Machine Learning for Natural Language
Processing
Generating Text from a Language Model

UNIVERSITY OF
GOTHENBURG

CHALMERS

Richard Johansson

richajo@chalmers.se

generating text from a language model

- assuming we have P(X), how do we generate or “decode”?
P(good|...)

 That is

- we will discuss the most common algorithms for
autoregressive LMs

- there are several algorithms: this is an active research area

CHALMERS ®)) UNIVERSITY OF GOTHENBURG

use cases: generating from a prompt

- given a prefix or “prompt’, how do we find

text” = arg max P(text|prompt)
ex

generated_ids = generate("NLP stands for natural”, greedy strategy, stopping criterion=partial(has_n_sentences, n=2),

NLP stands for natural language processing. It is a method of processing language by using a computer to learn the me:

CHALMERS UNIVERSITY OF GOTHENBURG

use cases: sampling

- if we have P(X), how can we generate random texts?
- again, we might want to use a prompt

text ~ P(text|prompt)

generafed_)’.dsh= generate("Méatbélls", Féndnm_strategy, stopping_criterion=partial(has_n_sentences, n=2))

Meatballs are a well-loved family recipe that typically serve as the centerpiece of spring gatherings in

generafediids = generate("Meatballs", random strategy, stopping criterion=partial(has_n_sentences, n=2))

Meatballs. I made a weekly ritual of "drilling" out new ones, starting with how-to guides and deciding ol

generated ids = generate("Meatballs", random_strategy, stopping criterion=partial(has_n_sentences, n=2))

Meatballs. Go for junk food and chips, no way you can show some athletic skill with a mound of food.

genera{ed71d5 = generate("Meatballs", random strategy, stopping criterion=partial(has_n_sentences, n=2))

Meatballs, fried crickets and soggy greens. Another favourite — a crab-stuffed baked potato and chutney

CHALMERS NIVERSITY OF GOTHENBURG

unsupported use cases

- itis difficult to solve “fill-in-the-blank” tasks with
autoregressive LMs

- what is the most likely missing text?
NLP stands for ___ . It is a method...

CHALMERS @ UNIVERSITY OF GOTHENBURG

first idea: greedy decoding

That.. is----\; good

P

 :‘~—>That iS

- select the highest-scoring alternative at each step

UNIVERSITY OF GOTHENBURG

CHALMERS @

greedy decoding: pseudocode

initialize X = z1,. .., z,, to some token sequence
fori =m + 1, ... until some stopping criterion met
x; « argmax, P(z|X)
append z; to X
return X

CHALMERS ®)) UNIVERSITY OF GOTHENBURG

CHALMERS UNIVERSITY OF GOTHENBURG

The

y

 %%2>This

And

BURG

The

y

 %%2>This

And

BURG

;ybook

The 205,
y big
 2+>This

And

;;book

The 205,
y big
 2+>This

And

pros and cons of greedy decoding

fast and easy to implement

CHALMERS | UNIVERSITY OF GOTHENBURG

pros and cons of greedy decoding

fast and easy to implement

BUT:
does not find the highest-scoring sequence

CHALMERS | UNIVERSITY OF GOTHENBURG

;;book

The 205,
y big
 2+>This

And

;;book

yThe hig
-*>This

Son

And

;;book

yThe hig
0.3=
-22>This;!®

\\\‘It X hook
And

;;book

yThe hig
0.3=
-22>This;!®

N ““book
And

beam search decoding

problem: we can't consider all possible sequences

o..book

 thz—»Thns""S

~~Xbook
\It

CHALMERS @ UNIVERSITY OF GOTHENBURG
4

beam search decoding

problem: we can't consider all possible sequences
as an approximation, let’s keep k candidates at each step

this idea is called beam search

o..book

 41~2—>Th|s"'IS

~*pook
\It boo

CHALMERS @ UNIVERSITY OF GOTHENBURG

beam search decoding: pseudocode

set the beam width &

initialize X = x4, ..., z,, to some token sequence

B+ [X]

fori =m + 1, ... until some stopping criterion met
C +[]

foreachbin B
compute P(z|b)
add b + [z] to C for all z in the vocabulary
B < select k top-scoring candidates from C
return top-scoring beam from B

CHALMERS @ UNIVERSITY OF GOTHENBURG

drawbacks of greedy and beam search decoding

- generated texts can be bland and uninformative
- the generation often has problems with repetition

CHALMERS | UNIVERSITY OF GOTHENBURG

drawbacks of greedy and beam search decoding

- generated texts can be bland and uninformative
- the generation often has problems with repetition

input_ids = tokenizer('Hello', return_tensors='pt').input_ids
outputs = model.generate(input_ids, num beams=8, max_length=50, pad_token_id=0)
print(tokenizer.decode(outputs[0]))

Hello

I've been working on this project for a while now. I've been working on this project for a while now. I've

CHALMERS | UNIVERSITY OF GOTHENBURG

- some research describing these problems: (Holtzman et al,,
2020), (Kulikov, 2022)

- repetition poorly understood theoretically (Fu et al., 2021)

THE CURIOUS CASE OF
NEURAL TEXT DeGENERATION

Ari Holtzman' Jan Buys'' Li Du' Maxwell Forbes' Yejin Choi'*
"Paul G. Allen School of Computer Science & Engineering, University of Washington
*Allen Institute for Artificial Intelligence
Department of Computer Science, University of Cape Town
{ahai,dul2, mbforbes, yejin}@cs.washington.edu, jbuys@cs.uct.ac.za

ABSTRACT

Despite considerable advances in neural language modeling, it remains an open
question what the best decoding strategy is for text generation from a language
model (e.g. to generate a story). The counter-intuitive empirical observation is
that even though the use of likelihood as training objective leads to high qualuy
models for a broad range of language tasks, ma d
decoding methods such as beam search lead 10 zl'egemmfr(m — output text [lm is
bland, incoherent, or gets stuck in repetitive loops.

CHALMERS UNIVERSITY OF GOTHENBURG

sampling

initialize X = z1,. .., z,, to some token sequence
fori =m + 1, ... until some stopping criterion met
x; ~ P(z|X)
append z; to X
return X

CHALMERS @ UNIVERSITY OF GOTHENBURG

drawbacks of sampling

input_ids = tokenizer('Hello', return_tensors='pt').input ids

outputs = model.generate(input_ids, do_sample=True, max_length=50, pad_token_id=0)
print(tokenizer.decode(outputs[0]))

Hello - this is a big win for everyone of you who support C++11!

The winner of this week's poll will be taken here in June 2016.

If you enjoyed this article you will like my Facebook Page.<|endoftext|>

CHALMERS |)) UNIVERSITY OF GOTHENBURG

improving sampling: truncating the distribution (1)

in top-k sampling, we only include the & most probable words
when sampling:
0.25

0.20 0.20

0.15

0.10

0.05

it and of dog has hoax
]
1

k=4

CHALMERS @ UNIVERSITY OF GOTHENBURG
4

improving sampling: truncating the distribution (2)

in top-p or nucleus sampling (Holtzman et al.,, 2020), we select the

most probable tokens with a probability mass of at least p:
0.25

0.20 0.20

0.15

0.10

0.05

it and of dog has hoax
1]

p=0.6

CHALMERS @ UNIVERSITY OF GOTHENBURG

improving sampling: temperature

temperature 7" divide the logits by 7" before applying the softmax

0.35

022 0.22

0.20 0.20
015 018
0.15
0.13
0.06
|:| 0.01
—
it and of dog has hoax it and of dog has hoax it and of dog has hoax

T=0.5 =1 =2

CHALMERS | ‘% UNIVERSITY OF GOTHENBURG

conclusion

Free, Unlimited OPT-175B Text Generation

Warning: This model might generate something offensive. No safety measures are in place s a free service.

[W Fact] [i@ Chatbot][3 Airport Code][03 Translation]

Students at Chalmers like to

Response Length: ® 64
Temperature: o 0.7
Top-p: [] 05

I'm not a robot

Generate

Students at Chalmers like to joke that the only thing that keeps the school from being a university is that it doesn't have a football
team.

The school has a reputation for being a bit of a party school, but the students | met were all very focused on their studies.

CHALMERS | UNIVERSITY OF GOTHENBURG

references

Z.Fu, W. Lam, A. M.-C. So, and B. Shi. 2021. A theoretical analysis of the repetition
problem in text generation. In AAAI.

A. Holtzman, J. Buys, L. Du, M. Forbes, and Y. Choi. 2020. The curious case of
neural text degeneration. In ICLR.

I. Kulikov. 2022. Characterizing and Resolving Degeneracies in Neural Autoregressive
Text Generation. Ph.D. thesis, New York University.

CHALMERS |)} UNIVERSITY OF GOTHENBURG

https://arxiv.org/pdf/2012.14660.pdf
https://arxiv.org/pdf/2012.14660.pdf
https://arxiv.org/abs/1904.09751
https://arxiv.org/abs/1904.09751
https://www.proquest.com/docview/2655557960
https://www.proquest.com/docview/2655557960

	References

