 forall possible values ofc andq using
the loops in line 23–24 isO(n · f3 · max{m, f}) when evaluating the schedulability
test for taskτk. By adding the time complexities of all the steps, the time complexity to
evaluateFTGS-Test(Γ, f,m)in Figure 8.4 isO(n2 · f2 ·max{N̂ ,m · f, f2}) which
is pseudo-polynomial in the representation of the task set and fault model.

8.8 Tolerating Processor Failures

In this section, the schedulability testFTGS-Test(Γ, f,m)is extended in order to
determine whether the effect ofρ permanent processor failures can be mitigated using

170 CHAPTER 8. FAULT-TOLERANT SCHEDULING ON MULTIPROCESSORS

FTGS algorithm. Remember thatFTGS scheduler deals with a processor failure by
assuming the task that was executing on the faulty processorhas encountered a task
error. Once a processor failure is detected, theFTGS scheduler performs the following
two actions:

• no task is dispatched to the faulty processor, and

• if any task was executing on the faulty processor, its backupis stored in the ready
queue.

The fault model for processor failure considers fail-stop processors and includes simul-
taneous multiple processor failures. The execution requirement of the recovery opera-
tions at any time instant due to processor failures is maximum if all the ρ processors
fail simultaneously at that time instant while each of theseρ processors is executing
some task. This is the worst-case scenario forρ processor failures since the backups
of total ρ tasks that were executing on the faulty processors simultaneously become
ready. And, the multiprocessor platform now has(m − ρ) non-faulty processors. Con-
sequently, there is an interval of lengthDmax in which it is required to consider to-
tal (f + ρ) task errors that need to be tolerated usingFTGS scheduling on(m − ρ)
processors. Note that tolerating both task errors and processor failures usingFTGS al-
gorithm requires each task to have(f + ρ) backups.The extended schedulability test
for FTGS algorithm to tolerate both task errors and processor failures is given as fol-
lows: applyFTGS-Test(Γ,f + ρ,m− ρ) to determine whether the answer to this
schedulability test is positive or negative.

Resilience: Given a sporadic task setΓ, the system designer can apply the proposed
FTGS-Test(Γ,f + ρ,m− ρ) for various combinations of the parametersf , m and
ρ. An exhaustive approach to judge the resilience of the fault-tolerant system would be
to apply theFTGS-Test(Γ,f + ρ,m− ρ) on all possible triplets (m, f , ρ) where
m ∈ {2, 3, . . .}, f ∈ {0, 1, . . .} andρ ∈ {1, 2, . . .m}. The system designer can also
determine the minimum number of processors required for scheduling an embedded
real-time application for some givenf andρ usingFTGS algorithm.

Effective Priority Assignment Policy: It is not difficult to see that the schedulability
testFTGS-Test(Γ, f,m)is OPA-compatible (i.e., the three OPA-compatibility condi-
tions in page 83 are satisfied). Thus, it can be used to determine effective fixed-priority
assignment by applying the combination of multiprocessor extension of Audsley’s op-
timal priority assignment policy. Moreover, this test can also take the advantage of
the hybrid priority assignment policy using the separationcriterion that is proposed in
Chapter 6. In addition, instead of performing deadline-analysis, a response-time based
analysis similar to theIA-RT test can be performed (please see chapter 6). These three
features (i.e, OPA+HPA+RTA) would result progressively better tests than the proposed
FTGS-Test(Γ, f,m)for theFTGS scheduling.

Configuring FTGS for Active Backups: The FTGS scheduling algorithm and the
schedulability testFTGS-Test(Γ, f,m)considers passive backups: a backup task

8.9. GRACEFUL DEGRADATION 171

only becomes ready if a task error is detected, otherwise, the backup never executes.
However, it is possible to configureFTGS scheduling algorithm to consider active back-
ups as well. Active backups consumes more CPU cycles in comparison to passive back-
ups but provides quick error recovery to the tasks. Such quick error recovery is needed
for low-laxity tasks. The basic idea for incorporating active backups is described below.

Consider that there aref ′ backups of each taskτi that are active backups where
0 ≤ f ′ ≤ f . Without loss of generality, consider that the firstf ′ backups of each task
τi are the active backups while the remaining(f − f ′) backups are passive backups. In
such case, the primary and thef ′ backups of each task become ready whenever a job of
the task is released. The priority of the active backups are same as that of the primary. In
contrast to complete passive backup, the active backups always execute no matter what
happens to the primary or other active backups. If an error isdetected after execution of
any one of these active backups or the primary, the first passive backup becomes ready
for execution. Subsequent error detected in any one of the currently active backups or
the primary results in next passive backup to become ready for execution. However, as
soon as either the primary or any of the backups of a task completes execution without
signaling an error, the other active backups of the task can be terminated. Such backup
deallocation utilizes the processors efficiently without sacrificing fault-tolerance.

In order to ensure that all the tasks are schedulable using the combined active-passive
backup policy, new schedulability test has to be derived. A preliminary idea is to con-
sider each of the active backups as a different task. Thus, there will bef ′ additional
(pseudo) tasks for each original taskτi. A new task set is formed by including for each
taskτi ∈ Γ, a task corresponding to the primary and thef ′ tasks corresponding to the
f ′ active backups. This new task set has total(n + n · f ′) tasks. If this new task is
global FP schedulable (without considering faults), then at mostf ′ task errors can be
tolerated within any interval of lengthDmax. To tolerate an additional(f − f ′) task
errors within any time interval of lengthDmax, it is sufficient to show that an additional
(f − f ′) task errors within any time interval of lengthDi can be tolerated when con-
sidering the schedulability of a lower priority taskτi. therefore, if this new task set can
tolerate(f − f ′) task errors within any interval of lengthDmax, then all the deadlines
are met onm processors while toleratingf tasks errors in any interval of lengthDmax.
TheFTDM scheduling algorithm proposed in last chapter for uniprocessor fault-tolerant
scheduling can also be extended to incorporate active backups.

8.9 Graceful Degradation

The fault tolerant scheduling algorithmsFTDM andFTGS proposed respectively in Chap-
ter 7 and Chapter 8 assumes a certain fault model. However, fault-tolerant systems needs
to provide correct service even if the errors that occur in the system are not compliant
with the fault model. For example, if there are more thatf task errors within an interval
of lengthDmax, then the proposed schedulability analysis can not ensure that all the
deadlines will be met. In such case, upon detection of an error if the recovery operation
(i.e., execution of a backup) can not be guaranteed to meet the deadline of the task, the

172 CHAPTER 8. FAULT-TOLERANT SCHEDULING ON MULTIPROCESSORS

system should be robust enough such that it provides degraded service in a graceful way.
An admission controller in such can decide whether to acceptor reject such a recovery
request. Three possible alternatives for handling the recovery request are proposed:

• Direct Rejection: Simply reject the request without any further consideration.

• Criticality-Based Eviction: Evict some low-criticality task from the system to
accept the new recovery request.

• Imprecise Computation: Accept the new recovery request and execute as much
as possible of the corresponding backup without compromising the timeliness of
other tasks.

8.9.1 Direct Rejection

If an error is detected and the recovery request can not be accepted, for example by the
admission controller of the fault-tolerant scheduling algorithm, then the simple approach
is to just rejecting the recovery request. If the system is already highly-loaded, the
recovery request is most probably be rejected and in such case the reliability of the
system is degraded so as to guarantee schedulability of the other existing tasks.

8.9.2 Criticality-Based Eviction

If an error is detected and the recovery request can not be accepted by the admission
controller of the fault-tolerant scheduling algorithm, thencriticality-based evictioncan
be employed. In this approach, some already-admitted task,having lower criticality than
the criticality of the recovery request, is temporarily terminated and the recovery request
is serviced. The termination of the lower-criticality taskis temporary in the sense that,
when the backup corresponding to the recovery finishes execution, the evicted lower
criticality task can be re-admitted into the system. In suchcase, the lower-criticality
task may be unable to execute its jobs that are released whilerecovery operation is
being performed.

By criticality of a task it means the user-perceived importance of the applications
tasks in meeting the deadlines. The criticality of the tasksin a task set can be determined
independent of the priorities of the tasks [MAM99]. Such criticality-based eviction is
applicable for applications in which execution of some jobsof a task can be skipped.
In [CB98], scheduling of hard and firm periodic tasks are considered. A firm task can
occasionally skip one of its jobs based on some predetermined quality-of-service agree-
ment while the hard periodic task must execute all of its jobs.

Criticality-based scheduling for non-deterministic workloads is addressed by Al-
varez and Mossé in [MAM99]. They analyzed the schedulability of a fixed-priority sys-
tem using a concept called responsiveness [MAM99]. Their analysis is best suited for
systems with nondeterministic workload in which recovery operations caused by faults
are serviced at different responsiveness levels. By responsiveness level, the authors

8.10. SUMMARY 173

mean whether the recovery operation is run in a non-intrusive (without affecting schedu-
lability of other tasks) or intrusive (affecting schedulability of existing tasks) manner. In
case of intrusive recovery, timeliness of the less-critical tasks are compromised and the
system suffers degraded service. Thus, the eviction of lower-criticality task degrades
schedulability performance but provides higher reliability.

Note that, such criticality-based eviction may not work if there is no lower-criticality
task to evict in order to accept a recovery request, or if negating the total computation de-
mand of all the lower-criticality tasks from the system is not enough for executing the re-
covery request. This problem can be addressed using imprecise computation paradigm.

8.9.3 Imprecise Computation

If partial computation of the recovery request is useful, then the recovery request can
be accepted into the system even though a complete recovery request can not be ser-
viced due insufficient processing capacity. When the result of a complete execution of
a recovery request can not be produced before the deadline, errors (outside the scope of
the consider fault model) can be recovered usingimprecise computationof the backup.
Imprecise computation models are considered in [CLL90, LSL+94, MAAMM00] and
are appropriate for monotone processes where result produced by a task will have in-
creasingly higher quality if more time is spent in executingthe task. Such monotone
processes are considered to have a mandatory part and an optional part [LSL+94]. The
mandatory part of each task has a hard deadline and must complete its execution be-
fore deadline. However, the optional part of a task can be skipped if enough processing
power is not available.

The imprecise computational model is applicable if the backup of a faulty task is
modeled as a monotone process. Therefore, even if the full execution of the backup can
not be completed, the result of the partial computation of the backup can ensure certain
quality to the application. Hence, when the admission controller can not guarantee com-
plete execution of a recovery request, the request can stillbe accepted to the system and
imprecise result can be delivered to the application. By considering the recovery request
as a monotone process, the imprecise computation techniqueto serve a recovery request
can be seen as providing a balance between schedulability performance and reliability.

It is easy to realize that eviction of a low-criticality taskand imprecise computation
can be combined so as to offer a solution to the problem where the mandatory part of a
task does not have enough time to finish before its hard deadline. In such case evicting
a lower criticality task could enable the complete execution of the mandatory part of a
highly-critical recovery request.

8.10 Summary

In this chapter, a fault-tolerant multiprocessor scheduling algorithm calledFTGS and its
corresponding schedulability test for constrained-deadline sporadic tasks are proposed.

174 CHAPTER 8. FAULT-TOLERANT SCHEDULING ON MULTIPROCESSORS

This schedulability test enables the system designer to judge the robustness of the sys-
tem by experimenting with different number of task errors and processor failures. Such
sensitivity analysis enables the designers to evaluate off-line the resource requirement
and resilience of the fault-tolerant system. The fault model that FTGS algorithm con-
siders is very powerful in the sense that multiple task errors or processor failures are
considered to occur at any time, in any task, or even during the execution of recovery
operation. No other works have considered such a general fault model for scheduling
real-time sporadic tasks on multiprocessors.

TheFTGS scheduling considers passive backups: a backup is dispatched after an
error is detected. Such passive-backup strategy is good in terms of saving CPU cycles
for systems where faults are less likely. Passive backups are also effective for tasks that
have enough laxity so that there is enough time in the schedule to execute the backup
after an error is detected. However, for low-laxity tasks, passive backups may not be
effective to provide fault-tolerance and active backups may be appropriate in such case.
However, active backup strategy consumes more energy but provides quick recovery.
The system designer can determine for theFTGS algorithm whether only active backups,
only passive backups, or a combined approach to be used for the system.

TheFTGS scheduling algorithm and its analysis can be extended both for an im-
proved priority assignment policy. The proposed schedulability test for FTGS algo-
rithm is OPA-compatible and can be used to find a fixed-priority ordering of the tasks if
the schedulability test is not satisfied for the given fixed-priority ordering of the tasks.
Moreover by prudently keeping some tasks and processor separated from the schedu-
lability analysis of a lower priority task, better priorityassignment policy based on the
HPA scheme can be obtained.

9
Mixed-Criticality Systems

The advent of multicore processors has attracted many safety-critical systems, e.g., au-
tomotive and avionics, to consider integrating multiple functionalities on a single, pow-
erful computing platform. Such integration leads to host functionalities with different
criticality levels on the same platform. The design of such “mixed-criticality” systems
is often subject to certification from one or more certification authorities. Coming up
with an effective scheduling policy and its analysis that can guarantee certification of
the system at each criticality level, while maximizing the utilization of the processors,
is the focus of the research presented in this chapter.

The global, fixed-priority scheduling algorithm for a set ofconstrained-deadline and
mixed-criticality sporadic tasks on multiprocessors is considered. A sufficient schedu-
lability test based on response-time analysis of the proposed algorithm is derived. One
of the useful features of the proposed test is that it can be used for systems with more
than two criticality levels. In addition, the test can be used to find “effective” fixed-
priority ordering of the mixed-criticality tasks based on Audsley’s approach. Empirical
investigation into the effectiveness of Audsley’s priority assignment algorithm using the
proposed schedulability test shows significant improvement over other heuristic-based
(e.g., deadline-monotonic, criticality-monotonic) priority assignment policies.

9.1 Introduction

Single-chip multiprocessors are viewed as serious contenders for many safety-critical
and hard real-time systems to meet the growing demand of computing power. The de-
signers of such systems are considering integrating multiple functionalities on the same

175

176 CHAPTER 9. MIXED-CRITICALITY SYSTEMS

computing platform due to space, weight and power concerns.For example, aviation
industry is contemplating “Integrated Modular Avionics” (IMA) to achieve economic
advantage by hosting multiple avionics functions on a single platform [ARI]. Simi-
larly, the growing complexity and safety requirements in automotive systems have led
to the development of the AUTOSAR framework focusing on composability of compo-
nents [AUT]. Version R4.0 of AUTOSAR provides the specification for multicore OS
architectures.

The functionalities of safety-critical applications, e.g., control and monitoring, are
often modeled as a collection of real-time, sporadic tasks having hard deadlines. A
MC real-time system is the one in which thecriticality levels, i.e., importance, of differ-
ent real-time tasks may be different. The design ofMC systems is often subject to certifi-
cation at each criticality level by standard statutory certification authority (CA), for ex-
ample, by Federal Aviation Authority in the US or the European Aviation Safety Agency
in Europe for avionics systems. One of the major challenges in designingMC real-time
systems is devising a scheduling strategy that addresses both the “criticality” and “dead-
line” aspects of the tasks while facilitating certificationand efficient resource usage.

In order to certify aMC system as being correct, the CAs make certain assumptions
about the worst-case behavior of the system. In this thesis,a particular aspect of the run-
time behavior of the system: the WCET of the application tasksis considered. Vestal
has pointed out in [Ves07] thatthe more confidence one needs in a task execution time
bound, the larger and more conservative that bound tends to be in practice. The CAs
become increasingly pessimistic regarding their estimation of the WCET of a piece of
code for increasingly higher criticality levels. However,the CA, when certifying the
system at some criticality level, is also concerned about the correctness (i.e., meeting
the deadlines) of the real-time tasks relevantonly to that particular criticality level. For
example, in order to operate Unmanned Aerial Vehicle (UAV) over civilian airspace, the
flight-critical functionalities must be certified as “correct” by the CA while the manu-
facturer needs to ensure the correctness of bothmission-criticaland flight-critical func-
tionalities. Due to such different assumptions and concerns among the CAs and the
manufacturers, conventional scheduling strategies addressing both the “criticality” and
“deadline” aspects ofMC systems are not cost- and resource-efficient. This is illustrated
using a contrived example:

Example 9.1. Consider six constrained-deadline periodic tasksτ1 . . . τ6 that are to be
scheduled onm = 2 identical processors based on globalFPscheduling. Assume that
all the tasks are released at time zero and there are only two criticality levels (i.e., dual-
criticality system): tasksτ1 andτ2 are low-critical tasks while the other tasksτ3 . . . τ6
are the high-critical tasks.

The period of each task is7. The relative deadline of each of the low-critical tasks
τ1 and τ2 is 4. The relative deadline of each of the high-critical tasksτ3 . . . τ6 is 7.
According to the system designer, the WCET of each task is 2. According to the CA,
the WCET of each of the higher-critical1 tasksτ3 . . . τ6 is 3. Scheduling the tasks us-

1The CA is not concerned about the low-critical tasks and doesnot specify their execution times.

9.1. INTRODUCTION 177

ing global FP scheduling requires each of the tasks to have one distinct fixed-priority
between priority level 1 (highest) to 6 (lowest).

If any of the low-critical tasksτ1 or τ2 is assigned priority level 5 or 6, then that task
misses its deadline even if each of the high critical tasks{τ3, . . . τ6} actually executes
for at most 2 time units (the system designer is not happy withthe schedule). If none of
the tasksτ1 andτ2 is assigned priority level 5 or 6, thennot all the high-critical tasks
{τ3, . . . τ6} meet their deadlines when they execute for3 time units at run-time (the CA
is not happy with the schedule). Thus, the system can not be scheduled in a manner that
satisfies both the system designer and the CA if traditional global FPscheduling is used.
However, there is a valid schedule that can satisfy both parties.

• Consider that the globalFP scheduling algorithm is augmented with runtime
monitoring support that can monitor the execution time of each job of each task,
i.e., can determine how long a job has been executing.

• Taskτ3 andτ4 are assigned the highest priority levels 1 and 2. Taskτ1 andτ2 are
assigned the next two priority levels 3 and 4. And, taskτ5 andτ6 are assigned the
lowest two priority levels 5 and 6.

• Note that the hyperperiod of the task set is 7 and within each hyperperiod exactly
one job of each task is released. Therefore, if the job of eachtask is schedulable
in the first any hyperperiod, then all the jobs of all the tasksare schedulable.

• First, the tasksτ3 andτ4 are executed within the hyperperiod since these are the
two highest priority tasks and there are two processors.

• If any of the two jobs of these two tasksτ3 and τ4 does not signal completion
of execution after executing for2 time units (i.e., the assumption of the system
designer does not hold), then low-critical tasksτ1 and τ2 are dropped from the
system. And, each of the jobs of the high-critical tasks{τ3, . . . τ6} can execute for
at most3 time units within each hyperperiod and can meet their deadlines.

• If both jobs of tasksτ3 andτ4 signal completion after executing for at most2 time
units, then the two jobs of the low-critical tasksτ1 andτ2 are executed for2 time
units and can meet their deadlines. Finally, the two jobs of the high-critical tasks
τ5 andτ6 can execute for at most3 time units and can also meet their deadlines.

So, if the system designer’s assumption (that each job execute for 2 time units) hold
during runtime, then all tasks meet their deadlines according to globalFP scheduling.
If the CA is right (that each high-critical job executes for 3time units), then all the
deadlines are met. Thus, both the CA and the system designersare satisfied.

It is evident that the schedulability of theMC task systems in Example 9.1 can not
be guaranteed based on traditional global FP scheduling algorithm. No work has pro-
posed scheduling of constrained-deadlineMC sporadic tasks on multiprocessors based
on the industry-preferred FP scheduling. The only work on multiprocessor schedul-
ing of MC tasks is recently proposed by Li and Baruah in [LB12] considering dynamic

178 CHAPTER 9. MIXED-CRITICALITY SYSTEMS

priority and implicit-deadline tasks. The study of FP scheduling algorithms and their
analysis on multiprocessors forMC constrained-deadline sporadic tasks is the focus of
this chapter.

In this thesis, an implementation scheme of global FP scheduling, called Mixed-
criticality Scheduling algorithm on Multiprocessors (MSM), for dispatching a set of
mixed-criticality, sporadic tasks onm identical processors is proposed. The proposed al-
gorithmMSM essentially dispatches tasks in accordance to traditionalglobal FP schedul-
ing but has two additional implementation features: (i) theduration of the execution time
of each job ismonitoredat run-time in order to detect any transition of the system’sbe-
havior to a higher criticality level, and (ii) upon detection of such transition at runtime,
some tasks aredroppedto better utilize the processors without violating the certification
requirements. The run-time monitoring support exists in many safety critical-system
where the execution time of each job is monitored in order to provide temporal guar-
antees, fault-tolerance or health monitoring [AB98, CJD91, PMCR08, RRJ92, HS89].
And, this capability is exploited in this thesis for the design and analysis of certification-
cognizant multiprocessor FP scheduling ofMC systems.

The main contribution in this chapter is the derivation of a sufficient schedulabil-
ity condition of theMSM algorithm based on response time analysis (RTA) that can be
used to guarantee certification at each criticality level. One of the novel features of
the proposed schedulability test is that it can be used to find“effective” fixed-priority
ordering of theMC tasks based on Audsley’s optimal priority assignment (OPA)algo-
rithm [Aud01]. When aMC task set for a given priority ordering does not satisfy the
proposed schedulability test, a different priority ordering for which the task set satisfies
the schedulability test may be determined using Audsley’s algorithm. This is an im-
portant feature since the optimal fixed-priority ordering,even for traditional (non-MC)
sporadic tasks on multiprocessors, is still unknown. Another useful feature of the pro-
posed test is that it is applicable to systems having more than two criticality levels. This
feature is important as many safety-critical systems (i.e., automotive, avionics) that have
more than two criticality levels.

The chapter is organized as follows: Section 9.2 presents the system model and the
MSM algorithm. The basic framework for the schedulability analysis of theMSM algo-
rithm is presented in Section 9.3. The schedulability analysis of theMSM algorithm for
dual-critical systems is presented in Sections 9.4–9.5. Then, the schedulability analysis
for arbitrary number of criticality levels is presented in Section 9.6. Empirical investi-
gation into the proposed schedulability test and priority assignment policy is presented
in Section 9.7. The related works are presented in Section 9.8 before concluding the
chapter in Section 9.9.

9.2 System Model and The Scheduler

The preemptive scheduling ofMC sporadic task systems onm identical processors is
considered. AMC sporadic task systemΓ consists ofn mixed-criticality sporadic tasks
τ1, . . . , τn havingL distinct criticality levels. Each taskτi is characterized by a 4-tuple

9.2. SYSTEM MODEL AND THE SCHEDULER 179

(Li, Di, Ti, Ci), where

• Li ∈ {1, 2, . . .L} is the criticality level of the task whereL is the highest criti-
cality level in the system.

• Ti ∈ N
+ is the minimum inter-arrival time of the jobs (also, called period) of the

task.

• Di ∈ N
+ is the relative deadline such thatDi ≤ Ti.

• Ci is a vector< C1
i , C

2
i , . . . C

L
i > that represents the worst-case execution times

of taskτi at different criticality levels. The WCET of taskτi at criticality levelℓ
is equal toCℓi .

The WCET of a piece of code is generally an upper bound on the true WCET and
the more confidence one needs in estimating the WCET of a piece of code, the more
pessimistic this upper bound tends to be. Therefore, different values for WCET of a
piece of code can be determined based on the level of confidence one needs in estimating
that WCET. To that end, it is assumed thatCℓi ≤ C

(ℓ+1)
i for each taskτi ∈ Γ.

The set of all thehigher priority tasks of taskτi is denoted byHPi. The set of higher-
priority but lower-critical tasks of taskτi is denoted byhpL(i). Similarly, the set of
higher-priority andhigher/equal-criticaltasks of taskτi is denoted byhpH(i). Note
that,HPi = hpL(i) ∪ hpH(i).

Behavior: A MC sporadic task system shows different behavior during different run of
the system since different jobs may be released at differenttime instant and may have
different execution times. The system is said to have exhibitedℓ-criticality behavior if
no job ofany taskτi executes for more thanCℓi time units, for someminimumℓ, where
1 ≤ ℓ ≤ L. If no suchℓ between1 andL exists, then the behavior of the system is
erroneous.

Correctness:A MC system is certified ascorrect if and only if the system isschedulable
at each criticality level. AMC task system isschedulable at criticality levelℓ using
algorithmA if and only if the jobs of each taskτi, satisfyingLi ≥ ℓ, complete by their
deadlines for allℓ-criticality behavior of the system when scheduled usingA.

The MSM algorithm. TheMSM algorithm for dispatching the jobs of theMC tasks works
as follows:

• There is a criticality level indicatorℓ, initialized to the lowest criticality level,
ℓ← 1.

• While (ℓ ≤ L), at each time-instant, the ready jobs of at mostm highest-priority
tasks with criticality level greater than or equal toℓ are dispatched for execution
onm processors; and

– if a currently executing job of any taskτi has executedCℓi time units without
signaling completion, thenℓ← (ℓ+ 1).

180 CHAPTER 9. MIXED-CRITICALITY SYSTEMS

Algorithm MSM works exactly same as traditional global FP scheduling except that run-
time monitoring of the execution of each job is employed to detect the switch from
ℓ-criticality to (ℓ + 1)-criticality behavior of the system. And, according to the defini-
tion of “correctness” the jobs ofℓ-critical tasks need not be dispatched (hence, dropped
by MSM algorithm) as soon as the system switches to(ℓ+ 1)-criticality behavior. The
system switches fromℓ to (ℓ+ 1)-criticality behavior if some job does not signal com-
pletion after executing for itsℓ-criticality execution time.

The main objective in this chapter is to derive a schedulability test of theMSM al-
gorithm. Section 9.3 presents the framework for the schedulability analysis of the
MSM algorithm. The schedulability analysis is first presented for dual-criticality2 sys-
tems: Section 9.4 and Section 9.5 present the response time analysis considering the
LO andHI criticality behavior of the system, respectively. The schedulability analysis
for more than two criticality levels is presented in Section9.6.

9.3 Schedulability Analysis: an Overview

In this section, an overview of the schedulability analysisof theMSM algorithm is pre-
sented. To guarantee certification ofMC system at criticality levelℓ, each taskτi sat-
isfying Li ≥ ℓ must be schedulable during allℓ-criticality behavior of the system. A
sufficient schedulability test of theMSM algorithm based on response time analysis is
derived in this chapter.

The response time of taskτi is denoted byRℓi considering theℓ-criticality behavior
of the system. To deriveRℓi , the schedulability analysis of a generic job of taskτi in
an interval of lengtht, called the “problem window” of taskτi, is considered. The re-
sponse time of taskτi is derived by computing theworkload, interfering workload, total
interfering workloadand interferenceof the higher priority tasks within the problem
window.3

TheCI andNC workloads of each higher priority taskτk ∈ HPi within the prob-
lem window of lengtht are determined. Whether a taskτi should be considered as a
CI task or aNC task is determined later. TheCI andNC interfering workloads of each
higher priority taskτk ∈ HPi are determined based on the upper bound on theCI and
NC workloads of taskτk within the problem window, respectively.

It is proved in [GSYY09] that there are at most(m−1) carry-in tasks in the problem
window of any lower priority task for global FP scheduling ofconstrained-deadline
sporadic tasks. Since theMSM algorithm essentially dispatches theMC tasks based on
global FP scheduling policy, limiting the number ofCI tasks to(m−1) is also applicable
for the schedulability analysis ofMSM algorithm. Thetotal interfering workload is
calculated by adding theCI interfering workloads of(m − 1) carry-in tasks and the
NC interfering workloads of the remaining higher priority tasks. The(m − 1) carry-in
tasks from setHPi are selected such that the total interfering workload is maximized.

2The criticality levels 1 and 2 are denoted by “LO” and “HI”.
3The terms (i.e., workload, interfering workload, total interfering workload and interference) are formally

defined in Section 6.2 (see page 81).

9.3. SCHEDULABILITY ANALYSIS: AN OVERVIEW 181

Finally, the interference due to the tasks inHPi in the problem window of taskτi is
calculated based on total interfering workload of the tasksin HPi.

Once the interference of the higher priority tasks within a problem window con-
sidering theℓ-criticality behavior of the system is calculated, the response timeRℓi of
taskτi is given as a recurrence that can be solved using fixed-point iteration technique.
This response-time test is derived by assuming somegivenfixed-priority ordering of
the tasks. However, determining a “good” fixed-priority ordering of theMC tasks is as
important as deriving a schedulability test. This is because if a task set does not pass
the schedulability test for a given priority ordering, thena priority ordering for which
the task set passes the schedulability test can avoid unnecessary upgrade of hardware or
re-specification of software. The Audsley’s OPA algorithm [Aud01] combined with the
proposed (response-time based) schedulability test in this chapter will be applied to find
an effective fixed-priority ordering of theMC tasks.

9.3.1 Dual-Criticality Systems

A dual-criticality system exhibits eitherLO or HI criticality behavior. The response
timeRLO

i andRHI
i of taskτi will be derived for theLO andHI-criticality behavior of the

dual-criticality system, respectively. The following Lemma is used in Sections 9.4–9.5.

Lemma 9.1. If task τj meets all its deadlines during all correct behaviors of a dual-
criticality system, then

RLO
j ≤ ζj

where, ζj =

{

Dj − (CHI
j − CLO

j) if Lj = HI
Dj if Lj = LO

(9.1)

Proof. Consider a job of taskτj that finishesCLO
j units of execution exactlyRLO

j time
units after its release time without signaling completion.If RLO

j > Dj − (CHI
j − CLO

j)
andLj = HI, then this job can not complete additional(CHI

j − CLO
j) units of exe-

cution before its deadline during theHI-criticality behavior of the system. Therefore,
if task τj meets its deadline in all correct behavior of the system andLj = HI, then
RLO
j ≤ Dj − (CHI

j − CLO
j). And obviously, ifLj = LO, thenRLO

j ≤ Dj for all correct
behavior of the system.

According to Lemma 9.1, a job of taskτj that is released at timer must finishCLO
j units

of execution by time(r + ζj) in all LO-criticality behaviors. Lemma 9.1 essentially
captures the “true” relative deadline of taskτj for the LO-criticality behavior of the
system. The relative deadline of taskτj when analyzing theLO criticality behavior of
the system is denoted byζj . The relative deadline of taskτj during theHI criticality
behavior of the system is still equal toDj .

182 CHAPTER 9. MIXED-CRITICALITY SYSTEMS

9.4 RTA Procedure atLO Criticality Level

A dual-criticality system is schedulable at theLO criticality level if and only if each
taskτi ∈ Γ meet their deadlines for allLO-criticality behaviors of the system. In this
section, the response timeRLO

i of taskτi considering theLO-criticality behavior of the
system is derived. According to theMSM algorithm and Lemma 9.1, the execution of
any taskτj ∈ (HPi ∪ {τi}) during theLO-criticality behavior of the system is equiv-
alent to traditional global FP scheduling of (non-MC) sporadic taskτj with parameters
(CLO

j , ζj , Tj). In such case, the response timeRLO
i of task τi can be determined us-

ing standard RTA technique proposed for (non-MC) sporadic task systems, for example,
using the test proposed by Guan et al. in [GSYY09]. However, the test proposed by
Guan et al. in [GSYY09] is OPA-incompatible [DB11b], i.e., it can not be used to find
effective fixed-priority ordering of the tasks based on Audsley’s approach. Now in sub-
section 9.4.1 a new, OPA-compatible response time test thatcan be used to determine
the schedulability of taskτi is presented.

9.4.1 New RTA for Sporadic Task Systems

The response timeRLO
i of taskτi is determined by calculating the workload, interfering

workload, total interfering workload and interference of the higher priority tasks within
the problem window of taskτi.

Workload. TheCI andNC workloads of each higher priority taskτk ∈ HPi within the
problem window of taskτi need to be computed. The upper bound on the workload of
taskτk ∈ HPi within any interval of lengtht is denoted byWNCk (t) andWCIk (t) whenever
τk is aNC task andCI task, respectively. Since each job of taskτk executes at mostCLO

k

time units during theLO-criticality behavior, theNC workloadWNCk (t) of taskτk is given
(based on [GSYY09]) as follows:

WNCk (t) = ⌊t/Tk⌋ · CLO
k +min(CLO

k , t− ⌊t/Tk⌋ · Tk) (9.2)

Guan et al. in [GSYY09] also proposed a novel technique for estimating theCI work-
load of taskτk within the problem window ofτi. However, theCI workload computa-
tion of taskτk, according to [GSYY09], requires to know the response time of taskτk
which in turn requires to know therelative priority orderingof the higher priority tasks
in HPi. This is because without knowing the relative priority ordering of the tasks in
HPi it is not possible to determine the response time of taskτk ∈ HPi. Such dependency
on the relative priority ordering of the higher priority tasks needs to be avoided to derive
an OPA-compatible [Aud01, DB11b] schedulability test (thefirst condition in page 83
for being a test OPA-compatible is not satisfied). This problem is circumvented by using
the upper bound on the response timeRLO

k of taskτk according to Lemma 9.1. The value
of CI workloadWCIk (t) of taskτk is given as follows:

WCIk (t) = Akt · CLO
k +min(CLO

k , t+ ζk − CLO
k −Akt · Tk) (9.3)

9.4. RTA PROCEDURE ATLO CRITICALITY LEVEL 183

whereAkt = ⌊(t + ζk − CLO
k)/Tk⌋ and ζk is defined in Eq. (9.1). Note that ifRLO

k

is used in place ofζk in Eq. (9.3), then Eq. (9.3) calculates the sameCI workload as
in [GSYY09]. However, in order to make the proposed test OPA-compatible, an upper
bound onRLO

k (according to Lemma 9.1) is used in Eq. (9.3). It is easy to seethat the
NC andCI workloads calculation in Eq. (9.2) and Eq. (9.3) do not require to know the
relative priority ordering of the tasks inHPi.

Interfering Workload: The upper bounds on the interfering workload of taskτk on any
job of taskτi within the problem window of lengtht are denoted byICIk,i(t) andINCk,i(t)
wheneverτk is aCI task andNC task, respectively. It is pointed out in [BC07, BCL09]
that if a job of taskτ with execution timeC and relative deadlineD suffers enough
interference to miss its deadline, then it is sufficient to consider the interfering workload
of a higher priority task limited to at most(D − C + 1). Therefore,ICIk,i(t) andINCk,i(t)
are given as follows:

ICIk,i (t) = min(WCIk (t), t− CLO
i + 1) (9.4)

INCk,i (t) = min(WNCk (t), t− CLO
i + 1) (9.5)

The difference between theCI andNC interfering workload of taskτk within the prob-
lem window of lengtht is denoted byIDIFFk,i (t) such that:

IDIFFk,i (t) = ICIk,i (t)− INCk,i (t)

Total Interfering Workload. The upper bound on total interfering workload due to all
the tasks in setHPi is denoted byIi(t). The value ofIi(t) is calculated as follows:

Ii(t) =
∑

τk∈HPi

INCk,i (t) +
∑

τk∈Max(HPi,m−1)

IDIFFk,i (t) (9.6)

whereMax(HPi,m − 1) is the set of(m − 1) tasks from setHPi that have the largest
values ofIDIFFk,i (t).

Interference. The term interference is an integer and all them processors are busy exe-
cuting tasks fromHPi while taskτi is interfered. Thus, an upper bound on interference
due to the tasks inHPi on any job of taskτi within the problem window of lengtht is
⌊Ii(t)/m⌋.
The Response Time Test.The response timeRLO

i of taskτi for theLO criticality be-
havior of the system is given as follows:

RLO
i ← CLO

i +

⌊

Ii(RLO
i)

m

⌋

(9.7)

This can be solved by searching iteratively the least fixed point starting withRLO
i = CLO

i

184 CHAPTER 9. MIXED-CRITICALITY SYSTEMS

for the right-hand side of Eq. (9.7). IfRLO
i > ζi, then the taskτi misses its deadline.

When certifying a system atLO criticality level, Eq. (9.7) can be used to determine
whether taskτi ∈ Γ meets its deadline during all theLO-criticality behavior of the sys-
tem. Note that Eq. (9.7) can also be used to determine the schedulability of traditional,
non-MC, sporadic tasks. The test in Eq. (9.7) does not depend on the relative priority
ordering of the higher priority tasks; hence, is OPA-compatible.

An Example: Consider the following dual-criticality task set in Table 9.1 comprised of
n = 3 tasks to be scheduled usingMSM algorithm onm = 2 processors.

τi Li CLO
i CHI

i Di Ti ζi
τ1 HI 1 2 3 4 2
τ2 LO 1 − 2 3 2
τ3 HI 2 3 3 4 2

Table 9.1: An example task set

Assume that taskτ1 is thelowestpriority task. The aim is to calculateRLO
1 to determine

if τ1 is MSM-schedulable during allLO-criticality behaviors. Note that the other two
higher priority tasksτ2 andτ3 are trivially schedulable sincem = 2.

CalculatingRLO
1 : The response timeRLO

1 of taskτ1 is calculated in the table below. The
first column represents the length of the problem window; initially, set toRLO

1 = CLO
1 =

1. The second column presents (based on Eq. (9.6)) the total interfering workload of the
higher priority tasksτ2 andτ3 for the length of the problem window given in the first
column. Finally, the right hand side of Eq. (9.7), i.e., new value ofRLO

1 , is evaluated and
presented in the third column.

RLO
1 (problem window) I1(R

LO
1) RLO

1 ← CLO
1 + ⌊ I1(R

LO
1)

2
⌋

CLO
1 = 1 2 1 + ⌊ 2

2
⌋ = 2

2 3 1 + ⌊ 3
2
⌋ = 2

Since the values ofRLO
1 in the third column for the first two iterations are the same,

the RTA procedure converges andRLO
1 = 2. SinceRLO

1 = 2 ≤ ζ1 = 2 ≤ D1 = 3, the
deadline of taskτ1 is met for allLO-criticality behaviors.

9.5 RTA Procedure atHI Criticality Level

A dual-criticality system is schedulable at theHI criticality level if and only if it is true
that eachHI-critical taskin Γ meets their deadlines for allHI-criticality behaviors of the
system. In this section, the response timeRHI

i of taskτi considering theHI-criticality
behavior of the system is derived.

9.5. RTA PROCEDURE ATHI CRITICALITY LEVEL 185

In order to derive the response timeRHI
i of aHI-critical taskτi, the schedulability

analysis of a generic jobJxi of taskτi within the problem window[rxi , r
x
i + t) of length

t is considered. Assumes be the time instant relative to the release time of jobJxi at
which the system switches fromLO toHI criticality behavior (as is given in Figure 9.1).

Figure 9.1: The problem window of lengtht

If s > RLO
i , then the system exhibitsLO-criticality behavior before(rxi + s) and the

job Jxi must have completed before(rxi + s) because(rxi + s) > (rxi + RLO
i). Since

the aim is to determine the response time of taskτi for theHI-criticality behavior of the
system, it is sufficient to consider0 ≤ s ≤ RLO

i to computeRHI
i .

The response time of taskτi (i.e., the response time of the generic jobJxi) for a
given value ofs is denoted byRHI

i,s. The response timeRHI
i is the largestRHI

i,s for some
s, 0 ≤ s ≤ RLO

i . The value ofRHI
i,s is calculated based on the workload, interfering work-

load, total interfering workload and interference of each higher-priority taskτk ∈ HPi
whereHPi = (hpL(i) ∪ hpH(i)).

The NC andCI workloads of the higher priority taskτk ∈ hpL(i) are respec-
tively denoted byWLNCk (s, t) andWLCIk (s, t) such that the system switches fromLO to
HI criticality behavior at times relative to the beginning of the problem window of
lengtht. Similarly, WHNCk (s, t) andWHCIk (s, t) denote theNC andCI workloads of task
τk ∈ hpH(i), respectively.

The remainder of this section is organized as follows. First, theNC andCIworkloads
of taskτk ∈ hpL(i)are derived in subsection 9.5.1. Second, theNC andCI workloads
of taskτk ∈ hpH(i)are derived in subsection 9.5.2. Then, the interfering workload,
total interfering workload and interference of the tasks inHPi are calculated, and finally,
a recurrence forRHI

i,s is derived in subsection 9.5.3.

9.5.1 Workload of τk ∈ hpL(i) within [rxi , r
x
i + t)

In this subsection, theNC andCI workloads of aLO-critical taskτk ∈ hpL(i) within
the problem window[rxi , r

x
i +t) are calculated. According to theMSM algorithm, theLO-

critical taskτk is not dispatched after the criticality-switch at(rxi +s). The WCET of task
τk is CLO

k since taskτk executes only during theLO-criticality behavior of the system.
The execution of theLO-critical taskτk in [rxi , r

x
i + s) is equivalent to the execution of

traditional (non-MC) sporadic task with parameters(CLO
k , ζk = Dk, Tk). In such case,

186 CHAPTER 9. MIXED-CRITICALITY SYSTEMS

WLNCk (s, t) andWLCIk (s, t) are given as follows:

WLNCk (s, t) = WNCk (s) (9.8)

WLCIk (s, t) = WCIk (s) (9.9)

whereWNCk (s) andWCIk (s) are given in Eq. (9.2) and Eq. (9.3), respectively.

9.5.2 Workload of τk ∈ hpH(i) within [rxi , r
x
i + t)

In this subsection, theNC andCI workloads of aHI-critical taskτk ∈ hpH(i) within
the problem window[rxi , r

x
i + t) are calculated.

Calculating WHNCk (s, t). TheNC workloadWHNCk (s, t) of taskτk ∈ hpH(i) within the
problem window[rxi , r

x
i + t) is calculated according to the releases of the jobs of task

τk as follows: one job of taskτk is released at time instantrxi and subsequent jobs of
taskτk are released as early as possible. The jobs of taskτk execute as early as possible
within the problem window (as given in Figure 9.2).

Figure 9.2: TheNC workload of taskτk ∈ hpH(i) within an interval of lengtht. Note that the
criticality changes at time instant(rxi + s).

If each job of taskτk executes forCHI
k time units within[rxi , r

x
i + t), then the work-

load of taskτk within [rxi , r
x
i + t), denoted byWupper(t), is given as follows:

Wupper(t) = ⌊t/Tk⌋ · CHI
k +min(CHI

k , t− ⌊t/Tk⌋ · Tk) (9.10)

However, each of at least⌊s/Tk⌋ jobs of taskτk executes for at mostCLO
k time units

within [rxi , r
x
i + s). The value ofNC workloadWHNCk (s, t) is given as follows4:

WHNCk (s, t) =Wupper(t)− ⌊s/Tk⌋ · (CHI
k − CLO

k) (9.11)

4The job of taskτk that is released at time(rxi + ⌊s/Tk⌋ · Tk) executes for at mostCLO
k

time units if
(⌊s/Tk⌋ · Tk + RLO

k
) < s; otherwise, it executes for at mostCHI

k
time units. For ease of presentation, this

job is assumed to execute forCHI
k

time units.

9.5. RTA PROCEDURE ATHI CRITICALITY LEVEL 187

Calculating WHCIk (s, t). The CI workloadWHCIk (s, t) of taskτk ∈ hpH(i) within a
problem window of lengtht is calculated by considering a particular release pattern,
called thereference pattern, of the jobs of taskτk within [rxi , r

x
i + t). The reference

pattern is defined considering releases of the jobs of taskτk within [rxi , r
x
i +t) as follows

(see Figure 9.3):

• one job of taskτk is released at time(rxi + t − CHI
k) and other jobs ofτk are

released as close as possible (periodically) to the job released at(rxi + t − CHI
k);

and

• the jobs of taskτk that are released before time instant(rxi + t − CHI
k) execute

aslate as possible and the jobs of taskτk that are released at or after time instant
(rxi + t− CHI

k) execute asearlyas possible.

Figure 9.3: The reference pattern. The criticality-switch occurs at(rxi + s) within the interval
[rxi , r

x
i + t).

Based on the reference pattern, the value ofCI workloadWHCIk (s, t) is calculated in two
steps as follows:

• STEP1: The workload of taskτk within [rxi , r
x
i + t) for the reference pattern in

Figure 9.3 is calculated. The workload of taskτk within the problem window for
the reference pattern is denoted byPk(s, t).

• STEP2: By considering all possible leftward or rightward shifts ofthe problem
window in the reference pattern, themaximum net increase in workload within
the shifted window in comparison to the workload calculatedin Step 1 is deter-
mined.

The sum of the two workload factors in Step 1 and Step 2 is the value ofWHCIk (s, t). The
details of calculating the workloads for Step 1 and Step 2 arenow presented.

STEP 1 (workload ofτk in the reference pattern): In this step, the workloadPk(s, t) of
the jobs of taskτk for the reference pattern in Figure 9.3 is computed. Consider the job
Jyk that satisfies the following condition in the reference pattern:

ryk ≤ (rxi + s) < r
(y+1)
k (9.12)

188 CHAPTER 9. MIXED-CRITICALITY SYSTEMS

According to Eq. (9.12), the criticality-switch at(rxi + s) occurs at or after the release

time of jobJyk but prior to the release of jobJ (y+1)
k . It is assumed that jobJyk executes

for CHI
k time units5. Any job of taskτk that is released before and after the release of

Jyk executes for at mostCLO
k andCHI

k time units in the reference pattern, respectively.
Given the values oft ands, the time instant when jobJyk is released relative to the

time instantrxi can be precisely determined. Since jobJyk satisfies Eq. (9.12), the release
time ryk of job Jyk is:

ryk = (rxi + t)− CHI
k −N k

t,s · Tk (9.13)

whereN k
t,s is number of jobs of taskτk that are released in[ryk , r

x
i + t− CHI

k) in the
reference pattern; andN k

t,s is given as follows:

N k
t,s = ⌈(max{0, t− CHI

k − s})/Tk⌉ (9.14)

In other words, the jobJyk is released(t − CHI
k − N k

t,s · Tk) time units apart from
the beginning of the problem window. Sinceτk is aHI-critical task, i.e.,Lk = HI,
the response time of a job of taskτk that executes for at mostCLO

k time units is upper
bounded byζk = Dk − (CHI

k − CLO
k) according to Lemma 9.1. In other words, each of

the jobs released beforeryk completes its execution at least(Dk − ζk) = (CHI
k − CLO

k)
time units earlier than its deadline. Based on this observation, the specific reference
pattern is depicted in Figure 9.4.

Figure 9.4: The reference pattern. Each job released beforer
y

k finishes(Dk − ζk) time units
earlier than its deadline in the reference pattern.

Observe that no job of taskτk in Figure 9.4 can execute in[ryk − (Tk − ζk), ryk)
since the jobJ (y−1)

k completes its execution at or before time instantryk − (Tk − ζk).
Thus, the workload of taskτk within [rxi , r

y
k) is in fact the workload of taskτk within

5In fact, jobJy

k
executes forCLO

k
time units if (ry

k
+RLO

k
) < (rxi + s); otherwise,Jy

k
executes for at

mostCHI
k

time units. For ease of presentation, jobJy

k
is assumed to execute forCHI

k
time units.

9.5. RTA PROCEDURE ATHI CRITICALITY LEVEL 189

[rxi , r
y
k − (Tk − ζk)). The length of the interval[rxi , r

y
k − (Tk − ζk)) is denoted byQ

such that
Q = max{0, t− CHI

k −N k
t,s · Tk − (Tk − ζk)} (9.15)

The workload of taskτk in the reference pattern is calculated considering two cases:
Case(A)Q = 0, and Case(B)Q > 0.

Case (A) (Q = 0): For this case, each of the jobs of taskτk executes for at mostCHI
k

time units within theentireproblem window[rxi , r
x
i +t) sincerxi ≥ 0 ≥ t−CHI

k −N k
t,s ·

Tk − (Tk − ζk). In other words, the execution of taskτk is equivalent to the execution
of traditional (non-MC) sporadic taskτk with parameters(CHI

k , Dk, Tk) in the reference
pattern. Based on the work by Bertogna and Cirinei in [BC07] for traditional sporadic
tasks, the workloadPk(s, t) of taskτk with parameters(CHI

k , Dk, Tk) in any interval of
lengtht is given as follows:

Pk(s, t) = Bkt · CHI
k +min{CHI

k , t+Dk − CHI
k −Bkt · Tk} (9.16)

whereBkt = ⌊(t+Dk − CHI
k)/Tk⌋.

Case (B) (Q > 0): According to Eq. (9.15) for this case,t > CHI
k +N k

t,s ·Tk+(Tk−ζk).
And, according to Eq. (9.13),ryk > rxi whenevert > CHI

k + N k
t,s · Tk + (Tk − ζk).

Therefore, jobJyk is not thecarry-in job becauseJyk is not released beforerxi . The
workloadPk(s, t) of taskτk within [rxi , r

x
i + t) for the reference pattern in Figure 9.4 is

determined by adding the workload of taskτk in [rxi , r
y
k) and[ryk , r

x
i + t).

Remember that the workload of taskτk within [rxi , r
y
k) in Figure 9.4 is in fact the

workload of taskτk within [rxi , r
y
k − (Tk − ζk)). By viewing the schedule in Figure 9.4

(backward in time), starting fromryk − (Tk − ζk) to rxi , it is evident that the workload
of taskτk in [rxi , r

y
k − (Tk − ζk)) is equal to theNC workload of traditional (non-MC)

sporadic taskτk with parameters(CLO
k , ζk, Tk) in an interval of lengthQ. Thus, the

NC workload of sporadic taskτk with parameters(CLO
k , ζk, Tk) within an interval of

lengthQ can be given asWNCk (Q) according to Eq. (9.2).

Within the interval[ryk , r
x
i + t) in Figure 9.4, there are at most(N k

t,s + 1) jobs of
taskτk that each executes forCHI

k time units. Therefore, the workload of taskτk within
[ryk , r

x
i + t) is equal to(N k

t,s + 1) · CHI
k . The workloadPk(s, t) of taskτk within the

entire problem window[rxi , r
x
i + t) for the reference pattern is given as follows:

Pk(s, t) = WNCk (Q) + (N k
t,s + 1) · CHI

k (9.17)

In summary, the workloadPk(s, t) of taskτk for the reference pattern is given using
Eq. (9.16) and Eq. (9.17) for Case (A) and Case (B), respectively.

STEP 2 (net increase in workload due to shift): In this step, by shifting the prob-
lem window within the reference pattern in Figure 9.4 themaximum net increase in
workload within the shifted problem window in comparison toPk(s, t) is determined.
According to the analysis by Bertogna and Cirinei in [BC07],the releases of the jobs
in the reference pattern for Case (A) represents the worst-case workload of taskτk with

190 CHAPTER 9. MIXED-CRITICALITY SYSTEMS

parameters(CHI
k , Dk, Tk) in any interval of lengtht. Therefore, it is only needed to con-

sider shifting the problem window in the reference pattern for Case (B), i.e., whenever
Q > 0. Themaximum net increasein workload in addition toPk(s, t) for all possible
leftward and rightward shifts of the problem window in Figure 9.4 is given in Lemma 9.2
(proof is in Appendix A, page 225).

Lemma 9.2. The net increase in workload due to any shift of the problem window in
Figure 9.4 is bounded by(CHI

k − CLO
k).

Given the workloadPk(s, t) for the reference pattern in Eq. (9.16) and Eq. (9.17) respec-
tively for Case (A) and Case (B), the value ofCI workloadWHCIk (s, t) of theHI-critical
taskτk in the problem window is given as follows:

WHCIk (s, t) =

{

Pk(s, t) + (CHI
k − CLO

k) if Q > 0

Pk(s, t) otherwise
(9.18)

In summary, theNC andCIworkloads of aLO-critical taskτk ∈ hpL(i)within a prob-
lem window of lengtht of taskτi are given in Eq. (9.8) and Eq. (9.9), respectively. And,
theNC andCI workloads of aHI-critical taskτk ∈ hpH(i) within a problem window
of lengtht of taskτi are given in Eq. (9.11) and Eq. (9.18), respectively. Based on the
NC andCI workloads of each taskτk ∈ HPi = (hpL(i) ∪ hpH(i)), the response
timeRHI

i of theHI-critical taskτi is derived in next subsection.

9.5.3 The RTA Test forHI Criticality Level

The response timeRHI
i of HI-critical taskτi is calculated by computing the interfering

workload, total interfering workload and interference based on the workload of the tasks
in HPi within the problem window of taskτi.

Interfering Workload. TheNC andCI interfering load of taskτk within the problem
window of lengtht for some givens are denoted byINCk,i(s, t) andICIk,i(s, t) wheneverτk
isNC andCI task, respectively. An upper bound on the interfering workload of a higher
priority task within the problem window is the workload of the higher priority task
within that problem window. However, it is pointed out in [BC07, GSYY09, DB11b]
that it is sufficient to consider the interfering workload ofa higher priority task limited
to at most(t−Ci+1) within the problem window sizet whenever taskτi has execution
timeCi. The values ofINCk,i(s, t) andICIk,i(s, t) are given as follows:

INCk,i(s, t) =







min{WLNCk (s, t), t− CHI
i + 1} if τk ∈ hpL(i)

min{WHNCk (s, t), t− CHI
i + 1} if τk ∈ hpH(i)

ICIk,i(s, t) =







min{WLCIk (s, t), t− CHI
i + 1} if τk ∈ hpL(i)

min{WHCIk (s, t), t− CHI
i + 1} if τk ∈ hpH(i)

9.5. RTA PROCEDURE ATHI CRITICALITY LEVEL 191

The difference between theCI andNC interfering workload of taskτk is denoted by
IDIFFk,i (s, t) and is given as:

IDIFFk,i (s, t) = ICIk,i(s, t) − INCk,i(s, t)

Total Interfering Workload. The upper bound on total interfering workload due to all
the tasks in setHPi within the problem window for some givens is denoted byIi(s, t).
The value ofIi(s, t) is given as follows:

Ii(s, t) =
∑

τk∈HPi

INCk,i(s, t) +
∑

τk∈Max(HPi ,m−1)

IDIFFk,i (s, t) (9.19)

whereMax(HPi ,m− 1) is the set of(m− 1) tasks from setHPi that have the largest
values ofIDIFFk,i (s, t).

Interference. Because interference is an integer and all them processors are busy
executing tasks fromHPi while taskτi is interfered, the upper bound on interference
due to the tasks inHPi on any job of taskτi within the problem window of lengtht is
⌊Ii(s, t)/m⌋.

The Response Time Test.The response time ofHI-critical taskτi for some givens is
given as follows:

RHI
i,s ← CHI

i + ⌊
Ii(s,RHI

i,s)

m
⌋ (9.20)

The Eq. (9.20) can be solved by iteratively searching the least fixed point starting with
RHI
i,s = CHI

i for the right-hand side of Eq. (9.20). The response timeRHI
i of taskτi

during anyHI-criticality behavior of the system is given as:

RHI
i = max

0≤s≤RLO
i

{RHI
i,s} (9.21)

When certifying a system atHI criticality level, Eq. (9.21) can be used to determine
whether theHI-critical taskτi meets its deadline during allHI-criticality behaviors of
the system. The RTA test in Eq. (9.21) is OPA-compatible since it does not depend on
the relative priority ordering of the higher priority tasksin HPi and all conditions given
in page 83 for a schedulability test to be OPA-compatible aresatisfied.

An Example: Consider the dual-criticality task set in Table 9.1 where task τ1 is the
lowestpriority task. It is shown in subsection 9.4.1 that taskτ1 is schedulable for all
LO-criticality behaviors andRLO

1 = 2. Since taskτ1 is aHI-critical task, i.e.,L1 = HI,
the aim is to calculateRHI

1 to verify if τ1 is schedulable in allHI-criticality behaviors.

Calculating RHI
1 : According to Eq. (9.21), the response timeRHI

1 is the maximum of
RHI

1,s for all s = 0, . . . , RLO
1 whereRLO

1 = 2. The values ofRHI
1,s for all s = 0, 1, 2 are

calculated using the recurrence in Eq. (9.20) in the table below.

192 CHAPTER 9. MIXED-CRITICALITY SYSTEMS

The first column represents all possible values ofs, 0 ≤ s ≤ RLO
1 . The second

column presents the length of the problem window; initially, set toRHI
1,s = CHI

1 =
2 for each new value ofs in the first column. The third column presents (based on
Eq. (9.19)), the total interfering workloadI1(s,R

HI
1,s) of the higher-priority tasksτ2 and

τ3 considering the length of the problem window given in the second column. Finally,
the right hand side of Eq. (9.20), i.e., new value ofRHI

1,s, is evaluated in the forth column.

s RHI
1,s(window) I1(s,R

HI
1,s) RHI

1,s ← CHI
1 + ⌊I1(s,R

HI
1,s)

2 ⌋

0
CHI

1 = 2 2 2 + ⌊ 22⌋ = 3

3 2 2 + ⌊ 32⌋ = 3

1
CHI

1 = 2 3 2 + ⌊ 32⌋ = 3

3 3 2 + ⌊ 32⌋ = 3

2
CHI

1 = 2 3 2 + ⌊ 32⌋ = 3

3 3 2 + ⌊ 32⌋ = 3

It is evident thatRHI
1,s=0 = 3, RHI

1,s=1 = 3, andRHI
1,s=2 = 3 (see the shaded cells

in the last column). Therefore, it follows thatRHI
1 = 3 based on Eq. (9.21). Since

RHI
1 = 3 ≤ D1 = 3, the deadline of taskτ1 is met in all theHI-criticality behaviors

of the system. Therefore, taskτ1 meets all its deadlines in bothLO andHI criticality
behaviors of the system. And, the two other tasksτ2 andτ3 having higher priorities are
trivially schedulable sincem = 2. Consequently, the dual-criticality task set in Table 9.1
is MSM-schedulable.

9.6 Schedulability Analysis forL > 2

In this section, the main principle to compute the response timeRℓi of taskτi is presented
considering theℓ-criticality behavior of the system where3 ≤ ℓ ≤ Li andLi ≤ L.

Consider the problem window[rxi , r
x
i + t) of some generic jobJxi of taskτi. As-

sume thatS = {s1, . . . , s(ℓ−1)} is the set of relative distances fromrxi such that the
system switches fromν-criticality to (ν + 1)-criticality behavior at time(rxi + sν) for
eachsν ∈ S. For the sake of analysis, assume thatsν = ∞ for ν ≥ ℓ, andsν = 0 for
ν = 0.

According to theMSM algorithm, taskτk ∈ HPi is allowed to execute within the
problem window[rxi , r

x
i + t) before time instant(rxi + p) during theℓ-criticality behav-

ior of the system such thatp = min{t, sLk
}. In other words, ifLk < ℓ, then taskτk

is allowed to execute before(rxi + sLk
) in the problem window; otherwise, taskτk is

allowed to execute during the entire problem window for allℓ-criticality behaviors of
the system.

The response time of taskτi for somegivensetS is denoted byRℓi,S . The response
time Rℓi is the maximumRℓi,S over all possible setsS where eachsν ∈ S can have

9.6. SCHEDULABILITY ANALYSIS FORL > 2 193

any value between[0, Rvi] andsν ≤ s(ν+1). Therefore, the number of different sets
S that one has to consider to findRℓi is upper bounded by(Di)

L. However, the num-
ber of different criticality levelsL in many practical safety-critical systems is not very
large, e.g., according to the RTCA DO-178B standard, there are five different Design
Assurance Levels (DAL A to DAL E) for software in avionics systems, and according to
ISO 26262 standard, the safety functions in automotive systems can have four different
Automotive Safety Integrity Levels (ASIL A to ASIL D).

The response timeRℓi,S can be derived (similar to that of in Section 9.5 for dual-
criticality systems) once theNC andCI workloads of each taskτk ∈ HPi in [rxi , r

x
i +

p) are known, wherep = min{t, sLk
}. The basic idea for calculating theNC and

CI workloads of taskτk ∈ HPi is presented next.

NC Workload: In order to find theNC workload of taskτk within an interval of length
p, consider that one job of taskτk arrives exactly at the beginning of the window and
subsequent jobs arrive and execute as early as possible. To findRℓi , the upper bound on
NC workload ofτk ∈ HPi within an interval of lengthp can be calculated as follows:

• If all the jobs of taskτk executes forCℓk time units within an interval lengthp,
then the total workload within the problem window is:

Wupperk = ⌊p/Tk⌋ · Cℓk +min{Cℓk, p− ⌊p/Tk⌋ · Tk}

• However, each of at least⌊ sν
Tk
⌋ jobs of taskτk executes for at mostCνk time units

for ν = 1 . . . (ℓ − 1). This is because the system exhibitsν-criticality behavior
before(rxi + sν). Thus, an upper bound onNC workload within the problem
window is:

Wupperk −
ℓ−1
∑

ν=1

⌊sν/Tk⌋ · (C(ν+1)
k − Cνk)

CI Workload: In order to calculate theCI workload within the problem window, con-
sider the releases of the jobs ofτk as follows (called, thereference pattern): one job
of taskτk releases exactly at(rxi + p− Cℓk) and executes forCℓk time units as early as
possible; and earlier jobs ofτk are released and execute aslateas possible.

Given the reference pattern, the release time of each job of taskτk relative to the
beginning of the interval[rxi , r

x
i + p) can be determined. For each such job of taskτk,

say jobJyk , that executes within the problem window, thelargestsν , if one exists inS,

such thatryk ≤ (rxi + sν) < r
(y+1)
k , can be determined. If such ansν ∈ S exists for job

Jyk , then it is assumed that jobJyk executes forC(ν+1)
k time units. If no suchsν exists for

job Jyk , then it is considered that jobJyk executes forC(ν+1)
k time units where(rxi + sν)

is theclosestcriticality-switch time of the system prior to the release of job Jyk (such an
sν must exist since it is assumed thats0 = 0).

Given the execution time of each job of taskτk for the reference pattern within the
interval of lengthp, the workload of taskτk for the reference pattern can be computed.

194 CHAPTER 9. MIXED-CRITICALITY SYSTEMS

And, it can be shown that the maximum increase in workload dueto any possible shift of
the problem window within the reference pattern is bounded by (Cℓk − C1

k). By adding
these two workload factors, theCI workload within the problem window is derived.
Once theCI andNC workloads of each taskτk ∈ HPi are known, the recurrence for the
response timeRℓi,S can be derived by finding the interfering workload, total interfering
workload and interference for a given setS.

9.6.1 Finding Priorities using Audsley’s Algorithm

The pseudocode for applying Audsley’s approach to find the fixed-priority ordering of
theMC tasks is given in Figure 9.5. TheMC tasks in setΓ are assigned priority starting
from the lowest priority leveln to the highest priority level1 using the outer loop in line
1. If Rℓi ≤ Di for all ℓ ≤ Li for some priority-unassigned taskτi (i.e., condition in line
3–5 is true), then taskτi is assigned the current priority level in line 6. The value ofRℓi
is calculated in line 3–5 by assuming priority levelPL for the priority-unassigned task
τi and higher priorities for all other priority-unassigned tasks.

If some priority-unassigned taskτi is assigned the current priority level in line 6, then
the priority assignment for next (higher) priority level isconsidered (i.e., next iteration of
the outer loop starts). If no priority-unassigned task can be assigned the current priority
level (condition in line 3 is false for all priority-unassigned tasks), then the priority
assignment fails and line 8 reports “Failure”. If all the tasks are assigned priorities, then
line 9 reports “Success”.

Algorithm OPA(Mixed-Criticality task set Γ)

1. for each priority levelPL, lowest first
2. for each priority-unassigned taskτi ∈ Γ
3. If Rℓi ≤ Di for all ℓ ≤ Li, where taskτi is assumed to have
4. priority levelPL with all other priority-unassigned
5. tasks are assumed to have higher priorities, Then
6. assignτi priority levelPL
7. break (continue outer loop)
8. return “Failure”
9. return “Success”

Figure 9.5: OPA algorithm forMC tasks scheduled usingMSM.

Time-Complexity for Dual-Criticality. To determine whether a dual-criticality taskτi
meets all the deadlines in all correct behaviors of the system, it is required to findRLO

i

andRHI
i based on Eq. (9.7) and Eq. (9.21), respectively. Since the recurrence in Eq. (9.7)

can be solved inO(Tmax) iterations, the time complexity to findRLO
i isO(Tmax), where

Tmax is the largest period of the task set.
To computeRHI

i based on Eq. (9.21), one has to evaluate the recurrence in Eq.(9.20)
for each possible value ofs, where0 ≤ s ≤ RLO

i . The recurrence in Eq. (9.20) can be

9.7. EMPIRICAL INVESTIGATION 195

solved for agivenvalue ofs usingO(Tmax) iterations. Sinces ≤ RLO
i ≤ Tmax, at most

O(T 2
max) iterations are needed to findRHI

i based on Eq. (9.21). Therefore, the time
complexity to findRLO

i andRHI
i is pseudo-polynomial.

When applying the OPA algorithm in Figure 9.5 for dual-criticality system, evaluat-
ing the condition in line 3–5 requires to computeRLO

i andRHI
i for at mostn different

tasks at priority levelPL = n, for at most(n − 1) different tasks at priority level
PL = (n − 1), and so on. Therefore, the total number of times line 3–5 is executed is
O(n2). Therefore, the time complexity of the OPA algorithm for dual-criticality system
isO(n2 · T 2

max) which is pseudo-polynomial in the representation of the task set. It can
be shown that the time complexity of the OPA algorithm for task set withL criticality
levels isO(n2 · L · TL

max) which can be considered pseudo-polynomial for any fixed
value ofL that is reasonable for practical mixed-criticality systems.

9.7 Empirical Investigation

In this section, the result of empirical investigation to measure the performance of the
proposed response time test for dual-criticality systems is presented. In particular, the
effectiveness of the OPA-based priority assignment scheme(as given in Figure 9.5) is
compared with the following two heuristic priority assignment schemes:

• Deadline-Monotonic Priority Ordering (DMPO): The priorities are ordered based
on deadline (i.e., the shorter the relative deadline, the higher is the priority).

• Criticality-Monotonic Priority Ordering (CMPO): The priorities are first ordered
based on criticality (i.e.,HI critical task first); and then based on deadline (i.e.,
shorter relative deadline first).

To determine theMSM-schedulability of randomly generated task sets using OPA,
DMPO, andCMPO priority assignment schemes, the response-time tests in Eq. (9.7) and
Eq. (9.21) are used. The well-known metric, calledacceptance ratio, is used to evaluate
the effectiveness of different priority assignment schemes. The acceptance ratio of a
priority assignment scheme is the percentage of the randomly generated task sets that
are deemed schedulable using the response-time tests in Eq.(9.7) and Eq. (9.21) at a
given utilization level. Before presenting the experimental results, the task set generation
algorithm is presented next.

Task set Generation. The UUnifast-Discard algorithm proposed by Davis
and Burns [DB11b] (given in subsection 5.6.1, page 66) is used to generate utilizations
for n tasks with total utilization equal toU . Once a set ofn utilizations{u1, u2, . . . un}
of a task set is generated, the other parameters of each taskτi are generated as follows:

• The minimum inter-arrival timeTi of each taskτi is generated from the uniform
random distribution within the range[1ms, 1000ms].

• TheLO-criticality execution time of taskτi is set toCLO
i = ui · Ti. Note thatui is

the utilization corresponds to the task’sLO-criticality execution time.

196 CHAPTER 9. MIXED-CRITICALITY SYSTEMS

• Whether a generated task is aLO- or HI-critical task is determined using a sim-
ulation parameterCP whereCP ≤ 1. A random number in the range[0, 1] is
generated. If this newly generated random number is greaterthanCP, then taskτi
is aLO-critical task; otherwise, the task isHI-critical.

• TheHI-criticality execution time ofτi is set toCHI
i = CLO

i · CF, whereCF is a
simulation parameter≥ 1.

• The relative deadlineDi of taskτi is generated from the uniform random distri-
bution within the range[CLO

i , Ti] and [CHI
i , Ti] wheneverτi is aLO-critical and

HI-critical task, respectively.

Each of the experiments is characterized by a 4-tuple(m,n,CF,CP) wherem is the

number of processors,n is the task set size,CF is equal toC
HI
i

CLO
i

, andCP corresponds to
the percentage ofHI-critical tasks in a task set. For each experiment, total 40 different
utilization levels{0.025m, . . . 0.975m,m} are considered. For each utilization level
U ∈ {0.025m, . . . 0.975m,m}, total 1000 task sets are generated with parametersn,
CF, CP andU .

Result Analysis.Experiments with different simulation parametersm ∈ {2, 4, 8}, n ∈
{10, 20, 40, 60}, CF = {2, 3, 4} andCP = {0.25, 0.5, 0.75} for both implicit-deadline
and constrained-deadline task sets are conducted.

The acceptance ratios for experiment (m = 4, n = 20,CF = 2,CP = 0.5) consider-
ing the OPA,DMPO, andCMPO priority-assignment schemes are presented in Figure 9.6
(the trend is similar for other experiments). The x-axis represents the system utilization
(i.e.,U/m) and the y-axis represents the acceptance ratios.

Since the scheduling window for implicit-deadline task sets is relatively wider than
that of the constrained-deadline task sets, the acceptanceratios of all priority assign-
ment schemes for implicit-deadline task sets are relatively better in comparison to the
constrained-deadline task sets in Figure 9.6. The performance ofCMPO is very poor in
comparison to theDMPO scheme, i.e., the criticality-monotonic priority ordering is far
from the optimal priority assignment scheme. The acceptance ratio of the OPA scheme
is more than 50% larger than that of theDMPO scheme at0.6m and0.4m utilization lev-
els for implicit-deadline and constrained-deadline task systems, respectively. The OPA
scheme significantly outperforms both theDMPO andCMPO schemes.

It is not difficult to realize that the acceptance ratio wouldbe relatively lower for ex-
periments with relatively largerCF and/orCP. This is because largerCF and/orCPmeans
larger total utilization of theHI-critical tasks; and it is generally difficult to schedule task
sets having large total utilization.

The acceptance ratios of the OPA scheme usingCF = 2 andCP = 0.5 for implicit-
deadline task sets for different(m,n) pairs are presented in Figure 9.7. There are vari-
ations in acceptance ratios at higherU for the variations inm andn. The reasons for
such variations are also common for traditional global FP scheduling and discussed in
Chapter 6. However, the acceptance ratios for all the cases in Figure 9.7 are100% upto

9.8. RELATED WORKS 197

0 %

20 %

40 %

60 %

80 %

100 %

 0.2 0.4 0.6 0.8 1

A
cc

ep
ta

nc
e

R
at

io

Utilization / m

m=4, n=20, CP=0.5, CF=2 (Implicit-Deadline)

OPA
DMPO
CMPO

0 %

20 %

40 %

60 %

80 %

100 %

 0.2 0.4 0.6 0.8 1

A
cc

ep
ta

nc
e

R
at

io

Utilization / m

m=4, n=20, CP=0.5, CF=2 (Constrained-Deadline)

OPA
DMPO
CMPO

Figure 9.6: Acceptance ratios forDi = Ti (top) andDi ≤ Ti (right)

0.4m utilization level which justifies the scaleability of the proposed response time test
combined with the OPA algorithm.

9.8 Related Works

The seminal work by Vestal in [Ves07] first proposed theMC task model and its anal-
ysis based on FP scheduling algorithm on uniprocessor platform. Vestal’s algorithm
is proved as the optimal for traditional FP scheduling on uniprocessor by Dorin et
al. [DRRG10]. By showing that neither FP nor EDF scheduling of MC tasks on unipro-
cessor dominates the other, Baruah and Vestal proposed a hybrid algorithm by combin-
ing the benefits of both FP and EDF policies [BV08]. Recently,a variant of FP schedul-
ing algorithm and its analysis on uniprocessor platform is proposed by Baruah et al.
based on the following observation [BBD11b]: the run-time monitoring of execution
time of the jobs can be used to drop jobs ofℓ-critical tasks as soon as the system switches
to (ℓ+1)-criticality behavior. TheMSM algorithm proposed in this chapter also uses this
observation but for multiprocessors.

198 CHAPTER 9. MIXED-CRITICALITY SYSTEMS

0 %

20 %

40 %

60 %

80 %

100 %

 0.2 0.4 0.6 0.8 1

A
cc

ep
ta

nc
e

R
at

io

Utilization / m

CP=0.5, CF=2 (Implicit-Deadline)

(2, 20)
(2, 10)
(4, 40)
(8, 60)
(4, 20)
(8, 40)

Figure 9.7: Acceptance ratio using OPA scheme with different(m,n) pairs.

Several works addressedMC scheduling of a finite collection of jobs on uniproces-
sors. It has been proved by Baruah et al. [BBD+12b] that determining the feasibility
of a collection ofMC jobs is strongly NP-hard, even when all release times are iden-
tical and there are only two criticality levels. Baruah et al. proposed Own Criticality
Based Priority (OCBP) algorithm for scheduling a finite collection of jobs on unipro-
cessor. Algorithm OCBP works as follows: jobs are assigned fixed-priorities in offline,
and the highest priority ready job is always dispatched at run-time [BLS10]. The pro-
cessor speed-up factor of the OCBP algorithm for dual-criticality system is 1.619, i.e.,
any feasible instance of dual-criticality jobs on unit-capacity processor is also OCBP-
schedulable on a processor that is 1.619 times faster [BLS10]. An improved load-based
sufficient schedulability condition of the OCBP algorithm is proposed in [LB10b] by Li
and Baruah.

By assuming the earliest releases of the jobs within abusy interval, Li and Baruah
proposed interesting techniques to apply the OCBP algorithm for scheduling sporadic
MC tasks on uniprocessor platform [LB10a]. However, Due to thesporadic nature of the
tasks, the priorities of the jobs are recomputed at run-timeand such priority recompu-
tation at run-time has pseudo-polynomial time complexity [LB10a]. Recently, Guan et
al. [GESY11b] proposed a novel polynomial time algorithm for recomputing the priori-
ties at run-time for scheduling sporadic tasks using the OCBP algorithm.

An EDF based scheduling algorithm, called EDF-VD (Virtual-Deadline), in which
the deadlines of the implicit-deadline sporadic tasks are modified online, is proposed
by Baruah et al. in [BBD+11a]. The algorithm EDF-VD modifies the deadlines of the
tasks depending of the behavior of the system at different criticality levels and schedule
the tasks based on EDF scheduling according to the modified deadlines. The processor
speed-up factor of EDF-VD scheduling for dual-criticalitysystem is 1.619. By perform-
ing a more precise analysis of the EDF-VD scheduling of implicit-deadlineMC spo-
radic tasks, the speed-up factor of EDF-VD is further improved by Baruah et al. to

9.8. RELATED WORKS 199

1.333 [BBD+12a]. Ekberg and Yi [EY12] recently proposed interesting technique to
compute the demand-bound [BMR90] function to determine theEDF schedulability of
constrained-deadlineMC sporadic tasks. The demand-bound of the tasks at each critical-
ity level is determined by adjusting the deadline of the tasks when the system switches
from LO to HI criticality behavior. The purpose of shaping or adjusting the demand is
to respect the supply-bound [MFC01] function of the underlying uniprocessor platform
to ensure schedulability.

Time-triggered (TT) scheduling ofMC jobs on uniprocessor platform is proposed by
Baruah and Fohler in [BF11]. The TT-scheduling essentiallycomputes in offline, for
each criticality levels, the scheduling table that stores the time instant at which jobs will
be dispatched for execution. When the criticality behavior of the system switches fromℓ
to (ℓ+1), then jobs are scheduled based on the scheduling table computed for criticality
level (ℓ+ 1). The processor speed-up factor for TT-scheduling is 1.619.

Many of the scheduling algorithms forMC systems considers dropping tasks of lower
criticality levels when the system switches to a higher criticality level. However, the
lower criticality tasks may not need to be dropped as long as they are not causing a higher
criticality task to miss its deadline. Based on this observation, Santy et al. [SGTG12]
proposed a method, called Latest Completion Time (LCT), that allows lower criticality
task to execute using uniprocessor FP scheduling until timeinstant at which the lower
criticality task is suspended to allow execution of a highercriticality task to avoid miss-
ing its deadline. The lower-criticality task may resume itsexecution later when the
system switches back to lower-criticality behavior.

The only work that considers multiprocessor scheduling ofMC system is proposed
by Li and Baruah in [LB12] but for implicit-deadline tasks. This work is based on the
basic principle of computing the deadlines for uniprocessor EDF-VD scheduling but
uses the utilization-bound test of global dynamic-priority scheduling, known as fpEDF,
proposed by Baruah in [Bar04]. The processor speed-up factor for this algorithm is
(
√
5+ 1): aMC task sets that can be scheduled in a certifiably correct manner onm unit

capacity processors by an optimal clairvoyant scheduling algorithm can be scheduled by
the proposed algorithm onm speed-(

√
5+1) processors. This work in [LB12] considers

implicit-deadline tasks, dynamic priority and is applicable to only two criticality levels.
The work presented in this chapter is the first work that considers global FP scheduling
of certifiable mixed-criticality sporadic tasks with constrained deadlines and more than
two criticality levels on multiprocessor platform.

Many other works addressed scheduling ofMC systems for aspects other than cer-
tification. Pellizzoni et al. [PMN+09] and Petters et. al. [PLHE09] proposed tech-
niques for isolating (either in time or space) subsystems having different criticality lev-
els based on reservation based approach. However, these work concentrate on provid-
ing isolation through worst-case reservation of resourcesand do not efficiently utilize
the resources. The work proposed by De Niz et al. [dNLR09] observed that isolation
among multiple subsystems that are based on reservation based approach may suffer
from, so calledcriticality inversionproblem: the deadline of a higher-criticality job may
be missed while allowing a lower criticality job to meet its deadline. In addition, as-

200 CHAPTER 9. MIXED-CRITICALITY SYSTEMS

signing priorities based on criticality to avoid criticality-inversion is not a good priority
assignment policy for meeting the deadlines. They have proposedslack-awareschedul-
ing that dynamically assigns the priorities to tasks or jobsto avoid criticality inversion
while focusing on efficient use of the resources [dNLR09]. This algorithm avoids crit-
icality inversion under which low-criticality task can notinterfere with high-criticality
task but high-criticality task can steal cycles from the low-criticality task under over-
load situations to meet deadlines. The work in [dNLR09] is further extended for non-
preemptable shared resources [LdNRM10] and distributed systems [LdNR11]. Mollison
et al. [MEA+10] proposed an architecture for schedulingMC tasks based on criticality-
monotonic scheduling on multicore. The allocation ofMC tasks in a distributed systems
is considered in [TSP11], where each task allocated to a processor is given a time par-
tition by determining the sequence and size of each partition in addition to finding the
scheduling table for each processor.

9.9 Summary

In this chapter, the global FP scheduling of mixed-criticality systems on preemptive
multiprocessors is considered. In order to utilize the processors efficiently and to fa-
cilitate certification, a sufficient schedulability test based on response-time analysis of
the proposedMSM algorithm is derived. This schedulability test can also be used to
find fixed-priority ordering of theMC tasks based on Audsley’s approach. The time-
complexity for evaluating the proposed test is pseudo-polynomial for dual-criticality
system. In addition, the proposed test is applicable to system having more than two
criticality levels which makes the algorithm relevant for many practical safety-critical
systems that have more than two criticality levels. The schedulability test of theMSM al-
gorithm can be easily extendented by finding a better priority assigning policy using the
separation criteria proposed in Chapter 6 and using the HPA-based priority assignment
policy.

In order to design a certification-cognizant scheduling algorithm for mixed-criticality
systems, the criticality behaviors of the systems need to bemonitored at run-time. How-
ever, such monitoring requires to know what behavior specifies a particular criticality-
behavior of the system. The criticality-behavior of the system is determined based on
the run-time behavior of the system which varies from one time instant to another. The
run-time behavior of the system depends on many factors, forexample, the actual exe-
cution time of each task, the actual inter-arrival time of each task, energy consumption,
the frequency and types of faults, and so on. This chapter considers one such source
of variation to determine the criticality-behavior at runtime: the actual execution time
of each task. By appropriately modeling the criticality-behavior based on other sources
of variations that specify the criticality behavior, designing new certification-cognizant
real-time scheduling algorithms forMC systems is left as future work.

10
Conclusion

This thesis deals with the modeling, analysis, and verification of three important non-
functional behaviors of real-time systems: timeliness, fault tolerance, and mixed criti-
cality. The level of acceptability or the desired quality ofeach non-functional behavior
is modeled as a set of design constraints — satisfaction of which are important for cor-
rectness, popularity, and competitiveness of the system. The functional behaviors (i.e.,
the workload) of the real-time applications are modeled using constrained-deadline spo-
radic tasks that are dispatched for execution on a platform having multiple identical
processors/cores using global fixed-priority scheduling algorithm. The non-functional
behaviors considered in this thesis are common in many safety-critical real-time sys-
tems; therefore, the proposed scheduling algorithms and the corresponding schedulabil-
ity tests have wide applicability for many practical systems.

The acceptability of timeliness behavior is modeled as harddeadline for each spo-
radic task. The proposed schedulability tests for global FPscheduling verify offline
whether all the deadlines of all the tasks are met or not. The acceptability of fault-
tolerant behavior is modeled based on the number and types offaults that need to be
tolerated during the execution of the tasks. The proposed fault-tolerant scheduling algo-
rithms have the responsibility to ensure that the effects offaults are mitigated in order
to generate the correct output before the deadline of each task. Finally, the acceptability
of mixed-criticality behavior is modeled as the level of assurance needed in meeting the
deadlines of the tasks where different WCETs (estimated at different level of assurance)
for each task are considered. The reason for considering certain level of assurance in
meeting the deadlines of the tasks is to facilitate certification while efficiently utilizing
the processing platform of the mixed-criticality system. To this end, the following three
research questions are addressed in this thesis:

201

202 CHAPTER 10. CONCLUSION

Q1 (Timeliness) How to guarantee that all the deadlines of a real-time
application are met on a particular computing platform?

Q2 (Fault Tolerance) How to guarantee that all the deadlines ofa real-
time application are met on a particular computing platformwhile
providing fault-tolerance?

Q3 (Mixed Criticality) How to guarantee that all the deadlinesof a real-
time application are met while ensuring certification of mixed-criticality
system at each criticality level?

In this thesis, timeliness is about meeting the deadlines ofthe tasks; fault-tolerance
is about providing correct service even in the presence of faults while also meeting
the deadlines; and mixed-criticality is about certification (i.e., guaranteeing timeliness)
regarding the integration of multi-criticality tasks on a common computing platform
where different WCETs of each task are considered at varying degrees of confidence.

The purpose of modeling the real-time application and its design constraints is to
ensure through analysis and verification that the system is predictable at runtime. A
system is considered to be predictable when all the design constraints are satisfied for
the assumed model of the system. Satisfying the temporal constraints (i.e., meeting
the deadlines) is the main design constraint considered in this thesis. The temporal
constraints of meeting the deadlines might be contending with the design constraints
of other non-functional behaviors (e.g., fault-tolerance, criticality). In order to verify
offline that whether all the design constraints will be met ornot, schedulability tests are
proposed by analyzing global FP scheduling. The proposed schedulability tests do not
only dominate but also empirically perform significantly better than the corresponding
state-of-the-art schedulability tests.

The different techniques used to analyze one particular non-functional behavior are
orthogonal to the analysis of other non-functional behaviors in this thesis. For example,
the criteria to determine the set of tasks to be kept separated from the schedulability
analysis of a lower priority task (as proposed for theIA-DA test) can also be used for the
schedulability analysis of theFTGS andMSM algorithms. Similarly, if a mixed-criticality
system is also a fault-tolerant system, then the response-time based schedulability test
of theMSM algorithm can be extended with the schedulability analysisused for the fault-
tolerantFTGS algorithm in order to derive a new schedulability test.

The mathematical expressions of the proposed schedulability tests incorporate the
parameters of the task set, processing platform, and designconstraints. The compact
representation and the efficiency in evaluating the proposed schedulability tests enable
the designers making the trade-off between resource-requirement and rigidity of the
design constraints. The analysis of the scheduling algorithms aims to reduce the pes-
simism in order to derive more effective schedulability tests for global FP scheduling.
Such reduced pessimism is beneficial in reducing resource consumption and enables
quick adaptation to changes, for example, adding new services on existing hardware.

Although the proposed algorithms consider fixed-priority scheduling of constrained-
deadline tasks on multiprocessors, the corresponding results can be extended for other

203

work-conserving scheduling algorithms, for example, global EDF scheduling. To per-
form the schedulability analysis of global EDF scheduling,the technique for workload
computation of the higher priority jobs within the problem window of each task has to
be derived. In global EDF, each job having its absolute deadline in a problem window,
that ends at the deadline of the analyzed task, becomes a contributor to the workload
in that problem window. Depending on the non-functional behavior under study, the
workload within the problem window has to be appropriately calculated. By finding
the workload of the higher priority jobs, an upper bound on the interference on each
task within its problem window can be calculated and a schedulability test for global
EDF can be derived. In addition, designing new scheduling algorithms, performing pre-
cise schedulability analysis and deriving efficient schedulability tests for the following
open problems are left as future work:

• There is an important source of pessimism in the existing schedulability analysis
of global scheduling algorithms, which is stated as follows: when a lower prior-
ity task τ executes, all the other(m − 1) processors are assumed to be idle.
This assumption is not always true as will be demonstrated now using an example.

Consider the global FP scheduling of four tasks{τ1, τ2, τ3, τ4} onm = 2 pro-
cessors, where a task with lower index has higher priority. Also consider that the
interference on taskτ3 according to theDA-LC test within a problem window of
lengthD3 is (D3 − C3). Evidently, taskτ3 is guaranteed to be schedulable ac-
cording to theDA-LC test. Now assume thatD4 = D3, C3 = 4, andC4 ≤ C3.
The total interfering workload within a problem window of lengthD4 is at least
[m · (D3 − C3) + 4] when analyzing the schedulability of taskτ4 based on the
DA-LC test. By assuming that all the other processors are idle whentaskτ4 exe-
cutes within a problem window of lengthD4, the interference on taskτ4 according
to theDA-LC test is at least(D3 − C3 + 2) = (D4 − C4 + 1). Therefore, the
schedulability of taskτ4 can not be guaranteed based on theDA-LC test. How-
ever, theDA-LC test assumes that(m − 1) = 1 processor is idle when taskτ3
executes, and therefore, taskτ4 is also schedulable since its relative deadline is
equal toD3 and its execution time is smaller than the execution time of taskτ3.

The lesson learned is that the assumption that(m − 1) processors are idle, when
a particular task executes, does not need to be enforced during the schedulability
analysis of each task. Relaxing this assumption for appropriate tasks will result
in more precise schedulability analysis and better schedulability test. Finding the
details when such assumption can be relaxed is left as a future work.

• The fault-tolerance scheduling algorithms proposed in this thesis considers a fault
model in which a particular job of each task is assumed to be affected by at most
f task errors. A relatively general fault model would be to consider different num-
ber of task errors to be tolerated for different tasks. This is a more reasonable fault
model since not every task is equally prone to the same numberof errors. For ex-
ample, a piece of complex software is possibly more prone to design errors than
a simple software. In addition, the internal robustness in masking faults or er-

204 CHAPTER 10. CONCLUSION

rors of different software can be different due to the difference in software design
process, testing, debugging, and so on. Therefore, it is more reasonable to con-
sider different number of errors to be tolerated for different tasks. Fault-tolerant
schedulability analysis considering such a relatively general fault-model and re-
laxing the assumption of no-fault-propagation is left as a future work. In addition,
schedulability analysis on multiprocessors considering checkpoint or imprecise-
computation for error recovery is also another interestingfuture work.

• In order to provide different degrees of assurance needed inmeeting the deadlines
of mixed-criticality tasks, this thesis considers only onesource of variation in the
run-time behavior of the system, i.e., the execution time ofeach task. There are
other sources of variations that may impact the degree of assurance needed for
certifying a mixed-criticality system at various criticality levels. One such source
is the inter-arrival time (period) of each task.

The system designer may assume a relatively larger period ofa task while the CA
being more pessimistic may assume a shorter period of the same task. For exam-
ple, consider an aircraft that periodically runs some diagnostic function to check
if lightning (or some other disturbance) has caused some damages to the on-board
electrical and electronic systems. The system designer maydecide to execute the
function in every minute whereas the CA may require to execute it every 5 sec-
onds. To put it in another way, consider that the function is executed every minute
during sunny weather and every 5 seconds during cloudy weather. Developing
scheduling algorithm and schedulability test consideringdifferent periods along
with different WCETs of each task at different criticality levels is another inter-
esting future work. Similarly, the number and types of faults that may need to be
tolerated for each task can be different for different criticality levels. Fault tolerant
scheduling ofMC systems considering different number and types of faults tobe
tolerated at different criticality levels is another interesting future work.

The research presented in this thesis is to help the system designers to build a predictable
system. To this end, I wonder whether it is really possible todesign a computerized
system that is completely predictable. The answer is positive if the model of the system
is perfect and the analysis of the system based on this “perfect” model is precise. Then,
the question arises is whether the model of a computer systemis perfect in capturing
the environment of the system. I believe that it is really difficult to entirely capture the
environment of computerized systems which may consist of:

• hardware (e.g., sensor, actuator, processing platform, accelerators, GPUs),

• software (e.g., application tasks, operating systems, middleware, drivers),

• inputs (e.g., from sensors, human users, other systems),

• users’ interactions (e.g., robots, human beings),

• factors related to atmosphere (e.g., radiation, temperature, lightning, dust, snow),

• factors related to software design (e.g., competence, experience, testing).

205

In addition, changes in technology (e.g., introduction of multicore, miniaturization
of transistors), changes in users’ perceived level of comfort (e.g., autonomous cars), new
operating condition/atmosphere (e.g., spacecraft in a newplanet), and new certification
standards — all are contributing to the difficulty in the design of predictable comput-
erized systems. Perfect modeling and precise analysis considering all these sources of
variability are daunting tasks in terms of time and complexity. Although it seems that
we are far from building true predictable system, there are computerized systems that
are in fact behaving predictably.

A computer system can hardly be entirely predictable and there are only systems
which may have not yet become unpredictable and we can only design a “more” pre-
dictable system in comparison to another existing system. One way to build amore
predictable system is to consider the different system layers — starting from the ap-
plication to the middleware, operating system, processorsand all the way down to the
transistors — asinformation providersrather thaninformation concealers. An interde-
pendent system design approach in which information from one design layer is heavily
exploited in another can help building a better predictablereal-time system.

Bibliography

[AB98] L. Abeni and G. Buttazzo. Integrating multimedia applications in hard real-time
systems. InProc. of the RTSS, pages 4 –13, 1998.

[AB08] B. Andersson and K. Bletsas. Sporadic Multiprocessor Scheduling with Few Pre-
emptions. InProc. of the ECRTS, pages 243–252, 2008.

[ABB96] N.C. Audsley, I.J. Bate, and A. Burns. Putting fixed priority scheduling theory
into engineering practice for safety critical applications. InProc. of the RTAS,
pages 2 –10, 1996.

[ABB08] B. Andersson, K. Bletsas, and S. Baruah. Scheduling Arbitrary-Deadline Sporadic
Task Systems on Multiprocessors. InProc. of the RTSS, pages 385–394, 2008.

[ABJ01] B. Andersson, S. Baruah, and J. Jonsson. Static-Priority Scheduling on Multipro-
cessors. InProc. of RTSS, pages 193–202, 2001.

[ABR+93] N. Audsley, A. Burns, M. Richardson, K. Tindell, and A.J. Wellings. Applying
new scheduling theory to static priority pre-emptive scheduling.Software Engi-
neering Journal, 8(5):284–292, 1993.

[ABRW91] N.C. Audsley, A. Burns, M. F. Richardson, and A. J. Wellings. Hard Real-Time
Scheduling: The Deadline-Monotonic Approach. InProc. IEEE Workshop on
Real-Time Operating Systems and Software, pages 133–137, 1991.

[AFK05] J. Aidemark, P. Folkesson, and J. Karlsson. A Frameworkfor Node-Level Fault
Tolerance in Distributed Real-Time Systems. InProceedings of the International
Conference on Dependable Systems and Networks, pages 656–665, 2005.

[AJ] B. Andersson and J. Jonsson. Some insights on fixed-priority pre-emptive non-
partitioned multiprocessor scheduling. InIn Proc. RTSS Work-in-Progress Ses-
sion, Nov. 2000.

[AJ03] B. Andersson and J. Jonsson. The utilization bounds of partitioned and pfair static-
priority scheduling on multiprocessors are 50%. InProc. of ECRTS, pages 33–40,
2003.

[ALRL04] A. Avižienis, J.-C. Laprie, B. Randell, and C. Landwehr. Basic Concepts and
Taxonomy of Dependable and Secure Computing.IEEE Trans. on Depend. and
Sec. Comp., 1(1):11–33, 2004.

[And08a] Björn Andersson. Global Static-Priority Preemptive Multiprocessor Scheduling
with Utilization Bound 38%. InProc.of OPODIS, pages 73–88, 2008.

[And08b] Björn Andersson. The Utilization Bound of Uniprocessor Preemptive Slack-
Monotonic Scheduling is 50%. InProc. of ACM Symp. On Applied Computing,
pages 281–283, 2008.

207

208 BIBLIOGRAPHY

[And10] B. Andersson. Conjecture about global fixed-priority preemptive multiprocessor
scheduling of implicit-deadline sporadic tasks: The utilization bound ofSM −
US(
√
2 − 1) is

√
2 − 1 . In In Proceedings of the 1st International Real-Time

Scheduling Open Problems Seminar, in conjunction with the ECRTS, 2010.

[AOMS00] R. Al-Omari, G. Manimaran, and Arun K. Somani. An efficient backup-
overloading for fault-tolerant scheduling of real-time tasks. InProc. of the Work-
shops on Parallel and Distributed Processing, pages 1291–1295, 2000.

[AOSM01] R. Al-Omari, Arun K. Somani, and G. Manimaran. A New Fault-Tolerant Tech-
nique for Improving Schedulability in Multiprocessor Real-time Systems. In
Proc.of the IPDPS, page 8, 2001.

[ARI] ARINC Incorporated. ARINC specification 651: Design guidance for integrated
modular avionics, November 1997.

[AS04] James H. Anderson and Anand Srinivasan. Mixed pfair/erfair scheduling of asyn-
chronous periodic tasks.J. Comput. Syst. Sci., 68(1):157–204, 2004.

[AS06] Armando Aguilar-Soto.Fixed-Priority Scheduling Algorithms with Multiple Ob-
jectives in Hard Real-Time Systems. PhD thesis, Department of Computer Sci-
ence, The University of York, UK, 2006.

[AT06] B. Andersson and E. Tovar. Multiprocessor Scheduling with Few Preemptions. In
Proc. of the RTCSA, pages 322–334, 2006.

[Aud91] N.C. Audsley. Optimal priority assignment and feasibility of staticpriority tasks
with arbitrary start times.Technical Report YCS 164, Dept of Computer Science,
University of York, UK, 1991.

[Aud01] N. C. Audsley. On Priority Assignment in Fixed Priority Scheduling. Info. Proc.
Letters, 79(1):39–44, 2001.

[AUT] AUTOSAR, Automotive Open System Architecture, www.autosar.org.

[Avi85] A. Avižienis. The N-Version Approach to Fault-Tolerant Software. IEEE Trans-
actions on Software Engineering, 11(12):1491–1501, 1985.

[Ayd07] H. Aydin. Exact Fault-Sensitive Feasibility Analysis of Real-TimeTasks. IEEE
Trans. on Comp., 56(10):1372–1386, 2007.

[BA10] Björn B. Brandenburg and James H. Anderson. Spin-basedreader-writer syn-
chronization for multiprocessor real-time systems.Real-Time Syst., 46(1):25–87,
September 2010.

[Bak06] T. P. Baker. An Analysis of Fixed-Priority Schedulability on a Multiprocessor.
Real-Time Systems, 32(1-2):49–71, 2006.

[Bar04] S.K. Baruah. Optimal utilization bounds for the fixed-priority scheduling of peri-
odic task systems on identical multiprocessors.IEEE Transactions on Computers,
53(6):781 – 784, june 2004.

[Bar07] Sanjoy Baruah. Techniques for multiprocessor global schedulability analysis. In
Proc of RTSS, pages 119–128, 2007.

[Bau05] R. Baumann. Soft errors in advanced computer systems.IEEE Design and Test of
Computers, 22(3):258–266, 2005.

BIBLIOGRAPHY 209

[BB05] Enrico Bini and Giorgio C. Buttazzo. Measuring the Performance of Schedulabil-
ity Tests.Real-Time Systems, 30:129–154, 2005.

[BBA10] Andrea Bastoni, Bjorn B. Brandenburg, and James H. Anderson. An Empirical
Comparison of Global, Partitioned, and Clustered Multiprocessor EDF Sched-
ulers. InProc. of RTSS, pages 14–24, 2010.

[BBA11] Andrea Bastoni, Bjorn B. Brandenburg, and James H. Anderson. Is semi-
partitioned scheduling practical? InProc. of ECRTS, pages 125–135, 2011.

[BBB+] J. Barhorst, T. Belote, P. Binns, J. Hoffman, J. Paunicka, P. Sarathy,
J. S. P. Stanfill, D. Stuart, and R Urzi. White paper: A re-
search agenda for mixed-criticality systems, april 2009, available at
http://www.cse.wustl.edu/~cdgill/CPSWEEK0_MCAR.

[BBD+11a] Sanjoy Baruah, Vincenzo Bonifaci, Gianlorenzo D’Angelo, Alberto Marchetti-
Spaccamela, Suzanne Van Der Ster, and Leen Stougie. Mixed-criticality Schedul-
ing of Sporadic task Systems. InProc. of the European conference on Algorithms,
pages 555–566, 2011.

[BBD11b] Sanjoy Baruah, Alan Burns, and Robert Davis. Response-time analysis for mixed
criticality systems. InProc. of RTSS, pages 34–43, 2011.

[BBD+12a] S. Baruah, V. Bonifaci, G. D’Angelo, H. Li, A. Marchetti-Spaccamela, S. van der
Ster, and L. Stougie. The preemptive uniprocessor scheduling of mixed-criticality
implicit-deadline sporadic task systems. InProc of ECRTS, pages 145 –154, 2012.

[BBD+12b] S. Baruah, V. Bonifaci, G. D’Angelo, Haohan Li, A. Marchetti-Spaccamela,
N. Megow, and L. Stougie. Scheduling Real-Time Mixed-Criticality Jobs.IEEE
Transactions on Computers, 61(8):1140 –1152, 2012.

[BC07] Marko Bertogna and Michele Cirinei. Response-Time Analysis for Globally
Scheduled Symmetric Multiprocessor Platforms. InProc. of RTSS, pages 149–
160, 2007.

[BCA08] B.B. Brandenburg, J.M. Calandrino, and J.H. Anderson. On the Scalability of
Real-Time Scheduling Algorithms on Multicore Platforms: A Case Study.Proc.
of RTSS, pages 157 –169, 2008.

[BCB+08] B.B. Brandenburg, J.M. Calandrino, A. Block, H. Leontyev, and J.H. Anderson.
Real-Time Synchronization on Multiprocessors: To Block or Not to Block,to
Suspend or Spin? InProc. of RTAS, pages 342 –353, 2008.

[BCGM99] Sanjoy Baruah, Deji Chen, Sergey Gorinsky, and AloysiusMok. Generalized
multiframe tasks.Real-Time Syst., 17(1):5–22, July 1999.

[BCL05] M. Bertogna, M. Cirinei, and G. Lipari. New Schedulability Tests for Real-Time
Task Sets Scheduled by Deadline Monotonic on Multiprocessors. InProc. of
OPODIS, pages 306–321, 2005.

[BCL09] Marko Bertogna, Michele Cirinei, and Giuseppe Lipari. Schedulability Analysis
of Global Scheduling Algorithms on Multiprocessor Platforms.IEEE Tran. on
Par. and Dist. Syst., 20(4):553–566, 2009.

[BCPV96] S. K. Baruah, N. K. Cohen, C. G. Plaxton, and D. A. Varvel. Proportionate
progress: A notion of fairness in resource allocation.Algorithmica, 15(6):600–
625, 1996.

http://www.cse.wustl.edu/~cdgill/CPSWEEK0_MCAR.

210 BIBLIOGRAPHY

[BDP96] A. Burns, R. Davis, and S. Punnekkat. Feasibility Analysis of Fault-Tolerant Real-
Time Task Sets. InProc. of the ECRTS, pages 522–527, 1996.

[BEL11] Stefan Bygde, Andreas Ermedahl, and Björn Lisper. An Efficient Algorithm for
Parametric WCET Calculation.Journal of Systems Architecture, 57:614–624,
May 2011.

[BF11] Sanjoy Baruah and Gerhard Fohler. Certification-Cognizant Time-Triggered
Scheduling of Mixed-Criticality Systems. InProc. of RTSS, pages 3–12, 2011.

[BFM97] A.A. Bertossi, A. Fusiello, and L.V. Mancini. Fault-tolerant deadline-monotonic
algorithm for scheduling hard-real-time tasks. InParallel Processing Symposium,
1997. Proceedings., 11th International, pages 133 –138, April 1997.

[BG03a] S. Baruah and J. Goossens. Rate-monotonic scheduling on uniform multiproces-
sors.IEEE Transactions on Computers, 52(7):966–970, 2003.

[BG03b] S. Baruah and J. Goossens. The Static-priority Scheduling ofPeriodic Task Sys-
tems upon Identical Multiprocessor Platforms. pages 427–432, 2003.

[BGJ06] V. Berten, J. Goossens, and E. Jeannot. A probabilistic approach for fault tolerant
multiprocessor real-time scheduling. InProc. of IPDPS, page 8, 2006.

[BLS10] S. Baruah, Haohan Li, and L. Stougie. Towards the Design ofCertifiable Mixed-
criticality Systems. InProc. of RTAS, pages 13–22, 2010.

[BMR90] S.K. Baruah, A.K. Mok, and L.E. Rosier. Preemptively scheduling hard-real-time
sporadic tasks on one processor. InProc. of the RTSS, pages 182 –190, 1990.

[BMR99] A. A. Bertossi, L. V. Mancini, and F. Rossini. Fault-Tolerant Rate-Monotonic
First-Fit Scheduling in Hard-Real-Time Systems.IEEE Transactions on Parallel
and Distributed Systems, 10(9):934–945, 1999.

[BPSW99] A. Burns, S. Punnekkat, L. Strigini, and D.R. Wright. Probabilistic scheduling
guarantees for fault-tolerant real-time systems. InDependable Computing for
Critical Applications, pages 361–378, 1999.

[BRH90] S. Baruah, L. E. Rosier, and R. R. Howell. Algorithms and Complexity Concern-
ing the Preemptive Scheduling of Periodic, Real-Time Tasks on One Processor.
Real-Time Systems., 2(4):301–324, 1990.

[BT83] J. A. Bannister and K. S. Trivedi. Task allocation in fault-tolerant distributed
systems.Acta Informatica, 20:261–281, 1983.

[BV08] S. Baruah and S. Vestal. Schedulability Analysis of Sporadic Tasks with Multiple
Criticality Specifications. InProc. of ECRTS, pages 147–155, 2008.

[CB98] M. Caccamo and G. Buttazzo. Optimal scheduling for fault-tolerant and firm real-
time systems . InProceedings of the IEEE Conference on Real-Time Computing
Systems and Applications, pages 223–231, 1998.

[CC89] H. Chetto and M. Chetto. Some Results of the Earliest Deadline Scheduling Al-
gorithm. IEEE Trans. on Soft. Engg., 15(10):1261–1269, 1989.

[CFH+04] J. Carpenter, S. Funk, P. Holman, J. H. Anderson, and S. Baruah. A categorization
of real-time multiprocessor scheduling problems and algorithms.Handbook on
Scheduling Algorithms, Methods, and Models, 2004.

BIBLIOGRAPHY 211

[CGG11] Liliana Cucu-Grosjean and Joël Goossens. Exact Schedulability Tests for Real-
Time Scheduling of Periodic Tasks on Unrelated Multiprocessor Platforms. Jour-
nal of Systems Architecture, 57(5):561–569, 2011.

[CJD91] S.E. Chodrow, F. Jahanian, and M. Donner. Run-time monitoring of real-time
systems. InProc. of RTSS, pages 74 –83, 1991.

[CKR+12] Sudipta Chattopadhyay, Chong Lee Kee, Abhik Roychoudhury, Timon Kelter, Pe-
ter Marwedel, and Heiko Falk. A Unified WCET Analysis Framework for Multi-
core Platforms. InProc. of the RTAS, pages 99–108, 2012.

[CLL90] J.-Y. Chung, J.W.S. Liu, and K.-J. Lin. Scheduling periodic jobs that allow impre-
cise results.IEEE Transactions on Computers, 39(9):1156–1174, 1990.

[CLRS01] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein.Introduction to Algo-
rithms. MIT Press, 2001.

[CMR92] A. Campbell, P. McDonald, and K. Ray. Single Event Upset Rates in Space.IEEE
Trans. on Nuclear Sci., 39(6):1828–1835, Dec 1992.

[CMS82] X. Castillo, S. R. McConnel, and D. P. Siewiorek. Derivation and Calibration of a
Transient Error Reliability Model.IEEE Transactions on Computers, 31(7):658–
671, 1982.

[CRD06] H. Cho, B. Ravindran, and E. Douglas. An Optimal Real-Time Scheduling Algo-
rithm for Multiprocessors. InProceedings of the IEEE Real-Time Systems Sym-
posium, pages 101–110, 2006.

[CYKT07] Jian-Jia Chen, Chuan-Yue Yang, Tei-Wei Kuo, and Shau-Yin Tseng. Real-Time
Task Replication for Fault Tolerance in Identical Multiprocessor Systems. In Proc.
of RTAS, pages 249–258, 2007.

[DB09] Robert Davis and Alan Burns. Priority Assignment for Global Fixed Priority Pre-
Emptive Scheduling in Multiprocessor Real-Time Systems. InProc. of RTSS,
pages 398–409, 2009.

[DB10] R.I. Davis and A. Burns. On optimal priority assignment for response time anal-
ysis of global fixed priority pre-emptive scheduling in multiprocessor hard real-
time systems. Tech. report YCS-2010-451, University of York, Computer Science
Dept., April 2010.

[DB11a] Robert Davis and Alan Burns. A Survey of Hard Real-Time Scheduling for Mul-
tiprocessor Systems.ACM Computing Surveys, 43(4):35:1–35:44, 2011.

[DB11b] Robert Davis and Alan Burns. Improved priority assignmentfor global fixed pri-
ority pre-emptive scheduling in multiprocessor real-time systems.Real-Time Sys-
tems, 47:1–40, 2011.

[Dha77] S. K. Dhall. Scheduling periodic-time - critical jobs on single processor and mul-
tiprocessor computing systems.PhD Thesis, University of Illinois at Urbana-
Champaign, 1977.

[DL78] S. K. Dhall and C. L. Liu. On a Real-Time Scheduling Problem.Operations
Research, 26(1):127–140, 1978.

[dNLR09] D. de Niz, K. Lakshmanan, and R. Rajkumar. On the scheduling of mixed-
criticality real-time task sets. InProc. of the RTSS, pages 291 –300, 2009.

212 BIBLIOGRAPHY

[DRRG10] François Dorin, Pascal Richard, Michaël Richard, and Joël Goossens. Schedu-
lability and sensitivity analysis of multiple criticality tasks with fixed-priorities.
Real-Time Systems, 46:305–331, 2010.

[EB08] Paul Emberson and Iain Bate. Extending a task allocation algorithmfor graceful
degradation of real-time distributed embedded systems. InProc. of the RTSS,
pages 270–279, 2008.

[EY12] P. Ekberg and Wang Yi. Bounding and shaping the demand of mixed-criticality
sporadic tasks. InProc. of the ECRTS, pages 135 –144, july 2012.

[FBB06] N. Fisher, S. Baruah, and T. P. Baker. The Partitioned Scheduling of Sporadic
Tasks According to Static-Priorities. InProc. of ECRTS, pages 118–127, 2006.

[GESY11a] Nan Guan, P. Ekberg, M. Stigge, and Wang Yi. Resource sharing protocols for
real-time task graph systems. InProc. of the ECRTS, pages 272 –281, 2011.

[GESY11b] Nan Guan, Pontus Ekberg, Martin Stigge, and Wang Yi. Effective and Efficient
Scheduling of Certifiable Mixed-Criticality Sporadic Task Systems. InProc. of
RTSS, pages 13–23, 2011.

[GFB03] Joël Goossens, Shelby Funk, and Sanjoy Baruah. Priority-driven scheduling of pe-
riodic task systems on multiprocessors.Real-Time Syst., 25(2-3):187–205, 2003.

[GJ79] M. R. Garey and D. S. Johnson.Computers and Intractability: A Guide to the
Theory of NP-Completeness. W. H. Freeman & Co., New York, NY, USA, 1979.

[GLYY12] Nan Guan, Mingsong Lv, Wang Yi, and Ge Yu. WCET Analysis with MRU
Caches: Challenging LRU for Predictability.Proc. of RTAS, pages 55–64, 2012.

[GMM94] S. Ghosh, R. Melhem, and D. Mosse. Fault-tolerant scheduling on a hard real-time
multiprocessor system. InProc. of the Parallel Processing Symposium, pages 775
–782, 1994.

[GMM95] S. Ghosh, R. Melhem, and D. Mossé. Enhancing Real-Time Schedules to Tolerate
Transient Faults. InProc. of the RTSS, pages 120–129, 1995.

[GMMS98] S. Ghosh, Rami Melhem, Daniel Mossé, and Joydeep Sen Sarma. Fault-Tolerant
Rate-Monotonic Scheduling.Real-Time Systems., 15(2):149–181, 1998.

[GSYY09] Nan Guan, Martin Stigge, Wang Yi, and Ge Yu. New Response Time Bounds for
Fixed Priority Multiprocessor Scheduling.Proc. of RTSS, pages 387–397, 2009.

[GSYY10] Nan Guan, M. Stigge, Wang Yi, and Ge Yu. Fixed-Priority Multiprocessor
Scheduling with Liu and Layland’s Utilization Bound. InProc. of the RTAS,
pages 165 –174, 2010.

[HA05] Philip Holman and James H. Anderson. Adapting pfair schedulingfor symmetric
multiprocessors.J. Embedded Comput., 1(4):543–564, December 2005.

[HL94] Rhan Ha and J.W.S. Liu. Validating timing constraints in multiprocessor and
distributed real-time systems. InProc. of ICDCS, pages 162 –171, 1994.

[HS89] D. Haban and K.G. Shin. Application of real-time monitoring to scheduling tasks
with random execution times. InProc. of the RTSS, pages 172 –181, 1989.

[HSW03] C.-C. Han, K. G. Shin, and J. Wu. A Fault-Tolerant Scheduling Algorithm for
Real-Time Periodic Tasks with Possible Software Faults.IEEE Trans. on Comp.,
52(3):362–372, 2003.

BIBLIOGRAPHY 213

[IRH86] R. K. Iyer, D. J. Rossetti, and M. C. Hsueh. Measurement and Modeling of Com-
puter Reliability as Affected by System Activity.ACM Trans. on Comp. Syst.,
4(3):214–237, 1986.

[JHCS02] A. Jhumka, M. Hiller, V. Claesson, and N. Suri. On systematicdesign of globally
consistent executable assertions in embedded software. InProceedings of the joint
conference on Languages, compilers and tools for embedded systems, pages 75–
84, 2002.

[Joh88] B. W. Johnson.Design & analysis of fault tolerant digital systems. Addison-
Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1988.

[JP86] M. Joseph and P. Pandya. Finding Response Times in a Real-Time System.The
Computer Journal, 29(5):390–395, 1986.

[KLLS05a] K. Klonowska, H. Lennerstad, L. Lundberg, and C. Svahnberg. Optimal recovery
schemes in fault tolerant distributed computing.Acta Informatica., 41(6):341–
365, 2005.

[KLLS05b] K. Klonowska, L. Lundberg, H. Lennerstad, and C. Svahnberg. Extended Golomb
rulers as the new recovery schemes in distributed dependable computing. In Proc.
of the IPDPS, page 8, 2005.

[KLR10] Junsung Kim, K. Lakshmanan, and R. Rajkumar. R-BATCH:Task Partitioning
for Fault-tolerant Multiprocessor Real-Time Systems. InProc. of ICESS, pages
1872 –1879, 2010.

[KSSF10] R. Kalla, B. Sinharoy, W.J. Starke, and M. Floyd. Power7:IBM’s Next-
Generation Server Processor.Micro, IEEE, 30(2):7 –15, 2010.

[KST11] Md Kamruzzaman, Steven Swanson, and Dean M. Tullsen. Inter-core prefetching
for multicore processors using migrating helper threads. InProc. of ASPLOS,
pages 393–404, 2011.

[KY08] S. Kato and N. Yamasaki. Portioned static-priority scheduling on multiproces-
sors. InProceedings of the IEEE International Parallel and Distributed Process-
ing Symposium, pages 1–12, 2008.

[KY09] S. Kato and N. Yamasaki. Semi-Partitioned Scheduling of Sporadic Task Systems
on Multiprocessors. InProceedings of the EuroMicro Conference on Real-Time
Systems, pages 249–258, 2009.

[LB10a] Haohan Li and S. Baruah. An algorithm for scheduling certifiable mixed-
criticality sporadic task systems. InProc. of RTSS, pages 183–192, 2010.

[LB10b] Haohan Li and Sanjoy Baruah. Load-based schedulability analysis of certifiable
mixed-criticality systems. InProc. of EMSOFT, pages 99–108, 2010.

[LB12] Haohan Li and Sanjoy Baruah. Global mixed-criticality scheduling on multipro-
cessors. InProc. of ECRTS, pages 166 – 175, 2012.

[LBOS95] J. Liebeherr, A. Burchard, Y. Oh, and S. H. Son. New Strategies for As-
signing Real-Time Tasks to Multiprocessor Systems.IEEE Trans. on Comp.,
44(12):1429–1442, 1995.

[LDG04] J. M. López, J. L. Díaz, and D. F. García. Minimum and Maximum Utilization
Bounds for Multiprocessor Rate Monotonic Scheduling.IEEE Transactions on
Parallel and Distributed Systems, 15(7):642–653, 2004.

214 BIBLIOGRAPHY

[LdNR11] K. Lakshmanan, D. de Niz, and R. Rajkumar. Mixed-criticalitytask synchroniza-
tion in zero-slack scheduling. InProc. of RTAS, pages 47 –56, 2011.

[LdNRM10] K. Lakshmanan, D. de Niz, R. Rajkumar, and G. Moreno.Resource allocation in
distributed mixed-criticality cyber-physical systems. InProc. of the ICDCS, pages
169 –178, 2010.

[LGDG03] J. M. López, M. García, J. L. Díaz, and D. F. García. Utilization Bounds for Mul-
tiprocessor Rate-Monotonic Scheduling.Real-Time Systems, 24(1):5–28, 2003.

[LL73] C. L. Liu and J. W. Layland. Scheduling Algorithms for Multiprogramming in a
Hard-Real-Time Environment.Journal of the ACM, 20(1):46–61, 1973.

[LLMM99] Frank Liberato, Sylvain Lauzac, Rami Melhem, and Daniel Mossé. Fault Tolerant
Real-Time Global Scheduling on Multiprocessors.Proc. of ECRTS, page 252,
1999.

[LMM98a] S. Lauzac, R. Melhem, and D. Mossé. An Efficient RMS Control and Its Appli-
cation to Multiprocessor Scheduling. InProceedings of the International Parallel
Processing Symposium, pages 511–518, 1998.

[LMM98b] Sylvain Lauzac, Rami Melhem, and Daniel Mosse. Comparison of global and
partitioning schemes for scheduling rate monotonic tasks on a multiprocessor. In
Euromicro Workshop on Real Time Systems, pages 188–195, 1998.

[LMM00] F. Liberato, R. Melhem, and D. Mossé. Tolerance to Multiple Transient Faults for
Aperiodic Tasks in Hard Real-Time Systems.IEEE Trans. on Comp., 49(9):906–
914, 2000.

[LNBCG11] Yue Lu, Thomas Nolte, Iain Bate, and Liliana Cucu-Grosjean. A New Way about
using Statistical Analysis of Worst-Case Execution Times.ACM SIGBED Review,
8(2), 2011.

[LRL09] K. Lakshmanan, R. Rajkumar, and J. Lehoczky. PartitionedFixed-Priority Pre-
emptive Scheduling for Multi-core Processors. InProceedings of the EuroMicro
Conference on Real-Time Systems, pages 239–248, 2009.

[LSD89] J. Lehoczky, L. Sha, and Y. Ding. The rate monotonic scheduling algorithm: exact
characterization and average case behavior. InProceedings of the IEEE Real-Time
Systems Symposium, pages 166–171, 1989.

[LSL+94] J.W.S. Liu, W.-K. Shih, K.-J. Lin, R. Bettati, and J.-Y. Chung. Imprecise compu-
tations.Proceedings of the IEEE, 82(1):83–94, 1994.

[Lun02] L. Lundberg. Analyzing Fixed-Priority Global MultiprocessorScheduling. In
Proc. of RTAS, pages 145–153, 2002.

[LW82] J. Y. T. Leung and J. Whitehead. On the Complexity of Fixed-Priority Scheduling
of Periodic, Real-Time Tasks.Performance Evaluation, 2:237–250, 1982.

[MAAMM00] P. Mejia-Alvarez, H. Aydin, D. Mossé, and R. Melhem. Scheduling optional com-
putations in fault-tolerant real-time systems. InProc. of the RTCSA, page 323,
2000.

[MAM99] P. Mejia-Alvarez and D. Mossé. A responsiveness approach for scheduling fault
recovery in real-time systems. InProceedings of the IEEE Real-Time Technology
and Applications Symposium, pages 4–13, 1999.

BIBLIOGRAPHY 215

[MBS07] A. Meixner, M.E. Bauer, and D.J. Sorin. Argus: Low-Cost, Comprehensive Er-
ror Detection in Simple Cores. InProc. of the Annual IEEE/ACM Int. Symp. on
Microarchitecture, pages 210–222, 2007.

[MCS91] H. Madeira, J. Camoes, and J. G. Silva. A watchdog processor for concurrent
error detection in multiple processor systems.Microprocessors and Microsystems,
15(3):123–130, 1991.

[MD11] F. Many and D. Doose. Scheduling Analysis under Fault Bursts. In Proc. of the
RTAS, pages 113 –122, 2011.

[MdALB03] G. M. de A. Lima and A. Burns. An optimal fixed-priority assignment algorithm
for supporting fault-tolerant hard real-time systems.IEEE Transactions on Com-
puters, 52(10):1332–1346, 2003.

[MEA+10] M.S. Mollison, J.P. Erickson, J.H. Anderson, S.K. Baruah, and J.A. Scoredos.
Mixed-criticality real-time scheduling for multicore systems. InProc. of ICESS,
pages 1864–1871, 2010.

[MFC01] Aloysius K. Mok, Xiang (Alex) Feng, and Deji Chen. Resource partition for real-
time systems. InProc. of the RTAS, pages 75–, 2001.

[MM98] G. Manimaran and C. S. R. Murthy. A Fault-Tolerant Dynamic Scheduling Algo-
rithm for Multiprocessor Real-Time Systems and Its Analysis.IEEE Transactions
on Parallel and Distributed Systems, 9(11):1137–1152, 1998.

[NLR09] Dionisio de Niz, Karthik Lakshmanan, and Ragunathan Rajkumar. On the
Scheduling of Mixed-Criticality Real-Time Task Sets. InProc. of RTSS, pages
291–300, 2009.

[NSBS09] T. Nolte, Insik Shin, M. Behnam, and M. Sjodin. A Synchronization Protocol for
Temporal Isolation of Software Components in Vehicular Systems.IEEE Trans-
actions on Industrial Informatics, 5(4):375 –387, nov. 2009.

[OB98] D.-I. Oh and T. P. Baker. Utilization Bounds for N-ProcessorRate Monotone
Scheduling with Static Processor Assignment.Real-Time Systems, 15(2):183–
192, 1998.

[OS94] Y. Oh and S. H. Son. Enhancing fault-tolerance in rate-monotonic scheduling.
Real-Time Systems., 7(3):315–329, 1994.

[OS95a] Y. Oh and S. H. Son. A Processor-Efficient Scheme for Supporting Fault-
Tolerance in Rate-Monotonic Scheduling. Technical report, Universityof Vir-
ginia, 1995.

[OS95b] Yingfeng Oh and Sang H. Son. Allocating fixed-priority periodictasks on multi-
processor systems.Real-Time Systems., 9(3):207–239, 1995.

[PBD01] S. Punnekkat, A. Burns, and R. Davis. Analysis of Checkpointing for Real-Time
Systems.Real-Time Systems., 20(1):83–102, 2001.

[PJ10] R.M. Pathan and J. Jonsson. Load regulating algorithm for static-priority task
scheduling on multiprocessors. InProc. of the IPDPS, pages 1 –12, 2010.

[PLHE09] S.M. Petters, M. Lawitzky, R. Heffernan, and K. Elphinstone. Towards real multi-
criticality scheduling. InProc. of RTCSA, pages 155 – 164, 2009.

[PM98] M. Pandya and M. Malek. Minimum Achievable Utilization for Fault-Tolerant
Processing of Periodic Tasks.IEEE Trans. on Comp., 47(10):1102–1112, 1998.

216 BIBLIOGRAPHY

[PMCR08] R. Pellizzoni, P. Meredith, M. Caccamo, and G. Rosu. Hardware Runtime Mon-
itoring for Dependable COTS-Based Real-Time Embedded Systems. InProc of
the RTSS, pages 481 –491, 30 2008-dec. 3 2008.

[PMN+09] Rodolfo Pellizzoni, Patrick Meredith, Min-Young Nam, Mu Sun, MarcoCac-
camo, and Lui Sha. Handling mixed-criticality in soc-based real-time embedded
systems. InProc. of EMSOFT, pages 235–244, 2009.

[Pra07] Fault-tolerant systems. Morgan Kaufmann, 2007.

[RRJ92] S.C.V. Raju, R. Rajkumar, and F. Jahanian. Monitoring timing constraints in dis-
tributed real-time systems. InProc. of the RTSS, pages 57 –67, 1992.

[SABR04] J. Srinivasan, S. V. Adve, P. Bose, and J. A. Rivers. The Impact of Technology
Scaling on Lifetime Reliability. InProceedings of the International Conference
on Dependable Systems and Networks, pages 177–186, 2004.

[Sch84] Fred B. Schneider. Byzantine generals in action: Implementingfail-stop proces-
sors.ACM Trans. Comput. Syst., 2(2):145–154, 1984.

[SEGY11] Martin Stigge, Pontus Ekberg, Nan Guan, and Wang Yi. The digraph real-time
task model. InProc. of the RTAS, pages 71–80, 2011.

[SG90] Lui Sha and John B. Goodenough. Real-time scheduling theoryand ada.Com-
puter, 23(4):53–62, 1990.

[SGTG12] F. Santy, L. George, P. Thierry, and J. Goossens. Relaxing Mixed-Criticality
Scheduling Strictness for Task Sets Scheduled with FP. InProc. pf the ECRTS,
pages 155 –165, 2012.

[SKK+02] P. Shivakumar, M. Kistler, S.W. Keckler, D. Burger, and L. Alvisi. Modeling the
effect of technology trends on the soft error rate of combinational logic. In Proc.
of the DSN, pages 389 – 398, 2002.

[SKK+08] P. N. Sanda, J. W. Kellington, P. Kudva, R. Kalla, R. B. McBeth, J. Ackaret,
R. Lockwood, J. Schumann, and C. R. Jones. Soft-error resilienceof the IBM
POWER6 processor.IBM J. Res. Dev., 52(3):275–284, 2008.

[SKM+78] D.P. Siewiorek, V. Kini, H. Mashburn, S. McConnel, and M. Tsao.A case study
of C.mmp, Cm*, and C.vmp: Part I–Experiences with fault tolerance inmultipro-
cessor systems.Proceedings of the IEEE, 66(10):1 –1199, 1978.

[SLR86] L. Sha, J. P. Lehoczky, and R. Rajkumar. Solutions for Some Practical Problems
in Prioritized Preemptive Scheduling. InProc. of RTSS, pages 181–191, 1986.

[SMR11] Abhik Sarkar, Frank Mueller, and Harini Ramaprasad. Predictable task migration
for locked caches in multi-core systems. InProc. of LCTES, pages 131–140, 2011.

[SMRM09] Abhik Sarkar, Frank Mueller, Harini Ramaprasad, and Sibin Mohan. Push-
assisted migration of real-time tasks in multi-core processors. InProceedings
of the 2009 ACM SIGPLAN/SIGBED conference on Languages, compilers, and
tools for embedded systems, pages 80–89, 2009.

[SS83] Richard D. Schlichting and Fred B. Schneider. Fail-stop processors: an approach
to designing fault-tolerant computing systems.ACM Trans. Comput. Syst., 1:222–
238, 1983.

BIBLIOGRAPHY 217

[SS94] M. Spuri and J.A. Stankovic. How to Integrate Precedence Constraints and Shared
Resources in Real-Time Scheduling.IEEE Transactions on Computers, 43:1407–
1412, 1994.

[SS99] P. Sinha and N. Suri. On the use of formal techniques for analyzing dependable
real-time protocols. InProc. of RTSS, pages 126 –135, 1999.

[SSO05] R. M. Santos, J. Santos, and J. D. Orozco. A Least Upper Bound on the Fault
Tolerance of Real-Time Systems.Jour. of Sys. and Soft., 78(1):47–55, 2005.

[SUSO04] R. M. Santos, J. Urriza, J. Santos, and J. D. Orozco. NewMethods for Redis-
tributing Slack Time in Real-Time Systems: Applications and Comparative Eval-
uations.Jour. of Sys. and Soft., 69(1-2):115–128, 2004.

[SXLC11a] A. Saifullah, You Xu, Chenyang Lu, and Yixin Chen. End-to-End Delay Analysis
for Fixed Priority Scheduling in WirelessHART Networks. InProc. of RTAS,
pages 13 –22, 2011.

[SXLC11b] Abusayeed Saifullah, You Xu, Chenyang Lu, and Yixin Chen. Priority Assign-
ment for Real-time Flows in WirelessHART Networks. InProc. of ECRTS, pages
33–44, 2011.

[TKK95] T. Tsuchiya, Y. Kakuda, and T. Kikuno. Fault-tolerant scheduling algorithm for
distributed real-time systems. InProceedings of the Workshop on Parallel and
Distributed Real-Time Systems, page 99, 1995.

[TSP11] D. Tamas-Selicean and P. Pop. Design Optimization of Mixed-Criticality Real-
Time Applications on Cost-Constrained Partitioned Architectures. InProc. of
RTSS, pages 24 –33, 2011.

[Ves07] S. Vestal. Preemptive Scheduling of Multi-criticality Systems with Varying De-
grees of Execution Time Assurance. InProc. of RTSS, pages 239–243, 2007.

[WEMR04] C. Weaver, J. Emer, S. S. Mukherjee, and S. K. Reinhardt. Techniques to Reduce
the Soft Error Rate of a High-Performance Microprocessor. InProceedings of the
annual international symposium on Computer architecture, pages 264–275, 2004.

[WHA] WirelessHART Specification, www.hartcomm.org, 2007.

[XP00] Jia Xu and David Lorge Parnas. Priority scheduling versus pre-run-time schedul-
ing. Real-Time Syst., 18(1):7–23, January 2000.

[YKS11] Man-Ki Yoon, Jung-Eun Kim, and Lui Sha. Optimizing tunable wcet with shared
resource allocation and arbitration in hard real-time multicore systems. InProc.
of the RTSS, pages 227 –238, 2011.

[YYP+12] Heechul Yun, Gang Yao, Rodolfo Pellizzoni, Marco Caccamo, andLui Sha. Mem-
ory Access Control in Multiprocessor for Real-time Systems with Mixed Critical-
ity. In ECRTS, pages 299 – 308, 2012.

[ZMM03] Dakai Zhu, Daniel Mossé, and Rami Melhem. Multiple-Resource Periodic
Scheduling Problem: how much fairness is necessary?Proceedings of the IEEE
Real-Time Systems Symposium, pages 142–151, 2003.

[ZQQ11] Xiaomin Zhu, Xiao Qin, and Meikang Qiu. QoS-Aware Fault-Tolerant Scheduling
for Real-Time Tasks on Heterogeneous Clusters.IEEE Trans. Comput., 60:800–
812, 2011.

A
Proofs of Theorems and Lemmas

Lemma 5.3 (from Chapter 5). Considera, b, x, c andd such that0 ≤ a ≤ b ≤ x ≤
c ≤ d ≤ m

2m−1 for any integerm > 0. The following two inequalities hold:

min{Fm(b),Fm(c)} ≤ Fm(x) (5.4)

min{Fm(a),Fm(d)} ≤ min{Fm(b),Fm(c)} (5.5)

Proof. To show that Eq. (5.4) holds we will show that, the functionFm(x) = m(1−x)
2−x +x

achieves its absolute minimum at one of the end-points in[b, c], whereb ≤ x ≤ c, for
any givenm. Thus, the minimum betweenFm(b) andFm(c) is the absolute minimum
of Fm(x), and consequently Eq. (5.4) holds.

The first derivative of functionFm(x) with respect tox is F ′
m(x) = 1− m

(2−x)2 .

By settingF ′
m(x) = 0, we havex = (2 ± √m). For any value ofm > 0, the point

x = (2 +
√
m) is outside of(b, c) sincec ≤ m

2m−1 ≤ 1 for m > 0. Moreover, the point
x = (2−√m) is outside of(0, m

2m−1) for bothm = 1 andm ≥ 4. Consequently,x =

(2−√m) is also outside of(b, c) because(b, c) is entirely contained within(0, m
2m−1)

form = 1 andm ≥ 4. So, the only possiblex values satisfying bothx = (2−√m) and
F ′
m(x) = 0 arex = (2 −

√
2) andx = (2 −

√
3) for m = 2 andm = 3, respectively

(called thestationary points). Since there is no stationary point ofFm(x) within (b, c)
for m = 1 orm ≥ 4, the absolute minimum ofFm(x) occurs at one of the end points
of [b, c] for m = 1 andm ≥ 4. So, only the cases wherem = 2 andm = 3 need to be
considered.

Now for m = 2, if the pointx = (2 −
√
2) is outside of(b, c), then the absolute

minimum of F2(x) occurs at one of the endpoints of[b, c]. Otherwise, if the point

219

220 APPENDIX A. PROOFS OF THEOREMS AND LEMMAS

x = (2 −
√
2) is within (b, c), then the absolute minimum occurs at one of the three

pointsx = a, x = (2 −
√
2), or x = b. The functionF2(x) is increasing within

[b, 2 −
√
2) sinceF ′

2(x) =1 − 2
(2−x)2 > 0 within (b, 2 −

√
2) andF2(x) is decreasing

within (2 −
√
2, c] sinceF ′

2(x) =1 − 2
(2−x)2 < 0 within (2 −

√
2, c). Therefore, the

functionF2(x) has its absolute maximum atx = (2−
√
2). Thus, the absoluteminimum

of F2(x) occurs at one of the end points of[b, c].
Similarly form = 3, if the pointx = (2−

√
3) is outside of(b, c), then the absolute

minimum of F3(x) occurs at one of the endpoints of[b, c]. Otherwise, if the point
x = (2 −

√
3) is within (b, c), then the absolute minimum occurs at one of the three

pointsx = a, x = (2 −
√
3), or x = b. The functionF3(x) is increasing within

[b, 2 −
√
3) sinceF ′

3(x) =1 − 3
(2−x)2 > 0 within (b, 2 −

√
3) andF3(x) is decreasing

within (2 −
√
3, c] sinceF ′

3(x) =1 − 3
(2−x)2 < 0 within (2 −

√
3, c). Therefore, the

functionF3(x) has its absolute maximum atx = (2−
√
3). Consequently, the absolute

minimumof F3(x) occurs at one of the end points of[b, c].
Since the functionFm(x) has its minimum at one of the end points of[b, c] for any

m, it can be concluded that ifx is within [b, c] thenFm(x) is not less than the minimum
betweenFm(b) andFm(c). Therefore, Eq. (5.4) holds.

Since according to the premisea ≤ b ≤ d anda ≤ c ≤ d, it follows from Eq. (5.4)
thatmin{Fm(a),Fm(d)} ≤ Fm(b) andmin{Fm(a),Fm(d)} ≤ Fm(c) which imply
thatmin{Fm(a),Fm(d)} ≤ min{Fm(b),Fm(c)} holds.

Lemma 5.4(from Chapter 5). Consider the sporadic task systemΓk that is special on
m processors. The following inequality holds form ≥ 1

min{Fm(δkmin) , Fm(δkmax) } ≤
m2

2m− 1
(5.6)

Proof. We show that the inequality in Eq. (5.6) holds by consideringfour different cases:
Case (i)m = 1, Case (ii)m = 2, Case (iii)m = 3, and Case (iv)m ≥ 4. Remember
that, according to Property 1 of special task setΓk, we haveδkmax ≤ m

2m−1 .

Case (i)m = 1: The functionF1(x) is increasing within[0, 1] sinceF ′
1(x) = 1 −

1
(2−x)2 > 0 within (0, 1). Thus, the maximum ofF1(x) within [0, 1] occurs atx = 1,

andF1(1) = 1. Note thatδkmin andδkmax are within[0, 1] since each task’s density is as-
sumed to be within[0, 1]. Therefore, we havemin{F1(δ

k
min),F1(δ

k
max)} ≤ F1(1)= 1 for

m = 1. Because m2

2m−1 = 1 for m = 1, we havemin{Fm(δkmin),Fm(δkmax)} ≤ m2

2m−1 .

Case (ii)m = 2: Since m
2m−1 = 2

3 for m = 2 andδkmax ≤ m
2m−1 , both δkmin and

δkmax of are within [0, 23]. The functionF2(x) is increasing within[0, 2 −
√
2] since

F ′
2(x) = 1− 2

(2−x)2 > 0 within (0, 2−
√
2) and the functionF2(x) is decreasing within

[2−
√
2, 23] sinceF ′

2(x) = 1− 2
(2−x)2 < 0 within (2−

√
2, 23). Therefore, the function

F2(x) has its maximum atx = (2 −
√
2) within [0, 23], andF2(2−

√
2) = 2(2 −

√
2).

221

Consequently,min{Fm(δkmin) , Fm(δkmax)} ≤ F2(2−
√
2). SinceF2(2−

√
2) = 2(2−√

2) ≤ 4
3 = m2

2m−1 for m = 2, we havemin{Fm(δkmin),Fm(δkmax})} ≤ m2

2m−1 .

Case (iii)m = 3: Since m
2m−1 = 3

5 for m = 3 andδkmax ≤ m
2m−1 , both δkmin and

δkmax of are within [0, 35]. The functionF3(x) is increasing within[0, 2 −
√
3] since

F ′
3(x) = 1− 3

(2−x)2 > 0 within (0, 2−
√
3) and the functionF3(x) is decreasing within

[2−
√
3, 35] sinceF ′

3(x) = 1− 3
(2−x)2 < 0 within (2−

√
3, 35). Therefore, the function

F3(x) has its maximum atx = (2 −
√
3) within [0, 35], andF3(2−

√
3) = (5 − 2

√
3).

Consequently,min{Fm(δkmin) , Fm(δkmax)} ≤ F3(2−
√
3). SinceF3(2−

√
3) = (5−

2
√
3) ≤ 9

5 = m2

2m−1 for m = 3, we havemin{Fm(δkmin),Fm(δkmax})} ≤ m2

2m−1 .

Case (iv)m ≥ 4: The functionq(m) = m
2m−1 is decreasing form ≥ 4 becauseq′(m) =

−1
(2m−1)2 < 0 for m ≥ 4. Therefore, m

2m−1 ≤ 4
7 for m ≥ 4, and bothδkmin andδkmax are

within [0, 47]. The functionFm(x) is decreasing within[0, 47] for 0 ≤ x ≤ 4
7 since

F ′
m(x) =1− m

(2−x)2 < 0 within (0, 47) for m ≥ 4. Thus, the maximum ofFm(x) occurs

at x = 0, andFm(0) = m
2 . Therefore,min{Fm(δkmin) , Fm(δkmax)} ≤ Fm(0). Since

Fm(0)= m
2 < m2

2m−1 for m ≥ 4, we havemin{Fm(δkmin) , Fm(δkmax)} ≤ m2

2m−1 .

It is proved for all the cases that ifΓk is special onm processors, then the inequality
in Eq. (5.6) holds.

Lemma A.1. The following inequality holds form ≥ m′ ≥ 1.

B(m) ≤ m

2m− 1
≤ m′

2m′ − 1
(A.1)

whereB(m) is the function defined in Eq.(5.12).

Proof. We prove this Lemma considering three cases: Case (i)m = 1, Case (ii)m = 2,
and Case (iii)m ≥ 3.

Case (i)m = 1: For this case, we havem = m′ = 1 sincem ≥ m′ ≥ 1. Therefore,
m

2m−1 = m′

2m′−1 = 1 for m = m′ = 1. From Eq. (5.12), we haveB(m) = B(1) = 1
for m = 1. Therefore, Eq. (A.1) holds.

Case (ii)m = 2: Using Eq. (5.12), we haveB(2) = (2 −
√
2) for m = 2. And

m
2m−1 = 2

3 form = 2. Because(2−
√
2) < 2

3 , we haveB(m) < m
2m−1 form = 2. The

functionq(x) = x
2x−1 is decreasing forx ≥ 1 becauseq′(x) = −1

(2x−1)2 < 0 for x > 1.

Thus, we have m
2m−1 ≤ m′

2m′−1 for m ≥ m′. Consequently,B(m) < m
2m−1 ≤ m′

2m′−1 .
Therefore, Eq. (A.1) holds.

222 APPENDIX A. PROOFS OF THEOREMS AND LEMMAS

Case (iii)m ≥ 3: The following inequality in Eq (A.2) holds for anym such thatm ≥ 3.

0 ≤ m2 − 4m+ 3 (A.2)

≡ 4m2 − 4m+ 1 ≤ 5m2 − 8m+ 4

≡ 2m− 1 ≤
√

5m2 − 8m+ 4

≡ 3m− 2−
√

5m2 − 8m+ 4 ≤ m− 1

≡ 3m− 2−
√
5m2 − 8m+ 4

2m− 2
≤ 1

2

⇒
[

sinceB(m) =
3m− 2−

√
5m2 − 8m+ 4

2m− 2
according to Eq. (5.12) form ≥ 3

]

≡ B(m) ≤ 1

2
[

since
1

2
≤ m

2m− 1
≤ m′

2m′ − 1
for m ≥ m′ ≥ 1

]

⇒ B(m) ≤ m

2m− 1
≤ m′

2m′ − 1

Therefore, Eq. (A.1) holds for all the cases.

Lemma A.2. Letm andm′ be two integers such thatm ≥ m′ ≥ 1. The following
inequality in Eq.(A.3) holds

B(m) ≤ B(m′) (A.3)

whereB(m) is the function defined in Eq.(5.12).

Proof. For m ≥ 2, the first derivative ofB(m) = 3m−2−
√
5m2−8m+4

2m−2 is B′(m) =
−2(

√
5m2−8m+4−m)

(
√
5m2−8m+4)(2m−2)2

. Note that we haveB′(m) < 0 because
√
5m2 − 8m+ 4 > m

for m ≥ 2. So,B(m) is decreasingfor m ≥ 2. Thus, the maximum ofB(m) occurs at
m = 2 wheneverm ≥ 2, andB(2) = (2 −

√
2). From Eq. (5.12), we haveB(1) = 1.

Since1 > (2−
√
2), we haveB(1) > B(m) for anym ≥ 2.

If m = m′, then Eq. (A.3) trivially holds. So, to prove this Lemma, we consider
wherem > m′. Note thatm ≥ 2 wheneverm > m′ becausem′ ≥ 1.

Now, if m′ = 1, thenB(m′) > B(m). This is becauseB(1) > B(m) for any
m ≥ 2. Otherwise, ifm′ > 1, thenm > 2 since we considerm > m′. Because the
functionB(m) is decreasing form ≥ 2, we haveB(m′) > B(m) wherem > m′.
Therefore, ifm ≥ m′ ≥ 1, we haveB(m) ≤ B(m′).

223

Theorem 5.5(from Chapter 5). An implicit-deadline sporadic task setΓ is schedulable
using globalFP scheduling underSM-US[

√
2 − 1] priority assignment policy, if the

following condition, form ≥ 2, holds:

Un ≤ m · (
√
2− 1)

whereui ≤ (1− 1√
2
) or ui > (

√
2− 1) for eachτi ∈ Γ.

Proof. Given the tasksetΓ and the number of processorsm, the two subsetsΓL and
ΓH such thatΓ = ΓL ∪ ΓH based on the threshold density or utilizationδts = (

√
2 −

1) can be determined. We will show that if the total utilizationUn ≤ m · (
√
2− 1),

then the two general conditionsC1 andC2 of Lemma 5.6 hold; which guarantees the
schedulability ofΓ using global FP scheduling if no task’s utilization is within the range
(1− 1√

2
,
√
2− 1].

Each task inΓH has utilization greater than(
√
2−1) for theSM-US[

√
2−1] policy.

Since the total utilization of tasksetΓ is not greater than(
√
2 − 1)m according to the

premise, the number of tasks that are given the highest priority is less thanm (C1 holds).

To show thatC2 of Lemma 5.6 holds, we have to show thatΓL is special onm′

processors wherem′ = (m − |ΓH |). Let UL be the total utilization of all the tasks in
ΓL. Also letumaxL anduminL be the maximum and minimum utilization of any task in
setΓL, respectively. To show thatΓL is special onm′ processors, we show that Property
1 and Property 2 (given in Definition 5.1) of special taskset are satisfied. In other words,
we have to show that the following two inequalities hold.

Property 1 umaxL ≤
m′

2m′ − 1

Property 2 UL ≤ min{Fm′(uminL),Fm′(umaxL)}

(Property 1 holds for ΓL) Sinceui ≤ (1− 1/
√
2) or ui > (

√
2− 1) for each task

τi ∈ Γ, no task inΓL has utilization greater than(1 − 1/
√
2) for theSM-US[

√
2 − 1]

policy. So,umaxL ≤ (1 − 1/
√
2). Note that(1 − 1/

√
2) ≤ m′

2m′−1 for any integer

m′ > 0. Consequently,umaxL ≤ m′

2m′−1 , and thus, Property 1 is satisfied.

(Property 2 holds for ΓL) The total utilization of the tasks inΓH is greater than
(|ΓH | · (

√
2− 1)) because each task inΓH has utilization greater than(

√
2− 1) for the

SM-US[
√
2− 1] policy. Since the total utilization ofΓ is not greater thanm · (

√
2− 1)

according to the premise, the total utilization of the tasksin ΓL is at mostm′ · (
√
2− 1)

wherem′ = (m− |ΓH |). Therefore, Eq. (A.4) holds.

UL ≤ m′ · (
√
2− 1)} (A.4)

224 APPENDIX A. PROOFS OF THEOREMS AND LEMMAS

Since0 ≤ uminL ≤ umaxL ≤ (1− 1/
√
2) ≤ m′

2m′−1 , from Eq. (5.5), we have

min{Fm′(0) , Fm′(1− 1/
√
2)} ≤ min{Fm′(uminL),Fm′(umaxL)} (A.5)

From the function definition given in Eq. (5.3), we have

Fm′(0) =
m′(1− 0)

2− 0
+ 0 = m′/2 = m′ · 1/2 (A.6)

Fm′(1− 1/
√
2) =

m′(1− (1− 1/
√
2))

2− (1− 1/
√
2)

+ (1− 1/
√
2) (A.7)

= m′(
√
2− 1) + (1− 1/

√
2) > m′ · (

√
2− 1)

It follows from Eq. (A.6) and Eq. (A.7) that

min{Fm′(0), Fm′(1− 1/
√
2)} ≥ m′ · (

√
2− 1) (A.8)

Thus, it now follows from Eq. (A.4) and Eq. (A.8) that

UL ≤ min{Fm′(0), Fm′(1− 1/
√
2) } (A.9)

Finally, from Eq. (A.5) and Eq. (A.9), we have

UL ≤ min{Fm′(uminL), Fm′(umaxL) } (A.10)

Therefore, Property 2 is satisfied for task setΓL. Consequently,ΓL is special onm′

processors (i.e.,C2 holds).

Theorem 6.3(from Chapter 6). If task setΓ is schedulable using theH-ODA-LC test,
thenΓ is also schedulable using theIA-DA test, and not conversely.

Proof. Assume a contradiction that task setΓ does not pass theIA-DA test but passes
theH-ODA-LC test. Note thatIA-DA testcannotfail to assign priorities between pri-
ority levels(n−m+1) andn because theIA-DA algorithm in Figure 6.4 assigns these
m highest priority levels in line 12–13 and returns “schedulable” in line 14. Therefore,
the IA-DA test can fail to assign priority only at some priority level between1 and
(n−m).

Let theIA-DA test first fails to assign priority at some priority levelPL, where
1 ≤ PL ≤ (n −m). Thus, whenIA-DA test fails at priority levelPL, there are total
(PL−1) tasks that are already assigned fixed priorities and there are total(n−PL+1)
priority-unassigned tasks. Consequently, theminimumnumber of priority-unassigned
tasks whenIA-DA fails is (m + 1) since1 ≤ PL ≤ (n −m). Let F denotes the set of
all priority-unassigned tasks whenIA-DA fails. Note that|F| ≥ (m+ 1).

Remember that theH-ODA-LC test assigns the highest fixed priority to them′

highest-density tasks and the remaining(n−m′) lowest-density tasks are assigned pri-

225

orities based on theODA-LC test for somem′, where0 ≤ m′ < m. SinceΓ passes the
H-ODA-LC test, there are(n −m′) lowest-density tasks that are successfully assigned
priorities using theODA-LC test for somem′, 0 ≤ m′ < m. In other words, each of the
(n −m′) lowest-density tasks passes theDA-LC test (because theODA-LC test essen-
tially applies theDA-LC test in algorithm OPA in Figure 6.1). LetP denotes the set of
these(n−m′) lowest-density tasks. Note that|P| ≥ (n−m+ 1) since0 ≤ m′ < m.

Because|F| + |P| ≥ (m + 1) + (n − m + 1) = (n + 2) and |Γ| = n, there are
at least two tasks that are common to both setsF andP. Let τx be such a common
task where taskτx ∈ (F ∩ P). Without loss of generality assume that each task in set
((F ∩P)−{τx}) has higher priority than that of taskτx for the priorities assigned by the
H-ODA-LC test. Therefore, each of the tasks in(F−{τx}) is assigned higher priorities
than that of taskτx according to the priorities assigned by theH-ODA-LC test. In other
words, ifφ is the set of tasks that are assigned higher priorities than taskτx according
to the priorities assigned by theH-ODA-LC test, then(F− {τx}) ⊆ φ.

Sinceτx ∈ P, task τx passesDA-LC test when assigning the priority using the
H-ODA-LC test. Note that setφ includes them′ highest-density tasks that are sepa-
rated and assigned the highest fixed-priority inH-ODA-LC test. If taskτx passes the
DA-LC test, wherem′ highest-density tasks from setφ are separated, then according to
Lemma 6.1, taskτx must pass theDA-LC test by separatingm′ tasks using algorithm
Select(φ,m′, τx, Dx) from setφ. Consequently, taskτx must pass theDA-LC test
by separatingm′ or lower number of tasks from set(F − {τx}) using theSelect
algorithm since(F − {τx}) ⊆ φ. Therefore, theIA-DA test that uses theSelect
algorithm for separation of the tasks can not fail to assign priority to taskτx at prior-
ity level PL if Γ passes theH-ODA-LC test. Therefore, any task set that passes the
H-ODA-LC test also passes theIA-DA test. The task set in Example 6.2 passes the
IA-DA test but not theH-ODA-LC test. Therefore,IA-DA test dominates the state-of-
the-artH-ODA-LC test.

Lemma 9.2 (form Chapter 9). The net increase in workload due to any shift of the
problem window in Figure 9.4 is bounded byCHI

k − CLO
k .

Proof. This Lemma is proved by considering any possible shift of theproblem window
for the reference pattern in Figure 9.4 both in (i) leftward,and (ii) rightward directions
for α time units,0 ≤ α ≤ Tk. Shifting the problem window by exactlyTk time units in
any direction results in the same release pattern as in Figure 9.4. For ease of readability,
Figure 9.4 is presented here again in Figure A.1.

Leftward shift: Due to the leftward shift of the problem window in the reference
pattern, the workload in the shifted window mayincreasein two of the following ways:

• First, the jobJ (y−1)
k that was executing forCLO

k time units in the reference pat-
tern may now experience the criticality-switch in the shifted window. Thus, the
workload of jobJ (y−1)

k may now increase by(CHI
k − CLO

k) time units within the
shifted window.

226 APPENDIX A. PROOFS OF THEOREMS AND LEMMAS

Figure A.1: The reference pattern. Each job released beforer
y

k finishes(Dk − ζk) time units
earlier than its deadline in the reference pattern.

• Second,newworkload may enter into the shifted window from the left-hand side
of the window. Note that any job that is released before jobJyk executes for at
mostCLO

k time units. Thus, the amount of new workload that may enter from the
left-hand side of the problem window is bounded byCLO

k .

Consequently, a (pessimistic) upper bound on the total increase in workload within the
shifted window isCHI

k time units. However, workload in the reference pattern may also
decrease from the right-hand side of the problem window.

Shifting the problem window left byα time units, where0 ≤ α ≤ CLO
k , the workload

in the shifted window isdecreasedbyα time units from the right-hand side. In such case,
new workload that may enter into the shifted window from the left-hand side is at most
α. Because the execution time of jobJ (y−1)

k may now be increased by(CHI
k − CLO

k)
time units, thenet increase in workload within the shifted problem window is atmost
(CHI

k − CLO
k), whenever0 ≤ α ≤ CLO

k .
Shifting the problem window left byα time units, whereCLO

k < α ≤ Tk, the
workload in the shifted window decreases by at leastCLO

k time units from the right-
hand side of the window. Because an upper bound on the total increase in workload
in the shifted window isCHI

k , the maximumnet increase in workload is bounded by
(CHI

k − CLO
k) wheneverCLO

k < α ≤ Tk. In summary, the maximum net increase in
workload is upper bounded by(CHI

k − CLO
k) for any left shift of the window in the

reference pattern.

Rightward Shift: The workload in the shifted window due to right shift of the prob-
lem window can increase only if the window is shifted right for more than(Tk − CHI

k)
time units. This is because no job of taskτk executes within[rxi + t, rxi + t+ (Tk − CHI

k]
in the reference pattern.

If (Tk − CHI
k) < α ≤ (Tk − CLO

k), then shifting the problem window right byα
time units, the workload in the shifted window increases by(α − (Tk − CHI

k)) time
units. Sinceα ≤ (Tk − CLO

k), the maximumnet increase in workload is(CHI
k − CLO

k),
whenever(Tk − CHI

k) < α ≤ (Tk − CLO
k).

227

Every right shift of the problem window for exactlyTk time units must decrease the
workload from the left-hand side byCLO

k time units. Therefore, the workload within
the shifted window is decreased by at least(α − (Tk − CLO

k)) time units from the
left-hand side for any right shift of the problem window byα time units whenever
(Tk − CLO

k) ≤ α ≤ Tk. Any right shift of the problem window byα time units, where
(Tk − CLO

k) ≤ α ≤ Tk, increases the workload within the shifted window by at most
(α− (Tk − CHI

k)) time units. Consequently, the maximumnet increase in workload
within the shifted window is equal to(CHI

k − CLO
k), whenever(Tk − CLO

k) ≤ α ≤ Tk.
In summary, the maximum net increase in workload is upper bounded by(CHI

k − CLO
k)

for any right shift of the window in the reference pattern.

B
Additional Graphs for Iterative Tests

0 %

20 %

40 %

60 %

80 %

100 %

 0.4 0.6 0.8

Ac
ce

pt
an

ce
 R

at
io

Utilization / m

m=4, n=12 (Constrained-Deadline)

IA-RT
IA-DA

H-ODALC
ODALC

Figure B.1: Acceptance ratios for experiments with(m = 4, n = 3m = 12).

229

230 APPENDIX B. ADDITIONAL GRAPHS FOR ITERATIVE TESTS

0 %

20 %

40 %

60 %

80 %

100 %

 0.4 0.6 0.8

Ac
ce

pt
an

ce
 R

at
io

Utilization / m

m=8, n=24 (Constrained-Deadline)

IA-RT
IA-DA

H-ODALC
ODALC

Figure B.2: Acceptance ratios for experiments with(m = 8, n = 3m = 24).

0 %

20 %

40 %

60 %

80 %

100 %

 0.4 0.6 0.8

Ac
ce

pt
an

ce
 R

at
io

Utilization / m

m=16, n=48 (Constrained-Deadline)

IA-RT
IA-DA

H-ODALC
ODALC

Figure B.3: Acceptance ratios for experiments with(m = 16, n = 3m = 48).

0 %

20 %

40 %

60 %

80 %

100 %

 0.4 0.6 0.8

Ac
ce

pt
an

ce
 R

at
io

Utilization / m

m=4, n=40 (Constrained-Deadline)

IA-RT
IA-DA

H-ODALC
ODALC

Figure B.4: Acceptance ratios for experiments with(m = 4, n = 10m = 40).

231

0 %

20 %

40 %

60 %

80 %

100 %

 0.4 0.6 0.8

Ac
ce

pt
an

ce
 R

at
io

Utilization / m

m=8, n=80 (Constrained-Deadline)

IA-RT
IA-DA

H-ODALC
ODALC

Figure B.5: Acceptance ratios for experiments with(m = 8, n = 10m = 80).

0 %

20 %

40 %

60 %

80 %

100 %

 0.4 0.6 0.8

Ac
ce

pt
an

ce
 R

at
io

Utilization / m

m=16, n=160 (Constrained-Deadline)

IA-RT
IA-DA

H-ODALC
ODALC

Figure B.6: Acceptance ratios for experiments with(m = 16, n = 10m = 160). The task
set generation algorithm failed to generate 1000 task sets at utilization level beyond 70% for the
given discard limit of 1000. So, the algorithm was aborted. However, the acceptance rationof all
the tests are zero at utilization level70%.

	Abstract
	List of Publications
	Acknowledgments
	Introduction
	Context of this Research
	Contribution Areas
	Timeliness
	Timeliness vs. Fault-Tolerance
	Timeliness vs. Mixed-Criticality

	Applicability of this Research

	Preliminaries
	Real-Time Systems
	Sporadic Task Systems
	Task Priority
	Preemptive Scheduling
	Work-Conserving Scheduling
	Schedulability and Optimality
	Schedulability Test
	Minimum Achievable Density
	Scheduling Algorithms

	Fault-Tolerant Systems
	Failure, Error, and Fault
	Error Detection Techniques

	Mixed-Criticality Systems

	Models
	Task Model
	Resource Model
	Fault Model

	Goals and Contributions
	Density-Bound-Based Test
	Introduction
	Related Work
	Parameters of Task Model
	Constrained-Deadline Tasks: Density-Bound
	Prior Results and Useful Definitions
	``Special'' Task Set and its Schedulability
	Slack-Monotonic Hybrid Priority Assignment
	Density Bound for Policy ISM-DS

	Policy ISM-DS[]: Searching the Threshold
	Empirical Investigation
	Task Sets Generation Algorithm
	Result Analysis

	Implicit-Deadline Tasks: Utilization Bound
	Independent and Scale Invariant Priority Assignment

	Uniprocessor Slack-Monotonic Scheduling
	Summary

	Iterative Tests
	Introduction
	An Analysis Framework
	Audsley's OPA Algorithm

	Related Work
	State-of-the-art Iterative Tests

	The H-ODA-LC Test
	Applying HPA Policy to ODA-LC Test

	The IA-DA Test
	Overview of the IA-DA Test
	New Criterion for Separation
	Priority Assignment Algorithm: the IA-DA Test

	The IA-RT Test
	The D-RTA-LC Test
	Priority Assignment Algorithm: the IA-RT Test

	Empirical Investigation
	Result Analysis

	Summary

	Fault-Tolerant Scheduling on Uniprocessor
	Introduction
	System Model
	Traditional DM Scheduling

	Related Work
	Problem Formulation
	Load Factors and Composability
	Calculation of Load-Factor-i
	Calculation of Load-Factor-HPi

	Exact Schedulability Test
	Algorithm for the FTDM Schedulability Test
	Multiprocessor Scheduling

	Summary

	Fault-Tolerant Scheduling on Multiprocessors
	Introduction
	Related Work
	System Models and the FTGS Scheduling
	Problem Statement
	Analysis for Tolerating Task Errors
	Calculating Interfering Workload
	Workload of task i
	Interfering Workload of task i

	Total Interfering Workload of the Tasks in HPk
	Finding Carry-in Set Q(S,a,,c)
	Total Interfering Workload and Schedulability Test

	Tolerating Processor Failures
	Graceful Degradation
	Direct Rejection
	Criticality-Based Eviction
	Imprecise Computation

	Summary

	Mixed-Criticality Systems
	Introduction
	System Model and The Scheduler
	Schedulability Analysis: an Overview
	Dual-Criticality Systems

	RTA Procedure at LO Criticality Level
	New RTA for Sporadic Task Systems

	RTA Procedure at HI Criticality Level
	Workload of k hpL(i) within [rix, rix+t)
	Workload of k hpH(i) within [rix, rix+t)
	The RTA Test for HI Criticality Level

	Schedulability Analysis for L >2
	Finding Priorities using Audsley's Algorithm

	Empirical Investigation
	Related Works
	Summary

	Conclusion
	Proofs of Theorems and Lemmas
	Additional Graphs for Iterative Tests

