
Applied Machine Learning, GU/Chalmers, 2020
Exercises, part 1: solutions

1 Practical Machine Learning Problems
1.1 Predicting party affiliation [recycled exam question]

We would like to build a system that tries to predict which candidate an American voter
will prefer in the 2020 presidential election: Republican, Democratic, another party, or
abstaining. This system has access to extensive information about each voter, from which we
can construct the features that the classifier will be using. The system should train a classifier,
and then evaluate that classifier on a separate test set.

(a) Sketch an implementation of the system in Python. You should use standard functions in
scikit-learn as far as possible. If you don’t remember the names of scikit-learn functions and
classes, just use pseudocode or invented names, as long as it is clear what you mean. (It’s OK
if you exclude the imports.)

You can propose any feature that you think could be useful for this task, except features
related to voting, which is what we are trying to predict, or completely unrealistic features
such as reading the voter’s mind. You may assume that you have access to all the resources
(e.g. databases of personal, financial, and geographical data) that you need to compute the
features that you have defined, and that there are Python functions to deal with that data.
Your implementation needs to use at least three different features.

(b) Discuss briefly the ethical implications of building and using such a classifier.

Solution.
(a) The idea of this task is twofold: thinking of what features could be useful for the task, and
showing that you can use the scikit-learn library. Here’s a typical solution. Obviously, all the
different look up functions are invented, and my solution assumes that we have access to a
collection of people identified by their social security numbers. The important thing here is
that the solution needs to include some credible features Then, ideally the code is reasonably
close to something similar to scikit-learn.

from sklearn.feature_extraction import DictVectorizer

from sklearn.svm import LinearSVC

from sklearn.pipeline import Pipeline

from sklearn.metrics import accuracy_score

from sklearn.cross_validation import train_test_split

def extract_features(soc_sec_nbr):

x = {}

x[’gender’] = look_up_gender(soc_sec_nbr)

x[’race’] = look_up_race(soc_sec_nbr)

x[’home_state’] = look_up_race(soc_sec_nbr)

x[’education’] = look_up_education(soc_sec_nbr)

x[’age’] = look_up_age(soc_sec_nbr)

x[’income’] = look_up_income(soc_sec_nbr)

return x

if __name__ == ’__main__’:

soc_sec_nbrs = ... # we assume that we can access a selection of voters

create features for all instances

X = [extract_features(nbr) for nbr in soc_sec_nbrs]

we make the unrealistic assumption that we know the vote of each

person -- let’s say this might come from interviews

Y = [look_up_vote(nbr) for nbr in soc_sec_nbrs]

split the data into training and test parts

Xtrain, Xtest, Ytrain, Ytest = train_test_split(X, Y,

train_size=0.8,

random_state=0)

build a pipeline consisting of a vectorizer

and a learning algorithm

classifier = make_pipeline(DictVectorizer(),

GradientBoostingClassifier())

train the model

classifier.fit(Xtrain, Ytrain)

predict

Yguess = classifier.predict(Xtest)

evaluate

print(accuracy_score(Ytest, Yguess))

(b) Obviously, as soon as we are dealing with personal data, we need to be careful. In
particular, if we’d like to use voting preferences to train a classifier, it seems reasonable to ask
for the consent of the people who are included in the training set.

In general, it is good to be careful when a classifier is categorizing people. For many people,
it may be sensitive to be labeled by such a classifier (“you seem like a typical X voter”).

This is an open-ended question with no clear-cut answer. A passable answer needs to
demonstrate a certain awareness that we can’t apply these kinds of methods tools blindly.

1.2 Distinguishing between varieties of Arabic [recycled exam question]

The regional varieties of spoken Arabic are very diverse: for instance, someone from the Gulf
would normally have great difficulties understanding the colloquial speech of a Moroccan.
Moreover, the colloquial varieties are all quite different from the formal, standardized register:
Modern Standard Arabic. While the standard register is used in formal writing, the regional
varieties tend to dominate not only in the spoken language but also in many types of informal
written text, such as in the social media.

Our annotators have collected a fairly large set of YouTube comments written in the Arabic
script, and categorized each of them by its language variety. Texts written in standardized
Arabic are tagged MSA. The regional varieties are divided into five broad groups: Egyptian,
Gulf (including the Arabian Peninsula), Iraqi (and Kuwait), Levantine (from Syria, Jordan,

Lebanon, and Palestine), and Maghrebi (North African). We also include a category Other for
documents written in the Arabic script in languages other than Arabic, such as Persian or
Urdu, so in total we have seven categories. Here are two examples:

Maghrebi

Gulf

(a) Sketch an implementation in Python of a system that automatically classifies a short text in
the Arabic script into one of the seven categories mentioned above. The system should train a
classifier, and then evaluate that classifier on a separate test set. You should use standard
functions in scikit-learn (or another machine learning toolkit) as far as possible. If you don’t
remember the names of scikit-learn functions and classes, just use pseudocode or invented
names, as long as it is clear what you mean.1

There is a Python function that reads the annotated dataset:

texts, labels = read_arabic_dataset()

This function returns two equally sized lists of strings: the document texts, and the
corresponding language categories.

Make sure that your explanation is clear about what features the system uses. It is up to you
to decide what features to use. The features should not be based on any external resources:
they should just use what’s available in the documents.

(b) How do you think we should analyze the errors of this classifier?

Solution.

This is a type of document classification problem, so we can apply the “cookie-cutter” solution
for this type of problem: representing the documents as bag-of-words feature vectors, which
are then used to train some classifier. Here is the Python code of a typical solution. This
becomes very compact since we’re relying on the built-in tokenizer of CountVectorizer.
(You’re not required to remember all the import statements.)

from sklearn.feature_extraction.text import CountVectorizer

from sklearn.svm import LinearSVC

from sklearn.pipeline import Pipeline

from sklearn.cross_validation import train_test_split

from sklearn.metrics import accuracy_score

if __name__ == ’__main__’:

docs, labels = read_arabic_dataset()

X_train, X_test, Y_train, Y_test = train_test_split(docs, labels,

train_size=0.5,

random_state=0)

cls = Pipeline([(’vec’, CountVectorizer()),

(’cls’, LinearSVC())])

1This task is inspired by the Master’s thesis by Wafia Adouane, Automatic Detection of Under-resourced Languages:
Dialectal Arabic Short Texts, University of Gothenburg 2016, and the examples are taken from her text.

cls.fit(X_train, Y_train)

Y_guess = cls.predict(X_test)

print(accuracy_score(Y_test, Y_guess))

However, it’s quite likely that a word-based feature representation isn’t optimal for discrimi-
nating between languages. Probably it’s better to build a representation based on character
N-grams. Here is a solution that extracts N-grams with N from 2 to 5. Again, the solution
is short because the vectorizer has a built-in N-gram counting functionality, but extracting
N-grams can of course also be done manually. Note also that we’re using a TfidfVectorizer

instead of the CountVectorizer, in order to downweight features that are common in all
categories.

from sklearn.feature_extraction.text import TfidfVectorizer

...

if __name__ == ’__main__’:

docs, labels = read_arabic_dataset()

X_train, X_test, Y_train, Y_test = train_test_split(docs, labels,

train_size=0.5,

random_state=0)

cls = Pipeline([(’vec’, TfidfVectorizer(analyzer=’char’,

ngram_range=(2, 5))),

(’cls’, LinearSVC())])

cls.fit(X_train, Y_train)

Y_guess = cls.predict(X_test)

print(accuracy_score(Y_test, Y_guess))

Other possible solutions include character-based recurrent neural networks, but this can’t be
done inside scikit-learn at the moment, so your solution would need to be described using
another toolkit or with pseudocode.

(b) Obviously, trying to explain the errors is easier if we actually know the languages.
Otherwise, it may be meaningful to look at the distributions of errors. Which classes are most
commonly confused with each other? [In the Master’s thesis that inspired this question, the
error analysis showed that languages of neighboring regions were more easily confused, e.g.
there were more Moroccan/Algerian mistakes than Moroccan/Gulf.]

1.3 Bug fixing

A large software development company receives bug reports from the users of their
various software products. Each bug report concerns one particular product, and the
report itself consists of a description of the problem, typically one or a few paragraphs
of free text. There is some additional information, such as the severity level (on a
scale from 1 to 5), the platform (e.g. Mac or Windows) where the problem occurred,
and optionally some text that describes how to reproduce the problem. The company
then assigns the bug to a software developer, who is responsible for coming up with a solution.

(a) The company would like to develop a machine learning system that tries to estimate how
much time will be spent to fix the problem. How would you design such a system? What
type of model would you try to use? What features would it need?

(b) How would you suggest that the system should be evaluated?

Solution.
(a) A fairly typical regression problem. We can probably use all the information mentioned in
the description directly, including the text represented as a bag of words (or TF-IDF). It seems
likely that it is important to include the information about the software developer: either
just the name, or any other information we might have about that person (e.g. education,
experience).

Using scikit-learn, we can probably use any of the typical regression models.

regressor = make_pipeline(DictVectorizer(), StandardScaler(), Ridge())

If the problem turns out to be nonlinear and a linear regressor doesn’t work, we can try a
nonlinear model, e.g. a neural network regressor (MLPRegressor) or a tree-based ensemble
(GradientBoostingRegressor, RandomForestRegressor).

(b) For the prediction problem itself, the typical choice would be a standard regression metric
(e.g. MSE, R2).

1.4 Chinese word segmentation [recycled exam question]

In East Asian scripts including the Chinese script, words are normally not separated by
whitespace. This makes it more difficult than in European scripts to automatically segment
a sentence string into separate words, which is a prerequisite for most types of automatic
analysis of the text. For instance, the following sentence2

can be written as separate words as follows:

(a) Describe how you would address the problem of automatic Chinese word segmentation
using machine learning techniques. Program code isn’t mandatory, but you can use
pseudocode or Python if necessary for your explanation. Your solution should explain what
types of learning techniques and features you would use, and how they would be applied.
As a training set, the system is allowed to use text: either raw text, or text that has been
segmented manually. No other resource is allowed (including dictionaries).3

(b) How do you think such a system should be evaluated?
Solution.
(a) This question is intentionally open-ended, because its purpose is to test your skills in
taking a problem and casting it as a machine learning task. So there are many imaginable
ways in which this task could be solved, and any clearly described solution that is credible
and well motivated will get a full score. The following is a typical solution.

Example solution: supervised sequence tagging. The most straightforward solution is probably to
treat this as a supervised learning task using sequence tagging techniques. To convert the task

2I have copied this example from an external source, but I’ve been told a couple of times by Chinese speakers
that these characters are weird. Feel free to provide me with a better example! You get the point anyway.

3Inspired by a paper by Nianwen Xue, Chinese Word Segmentation as Character Tagging, 2003.

http://www.aclweb.org/anthology/O03-4002

into sequence tagging, we need to mark the word boundaries in some way. Then the example
sentence would be tagged

B B I B I B I B I B B B I B

After this conversion, it’s just a matter of applying some effective sequence model. The easiest
solution is to use a greedy step-by-step classifier, using a set of features describing the current
character, surrounding character, etc.

Or we could use a specialized learning algorithm for sequence problems (e.g. conditional
random field), or a sequence-based neural network (e.g. LSTM) using embeddings of the
characters.

(b) This seems like a typical situation for a precision/recall evaluation:

P =
number of correctly detected words

number of proposed words

R =
number of correctly detected words
number of words in gold standard

Computing an accuracy of the predicted beginning/inside tags would also be a way to
evaluate the system.

1.5 Recycled questions from the March 2018 exam

• 1: Predicting house prices

• 2: Predicting customer churn

1.6 Recycled questions from the August 2018 exam

• 1: Dermatology, question (a)

• 2: Consultation

• 3: Using scikit-learn for a regression task

2 Dealing with Features

2.1 Selecting a good set of features [recycled exam question]

When using machine learning techniques, it is crucial that we provide the learning system
with useful features. Here is an example of a set of 28 features used in a system that classifies
a sentence by difficulty for a language learner. (The six difficulty levels are defined according
to the European standard: A1–C2.)

When developing a classifier based on these features, it is important to understand that the
best possible classifier does not necessarily use all 28 of them. In general it can be harmful for
a classifier to add useless features, because they can “drown out” the good features.4

(a) Why can’t we write a practical algorithm that automatically determines a perfect set of
features?

(b) Describe some automatic or manual method to determine a good set of features.

(c) We’d like to train a neural network that uses all the 28 features listed in the table. We
don’t need to go into the details about the features, but we can note that all of them are
numerical. Is there anything in particular that you need to think of when training the classifier?

Solution.
(a) As already mentioned, the best feature set isn’t necessarily the largest, so we need to find
the best subset of features. And since the features interact in nontrivial ways, the only sure
way to find the best set is by trying out all possible subsets on some development set. Now,
how many subsets are there? In general, if we have N features, there are 2N possible subsets
(because each feature is either included or not). For small feature sets this is feasible, but for
instance with Ildikó’s features, we have 228 possible subsets, or about 268 million. So we’d
need to try out 268 million different classifiers. In practice, we have to use some rule of thumb
to find a fairly good feature set, which isn’t necessarily the best one. This leads us to . . .
(b) If we start with a manual approach, we could carry out an ablation test (which was an
optional task in the first assignment). This means that for each feature F, we evaluate a
classifier that uses all features, and another classifier that uses all features except F. We then
remove all features that don’t seem to cause a drop in performance when removed.

This approach can of course be automatized in various ways. In greedy backward selection,
we start with the full set, try to find the feature that gives the highest improvement by being

4The features were described in the Master’s thesis by Ildikó Pilán, NLP-based approaches to sentence readability
for second language learning purposes, University of Gothenburg, 2013.

removed, and then repeat again with the reduced set. Conversely, greedy forward selection
starts with an empty feature set and gradually adds features until there is no feature that
gives an improvement.

Another alternative that is more efficient, but possibly less precise, is to use some sort of
statistical feature scoring function. For instance, the SelectKBest class in scikit-learn will
rank the features by some measure of statistical “relatedness” between each feature and
the output variable. (See http://scikit-learn.org/stable/modules/generated/sklearn.

feature_selection.SelectKBest.html.) We could then select a subset by selecting e.g. the
top 10 features according to this ranking.

You just have to explain one approach, which can be either manual or automatic.

(c) These features are all numerical. Neural networks (as well as linear classifiers) can be
affected negatively if the scales of the features are very different. (For instance, if the first
feature has a mean of about 20, and the fourth feature about 0.5.) The instructions didn’t say
anything about the scales of the features, but in general with neural networks and this type
of features, it’s good to standardize the features. So a StandardScaler or a MinMaxScaler in
the pipeline is probably a good idea.

2.2 General feature selection questions

What are filter, wrapper, and embedded feature selection methods?

Solution.
Filter methods. These methods select features before training, typically by ranking features
according to some criterion of “usefulness,” based on how strongly each single feature
correlates with the variable we are trying to predict. Given such a ranking of features, we can
select e.g. the top 1000 features, as in SelectKBest in scikit-learn. An examples of feature
ranking functions is the mutual information score, also known as information gain; this is
called mutual info classif in scikit-learn.

See also Section 1.3 in this description of decision trees. The feature ranking functions used
in decision tree learning can be used generally, not only when training decision trees.

Wrapper methods. These methods use a machine learning method as a part of the selection
process, by training the model based on different subsets of the features and then trying to
find the subset that gives the best performance. This is difficult to do exactly, so often greedy
approximations are used, such as forward or backward greedy feature selection.

Embedded methods. This refers to machine learning methods that perform feature selection
as a part of their training process. One example of such a method is decision tree learning
where the number of branches is limited, because then only the most “useful” features will
be included. Another example is the use of the L1 or Lasso regularizer in linear models:
for mathematical reasons, when using this regularizer we often get an optimum where
several of the feature weights are set to exactly zero, which means that those features can be
removed entirely. The number of features removed will depend on the regularization tradeoff
hyperparameter.

http://scikit-learn.org/stable/modules/generated/sklearn.feature_selection.SelectKBest.html
http://scikit-learn.org/stable/modules/generated/sklearn.feature_selection.SelectKBest.html
http://www.cse.chalmers.se/~richajo/dit866/lectures/l1/decision_trees.pdf

3 Decision Trees

3.1 Building a decision tree

The folllowing dataset can be used to train a classifier that determines whether a given person
is likely to own a car or not. There are three features: education level (primary, secondary, or
university); residence (city or country); gender (female, male).

education residence gender has car?
sec country female yes

univ country female yes
prim city male no
univ city male no
sec city female no
sec country male yes

prim country female yes
univ country male yes
sec city male yes

prim city female no
univ city female no
prim country male yes

Make a decision tree that classifies the training set perfectly. You can construct it manually or
use an automatic algorithm.

Solution.
Here is one possible decision tree.

3.2 Classifying irises

One of the most widely known datasets in machine learning is the Iris data, which was origi-
nally collected in 1936 by Ronald Fisher. The following scatterplot shows petal measurements
(width and height) for two subspecies, Iris versicolor (red) and Iris virginica (blue).

3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0
Petal length

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

Pe
ta

l w
id

th

We train scikit-learn’s DecisionTreeClassifier to distinguish between the two types of irises.
Here is the result:

Draw the classifier’s decision boundary.

Solution.
This is just about reading the tree. Here is the decision boundary:

3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5
1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

3.3 General decision tree questions

(a) Describe the differences between how discrete-valued and numerical features are handled by
decision tree learning algorithms.

Solution.
For a description of how numerical features are handled, see Section 2.3 in this document
about decision trees.

(b) Describe the differences between how decision tree models are used for classification and
for regression.

Solution.
For a description of decision tree regression, see Section 3 in this document about decision
trees.

(c) Mention one or more approaches to mitigating the problem of overfitting in decision tree
models.

Solution.
A non-exhaustive list of possible approaches:

• Limiting the maximally allowed depth of the tree,

• limiting the maximally allowed number of splits,

• “tree pruning” by removing tree branches that seem to have no effect when evaluated on
a validation set.

3.4 Recycled questions from the March 2018 exam

• 5: Decision tree classifiers

http://www.cse.chalmers.se/~richajo/dit866/lectures/l1/decision_trees.pdf
http://www.cse.chalmers.se/~richajo/dit866/lectures/l1/decision_trees.pdf

3.5 Recycled questions from the August 2018 exam

• 5: Decision tree classifiers

4 Linear Classification
4.1 The perceptron algorithm [recycled exam question]

(a) Write down the perceptron algorithm for training binary classifiers. You can write it in
pseudocode or Python (either using standard data structures, or NumPy).

(b) Let’s assume that we’d like to develop a sentiment polarity classifier for review texts. We
have the following small training set:

X = [[’this’, ’movie’, ’was’, ’good’],

[’this’, ’movie’, ’was’, ’really’, ’bad’],

[’it’, ’is’, ’as’, ’good’, ’as’, ’its’, ’predecessor’],

[’it’, ’is’, ’so’, ’bad’, ’that’, ’I’, ’have’, ’no’, ’words’]]

Y = [’positive’, ’negative’, ’positive’, ’negative’]

What does your perceptron classifier contain after two iterations through this training set?
That is, what numbers are stored in the data structure that you use to represent the classifier?

Solution.
(a) The perceptron learning algorithm can be written in a variety of different ways (and all
would be counted as correct), but here we will stick to the version presented in the lectures.
Here’s the pseudocode, using vector notation. (For solutions in Python, please take a look at
the code from the second lecture.)

Inputs: a list of example feature vectors X
a list of outputs Y
the number of iterations N

w = zero vector
repeat N times

for each training pair (xi,yi)
score = w · xi
if score ≤ 0 and yi belongs to the positive class

w = w + xi
if score ≥ 0 and yi belongs to the negative class

w = w− xi

(b) We assume that the documents are represented using an unweighted bag-of-words feature
representation. Then, after looking at the first two instances, the weight vector (or weight
dictionary) stores the number +1 at the dimension corresponding to the word good and -1 for
really and bad. This weight vector will not change as we look at the two other examples, and it
will also remain unchanged during the second iteration over the training set.

4.2 Breakfast habits [recycled exam question]

We would like to build a classifier that will try to predict whether a given person will prefer tea
or coffee for breakfast. For each person, we have features representing his or her nationality
and occupation. Here is the Python code:

from sklearn.feature_extraction import DictVectorizer

from sklearn.linear_model import Perceptron

from sklearn.pipeline import make_pipeline

X = [{ ’nationality’:’british’, ’occupation’:’student’ },

{ ’nationality’:’swedish’, ’occupation’:’student’ },

{ ’nationality’:’british’, ’occupation’:’lawyer’ },

{ ’nationality’:’swedish’, ’occupation’:’chef’ }]

Y = [’tea’, ’coffee’, ’tea’, ’coffee’]

p = make_pipeline(DictVectorizer(),

Perceptron(n_iter=1))

p.fit(X, Y)

(a) Explain what the DictVectorizer is and what it will do when we call p.fit(X, Y).
(b) Explain in detail what the Perceptron will do when we call p.fit(X, Y). Use pseudocode
or Python to explain how the algorithm works. For simplicity, you can assume that there are
just two classes in Y.
(c) What output we will get if we run the following code, and why do we get that output?

new = { ’nationality’:’british’, ’occupation’:’chef’ }

print(p.predict(new))

Solution.
(a) The DictVectorizer is responsible for converting features into numerical vectors. The
Dict is because each instance is represented as a dictionary, which is a natural choice when
we talk of attributes that have values.

When we call fit, it will first gather a vocabulary of observed attribute–value pairs. Each
of them will be assigned its own dimension in a vector space. So after calling fit, there will be
some feature-to-dimension mapping, maybe something like this:

nationality:british 0

nationality:swedish 1

occupation:chef 2

occupation:lawyer 3

occupation:student 4

After creating this mapping, it will transform the training instances into vectors. Assuming
that we have the mapping above, the training set becomes the following matrix:

1 0 0 0 1

0 1 0 0 1

1 0 0 1 0

0 1 1 0 0

(b) When we call fit, the Perceptron will train a classifier using the perceptron learning
algorithm. Its input is the vectorized feature matrix, as output by the DictVectorizer

described in (a).
The perceptron learning algorithm can be written in a variety of different ways (and all

would be counted as correct), but here we will stick to the version presented in the lectures.
Here’s the pseudocode, using vector notation. (For solutions in Python, please take a look at
the code from the second lecture.)

Inputs: a list of example feature vectors X
a list of outputs Y

assign one output class as the “positive” class and the other one as the “negative”
w = zero vector

repeat n iter times
for each training pair (xi,yi)

score = w · xi
if score ≤ 0 and yi belongs to the positive class

w = w + xi
if score ≥ 0 and yi belongs to the negative class

w = w− xi

As stated in the task, we assume that the classification problem is binary. To handle more
than two classes, we could use a multiclass perceptron or convert the multiclass problem into
several binary problems, using the OneVsRestClassifier for instance.
(c) Here, you need to say at least what weights the perceptron has learned (which will depend
on how you formulate the algorithm), and what score will be computed for this instance. You
don’t need to go through all steps, but here’s a walkthrough anyway.

coffee→ positive, tea→ negative
Step 1: w · x1 = 0⇒ w becomes −1 for British (dimension 0) and for student (4)
Step 2: w · x2 = −1⇒ w becomes −1 for British (0) and +1 for Swedish (1)
Step 3: w · x3 = −1, no change
Step 4: w · x4 = +1, no change

So the British chef, unlike the Swedish chef, will be classified as a tea drinker (w · x = −1).

4.3 Understanding logistic regression [recycled exam question]

The weight vector w in a logistic regression classifier is defined as the w that minimizes the
function f in the following equation:

f (w, X,Y) =
1
N

n

∑
i=1

L(w, xi,yi) +
λ

2
· R(w)

As usual, X is a list of feature vectors of all the instances in the training set and Y the
corresponding outputs (coded as +1 or -1), and N the size of the training set. The notation
∑n

i=1 means that we sum over all instances in the training set. The parameter λ (Greek letter
lambda) is discussed below.

Specifically, the functions L and R are defined as follows:

L(w, xi,yi) = log(1 + exp(−yi · (w · xi)))

and
R(w) = ‖w‖2

which is the squared vector length of w, defined as ∑m
j=1 w2

j where m is the number of
dimensions in the vector (and wj the j:th element of w).

(a) What is the purpose of L(w, xi,yi) and R(w), respectively?

(b) What happens to w if λ is set to a high value such as 1000000? What if it is a low value
such as 0.000001?

(c) In the second lab assignment, the parameter η (Greek letter eta) was not an input to the
algorithm but was instead set automatically in a way so that it decreased gradually during

http://scikit-learn.org/stable/modules/generated/sklearn.multiclass.OneVsRestClassifier.html

training. Why is this often better than using a constant value for η?

Solution.
(a) L is the loss function, which shows how well the classifier fits the training set. In this case,
L is the log loss because we are training a logistic regression classifier. It is the log of the
output of the sigmoid function, which represents the probability assigned by our model to
the correct output. R is the regularizer, which represents the “simplicity” of the classifier in
some way – the Occam’s razor intuition. The regularizer used here will penalize large weights.

(b) λ controls the tradeoff between the loss and the regularizer: between fitting the training
data and keeping the classifier simple. If λ is a large number, the weights will become very
small values. Conversely, if it’s a small number, the classifier will “work harder” to fit the
training set, so some weights will probably be quite large.

(c) If η is too large, our step length is too long, so we may have difficulties to find the optimum
exactly because we are “jumping over” it. On the other hand, if it’s too small, then we may be
moving too slowly in the beginning. (See the lecture on optimization for a visual explanation.)

4.4 More logistic regression questions

(a) We have trained a logistic regression classifier and the first weight in its weight vector is 5.
What does this tell us?

(b) Can you think of a practical advantage of using a logistic regression classifier, as op-
posed to e.g. a perceptron or support vector classifier, in terms of interpretability of the results?

(c) How can we interpret the output of a two-class logistic regression classifier as a probability?

(d) In a two-class logistic regression model, the weight vector w = [4,3,2,1,0]. We apply it
to some object that we’d like to classify; the vectorized feature representation of this object
is x = [−2,0,−3,0.5,3]. What is the probability, according to the model, that this instance
belongs to the positive class? (You should be able to solve this without a calculator.)

(e) Discuss one or more solutions for building a logistic regression model that can handle
more than two output classes.

(f) We have a classification problem where our feature representation contains about
10,000,000 features. We’d like to develop a classifier that can be deployed in a mobile phone,
so preferably it should have a small memory footprint. Discuss one or more solutions for how
this can be done.

Solution.
(a) It shows that the feature associated with the first dimension has a positive effect on the
classifier’s decision function: if we increase the value of this feature, the classifier increases its
probability that this instance belongs to the positive class. More precisely: if we increase the
feature’s value by one, we increase the classifier’s output score value by 5.

[Mathematical side note: the score w · x in logistic regression can be interpreted as the
logarithm of the odds: see https://en.wikipedia.org/wiki/Logit.]

https://en.wikipedia.org/wiki/Logit

(b) LR gives a probabilistic output (if we apply the sigmoid function to the classifier’s score),
which makes it a bit easier to interpret the output. “Probability of 90%” is probably easier to
understand than “output score of 2.20”.

(c) As already discussed in (b): by applying the sigmoid (logistic) function:

σ(x) =
1

1 + e−x

A plot of the sigmoid function:

6 4 2 0 2 4 6
classifier score

0.0

0.2

0.4

0.6

0.8

1.0

P(
y

=
po

sit
iv

e
| x

)

(d) The classifier’s output score w · x = −13.5. A large negative score, so the probability will
be practically zero.
(e) Let’s assume that we have three classes: A, B, and C.

(alternative 1) Convert the 3-class problem into separate binary problems. The easiest
approach is one-vs-rest, where we have one binary classifier dedicate to each class. For
instance, one classifier that looks for the class A, etc. Then when we classify an instance, we
output the class that is associated with the binary classifier that gives the highest output score.

(alternative 2) Use a softmax model instead of a sigmoid.

P(A) =
escore(A)

escore(A) + escore(B) + escore(C)

(f) One solution (which is not specific to logistic regression) is to apply a feature selection
method. (For instance SelectKBest in scikit-learn.) Then we can just decide how many
features we’d like to include, and we can easily control the memory/accuracy tradeoff.

A second solution would be to use a logistic regression model that uses L1 regularization
(similar to a Lasso linear regression model.) When using this type of regularizer (and setting
the regularization parameter so that the regularizer is strong), most of the weights in the
weight vector will be set to zero, which means that we can ignore these features.

4.5 Understanding support vector classifiers [recycled exam question]

The weight vector w in a linear support vector classifier is defined as the w that minimizes
the function f in the following equation:

f (w, X,Y) =
1
N

n

∑
i=1

L(w, xi,yi) +
λ

2
· R(w)

As usual, X is a list of feature vectors xi of all the instances in the training set and Y the
corresponding outputs yi (each output coded as +1 or -1), and N the size of the training set.
The notation ∑n

i=1 means that we sum over all instances in the training set. λ is a parameter
set by the user.

Specifically, the functions L and R are defined as follows:

L(w, xi,yi) = max(0,1− yi · (w · xi))

and
R(w) = ‖w‖2

which is the squared vector length of w, defined as ∑m
j=1 w2

j where m is the number of
dimensions in the vector (and wj the j:th element of w).

(a) Let’s assume that the weight vector w =
[
1 2 3

]
and the feature vector x =

[
1 0 −1

]
,

and y = −1. What’s the output of the function L(w, x,y) in this case? What does this tell us?

(b) What’s the purpose of the function R?

(c) The equation above tells us what kind of w we’d like to have, but it doesn’t really tell us
how to get it. Explain on a high level how to convert the equation into an actual algorithm. (It
isn’t mandatory to use pseudocode or equations to answer this question.)

Solution.
(a) L is called the hinge loss function. As usual, a loss function is designed to output a low
value when an instance is classified correctly; more specifically, the hinge loss reaches its
minimum value (zero) if the instance has a margin of at least 1 to the decision boundary. In
this case, w · x = −2 and y = −1, so we get L(w, x,y) = max(0,1− 2) = 0, so this instance is
classified well enough: the loss is 0.
(b) R is the regularizer, which represents the “simplicity” of the classifier in some way – the
Occam’s razor intuition. The regularizer used here will penalize large weights.
(c) To convert the equation into a training algorithm, we need to apply an optimization
algorithm to the objective function. In the course, we have discussed stochastic gradient descent
(SGD) algorithm repeatedly, so this will be our natural choice. In SGD, we train in a step-
by-step fashion, by randomly selecting one training example in each step. We compute the
gradient (more precisely, the subgradient) of the objective f with respect to that example, and
update the weight vector: w = w− η · gradient, where η is a step length parameter. In this
case, the gradient of the regularizer plus the loss is

λ ·w−
{

yi · xi if yi · (w · xi) < 1
zero vector otherwise

where λ ·w is the gradient of the regularizer, and the rest is the gradient of the hinge loss.
To get a full score here, you need to mention at least that we’re using an optimization

algorithm such as SGD, and something about the update step in SGD being related to the
gradient of the function f ; as stated above, you don’t need to write down the formulas.

4.6 Recycled questions from the March 2018 exam

• 9: Logistic regression

4.7 Recycled questions from the August 2018 exam

• 10: Support vector classification

5 Evaluation
5.1 Evaluating a dermatological screening test

We have developed a convolutional network that classifies images of skin lesions, to detect
whether they are cancerous or not.5

(a) We evaluate the classifier on a test set. Here is the confusion matrix. (In the table, C means
cancerous and NC non-cancerous.)

Predicted
C NC

Truth
C 40 4

NC 16 4000

Compute the accuracy of the classifier. Then compute the precision and recall for detecting
cancerous lesions.

(b) What would the accuracy, precision, and recall values be for a majority-class baseline?
(The class non-cancerous is the most common in the training set.)

(c) We now consider a smaller test set of just 50 instances, out of which 5 have been determined
by professional dermatologists to be cancerous. We rank the instances by the classifier’s
output score. The top-ranked eight instances are categorized by dermatologists as follows:

1 C
2 C
3 C
4 NC
5 C
6 NC
7 C
8 NC

so the rest of the 50 instances all belong to the NC category. Draw the precision/recall curve
for the task of finding the tumors.

(d) How would you set the classifier’s threshold for this task?

Solution.
(a) The accuracy is the proportion of correct answers:

accuracy =
40 + 4000

40 + 4000 + 4 + 16
= 0.995

The precision measures the proportion of correct answers in our guesses for the class we’re
interested in (in this case the C class).

P =
40

40 + 16
= 0.71.

5Inspired by Esteva et al. Dermatologist-level classification of skin cancer with deep neural networks, Nature 542,
115–118 (2017).

https://www.nature.com/articles/nature21056
https://www.nature.com/articles/nature21056

Conversely, the recall (or sensitivity, or true positive rate) measures the proportion of C
instances that are correctly identified as such.

R =
40

40 + 4
= 0.91.

(b) The majority-class baseline will assign all instances to the NC class. So for the accuracy
we get

accuracy =
4016

4016 + 44
= 0.989

The classifier doesn’t predict any C instances, so the recall is

R =
0

40 + 4
= 0.

What to do about the precision when the classifier doesn’t predict any C instances? The
precision is 0/0, which is undefined. Traditionally, most people assign a precision value of 1

for this special case, but it’s also OK if you just answer that the precision is undefined.

(c) Probably easiest if we first compute all the P/R values. [There are a couple of different ways
to draw P/R curves. Here, we’ll just compute P/R values when we see positive instances.]

P R
1 0

1 C 1/1 1/5

2 C 2/2 2/5

3 C 3/3 3/5

4 NC
5 C 4/5 4/5

6 NC
7 C 5/7 5/5

8 NC

So we get a precision/recall curve that looks like this:

0.0 0.2 0.4 0.6 0.8 1.0
recall

0.0

0.2

0.4

0.6

0.8

1.0

pr
ec

isi
on

(d) This of course depends on how the classifier is intended to be used. It seems reasonable to
believe that false positives are less harmful than false negatives in this case (we really don’t
want to miss any tumors). So probably we’d set the threshold so that the recall is high.

5.2 Measuring inter-annotator agreement

(a) Why is it useful to measure the agreement between annotators when developing a dataset
for a machine learning task?

Solution.
This is a way to check the integrity of our data production process. If annotators do not
agree, we probably have some sort of problem, which may be related to how the annotators
were trained, the dedication of the annotators, the user interface, how well-defined and
well-described the annotation task is, etc. If we have a low agreement, we probably have
low-quality data which makes it hard to build a good system and to measure its performance
in reliable way.

(b) What is a chance-corrected inter-annotator agreement measure?

Solution.
Naively, we could just compute how often two or more annotators agree with each other, and
then report this as a measure of inter-annotator agreement. In some cases, this is enough.
However, in particular when there is a high imbalance between classes in the data, this would
be misleading.

For instance, let’s say that we are annotating X-ray images for the presence of some disease,
and that about 1 in 100 of the images is in the positive category (the patient has the disease),
so that the remaining 99% of the images are negative. Then if the two annotators behave
randomly and independently (for instance, for each image they annotate “positive” with a
probability of 0.01 and “negative” otherwise, independently of each other) they will still have
a probability of 0.992 + 0.012 = 0.9802 of agreeing.

Chance-corrected inter-annotator agreement measures compare the measured inter-annotator
agreement probability to the chance agreement probability, which is defined as the probability
that annotators would agree under the assumption that their annotations are statistically
independent. There are some different variants, but the most famous one is Cohen’s κ

κ =
Pagree − Pchance

1− Pchance

(c) The Mechanical Turk annotators Aaron and Bertha are annotating comments as pro-Brexit
or anti-Brexit. Compute Cohen’s κ for their annotations for the following eight comments.

Aaron Bertha
anti pro
pro anti
pro anti
pro pro
anti anti
pro pro
anti anti
pro pro

Solution.
They agree in 5 out of 8 cases, so the measured probability of agreement is 0.625. How about
the chance agreement probability?

Aaron has annotated 3 instances as anti-Brexit and 5 as pro-Brexit, while Bertha has
annotated 4 anti and 4 pro. Based on these numbers, we get a chance agreement probability of

Pchance =
3
8
· 4

8
+

5
8
· 4

8
= 0.5

So we get

κ =
0.625− 0.5

1− 0.5
= 0.25

which is quite a bad κ score.

5.3 Recycled questions from the March 2018 exam

• 3: Evaluation

5.4 Recycled questions from the August 2018 exam

• 4: Evaluation

6 Miscellaneous questions
6.1 Recycled questions from the March 2018 exam

• 4: Overfitting

• 6: Pest control, question (b)

7 Questions that require a bit of calculus
The following questions require a higher degree of mathematical maturity than the questions
above and are intended for students who want to dig a bit deeper. They are not representative
of what you can expect in the exam. These questions are not representative of what you could
expect to see in the exam.

7.1 Perceptron and SGD

Show that the standard perceptron algorithm can be derived from an objective function that
we optimize using stochastic gradient descent. How does this objective function look?
Solution.
The perceptron algorithm can be seen as SGD applied to an objective defined by the following
loss function.

L(w, xi,yi) = max(0,−yi · (w · xi))

To see why this is the case, consider the two cases (yi ·w · x is positive or negative) and
compute the gradient with respect to w. (Strictly speaking, we’ll be using a subgradient here,
because the gradient is undefined at 0. This corresponds to the “corner case” in the perceptron
learning algorithm that it’s a bit arbitrary what to do in case the decision function’s score is
exactly 0.)

7.2 Squared hinge loss

(a) What do you think could be the advantages of using a squared hinge loss

L(w, x,y) = [max(0,1− y ·w · x)]2

instead of the normal one? (This is actually the default loss function in scikit-learn’s
LinearSVC.)

Solution.
This loss function is smoother than the normal hinge loss: it does not have the “kink”. This
makes it easier to optimize.

(b) Derive the gradient and write down the pseudocode to train a L2-regularized binary linear
classifier using this loss function.

Solution.
The gradient of the loss is

2(w · x− y)x.

The rest is just as in Assignment 4.

7.3 Primal and dual forms of linear classifiers

The weight vector w in a binary linear SVC is defined as the w that minimizes the function f
in the following equation:

f (w, X,Y) =
1
N

m

∑
i=1

L(w, xi,yi) +
λ

2
· ‖w‖2

where L is the hinge loss. As you recall, the result is a linear classifier that outputs one class
(the “positive class”) if the quantity

score(x) = w · x

is greater than zero, and otherwise returns another class (the “negative class”).

It can be shown that the classifier’s scoring function can alternatively be written

score(x) =
m

∑
i=1

αi(xi · x)

where the xi are training instances and m is the size of the training set. The αi are numbers;
training the classifier using this representation means that we find the αi values. For support
vector classifiers, most of the numbers αi are zero: the only training instances where αi is
nonzero are those that are misclassified or are exactly on the margin. These particular training
instances are called the support vectors.

The representation above (using the training instances and the αi) is called the dual
representation of the classifier, while the traditional formulation (using w) is called the primal
representation. As a side note, scikit-learn includes two implementations of support vector
classifiers, LinearSVC and SVC, where the former uses the primal representation and the latter
the dual representation.

(a) If you have trained a classifier that uses the dual representation, how could you convert it
back into the primal representation? That is, how can you compute w?

(b) In the dual representation, let’s replace the dot product xi · x by K(xi, x) = (xi · x)2. The
function K is called a quadratic kernel. Using the quadratic kernel instead of the normal dot
product seems weird, but there is a reason. Show that there is a feature transformation ϕ such
that ϕ(xi) · ϕ(x) = K(xi, x). What do you think is the point of this? How do you think this

affects the decision boundary of the classifier?

(c) Can you reformulate the perceptron learning algorithm so that it produces a linear
classifier in the dual form instead of a weight vector? (This algorithm might be inefficient, but
that is OK for this exercise.)

Solution.
(a) By the bilinearity of the dot product:

w =
m

∑
i=1

αixi

(b) To keep things less cluttered, let’s assume that x has two dimensions, x =
[
x1, x2

]
. Then if

we set

ϕ(
[
x1, x2

]
) =

[
x2

1, x2
2,
√

2x1x2
]

,

we have ϕ(xi) · ϕ(x) = (xi, x)2.

What’s the point of this? We have shown that by using the quadratic kernel, we implicitly
map the feature vector into a higher-dimensional vector space where there are new features
that express combinations of the old features (in our case, the third dimension of the vector).
By including such combinations, we get a more expressive classifier, so this classifier could
solve the XOR problem, for instance. This is now a non-linear classifier (when we consider it
from the original two-dimensional feature space), so the decision boundary is not a straight
line.

(c) See https://en.wikipedia.org/wiki/Kernel_perceptron.

7.4 Limitations of gradient descent

We have seen a few different training algorithms, mainly for linear classifiers and regressors,
which are based on minimizing an objective of the following kind:

f (w, X,Y) =
1
N

n

∑
i=1

Loss(w, xi,yi) + λ · R(w)

(a) Instead of using a loss such as the hinge loss or log loss, we might try to minimize the error
rate directly. Define a loss function so that the first part of the function is equal to the error rate.

Solution.
This is called the “zero-one” loss. It will be equal to 0 if the classification of an instance is
correct, and 1 if it incorrect. Notationally, it can be written as

Loss01(w, xi,yi) = 1[yi · (w · xi) ≤ 0]

where the notation 1[criterion] means a function that is equal to 1 if the criterion is true and
0 if it is false. The following plot shows the zero-one loss and two of our other well-known
classification losses, as a function of yi · (w · xi).

https://en.wikipedia.org/wiki/Kernel_perceptron

3 2 1 0 1 2 3
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0 log loss
hinge loss
zero-one loss

(b) We have said that regularizers try to keep models “simple”, using different notions of sim-
plicity. For instance, one idea of “simplicity” could be to try to use as few features as possible.
Define a regularizer R that measures how many nonzero features the weight vector w contains.

Solution.
We can use a notation similar to what we used in (a):

R(w) =
m

∑
i=1

1[wi 6= 0]

Formally speaking, this is called the L0 regularizer.

(c) Explain why gradient descent optimization would be unable to minimize the loss or the
regularizer you defined above.

Solution.
Because the gradients are zero everywhere (except at the “kinks”, where they are strictly
speaking undefined). This means that a gradient descent algorithm will be completely stuck.

Using this loss function and regularizer leads us into the world of discrete optimization
algorithms, because in both cases we are counting something. Discrete optimization involves
algorithms (branch and bound, integer linear programming, etc.) that are completely different
from gradient-based methods. Theoretically, it can be shown that these optimization problems
are NP-hard, which means that it is theoretically difficult to find an algorithm that leads to the
strictly best optimum, except from trial and error (which becomes super-slow for realistically
sized problems).

	Practical Machine Learning Problems
	Predicting party affiliation [recycled exam question]
	Distinguishing between varieties of Arabic [recycled exam question]
	Bug fixing
	Chinese word segmentation [recycled exam question]
	Recycled questions from the March 2018 exam
	Recycled questions from the August 2018 exam

	Dealing with Features
	Selecting a good set of features [recycled exam question]
	General feature selection questions

	Decision Trees
	Building a decision tree
	Classifying irises
	General decision tree questions
	Recycled questions from the March 2018 exam
	Recycled questions from the August 2018 exam

	Linear Classification
	The perceptron algorithm [recycled exam question]
	Breakfast habits [recycled exam question]
	Understanding logistic regression [recycled exam question]
	More logistic regression questions
	Understanding support vector classifiers [recycled exam question]
	Recycled questions from the March 2018 exam
	Recycled questions from the August 2018 exam

	Evaluation
	Evaluating a dermatological screening test
	Measuring inter-annotator agreement
	Recycled questions from the March 2018 exam
	Recycled questions from the August 2018 exam

	Miscellaneous questions
	Recycled questions from the March 2018 exam

	Questions that require a bit of calculus
	Perceptron and SGD
	Squared hinge loss
	Primal and dual forms of linear classifiers
	Limitations of gradient descent

