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generating text from a language model

- assuming we have P(X), how do we generate or “decode”?
P(good|...)

<B> That is

- we will discuss the most common algorithms for
autoregressive LMs

- there are several algorithms: this is an active research area
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use cases: generating from a prompt

- given a prefix or “prompt’, how do we find

text” = arg max P(text|prompt)
ex

generated_ids = generate("NLP stands for natural”, greedy strategy, stopping criterion=partial(has_n_sentences, n=2),

NLP stands for natural language processing. It is a method of processing language by using a computer to learn the me:
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use cases: sampling

- if we have P(X), how can we generate random texts?
- again, we might want to use a prompt

text ~ P(text|prompt)

generafed_)’.dsh= generate("Méatbélls", Féndnm_strategy, stopping_criterion=partial(has_n_sentences, n=2))

Meatballs are a well-loved family recipe that typically serve as the centerpiece of spring gatherings in

generafediids = generate("Meatballs", random strategy, stopping criterion=partial(has_n_sentences, n=2))

Meatballs. I made a weekly ritual of "drilling" out new ones, starting with how-to guides and deciding ol

generated ids = generate("Meatballs", random_strategy, stopping criterion=partial(has_n_sentences, n=2))

Meatballs. Go for junk food and chips, no way you can show some athletic skill with a mound of food.

genera{ed71d5 = generate("Meatballs", random strategy, stopping criterion=partial(has_n_sentences, n=2))

Meatballs, fried crickets and soggy greens. Another favourite — a crab-stuffed baked potato and chutney
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unsupported use cases

- itis difficult to solve “fill-in-the-blank” tasks with
autoregressive LMs

- what is the most likely missing text?
NLP stands for ___ . It is a method...
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first idea: greedy decoding

That.. is----\; good

P

<B> :‘~—>That iS

- select the highest-scoring alternative at each step
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greedy decoding: pseudocode

initialize X = z1,. .., z,, to some token sequence
fori =m + 1, ... until some stopping criterion met
x; « argmax, P(z|X)
append z; to X
return X
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pros and cons of greedy decoding

fast and easy to implement
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pros and cons of greedy decoding

fast and easy to implement

BUT:
does not find the highest-scoring sequence
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beam search decoding

problem: we can't consider all possible sequences

o..book
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beam search decoding

problem: we can't consider all possible sequences
as an approximation, let’s keep k candidates at each step

this idea is called beam search

o..book

<B> 41~2—>Th|s"'IS
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beam search decoding: pseudocode

set the beam width &

initialize X = x4, ..., z,, to some token sequence

B+ [X]

fori =m + 1, ... until some stopping criterion met
C +[]

foreachbin B
compute P(z|b)
add b + [z] to C for all z in the vocabulary
B < select k top-scoring candidates from C
return top-scoring beam from B
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drawbacks of greedy and beam search decoding

- generated texts can be bland and uninformative
- the generation often has problems with repetition
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drawbacks of greedy and beam search decoding

- generated texts can be bland and uninformative
- the generation often has problems with repetition

input_ids = tokenizer('Hello', return_tensors='pt').input_ids
outputs = model.generate(input_ids, num beams=8, max_length=50, pad_token_id=0)
print(tokenizer.decode(outputs[0]))

Hello

I've been working on this project for a while now. I've been working on this project for a while now. I've
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- some research describing these problems: (Holtzman et al,,
2020), (Kulikov, 2022)

- repetition poorly understood theoretically (Fu et al., 2021)

THE CURIOUS CASE OF
NEURAL TEXT DeGENERATION

Ari Holtzman' Jan Buys'' Li Du' Maxwell Forbes' Yejin Choi'*
"Paul G. Allen School of Computer Science & Engineering, University of Washington
*Allen Institute for Artificial Intelligence
Department of Computer Science, University of Cape Town
{ahai,dul2, mbforbes, yejin}@cs.washington.edu, jbuys@cs.uct.ac.za

ABSTRACT

Despite considerable advances in neural language modeling, it remains an open
question what the best decoding strategy is for text generation from a language
model (e.g. to generate a story). The counter-intuitive empirical observation is
that even though the use of likelihood as training objective leads to high qualuy
models for a broad range of language tasks, ma d
decoding methods such as beam search lead 10 zl'egemmfr(m — output text [lm is
bland, incoherent, or gets stuck in repetitive loops.
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sampling

initialize X = z1,. .., z,, to some token sequence
fori =m + 1, ... until some stopping criterion met
x; ~ P(z|X)
append z; to X
return X
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drawbacks of sampling

input_ids = tokenizer('Hello', return_tensors='pt').input ids

outputs = model.generate(input_ids, do_sample=True, max_length=50, pad_token_id=0)
print(tokenizer.decode(outputs[0]))

Hello - this is a big win for everyone of you who support C++11!

The winner of this week's poll will be taken here in June 2016.

If you enjoyed this article you will like my Facebook Page.<|endoftext|>

CHALMERS | )) UNIVERSITY OF GOTHENBURG




improving sampling: truncating the distribution (1)

in top-k sampling, we only include the & most probable words
when sampling:
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]
1

k=4

CHALMERS @ UNIVERSITY OF GOTHENBURG
4



improving sampling: truncating the distribution (2)

in top-p or nucleus sampling (Holtzman et al.,, 2020), we select the

most probable tokens with a probability mass of at least p:
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improving sampling: temperature

temperature 7" divide the logits by 7" before applying the softmax
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conclusion

Free, Unlimited OPT-175B Text Generation

Warning: This model might generate something offensive. No safety measures are in place s a free service.

[ W Fact ] [ i@ Chatbot ][ 3 Airport Code ][ 03 Translation ]

Students at Chalmers like to

Response Length: ® 64
Temperature: o 0.7
Top-p: [ ] 05

I'm not a robot

Generate

Students at Chalmers like to joke that the only thing that keeps the school from being a university is that it doesn't have a football
team.

The school has a reputation for being a bit of a party school, but the students | met were all very focused on their studies.
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