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Welcome to the course!

+ Machine learning is increasingly popular among students

« our courses take increasing volumes
+ many thesis projects develop or apply ML models

- ...and in industry, public sector

* many companies come to us looking for students
« joint research projects

+ Why the fuss and why now?
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Success stories: image recognition

The Image Classification Challenge:

1,000 object classes
'I 431 167 lmages
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Success stories: machine translation
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| hit the ball with a bat. X Jag slar bollen med en fladdermus.

£h) 26/5000 - <) \D
Decoder

the green house<EOS>

|

context

Encoder

<BOS>the green house

das griine Haus <EOS>

SR
CHALMERS |
&

UNIVERSITY OF GOTHENBURG



Data

I Under the bonnet
How a self-driving car works

Signals from GPS (global positioning system) Lidar (light detection and ranging)
satelli with readii sensors bounce pulses of light off the
surroundings. These are analysed to
identify lane markings and the
edges of roads

Video cameras detect traffic lights,
read road signs, keep track of the
position of other vehicles and look
out for pedestrians and obstacles
on the road

may
be used to measure the
position of objects very
close to the vehicle,
such as curbs and other
ihen parking

mlhrunmuonofodm

the rules of the road, both veMdBunM Such sensors are already used

[source]

CHALMERS UNIVERSITY OF GOTHENBURG



https://towardsdatascience.com/creating-a-movie-recommender-using-convolutional-neural-networks-be93e66464a7
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https://blogs.nvidia.com/blog/2016/01/12/accelerating-ai-artificial-intelligence-gpus/




Applications...
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https://docs.google.com/presentation/d/19JHefvPipfIgmjJhup17cfHauuJLhBQ-1Ekpq80zPOk

Topics covered in the course

« The usual “zoo™: a selection of machine learning models

+ what's the idea behind them?
+ how are they implemented? (at least on a high level)
+ what are the use cases?
+ how can we apply them practically?
« But hopefully also the “real-world context™
- extended “messy” practical assignments requiring that you
think of what you're doing
« invited talks from industry and/or the healthcare sector
- annotation of data, evaluation
- ethical and legal issues, interpretability
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Overview

Practical issues about the course

R
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Course webpage

- The official course webpage is the Canvas page
https://chalmers.instructure.com/courses/33104
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https://chalmers.instructure.com/courses/22288
https://chalmers.instructure.com/courses/33104

People involved in the course

« Richard: examiner, responsible for the course

- Anton, Jack, Newton, Selma, Philipp, Laleh, Styrbjérn: helping
you with the assignments

CHALMERS
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Structure of teaching

« Lecture discussions Tuesdays and Fridays 13-15

- we will use a flipped classroom format with pre-recorded
lectures you are expected to have watched before the session

« summary and discussion of the content of the recorded
lectures

« interactive coding

- solving a few exercises when we have time

- feel free to ask questions before the session!

- Assistance sessions Thursdays 13-17

« our TAs help you work on your assignments

+ please let me know if it's too crowded

« in a computer lab room (with possibly additional remote
sessions)

CHALMERS @ UNIVERSITY OF GOTHENBURG



Assignments

« Five compulsory assignments:

PA 1 intro to the ML workflow, decision trees
PA 2 random forests

PA 3 text classification

PA 4 neural network software

PA 5 medical image classification

+ We will use the Python programming language
+ Please refer to the course PM for details about grading
- Assignments are done in groups
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Programming assignment 1

« Warmup lab exercise: quick tour of the scikit-learn library
« Introduction to decision trees

- For a high grade: implement decision tree regression

- Assistance sessions this Thursday

+ Submission deadline: January 27
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Literature

- We won't follow a book closely, but we'll give pointers to
reading material in this book:

* Machine Learning: A course for engineers and scientists by
Lindholm et al: http://smlbook.org/

- And additional papers to read for some topics
- Some notes to complement the lectures
- Example code will be posted on the course page
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http://smlbook.org/

Additional material along the way

- Exercise sheets, old exams
« Online quizzes

CHALMERS
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Exam, mid-March

- This is a take-home exam: a written assignment

+ Will be available during the whole exam period
« Two-part structure:

1. afirst compulsory part about basic concepts: you need to
answer most of these questions correctly to pass

2. asecond optional part that requires more insight: answer these
questions for a higher grade
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Student representatives

- If youre interested in being a student representative, please
send me an email!

« The workload is light and there will be a small reward...

CHALMERS @ UNIVERSITY OF GOTHENBURG



Overview

Fundamental concepts in machine learning

R
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Predictive models

- Given some object, make a prediction
« is this patient diabetic?
« what animal does this image show?
« what is the market value of this apartment?
+ what are the phonemes contained in this speech signal?
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https://www.igcseict.info/theory/7_2/expert/

Predictive models

- Given some object, make a prediction
« is this patient diabetic?
« what animal does this image show?
« what is the market value of this apartment?
+ what are the phonemes contained in this speech signal?
« The goal of machine learning is to build the predictive models
by observing data
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Predictive models

- Given some object, make a prediction
« is this patient diabetic?
+ what animal does this image show?
« what is the market value of this apartment?
+ what are the phonemes contained in this speech signal?
« The goal of machine learning is to build the predictive models
by observing data

- Contrast: expert-defined or data-driven

(

L

[source]
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https://www.igcseict.info/theory/7_2/expert/

Why machine learning?

Why would we want to “learn” the function from data instead of
just implementing it?
- Usually because we don't really know how to write down the
function by hand

« speech recognition
« image classification
+ machine translation

« Might not be necessary for limited tasks where we know
- What is more expensive in your case? knowledge or data?
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Don't forget your domain expertise!

ML makes some tasks automatic, but we still need our brains:
- defining the tasks, terminology, evaluation metrics
- annotating (hand-labeling) training and testing data
- designing features
- error analysis

CHALMERS
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Example: is the patient diabetic?
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Example: is the patient diabetic?

weight: 87

blood pressure: 130

' pulse rate: 80
s @
age: 37

blood glucose level: 180

gender: male

+ In order to predict, we make some measurements of
properties we believe will be useful: these are called the
features
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More terminology: what is the output?

- Classification: learning to output a category label
« spam/non-spam; positive/negative; ...

- Regression: learning to guess a number
- value of a share; number of stars in a review; ...
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How is the training signal provided?

- In supervised learning, the training set consists of
input-output pairs

- our goal is to learn to produce the outputs

CHALMERS
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Types of supervision: alternatives

+ Unsupervised learning: we are given “unorganized” data
« our goal is to discover some structure

75 50 -25 00 25 50 75 100 75 50 -25 00 25 50 75 100

« Reinforcement learning: our problem is formalized as a game
+ an agent carries out actions and receives rewards

e
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iris.head()

Example: Fisher's iris data

Setosa

Virginica

sepal_length sepal width petal_length petal_width species

o 51 35 14 02 setosa

1 49 3.0 14 02  setosa

2 47 32 13 02  selosa

3 46 31 15 0.2 setosa

4 50 36 14 02  setosa
CHALMERS ‘ UNIVERSITY OF GOTHENBURG
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Approach 1: linear separator

if 0.85 - petal_length + 2.42 - petal_width > 8.34:
return virginica

else
return versicolor
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Approach 2: if/then/else tree

Petal width < 1.75?

True False
Petal length < 4.95? | Virginica |
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Basic supervised machine learning workflow

machine

N learning
extractor

1\
feature classifier
[T IT]
. extractor model
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Basic ML methodology: evaluation

+ Select an evaluation procedure (a “metric’) such as
- classification accuracy: proportion correct classifications?
+ mean squared error often used in regression
+ or some domain-specific metric
+ Compare to one or more baselines
« trivial solution
« rule-based solution
- existing solution
« Apply your model to a held-out test set and evaluate
« the test set must be different from the training set

- also: don't optimize on the test set; use a development set or
cross-validation!
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Managing your data
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Managing your data
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Managing your data
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Managing your data for evaluation and cross-validation

£ >
Train - Test Validation -
o . =
Split .% Split
] 2
5 ) - I
L

5-Fold
Cross Validation

Test

[source]
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https://docs.google.com/presentation/d/19JHefvPipfIgmjJhup17cfHauuJLhBQ-1Ekpq80zPOk

Overview

Machine learning libraries in Python

R
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Use cases for machine learning

. Standard use cases: standard
solutions are available

- Special cases: we may need to tailor
our own solutions

R
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The Python machine learning ecosystem (selection)

abstraction

Q'/

N o-: .!
ﬁu—

low-level
control

dmilc

XGBoost

Keras

PYTORCH FTensorFlow
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Machine learning software: a small sample

- General-purpose software, large collections of algorithm:s:
+ scikit-learn: http://scikit-learn.org
» Python library - will be used in this course
+ Weka: http://www.cs.waikato.ac.nz/ml/weka
> Java library with nice user interface
- Special-purpose software, small collections of algorithms:

« Keras, PyTorch, TensorFlow, JAX for neural networks
« LibSVM/LibLinear for support vector machines
+ XGboost, lightgbm for tree ensembles

- large-scale learning in distributed architectures:

« Spark MLLib
« H20
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Scikit-learn toy example

See also
https://scikit-learn.org/stable/getting_started.html

R
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Up next

- Thursday: lab sessions for programming assignment 1
- Topic of Friday’s discussion:
« decision trees
« ensembles and random forests
- generalization, under/overfitting
- Please prepare for assignment 1 by reading my code and the
extra reading on decision trees
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