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Abstract—High throughput and low latency stream aggre-
gation – and stream processing in general – is critical for
many emerging applications that analyze massive volumes of
continuously produced data on-the-fly, to make real time de-
cisions. In many cases, high speed stream aggregation can be
achieved incrementally by computing partial results for multiple
windows. However, for particular problems, storing all incoming
raw data to a single window before processing is more efficient
or even the only option. This paper presents the first FPGA-
based single window stream aggregation design. Using Maxeler’s
dataflow engines (DFEs), up to 8 million tuples-per-second can
be processed (1.1 Gbps) offering 1-2 orders of magnitude higher
throughput than a state-of-the-art stream processing software
system. DFEs have a direct feed of incoming data from the
network as well as direct access to off-chip DRAM processing a
tuple in less than 4 µsec, 4 orders of magnitude lower latency than
software. The proposed approach is able to support challenging
queries required in realistic stream processing problems (e.g.
holistic functions). Our design offers aggregation for up to 1
million concurrently active keys and handles large windows
storing up to 6144 values (24 KB) per key.

I. INTRODUCTION

With the recent technological advances the number of
connected devices grows rapidly along with the total amount
of data they produce. New emerging applications analyze
unbounded streams of such big data in various domains (e.g.
financial, transportation) to make fast, sophisticated decisions.
However, real-time analytics of large data streams require high
processing throughput to cope with massive volumes of data
as well as low latency to respond in real-time.

Stream aggregation is one of the most challenging and
computationally intensive analysis tasks in stream processing.
This can be handled by applying the traditional relational
database aggregation semantics to a sliding window of a
particular size (Window Size - WS). Such window can then be
“slided” by a particular number of elements (Window Advance
- WA) as to produce new aggregated values. The result is a
stream of aggregated values. Incremental aggregation – using
multiple windows or panes ([1], [2], [3]) to compute and store
partial results rather than storing all the incoming values – has
been employed to improve performance and reduce memory
pressure (both capacity and bandwidth). However, for some
queries, especially with small WA, incremental aggregation
has the opposite effect causing an excessive number of mem-
ory accesses that limit performance. This is for instance the
case in streaming applications processing geo-tagged data [4],
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social media data [5] or manufacturing equipment data [6].
In such cases, a single window approach that explicitly stores
all the incoming values in a single window before processing
is more efficient. More importantly, storing values in a single
window is unavoidable when computing some holistic func-
tions; these are functions that have no constant bound on the
size required to store a partial result, such as median [7].

Stream processing and stream aggregation systems in par-
ticular have been implemented on various compute platforms.
Multicores and GPU are able to sustain high processing
throughput but fall short in delivering low latency [8]. They
require redundant memory accesses managed by an operat-
ing system to store incoming tuples in DRAM even before
processing starts. This, besides the long latency, wastes a
significant fraction of valuable memory bandwidth reducing
performance. On the contrary, FPGAs provide both high
processing throughput and low latency. Customized dataflow
engines, which naturally match the stream processing char-
acteristics, can be implemented in reconfigurable hardware
achieving high throughput [8]. Furthermore, incoming tuples
can be fed to an FPGA through a direct network connection
with low latency, avoiding unnecessary DRAM accesses.

So far, current FPGA solutions focus on incremental ag-
gregation approaches using multiple window or pane-based
designs [1], [2], [3]. As a consequence, queries that require
small WA or use holistic functions have poor performance
or are not supported at all. Moreover, most existing FPGA
designs do not use external DRAM and therefore support a
single key or at most a handful of keys, and small window
sizes, which are not practical for many real stream processing
problems, such as the ones mentioned before [4], [5], [6].

This work addresses the above limitations describing, to
the best of our knowledge, the first FPGA-based design for
single window tuple based stream aggregation. A Maxeler N-
series card is used for the design of a stream aggregation
dataflow engine (DFE) [9]. The DFE is fed with incoming
tuples through a direct network connection and provides direct
access to DRAM through its own memory controller. The main
contributions of this work are the following:
• The first FPGA-based design for single window stream

aggregation, which (i) uses a Maxeler’s Dataflow Engine
and deep pipelining to provide processing throughput of
up to 8 million tuples per second (1.1 Gbps), and (ii) has
a direct network connection to feed incoming tuples as
well as direct access to DRAM offering ultra low end-
to-end latency of up to 4 µsec.



• An implementation of the above design able to support
multiple challenging realistic streaming queries with (i)
holistic and arbitrary user-defined aggregation functions,
as well as distributive and algebraic ones; (ii) up to 1
million concurrently active keys; (iii) large window sizes
storing up to 6144 values per key.

The remainder of this paper is organized as follows. Sec-
tions II and III offer background on data stream aggregation
and present related work, respectively. Section IV describes
the proposed design for single window FPGA-based stream
aggregation. Section V presents the evaluation results. Finally,
Section VI summarizes our conclusions.

II. BACKGROUND - STREAM AGGREGATION

In this section, we present the semantics of stream ag-
gregation and provide an overview of the main implemen-
tation strategies discussed in the literature. In addition, we
elaborate on the two main arguments, discussed in Section I,
that motivate our implementation choice among the existing
implementation strategies for stream aggregation. More pre-
cisely, we count the memory accesses for each implementation
strategy, showing that for some problems the algorithm we
implement in hardware incurs the lowest DRAM Read/Write
(R/W) operations per tuple. In addition, we explain why for
some holistic functions explicitly storing all incoming values
is necessary.

A stream is an unbounded sequence of tuples t0, t1, . . . each
tuple containing n attributes 〈A1, . . . , An〉. When aggregated,
tuples are fed to one (or multiple) function F such as sum,
mean, min, max or count, among others. Since streams
are unbounded, the aggregation is performed over a sliding
window of size WS and advance WA. Optionally, aggregation
can be performed specifying a parameter K (a subset of the
tuple’s attributes, also referred to as key). In such a case, F is
computed for each distinct value observed for K (group-by).
Figure 1 presents an example in which a stream of tuples with
schema 〈char, int〉 are aggregated using parameters F = mean,
WS = 4, WA = 2 and K = char.

Fig. 1. Example of stream aggregation over a stream of tuples composed by
schema 〈char, int〉 for parameters F=mean, WS=4, WA=2 and K=char (i) and
internal states maintained by the different implementation strategies at time
instance *1 and *2 (ii).

Different strategies exist to implement stream aggregation’s
semantics. The Multi-Window (MW) [1] strategy maintains
the partial aggregated state of all the overlapping windows to
which each tuple contributes. As shown in Figure 1, the partial
state for F = mean is the sum of the values observed so far,
which is then divided by WS once the window is full. When a

window is full, a result is output and the window is discarded.
Each tuple contributes to dWS

WAe windows. Upon reception of a
tuple, all the overlapping window’s states are updated. When
the size of the state maintained for each window in DRAM
is S, the overall bytes for a key are dWS

WAe × S. Windows are

updated upon reception of a tuple incurring d
WS
WA e×S

B R/W from
DRAM, where B is the burst size. Furthermore, for every WA
tuples, one extra R/W is required to produce the result1. The
average R/W per tuple and per key is 1

WA +
dWS

WA e×S
B .

The alternative Pane-Based (PB) strategy ([2], [3]), parti-
tions the window into panes of length WA2 and maintains
partial aggregated states for the latter. As shown in Figure 1,
the partial state for F=mean is the sum of the values observed
for each pane of WA tuples. Upon reception of a tuple that
fills a window, the result is computed by aggregating its partial
states, and the stale panes of the window are then discarded (in
the example, summing each pane value and dividing by WS).
Finally, the contribution of the tuple is added to the partial
aggregate state of the rightmost pane. In this case, when the
size of the state maintained for each pane is S, the overall bytes
for a key are WS

WA × S. Upon reception of a tuple, updating
the last pane incurs one R/W from DRAM3. Furthermore,
for every WA tuples, d

WS
WA e×S

B R/W are required to produce
the result. The average R/W per tuple and per key are then
1 + 1

WA ×
dWS

WA e×S
B .

A third strategy, the Single-Window (SW), maintains tuples
rather than partially aggregated states. With SW, WS tuples are
maintained for each key (as shown in Figure 1) and the results
are computed every time the window is full. Being A the size
in bytes required to store the attributes to be aggregated, the
state is equal to WS × A. In the general access scheme of
the DRAM memory, SW requires one R/W for the insertion a
tuple and WS×A

B R/W for the output of a result. Since the latter
happens once every WA tuples, the average R/W per tuple and
per key are then 1 + 1

WA ×
WS×A

B .
Figure 2 shows the average memory accesses (reads and

writes) per tuple incurred by the different strategies when
computing the mean, the top-3 highest and the top-3
lowest values of a stream of integer values. For MW and
PB, we maintain the sum of the incoming values (as for the
example in Figure 1), 3 values for the top-3 highest and
3 values for the top-3 lowest values, thus incurring a state
S of 28 bytes. For SW, A requires 4 bytes. We assume the
burst size S is of 64 bytes. As shown, the average number of
R/W is lower for SW when several functions aggregate large
windows with small advance, as is the case in this work. In
the example, the SW approach fits best large windows pro-
ducing continuous up-to-date results (i.e., with small window
advance) by incurring up to 7× fewer memory accesses (for
WA=1 and the largest WS) compared to MW and PB (500 for
SW instead of 3494 for MW and PB). As explained in Section
V-C, even in our SW experiments, performance is limited by

1This conservative estimation assumes one window’s state fits in a burst.
2Assuming WS is a multiple of WA.
3Assuming one pane fits in a burst.
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Fig. 2. Average number of memory accesses (R/W) per tuple incurred in
MW, PB and SW stream aggregation implementations when computing the
average, the top-3 highest, and the top-3 lowest values of a stream of values.

DRAM bandwidth. Then, MW and PB implementations would
have a substantially lower performance due to their need for
substantially higher DRAM bandwidth. As a consequence, SW
is a faster stream aggregation choice for queries with such WA
and WS parameters.

Another disadvantage of MW and PB implementation is
that for holistic functions, maintaining all input tuples is nec-
essary independently of whether the function can be computed
incrementally. This is for instance, the case for the median
function as all the tuples contributing to the window need to be
kept and sorted before the median itself can be computed. This
is due to the non-associative nature of the median function.
For such functions, a SW implementation is more efficient.
MW solutions would require storing all incoming tuples in
each one of the multiple windows resulting in many duplicates
(exacerbating performance bottleneck) and PB approaches
would not be able to maintain partial results.

In summary, for small WA and large WS as well as
for particular functions, SW is more efficient for supporting
stream aggregation. This motivates our algorithmic choice, the
design of which is described in Section IV.

III. RELATED WORK

In this section, we highlight related works that use various
computing platforms for stream processing. In addition, we
discuss some techniques proposed for in-memory databases
(DBs), which are closely related to ours, although they follow
a store-and-process paradigm rather than on-the-fly real-time
stream processing.

Distributed Stream Processing Engines (SPEs) running on
conventional CPUs like Apache Flink, Spark, and Storm
provide generic stream processing capabilities and ease of
deployment [10], [11], [12]. In particular, Apache Flink is
an open-source Java based state-of-the-art stream processing
framework. These software-based distributed stream process-
ing engines are easy to configure, flexible to allow for a multi-
tude of operations and analysis on the data, and can process a
large amount of data located in different servers. Nevertheless,
as with any general-purpose software implementation, their

performance depends on the underlying hardware and can
never match the throughput or latency offered by dedicated
implementations (e.g. custom FPGA-based systems). In the
particular focus of this work, software approaches are not able
to cope with the challenges posed by aggregating on large
windows (large WS) and at high rates (small WA).

SABER is a relational stream processing system targeting
heterogeneous machines equipped with CPUs and GPUs [13].
SABER achieves high throughput but at high latency of
hundreds of milliseconds for aggregation queries. Moreover,
it supports only incremental aggregate computations utilizing
the commutative and associative property of some aggrega-
tion functions and therefore can implement only distributive
(count, sum) and algebraic (average) functions.

Glacier is an FPGA-based streaming query to hardware
compiler which supports sliding window aggregation for dis-
tributive (count, sum, min, max) and algebraic (average)
aggregation functions [1]. This implementation relies on a MW
approach, instantiating multiple aggregation compute modules,
resulting in poor scalability in terms of resource utilization
and performance. Oge et al. improves the aggregation logic
in [1] using the PB approach [2], thereby making the design
scalable with increasing WS/WA ratio [3]. Nevertheless, both
designs use only the on-chip BRAMs for storing aggregation
states and do not use DRAM. In turn, this prevents the
design from performing stream aggregations of realistic sizes
(number of keys, WS). Moreover, Glacier does not support
holistic functions such as median, as it relies on incremental
aggregations. Finally, Oge et al. support only a single key and
do not support group-by clauses in the query [3].

A considerable number of previous works have focused
on accelerating in-memory database (DB) operators using
FPGAs. For instance, István et al. used an on DRAM hash
table [14], which was subsequently improved using a Cuckoo
hash table [15], similar to our design. Another interesting
work [16], uses an FPGA-based Convey HC-2ex machine to
support high throughput group-by in-memory DB aggregation,
but implements only the count aggregation function.

In this work, we propose a single-window stream aggre-
gation implemented on reconfigurable hardware. Our design
achieves similar throughput and latency (millions tuples/sec
and few µsec, respectively) as other FPGA-based solutions,
but is able to produce more complex operations and with
larger state. It further confirms prior art conclusions that GPUs
have in general much higher stream processing latency than
FPGAs [8], as our design achieves 3 orders of magnitude lower
latency than related GPU approaches, although none of them
has the exact same query semantics considered here. Finally,
as shown in Section V, our approach supports substantially
higher throughput and lower latency than software.

IV. A DATA-FLOW ENGINE FOR SINGLE WINDOW
STREAM AGGREGATION

Data-flow computing matches well the requirements of
stream processing. A deep, feed-forward-only pipeline with
lightweight control for a back-pressure stall mechanism is able



Fig. 3. Top-level view of the Dataflow Engine for single window stream aggregation. The grey boxes indicate peripherals outside the FPGA.

to process fast large volumes of incoming data. We propose
a reconfigurable dataflow design for single window stream
aggregation. A Maxeler N-series card [9] is used to host our
design, implemented as a Data-Flow Engine (DFE), further
providing a direct network connection and DRAM access
to minimize the processing latency. Although this Maxeler
system fits well our design requirements, our approach is
general and could be ported to other platforms that exhibit
similar characteristics.

Figure 3 shows the top level block diagram of the proposed
design. Incoming tuples containing a timestamp, a key, and
a value, are carried by network packets and received by the
receiver module (Rx). Their keys are hashed to index a hash
table, which stores metadata per key, needed for the subsequent
processing stages. After accessing the hash table, multiple
concurrency control queues are used to enqueue the tuples
and resolve dependencies between them. Dequeuing from the
queues is performed in a round-robin fashion allowing only for
a single tuple per key to be in-flight. Forwarded tuples trigger
an access to DRAM to read and subsequently update the
stored values (state) of the respective key. When the number
of tuples per key reaches the WS threshold, DRAM accesses
are issued to read all the values of the corresponding window
and compute the aggregation function in the compute stage.
The result of the aggregation function is finally transmitted
back through the Tx module.

Note, that the flow of the data through the stages is
controlled through FIFOs responsible for stalling the pipeline
via a back-pressure mechanism when needed as well as for
triggering a stage when valid data are available. Bellow, each
stage of the stream aggregation engine is described in detail.

A. Receiver and Transmitter

The receiver Rx and transmitter Tx modules handle the
incoming and outgoing network packets, respectively, sup-
porting the network protocol processing tasks (TCP, UDP, or
Ethernet). Rx and Tx receive and transmit packets from/to the
64-bit wide physical DFE link through protocol specific bi-
directional streams. Each packet carries multiple tuples of the
following form 〈ts(8), key(4), value(4)〉, containing in total
16 bytes, of which 8 bytes used for a timestamp, 4 bytes for
the key and 4 bytes for the actual value of the tuple.

B. Hash Function

The incoming tuples are unpacked and hashed using their
key to generate a hash table address (ht adr). Bob Jenkin’s

Lookup3 hash function [17] is used for the hashing as pro-
posed in [14]. Such functions are proven to produce reduced
number of collisions due to the Avalanche effect, whereby,
keys that differ even by a single bit produce different hash
values. Two hash functions are computed in parallel, the
second one used in case of collision of the first. This stage
adds the ht adr to the tuple and forwards it to the next stage.

C. Hash Table

The hash table, shown in Figure 4, stores metadata for the
active keys handled in the system. In order to fit the hash table
for a large number of keys using the on-chip BRAMs, our
current implementation is direct mapped, having each entry
corresponding to a single key. Alternatively, the handling of
hash collisions could be improved by adding associativity to
the hash table as described in [14]. In such setup, a table
entry would offer multiple locations to store a key and a least
recently used (LRU) policy would be used for replacement.

As shown in Figure 4, each hash table entry contains (i) a
counter for the number of values (tuples) stored in DRAM for
a particular key window as to determine when the key context
is ready for aggregation, and (ii) a pointer to the last stored
value in DRAM (head pointer). Optionally, a timestamp or
other fields could be added as the application demands it.

As explained in Section IV-E, each entry in the hash table
has a statically allocated DRAM memory region to store
the values of the respective key. Static allocation simplifies
considerably the hardware design compared to a dynamic
memory management scheme. The size of this DRAM region
determines the maximum window size supported. Due to this
static DRAM allocation, after a hash table access, the DRAM
location for accessing the stored values of the corresponding
key can be calculated using (i) the hash table address storing
the key, and (ii) the head pointer to the last stored value.

In general, a tuple accessing the hash table, finds the
DRAM location of its key window and decides whether the
computation of the aggregation function is triggered. After
reading the hash table, the same hash table entry is updated
with a new counter-value and head-pointer.

D. Concurrency Control Queues

After the hash table stage, the tuples are distributed among
a set of concurrency control queues (cc Qs) using the least
significant bits of their ht adr. Tuples that belong to the
same key are sent to the same cc Q. Each queue has a fixed
time-slot to send a tuple forward and is selected in a round-
robin fashion. The cc Q arbiter has an additional locking



Fig. 4. Hash table and external DRAM organization.

functionality in which it locks the queue as soon as a tuple
is pulled out. The arbiter waits for the DRAM write commit
signal, indicating that the tuple has updated its key window,
before unlocking again the queue. This is done to prevent
read-after-write hazards in the pipeline as a result of issuing
multiple requests concurrently.

Ideally, blocking of tuples would be avoided (assuming
uniform random distribution of keys) when using a number
of cc Qs equal to the delay (in FPGA cycles) of the pipeline
part that comes after the concurrency control queues (including
DRAM accesses). In practice, we use 128 queues without
limiting DFE performance or exhausting FPGA resources.

A similar concurrency control mechanism was proposed for
an in-memory DB system in [14]. However, that work uses
single registers, rather than entire queues to store tuples. As a
consequence, their pipeline is stalled when an incoming tuple
needs to be written to an already occupied register. On the
contrary, using queues, as proposed in our design, offers higher
flexibility and better load balancing, resulting in fewer stalls.

E. DRAM access
The values of each active key, forming a single window,

are stored in the external DRAM accessed directly through a
memory controller module in the FPGA. Next, we describe
the placement of the key values in DRAM as well as the way
DRAM reads and writes are performed.

1) Placement of key values in DRAM: The DRAM ca-
pacity is equally divided statically to the hash table entries,
corresponding to the total number of (active) keys supported.
For example, in our platform the total DRAM capacity is
24GB and considering that the total active keys supported is
1 million, each key is allocated a maximum single window
value storage of 24 KB. We use the entire DRAM as a
single monolithic block in single channel mode with a ran-
dom access pattern and a single DRAM burst of 192 bytes
(single burst size). The number of DRAM bursts corre-
sponding to the maximum single window size is 24KB/192 =
128. So, for values of size 4 bytes (value size), the maximum
single window size per key is 24KB/4B = 6144.

The values of a key in the single window are organized in a
circular buffer fashion as shown in Figure 4. This is possible as
we implement the tuple-based class of sliding window stream
aggregation in which the window advance is a fixed number
of tuples [18]. Consequently, this allows to overwrite the stale
entries in the single window in a circular fashion4. The WS

4For time-based windows, static memory allocation would limit the max-
imum number of values arriving within a time slot that defines the window.
It would further require variable number of values to be updated in a WA.

and WA in the continuous stream query may be parameterized
at runtime. The maximum value of WS is the maximum single
window size per key. WA can vary from 1 . . .WS. Using the
runtime parameterized WS, the no of bursts per key can
be calculated as WS × value size/single burst size. For
example, if the query has a WS of 3072, then the number of
bursts required per key is 64. The granularity of a data word
in the DRAM read/write data stream is a single DRAM burst
of 192 bytes.

2) DRAM Read: As a tuple along with its control bits
enters the DRAM stage, it is known whether an aggregation
computation is triggered, or otherwise a new value should just
be added to the window. In the former case, a multiple-burst
read is issued with start address as vs adr. In the latter case,
a single read is issued at address vs adr + last vs block
(last vs block is retrieved from the head pointer). As there
are two read streams corresponding to single and multiple
bursts, there are two internal queues to buffer the input data
words. Once the read is issued, the tuple is placed in a queue,
waiting until the memory controller returns with a response.

When DRAM responds to a single read, the tuple awaiting
is dequeued and the word read from the DRAM is updated
with the new key value and forwarded to the DRAM write
stage along with the proper control bits specifying the DRAM
location to write back the updated data. Using the above inter-
nal queue to delay the tuples with pending DRAM responses,
synchronization is achieved between the incoming tuple and
its values read from DRAM.

When DRAM responds to a multiple burst read request,
a counter with maximum value equal to the burst length
(no of bursts per key) is used to ensure that all the values
needed for aggregation are received. Subsequently, the values
are forwarded to the compute stage together with the tuple.
Note that the new key value carried by the tuple that triggered
the aggregation still needs to be written back to DRAM
updating the key values. Consequently, a write back to DRAM
is performed parallel to the computation of the aggregation.

3) DRAM Write: All writes to DRAM are single burst
writes. This stage receives two streams coming from the
DRAM Read stage, one for tuples that issued a single word
DRAM read, and a second for tuples that issued a multiple
burst DRAM read. These two streams bring DRAM write
requests, which are sent to the memory controller and sub-
sequently forwarded to the DRAM.

F. Compute Stage

The compute stage calculates the implemented aggregation
function, using the values read from DRAM, which corre-
spond to the window of the particular key. Depending on
the function in the query (distributive, algebraic, holistic),
the values may be processed gradually as they arrive from
DRAM (e.g. partial aggregation), or otherwise only when
all values in the window have been received. For example,
algebraic aggregation functions like average and distributive
functions such as minimum, maximum, and sum can be
partially computed on-the-fly for each burst and then the result



Fig. 5. Maxeler DFE used for SW stream aggregartion.

accumulated to find the final aggregate of the entire window.
But for holistic aggregation functions such as median, the
entire single window should be received before triggering the
aggregation. Note that in our implementation of a median
aggregation function, the bitonic network sorting algorithm
is used, which is a parallel sorting algorithm and conforms
to the dataflow paradigm [19]. After the computation of the
function is completed the result is forwarded to the Tx stage.
Note that the design effort for implementing different queries
in our design mainly lies on modifying the compute kernel.

V. EVALUATION

The proposed approach is evaluated in terms of performance
and power consumption implementing different queries. First,
the experimental setup is discussed. Then, the FPGA resource
utilization of our design is presented. Finally, processing
throughput, latency and power results are reported and com-
pared to a state-of-the-art stream processing software.

A. Experimental Setup

The block diagram of the experimental platform is shown
in Figure 5. A Maxeler N-series ISCA (MAX4AB24B) PCIe
card with an Altera Stratix V (5SGXAB) was used. The card
provides direct 10 GbE network connection to the FPGA. It is
further equipped with three 8 GB DDR3 DIMMs accessible
directly from the FPGA (24 GB in total). The off-chip DRAM
has a maximum bandwidth of 38.4 GB/s and an average
latency of about 500 ns. The total on-chip BRAMs available
in the DFE is 6.6 MB. Our design is implemented in MaxJ, a
Java based High level Synthesis (HLS) language and compiled
to FPGA bitstream using MaxCompiler.

Our implementation is compared with the state-of-the-art
open source stream processing software framework, Apache
Flink (v1.2.1). Flink processing was set up in a workstation
with an Intel R© CoreTM i7-4790 CPU running at 3.6 GHz
and 24 GB DDR3 DRAM. Prior FPGA/GPU works cannot
be directly compared with our design as they target stream
aggregation queries with different semantics.

The data set is uniformly distributed and the tuple’s keys and
values are generated with uniform distribution. The tcpreplay
is used to inject captured packets [20]. We experimented
with WS up to 6000 and WA ranging from 1 to WS. Our
experiments have used a finer grain of WA for the smaller
sizes (up to 10) as this is the region of interest for the single
window implementation.

The queries which we implemented can be expressed in a
streaming relational model [18]. To make the queries intuitive,
a subset of the LinearRoad benchmarking system [21] is used,

TABLE I
RESOURCE UTILIZATION FOR THE FPGA IMPLEMENTATION.

Resource Query 1 Query 2 Query 3
Logic (ALMs) 89853 (25.01%) 222275 (61.9%) 223364 (62.18%)
BRAMs 1856 (70.30%) 1840 (69.7%) 1906 (72.20%)

where each vehicle has a sensor that emits tuples composed
of a timestamp, a vehicle ID (key), and speed (value).

The following queries were used in our evaluation:
Query 1: Find the average, minimum, and maximum

speed for each vehicle for the last WS tuples and return the
aggregate every WA tuples.

Query 2: Find the median speed for each vehicle for the
last WS tuples and return the aggregate every WA tuples.

Query 3: Find the median, average, minimum, and
maximum speed for each vehicle for the last WS tuples and
return the aggregate every WA tuples.

B. Resource Utilization and Maximum Frequency

The resource utilization of the proposed design is shown in
Table I for each query. About 70% of the BRAMs are used
for the hash table and the queues employed in our design.
It can be further observed that the median operation requires
more logic resources as it uses a sorting network. The reported
resource utilization corresponds to the maximum WS of the
queries. For Query 2 and 3, the maximum WS is determined
by the largest bitonic sorting network that could fit in the
available FPGA resources, which is for a WS of 1445. Query
1 operates at 150 MHz. Queries 2 and 3 have more complex
implementations and operate at 100MHz.

C. Throughput

The processing throughput, i.e., the number of input tuples
processed by the system per unit of time, is measured for every
query and compared to the software implementation (Flink).

Figure 6 depict the throughput for different Window Sizes
(WS), Window Advance (WA) for both the FPGA-based
(FPGA), in solid line, and software (Soft), in dashed line,
implementations for Query 1. As the WA increases, the
throughput also increases. This is expected as the number
of aggregates to be produced decreases significantly with the
larger WA because the aggregation function is triggered less
often. For small values of WA, the software implementa-
tion appears to suffer more than the FPGA implementation.
This gap closes for larger WA values. The most important
observation is that the throughput achieved by the software
implementation is always significantly lower by a factor of
13× up to 173× than the FPGA-based implementation, which
is able to process 8 million tuples per second.

The charts in Figures 7 and 8 show the throughput for WS of
48, 96, and 144 for Queries 2 and 3 respectively, for both the
FPGA and software implementations. For these queries, the

5An alternative sorting algorithm such as a merge-sort could have been
used but it would still have a storage limitation as all values need to be kept
in the FPGA memory to produce the final result.



1

10

100

1000

10000

1 10 100 1000 10000Th
ro

ug
hp

ut
 [K

tu
pl

es
/s

]

Window Advance [tuples]

WS = 96

FPGA Soft

1

10

100

1000

10000

1 10 100 1000 10000Th
ro

ug
hp

ut
 [K

tu
pl

es
/s

]

Window Advance [tuples]

WS = 192

FPGA Soft

1

10

100

1000

10000

1 10 100 1000 10000Th
ro

ug
hp

ut
 [K

tu
pl

es
/s

]

Window Advance [tuples]

WS = 384

FPGA Soft

1

10

100

1000

10000

1 10 100 1000 10000Th
ro

ug
hp

ut
 [K

tu
pl

es
/s

]

Window Advance [tuples]

WS = 768

FPGA Soft

1

10

100

1000

10000

1 10 100 1000 10000Th
ro

ug
hp

ut
 [K

tu
pl

es
/s

]
Window Advance [tuples]

WS = 1536

FPGA Soft

1

10

100

1000

10000

1 10 100 1000 10000Th
ro

ug
hp

ut
 [K

tu
pl

es
/s

]

Window Advance [tuples]

WS = 6000

FPGA Soft

Fig. 6. Throughput for Query 1 for different Window Size values: 96, 192, 384, 768, 1536, and 6000.
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Fig. 7. Throughput for Query 2 for different Window Size values: 48, 96, and 144.
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Fig. 8. Throughput for Query 3 for different Window Size values: 48, 96, and 144.

trend is the same as in Query 1: throughput increases as the
WA increases, and FPGA throughput is substantially higher
than software by a factor of 20× up to 185×.

Overall, stream aggregation in our platform is memory
bounded. Considering the operating frequency of our design
and the Ethernet bandwidth (10Gbps), DFE would be able to
process about 80 Mtuples/sec if not limited by the external
DRAM bandwidth. However, the throughput observed in our
experiments is an order of magnitude lower.

D. Latency

For the same set of experiments we also measured the
average tuple latency. That is the average time spend by a
single tuple in the system, from the time it enters until its
processing is completed. Obviously, the worst case latency
occurs when the compute stage is triggered to produce a result
for the aggregation function. The contribution of computing
the aggregation function in the worst-case overall latency,

which is about 4µs, is 0.67µs, 0.79µs, and 1µs for Queries
1, 2, and 3, respectively. In this Section, we show only the
latency for Query 1 since it is the simplest and thus the one
where the software-based system exhibits the lowest latency
(about 1-3% lower than Queries 2 and 3). For the FPGA-
based system, the latency is approximately the same across
all queries.

Figure 9 shows average tuple latency for different window
sizes of Query 1 implemented in software and FPGA. As
opposed to the FPGA implementation, in software, WA has
some impact in the average tuple latency. Consequently, for
software we report the minimum and maximum (average) tuple
latency measured for each WS. While not clear in this chart,
the software latency is lower as the WA increases. This is
because the aggregation function is triggered less frequently
and thus the system load is not as high. For the FPGA system
the difference is negligible and thus only a single line is shown.
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Fig. 9. Latency for Query 1.

The latency for the software system ranges from approx-
imately 0.01 up to 70 seconds. For the FPGA system the
latency is significantly lower, approximately 4 µseconds. Even
though the operating frequency of the FPGA-based system is
much lower (100-150 MHz for the FPGA system as compared
to 3.6 GHz for the software) the Maxeler N-series system pro-
vides a dedicated FPGA implementation that is substantially
more efficient than the general-purpose CPU implementation.
In particular, the latency for the FPGA system is 4 to 7 orders
of magnitude lower than the latency of the software system.

E. Power

The power consumption for both the FPGA-based and
software implementations is measured. For the CPU we mea-
sured the power consumption using the processor performance
counters. This gives package power to which we added DRAM
power. For the FPGA we used the available tool to measure
the total power consumed by the ISCA board including the
FPGA, DRAM and QSFP port.

While for the CPU, power consumption depends on the
executed scenario, i.e. the particular query, WS and WA, for
the FPGA it is relatively stable. CPU power consumption
ranges between 13.7 W to 48.4 W while for the FPGA it
is 23.9 W to 29.7 W. Notice that for certain cases the CPU
power is actually lower than the FPGA power but for most
cases it is almost double.

More relevant than the absolute power consumption is the
energy efficiency achieved by each architecture. We define
energy efficiency as the Performance (number of tuples pro-
cessed per second) per Watt. In our experiments, energy
efficiency of our FPGA-based design is 10× to 36× better
than the software CPU implementation.

VI. CONCLUSION

High throughput and low latency stream aggregation is
critical for various emerging stream processing applications
in order to process large data volumes and produce real-
time responses. High-end multicores and GPUs are able to
support high throughput stream processing, but fall short in
delivering low latency. On the contrary, FPGA platforms can
provide both. Still, previous FPGA-based solutions offer only
incremental stream aggregations, which is not acceptable for
certain queries. This work describes the first FPGA-based sin-
gle window stream aggregation engine. It is able to implement

challenging realistic queries of any holistic, distributive or
algebraic function and support up to 1 million keys, storing
windows of 6144 values per key. Our approach is imple-
mented in a Maxeler N-series dataflow engine, which offers
a direct network connection and access to external DRAM.
The proposed design achieves 1-2 orders of magnitude higher
processing throughput than a state-of-the-art stream processing
software system at up to 2× lower power cost, processing up
to 8 million packets per second (1.1 Gbps) consuming 23.9-
29.7 W. Moreover, a single tuple is processed in less than 4
µsec, at least 4 orders of magnitude faster than software.
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