
A Specialized Memory Hierarchy for Stream Aggregation
Prajith Ramakrishnan Geethakumari and Ioannis Sourdis

Department of Computer Science and Engineering
Chalmers University of Technology, Gothenburg, Sweden

Email: {ramgee, sourdis}@chalmers.se

Abstract—High throughput stream aggregation is essential for many
applications that analyze massive volumes of data. Incoming data
need to be stored in a sliding window before processing, in case the
aggregation functions cannot be computed incrementally. However, this
puts tremendous pressure on the memory bandwidth and capacity. GPU
and CPU memory management is inefficient for this task as it introduces
unnecessary data movement that wastes bandwidth. FPGAs can make
more efficient use of their memory but existing approaches employ either
only on-chip memory (i.e. SRAM) or only off-chip memory (i.e. DRAM) to
store the aggregated values. The high on-chip SRAM bandwidth enables
line-rate processing, but only for small problem sizes due to the limited
capacity. The larger off-chip DRAM size supports larger problems, but
falls short on performance due to lower bandwidth. This paper introduces
a specialized memory hierarchy for stream aggregation. It employs
multiple memory levels with different characteristics to offer both high
bandwidth and capacity. In doing so, larger stream aggregation problems
can be supported, i.e. large number of concurrently active keys and
large sliding windows, at line-rate performance. A 3-level implementation
of the proposed memory hierarchy is used in a reconfigurable stream
aggregation dataflow engine (DFE), outperforming existing competing
solutions. Compared to designs with only on-chip memory, our approach
supports 4 orders of magnitude larger problems. Compared to designs
that use only DRAM, our design achieves up to 8× higher throughput.

I. INTRODUCTION

The rapidly increasing rates at which data are produced globally
have enabled a large number of emerging stream processing applica-
tions [1]. Such applications are employed in various domains, e.g.,
financial, transportation, to analyze large unbounded streams of data
and make fast, sophisticated decisions. However, consuming massive
data volumes at line rates requires high processing throughput and
in case real-time response is expected, it also needs low latency.

Stream aggregation is one of the most challenging tasks in stream
processing. It can be described by applying the traditional relational
database aggregation semantics to a sliding window. Such window
of size (WS) is updated with incoming elements (values carried
by incoming tuples). Upon aggregation, the window “slides” by a
particular number of elements (Window Advance - WA) to produce
the aggregated values; that is, the window contents before sliding
[2]. The stream of aggregated values is subsequently fed to one or
multiple functions that compute an output every time the window
slides. Considering a key-value pair system, incoming tuples carry
values of different keys, which are aggregated separately using a
separate sliding window per key. This description fits a sliding win-
dow stream aggregation (SWAG) that follows a tuple-based window
policy, meaning WS and WA are measured in terms of the count of
elements; an alternative window policy is the time-based one where
the size and slide are defined by time intervals [2]. A typical tuple-
based SWAG example is depicted in Figure 4(a).

For some problems, the aggregations can be simplified by com-
puting them incrementally using multiple windows/panes [3]–[5].
However, for many others with non-associative aggregation functions
which cannot be computed incrementally, e.g., median [6], or even
if they can, it is more expensive than explicitly storing all incoming
values in a single window, e.g., for processing geo-tagged data [7],
social media data [8] or manufacturing equipment data [9].

Problem Size in MBytes (WS x Attribute Value Size (Bytes) x Number of Keys)

Th
ro

ug
hp

ut
 (%

 L
in

e-
ra

te
)

0

50

100

1 10 100 1000 10000

BRAM only - FPGA based
Single Window Stream Aggregation

DRAM only - FPGA based
Single Window Stream Aggregation

Fig. 1. Processing throughput vs. problem size for an FPGA-based single
window SWAG at 156.25 MHz using only BRAMs (2 MB) or only DRAM
(24 GB). WS= 2-96K values; WA=WS; 128K keys, value size 2 bytes.

Single window stream aggregation is a memory-intensive problem
[10]. For each incoming tuple, the sliding window of the respective
key is updated with the newly arrived value(s). In addition, every
time the window advances, its entire contents need to be read and
fed to the aggregation function(s) to produce a result. Different
stream aggregation platforms handle memory in different ways.
Multicore CPU and GPU based systems, although able to sustain high
processing throughput [11], [12], have wasteful memory management
[10]. They require redundant memory accesses to store incoming
tuples from the network to DRAM even before processing starts. This,
besides the latency overhead, wastes valuable memory bandwidth
and hence limits performance. On the contrary, FPGAs use their
memory resources more efficiently [13], [14]. They can offer a
direct network connection to receive incoming tuples and support
dataflow processing, delivering both high processing throughput and
low latency. However, existing FPGA approaches use either only on-
chip memory (i.e. BRAMs) [3]–[5] or only off-chip memory (i.e.
DRAM) to store the values for aggregation [13], [14]. As illustrated
in Figure 1 for a particular stream aggregation problem, the higher
bandwidth and limited capacity of on-chip BRAM enables line-rate
processing on an FPGA based stream aggregation system but supports
only small problem sizes. The larger but lower bandwidth off-chip
DRAM can handle larger problems, but with limited performance.

This work introduces Multi-level Queues (MLQ), the first memory
hierarchy specialized for stream aggregation systems aiming to alle-
viate their memory bottleneck. The proposed memory system offers
a higher and better utilized bandwidth as well as off-chip DRAM
capacity to enable higher processing throughput for larger problem
sizes, i.e., WS × number of keys. As shown in Figure 2, multiple
memory levels are used to form logical queue buffers, each buffer
storing the contents of a sliding window for a particular key. Each
multi-level logical queue needs to support (i) single element write and
(ii) all elements read operations for window updates and window
aggregations, respectively. More precisely, for a window update, a
new value needs to be enqueued. The head of the MLQ can be at
any memory level, but the tail is always at the fastest (and smaller)
first level which is the on-chip SRAM. This ensures that the window
is always updated at the highest speed. Then, when the window
advances, the contents of the entire window are read utilizing the

vn-1

Mn-1M2
1

2

K

v2

1 1

2 2

K K

MiM1
1

2

K

1

2

K

[ts,	k*	,	Av*]
In	tuple

v1 vi

Memory
Levels

Logical	Queue	
buffer	per	Key

v0	=	Av*

Mn:-

Fig. 2. Memory hierarchical model with n levels with each level having
K queues (one per key) and vi denoting the flushed values from level i.
Incoming tuple of key k∗ is at timestamp ts with attribute value Av∗.

aggregate bandwidth of all memory levels and subsequently, WA
number of elements are discarded by just updating the head pointer.
Compared to a BRAM-only design, MLQ offers higher capacity.
Compared to a DRAM-only design, it offers faster window updates
at on-chip SRAM speed as well as faster aggregation using the
aggregate bandwidth of all levels, rather than only the DRAM one.

Another alternative for improving the memory bandwidth of a
SWAG could be the use of high bandwidth 3D-stacked DRAM.
However, even 3D-stacked DRAM bandwidth is at least an order of
magnitude lower than on-chip SRAM, while its size is significantly
smaller than off-chip DRAM. In addition, 3D-stacked DRAMs are
expensive, especially for systems deployed near the edge. Neverthe-
less, they could be part of the proposed hierarchy.

Queue buffers composed of two memory types have been designed
in the past. More precisely, about two decades ago, 2-level hybrid
SRAM/DRAM packet buffers were introduced for network process-
ing [15]–[19] offering SRAM speed and DRAM capacity. Although
our approach is in the same direction, there are several fundamental
differences. Firstly, the SRAM/DRAM packet buffers implement
queues that support read and write operations at the granularity of
a single element and this is less bandwidth demanding compared to
the stream aggregation. In addition, a network packet size is at least
equal to a DRAM line (64Bytes) and therefore fits DRAM better
than the stream aggregation accesses which are often finer and hence
require expensive read-modify-write operations. Finally, the hybrid
packet buffers were limited to two levels, while the proposed memory
system can use more levels to exploit a higher aggregate bandwidth.

The contributions of this work are the following: MLQ, a special-
ized memory hierarchy for stream aggregation; An analytical model
of MLQ and a method to automatically generate its configuration
for a problem at hand; An MLQ implementation, in a FPGA-based
SWAG system and its evaluation and comparison with related work.

The remainder of this paper is organized as follows. Section II
offers an analytical model of MLQ. Section III describes our FPGA-
based stream aggregation design with MLQs. Section IV presents
the evaluation and comparison with related work. Finally, Section V
summarizes our conclusions.

II. MLQ ANALYTICAL MODEL

In this section, a generic description of MLQs and an analytical
model for estimating system’s performance are presented. This model
is then used by a heuristic to identify an efficient configuration of the
memory hierarchy, i.e., selecting block size per level, for the SWAG
problem at hand considering the given memory characteristics while
aiming to maximize the processing throughput of the system.

We consider n levels in the memory hierarchy, M1, . . . ,Mn as
shown in Figure 2. The higher the level the longer the access time
and the larger its capacity, which is shared equally between the keys
(K) supported in the system. Let Ci denote the capacity of the ith

memory level and Cki = Ci/K, denote the capacity available per
key in each level. The access granularity of a memory level is defined

as the minimum number of bytes that can be read or written (R/W)
in a memory access. Let Gwi and Gri denote the write and read
access granularity of the ith level, respectively. For example, on-chip
SRAM can be configured to support R/W access granularity of just
a single bit, while DRAM has a R/W access granularity is 64B lines.
The ideal write access granularity (en-queue) required for window
updates is equal to size of the attribute value(s) (As) carried by a
tuple. In case the write access granularity is larger than that, e.g.
values of 4B written directly to DRAM, then a more expensive read-
modify-write operation is needed rather than a simple write.

The average R/W memory access time Ti of level i is measured in
number of cycles of the processing chip (i.e., FPGA). For simplicity
it is considered that all memory ports are R/W with the same access
time for both access types. Ti is the inverse of the average access rate
(throughput) of a level. The number of available channels offering
for independent parallel R/W access in level i is denoted as Chi.

We define the input system throughput TPCin, i.e., the line rate
at which the system receives incoming tuples. Considering that one
tuple is received per cycle, TPCin = 1 tuple per cycle.

When a tuple enters the system, its value gets enqueued to the
tail of the corresponding key’s MLQ in the fastest first level of the
memory hierarchy M1. When a level gets full, the complete block of
values in that level is subsequently flushed to the next level. Let Fi

denote the flush rate of the ith memory level, which is the inverse
of the block of values stored in that level. vi denotes the number of
values stored in the ith level per key before it is flushed to the next
level. The incoming tuple’s attribute value inserted in M1 is denoted
as v0 = 1. So, Fi = 1/vi, for 1 ≤ i ≤ n− 1. It is worth noting that
the nth level should be able to hold the entire window (vn = WS).

Based on the above, we model the number of memory accesses
per incoming tuple required for window updates and aggregation and
then the throughput sustained by each memory level. For simplicity,
a uniform random distribution of tuple arrival per key is considered,
but different arrival rates would follow the same methodology.

1) Window Updates: There are three types of memory accesses
that may occur during window updates. First, a write access of the
incoming value(s) of size As to M1. Second, a read access to any
memory level that is full and needs to be flushed. Third, a write
access to level i to store the flushed values from level i − 1. Let
Wui and Rui be the average number of write and read accesses
per tuple, respectively, due to window updates to the ith memory
level. Every incoming tuple has to be written to M1, so, Wu1 = 1.
For the successive levels, the number of writes in level i depends
on the flushing rate per tuple of the previous level Fi−1 and on the
number of write accesses needed to write the vi−1 flushed values
which is d vi−1×As

Gwi
e. In case a read-modify-write (rmw) operation

is needed, an equal amount of read accesses needs to be accounted:
Rrmwi = Wui, if (vi−1 × As) < Gwi; considering values will be
aligned and do not span across two Mi lines. Note, that there is the
option to underutilize the capacity of memory to avoid read-modify-
writes. In the event of a flush, the number of read accesses on level
i is d vi×As

Gri
e and on average, these reads happen at a rate of Fi

per tuple. Then, the number of write and read accesses for window
updates at each level are:

Wui =

{
1, for i = 1

Fi−1 × d vi−1×As

Gwi
e, for 2 ≤ i ≤ n

Rui =

{
Fi × d vi×As

Gri
e+Rrmwi , for 1 ≤ i ≤ n− 1, n > 1

Rrmwi , for i = n

Algorithm 1: Partitioning algorithm.
Input: i1, isBackward // mem. level, back-prop. flag
Output: V, TPCall

1 Function Partition(i, isBackward):
2 if isBackward then
3 if i == 1 then
4 update v1, TPC1, TPCin

5 Partition(i + 1, false)
6 else
7 update vi, TPCi based on vi+1, TPCi+1

8 Partition(i − 1, true)

9 else
10 if hasV isitedi then
11 Partition(i + 1, false)
12 else
13 find vi set to maximise TPCi within available Cki

14 if i == n and vn < WS then
15 return Not enough capacity in MLQ

16 if TPCi == TPCi−1 and vi == WS then
17 print V , TPCall

18 return // partitioning done

19 if TPCi < TPCi−1 then
20 Partition(i − 1, true)
21 else
22 hasV isitedi = true // visit flag - level i
23 Partition(i + 1, false)

1Input i encapsulates the memory characteristics of level i such as capacity(Ck), access-
granularity (G), and access-time (T).

2) Aggregation: Upon aggregation, the entire window of a key is
read, which may spread across all MLQ levels. The number of read
accesses in level i for one aggregation is d vi×As

Gri
e. Since these reads

happen once every WA arriving tuples, then the average number of
read accesses per tuple is Rai =

1
WA × d

vi×As
Gri
e. This is the worst

case Rai as it assumes the entire key space in the level (vi) is needed.
3) Average Throughput: The average throughput sustained by

level i is measured in tuples per cycle, TPCi. This is the inverse of
the average number of cycles per tuple CPTi required to complete
the accesses per tuple in the level. The CPTi required per tuple for
window update writes and reads as well as for aggregation reads is
[(Wui +Rui +Rai)/Chi]× Ti, where Ti is the access time (in
cycles) and Chi the number of parallel channels at the level. Thus,
the tuples per cycle for level i is TPCi = 1/CPTi.

The overall system throughput TPCall is the minimum between
the input throughput (TPCin) and the throughput of each memory
level. The average cycles per tuple consumed per level are not
summed as all memory levels are working in parallel to perform
the accesses for window updates and aggregation in a dataflow
fashion. So, the throughput supported by the system TPCall =
min(TPCin, TPC1, . . . , TPCn). As we focus on the memory sys-
tem, we consider that the aggregated values delivered by the memory
system can be consumed at the same rate by the subsequent stage
which computes the aggregation functions, otherwise the throughput
of the compute stage needs to be considered in the above equation.

4) Automatic memory configuration generation: Based on the
above performance modeling, we seek the optimal memory configu-
ration, that is the number of values stored per level V = {v1, . . . vn}
based on the aggregation parameters (number of keys, WS, WA)
and memory characteristics in order to maximize the processing
throughput of the entire system and meet the memory capacity
constraints. We developed a heuristic, described in Algorithm 1, to
find the partition set V that maximizes system throughput. Starting
from level-1, the heuristic finds for each level i, the set of solutions for
vi that can support its requested input throughput TPCi−1 within the
available capacity Cki (line 13) using the formulas of our analytical

10GbE
	Port Rx

Hash	
Functions

Hash
Table

Compute	
Kernels Tx

Memory	Command
Generator

Data	Collection
Controller

Dataflow	Engine	(DFE)	in	FPGA

M2:	QDR-SRAM
	Controller

M3:	DRAM	Controller

M2:	QDR-SRAM

M3:	DRAM

M1:	BRAMs

10GbE
	Port

Fig. 3. Top-level view of a Reconfigurable single window SWAG with MLQ.

model. In case there is a set of vi solutions that can support 100% of
TPCi−1, then the output throughput of the level TPCi is calculated
and given to the level i+1 as input (line 23). Otherwise, the heuristic
would call the function for the previous i − 1 level (line 20) to
reconsider its solutions for the newly adjusted TPCi−1 (lines 2-
8). The heuristic exits when it finds a solution for the last memory
level that satisfies its given input throughput and capacity constraint
(lines 16-18). The output of the heuristic is V and the (possibly
adjusted) TPCall that is satisfied by V , which is the maximum input
throughput TPCin that can be processed by the system. Compared to
exhaustive search which would need to search the entire WS space for
each memory level (O(WSn)), our heuristic has substantially lower
complexity of O(n2) as in the worst case, each recursive call has to
traverse and fit only from the current level to level-1.

III. RECONFIGURABLE SINGLE WINDOW SWAG WITH MLQ

A reconfigurable single window SWAG dataflow engine (DFE) that
uses the proposed MLQ memory hierarchy is designed to exploit the
offered high bandwidth and capacity. The top level block diagram
of our engine is shown in Figure 3. Incoming tuples of the form
〈ts, key, value〉 are carried by network packets and received by the
receiver module (Rx).The key of each tuple is first hashed to the hash
table. Multiple hash functions are used for reducing collisions and
for adding flexibility [20], [21]. Each hash table entry corresponds
to a key and stores metadata needed for processing this key’s
incoming tuples in the subsequent stages; in particular, for managing
the memory accesses for window updates and aggregation at each
memory level. After accessing the hash table, the memory commands
are generated to each level based on the metadata state. The data
collector acts as a buffer to synchronise the dataflow of the single
window from the various memory levels. Subsequently, aggregated
values of a window fetched from the memory are fed to the compute
kernel(s) where the aggregation function(s) are computed. The result
of the aggregation function is finally transmitted back to the network
through the Tx module. Note that the flow of the data through the
stages is controlled through FIFOs which stall the pipeline via a
back-pressure mechanism when needed. The design is implemented
in a platform that offers three memory types to be used in MLQ, in
particular besides the FPGA on-chip BRAMs, an off-chip DRAM,
and off-chip SRAM are used. Table I shows their characteristics.

From the end users’ perspective, based on the stream aggrega-
tion parameters provided and the specifications of the memories,
the heuristic discussed in Section II generates the partitioning of
the design-time reconfigurable memory hierarchy that maximizes
throughput. The APIs provided by MLQ are: a) insert (en-queue)
a single value upon tuple arrival; b) flush a block of values from a
full memory level to the next; c) aggregate by reading the complete
single window queue and d) bulk evict values upon window slide
corresponding to the WA from the memory levels. These APIs
translate to one or more read or write access micro-commands.

A. Hash Table

The hash table stores the metadata for the active keys in the system
and is implemented using BRAMs. A hash table entry points to the

Tuple r1 w1 r2 w2 r3 w3 Operation M1 M2 M3

Init 0 0 0 0 0 0 -

1 0 1 0 0 0 0
M1-Wu

2 0 2 0 0 0 0
M1-Wu

3 0 1 0 2 0 0
M1-Ru;	M2-Wu;	M1-Wu

4 0 2 0 2 0 0
M1-Wu

5 0 1 0 4 0 0
M1-Ru;	M2-Wu;	M1-Wu

6 0 2 0 0 0 4
M1-Wu;	M2-Ru;	M3-Wu

7 0 1 0 2 0 4
M1-Ru;	M2-Wu;	M1-Wu;	

8 0 2 0 2 2 4
M1-Ra;	M2-Ra;	M3-Ra;	M1-Wu;	

9 0 1 0 4 2 4
M1-Ru;	M2-Wu;	M1-Wu;	

10 0 2 0 0 4 0 	M1-Ra;	M2-Ra;	M3-Ra;	M3-Wu;	M1-Wu

11 0 1 0 2 4 0
M1-Ru;	M2-Wu;	M1-Wu

12 0 2 0 2 6 0
M1-Ra;	M2-Ra;	M3-Ra;	M1-Wu

13 0 1 0 4 6 0
M1-Ru;	M2-Wu;	M1-Wu

14 0 2 0 0 0 4
M1-Ra;	M2-Ra;	M3-Ra;	M3-Wu;	M1-Wu	

15 0 1 0 2 0 4
M1-Ru;	M2-Wu;	M1-Wu;	

t5 t6 t2t1 t3 t4
- -- --- - -

0 1 0 1 2 3

t1 - - -- -
- -- --- - -

t1 t2 - -- -
- -- --- - -

t3 - - -- -
- -- --t1 t2 -

t3 t4 - -- -
- -- --t1 t2 -

t5 - - -- -
- -- -t3t1 t2 t4

t7 - t1 t3t2 t4
- -- --t5 t6 -

t7 t8 -t1 t3-t2 t4
- -- --t5 t6 -

t9 - - t3- t4
- -- -t7t5 t6 t8

t9 t10 - -t3- -t4
t7 t8t5 t6-t7-t5 -t6 -t8

t11 - - -- -
t7 t8t5 t6-t9 t10 -

t11 t12 - -- -
t7 t8-t5 -t6-t9 t10 -

t13 - - -- -
t7 t8- -t11t9 t10 t12

t13 t14 t9 t11t10 t12
-t7 -t8- --t11-t9 -t10 -t12

0 1 2 3
4 5 6 7

t15 - t9 t11t10 t12
- -- --t13 t14 -

t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12 t13 t14 t15

O
O

O
OWA	=	2	tuples

WS	=	8	tuples

(Insert	t1	in	M1)

(Insert	t2	in	M1)

(Flush	M1	to	M2;	Insert	t3	in	M1)

(Insert	t4	in	M1)

(Flush	M1	to	M2;	Insert	t5	in	M1)

(Insert	t6	in	M1;	Flush	M2	to	M3)

(Flush	M1	to	M2;	Insert	t7	in	M1)

(Aggregate	t1:8;	Evict	t1:2;	Insert	t8	in	M1)

(Flush	M1	to	M2;	Insert	t9	in	M1)

(Aggregate	t3:10;	Evict	t3:4;	Flush	M2	to	M3;	Insert	t10	in	M1)

(Flush	M1	to	M2;	Insert	t11	in	M1)

(Aggregate	t5:12;	Evict	t5:6;	Insert	t12	in	M1)

(Flush	M1	to	M2;	Insert	t13	in	M1)

(Aggregate	t7:14;	Evict	t7:8;	Flush	M2	to	M3;	Insert	t14	in	M1)

(Flush	M1	to	M2;	Insert	t15	in	M1)

Input	
Stream	

(a)

(b)

Fig. 4. (a) A stream of tuples t1, t2, . . . , of a key aggregated with WS=8
and WA=2 tuples. (b) Hash Table metadata logic and dataflow through the
memory hierarchy for the above stream. Memories configured with: v1=2;
v2=4; v3=8. Mi-Wu, Mi-Ru, and Mi-Ra denotes write operation due to
window update, read operation due to window update, and read operation
due to aggregation in memory level i, respectively. The red numbers in the
Init row indicate the indices of each memory cell. The grey and blue boxes
indicate window updates and aggregation reads, respectively.

MLQ space allocated for storing the window of a single key. The
metadata contains: (i) a valid bit; (ii) the key assigned to the entry;
(iii) window start timestamp for key replacement in case of collision
and to trigger aggregation in time-based windows; (iv) read pointers
to each memory level, ri pointing to the head index in level i; and
(v) write pointers to each memory level, wi pointing to the tail index
of each memory level i.

The hash table is accessed in a pipelined fashion using multiple
hash functions. First, the selected hash table entries are checked to
match the requested key. In case of a miss, a new entry is made
evicting the least recently used key out of the ones identified by
the hash functions. If the evicted key is still active, a flag is raised
indicating collision and the information is sent to software.2. A hit
in the hash table fetches the metadata of the associated key which
determine: i) the index in M1 to insert the incoming tuple’s value
for window update; ii) whether any memory is full and needs to be
flushed to the next level; iii) the index of the successive level to insert
the flushed block of values from the predecessor; and iv) whether the
key is ready for aggregation and perform eviction of invalid entries
on a window-slide. Based on the above cases, the entry is updated
and written back to the hash table.

Figure 4 illustrates an example of the index management for tuple-
based stream aggregation using the hash table. When the first tuple
t1 enters the system, the write pointer w1 gets incremented by 1 as
the tuple is to be inserted in M1. Similarly, for t2, w1 becomes 2. On
arrival of t3, as w1 = 2 (equal to v1, the capacity available per key in

2The hash table can be extended using the memory hierarchy and/or a software process
could handle keys that do not fit in hardware due to collisions or capacity issues.

M1), M1 has to be flushed to M2. Then, t3 is inserted in M1 and w1

gets updated to 1 pointing to the index in M1 where the next tuple
has to be inserted. Similarly, on arrival of t5, as M2 is full (w2 = v2),
M2 is to be flushed to M3. This goes on until t8 when the total count
of tuples in the single window becomes equal to WS ((w1 − r1) +
(w2 − r2) + (w3 − r3) = 8 tuples) and triggers aggregation. On
aggregation, the entire single window spanning across the memory
hierarchy has to be read, and then the invalid tuples evicted based
on the WA (2 tuples). The eviction is marked by incrementing r3
by 2 which reduces the total tuple count to 6. An interesting point
to note is that on arrival of t10, the buffer in M3 wraps around and
on t14, M2 gets flushed to the first line in M3. This maintains the
circular buffer per key which is statically allocated in the memory
hierarchy. In this example, the read pointers of M1 and M2 remain to
zero, because on a window-slide (WA=2) the evictions did not span
to M1 or M2. In a case where the evictions span multiple levels
(large WA), the MLQ parts of the upper levels will be emptied and
the read pointer of the lower affected level will be updated.

For a tuple-based windowing policy, the read and write pointers
memory can be reused to manage evictions. For a time-based case,
more metadata are required to manage the number of evicted tuples
upon aggregation as described in [14], because the number of tuples
per slide (WA) is time-dependent. This is orthogonal to the metadata
used for supporting MLQ. Another note is that the MLQ storage in
each level i < n can be reduced from vi to vi − vi−1 because the
last write access of vi−1 elements to level i triggers a flush to level
i+ 1 and therefore it can be forwarded without storing it in i.

After the hash table access, the tuple along with its hash address,
read/write indices, full flag per memory level, and a “ready for
aggregation” flag are pushed to the command generator.

B. Memory Command Generator

The command generator controls the memory levels and converts
the window update (insert, flush) and aggregation operations into
access commands to each memory level. It converts the received
indices to actual physical addresses to each memory level. As the
available memory space of each level is statically allocated equally
to a block per key, the physical address is created using the key block
offset. Then, the address of the memory line(s) to be accessed within
the key block is generated based on the received index, the value size,
and the number of values to be accessed. In case, multiple memory
lines need to be accessed (i.e. due to flushing, aggregation), then
multiple commands are generated. Finally, in case of a write access
at a granularity smaller than a memory line, multiple commands
are generated to implement a read-modify-write. Figure 4 describes
for the given example the commands to the different memory levels
generated by the memory command generator.

After this stage, the tuple along with the number of lines read based
on the read commands generated, the full flag per level as well as
the aggregation ready flag are passed to the data collection stage.

C. Data Collection Controller

This module synchronizes the data read from memory levels due
to flushes and aggregations each of the two cases using a separate
state machine. The flushing state machine checks the full-flag of each
memory level and writes the flushed data to the next level. In case
of a read-modify-write, the lines are modified before flushing to the
next level. The aggregation state machine maintains separate internal
queues for the tuple’s metadata and for the data flowing in from
each memory level. It then synchronises the contents of the different
queues to deliver in order the aggregated values to the subsequent

TABLE I
PLATFORM MEMORY SPECIFICATIONS

Type Capacity R/W Access
Granularity (bytes)

Theoretical
Bandwidth

Avg. Access Time in
FPGA cycles (156.25 MHz)

On-chip BRAM 2 MB 4 in our design 14.4 TB/s 1
Off-chip SRAM 72 MB R: 18 / W: 1 9.9 x2 = 19.8 GB/s 1.2
Off-chip DRAM 24 GB 64 12.8 x3 = 38.4 GB/s 7 (<4 lines), 2 (>4 lines)

compute kernel. Value reordering is needed because the aggregation
read operations are performed in parallel for all memory levels that
contain valid data. This is important for supporting non-commutative
aggregation functions like rank. Finally, the data are pushed to the
compute kernel for computing the functions.

D. Computer Kernels

Depending on the aggregation function in the query, the values can
be processed on the fly, gradually as they arrive, e.g. for algebraic
(i.e.,average) or distributive functions (i.e., minimum, maximum,
and sum), or otherwise only when all values have been received,
e.g., for holistic functions, such as median. In our implementation,
the compute kernel is pipelined and for median a Histogram-based
median filtering is implemented [22]. Our design is implemented for a
particular (worst-case) WS and WA, but one can choose dynamically
at runtime to use a lower WS and/or a different WA, within the
same memory configuration. The selected WS and WA is the same
for all keys. Multiple queries can be supported by implementing
multiple parallel compute kernels. Should these compute kernels be
implemented in a way that supports dynamic partial reconfiguration,
then these queries could be updated at runtime. After the function
computation, the result is forwarded to the Tx stage.

IV. EVALUATION

The performance of the proposed approach is evaluated in terms
of processing throughput and latency. First, the experimental setup
is discussed. Then, the implementation and performance results are
presented and compared against existing approaches.

A. Experimental Setup

All designs are implemented on a Maxeler N-series ISCA
(MAX4AB24B) PCIe card with Altera Stratix V (5SGXAB) that
provides a 10 Gb/s direct network connection to the FPGA. As
shown in Table I, besides on-chip BRAMs and 24 GB DDR3 DRAM,
the board offers off-chip QDR-SRAM memory [23]. The designs
are implemented in MaxJ, a Java-based High level Synthesis (HLS)
language, and compiled using MaxCompiler.

Three different types of FPGA-based single window SWAG
dataflow engines (DFEs) are implemented. A SWAG engine that uses
only DDR3 DRAM, denoted as DFE(D), that follows the designs
described in the current state-of-the-art [13], [14]. A SWAG engine
with BRAM and DRAM, denoted as DFE(B+D) and follows the
general principles of 2-level SRAM/DRAM hybrid memories used in
network processing [15]–[19]. A SWAG engine with a 3-level MLQ
memory system using BRAM, off-chip QDR-SRAM and DRAM,
denoted as DFE(B+Q+D) and best captures the principles of our
approach, although as explained below for some SWAG problems
using fewer levels may suffice. The configuration of each design
(partitioning V per level) was generated using the proposed heuristic.
It is worth noting that none of the SWAG problems sizes used could
be supported by a design that uses only BRAM. Finally, a software
baseline is used, implemented in Apache Flink v1.5.1 [24] running on
an Intel Core i7-4790 CPU at 3.6 GHz using 24 GB DDR3 DRAM.

As a stream aggregation application, a subset of the LinearRoad
benchmark [25] is used, where each vehicle has a sensor that emits

TABLE II
RESOURCE UTILIZATION FOR THE FPGA IMPLEMENTATION.

Resource DFE(D) DFE(B+D) DFE(B+Q+D)

Logic (ALMs) 95998 (26.73%) 98137 (27.32%) 102300 (28.48%)
BRAMs 1429 (54.14%) 1705 (64.57%) 1798 (68.09%)

tuples composed of a timestamp (24b), a vehicle ID (key, 24b), and
speed (value, 16b). The data set is uniformly distributed, and the
tuple’s keys and values are generated with uniform probability. The
tcpreplay tool [26] is used to inject the captured packets at varying
injection rates to determine the highest sustainable system throughput.

The implemented query, comprising of algebraic, distributive, and
holistic aggregation functions, is the following: “Find the average,
minimum, maximum, and median speed for each vehicle for the
last WS tuples and return the aggregate every WA tuples.” The WS
ranges from 64 to 4K tuples, the WA varies from 1 to WS tuples and
the number of vehicles (keys) is 128K which is in line with our goal
of supporting a wide range of group-by stream aggregation queries
with large window sizes, frequent aggregations, generic aggregation
functions, and a large number of keys.

B. Implementation Results

The resource utilization of the proposed design is as depicted in
Table II. The logic utilization is mainly constituted of the hash table
stage and the compute kernel (40%) implementing the aggregation
functions. The increase in logic utilization across designs is mainly
attributed to the increase in pointer arithmetic for managing the extra
levels in the hash table stage, command generator, and data collector.
The BRAM utilization also increases with more memory levels as
more read/write pointers are required in the hash table. For value
storage, 512KB of BRAMs are allocated providing 4B per key for
DFE(B+D) and DFE(B+Q+D) designs. The remaining BRAMs are
mostly utilized by FIFOs between the pipeline stages.

All DFE designs operate at 156.25 MHz allowing to receive one
incoming tuple/cycle using the full 10 Gb/s bandwidth of the network
interface. This translates to a theoretical line rate of 156.25 million
tuples/sec, but in practice, the actual highest rate of incoming tuples
measured on the board is about 140 million tuples/sec, so about
90% of the theoretical. Finally, QDR-SRAM and DDR3 DRAM are
clocked at 350 MHz and 800 MHz, respectively.

C. Processing throughput and latency

Figure 5 shows the processing throughput of the alternative SWAG
designs for different WS and WA, measured in number of tuples pro-
cessed per unit of time. It also depicts the average (per aggregation)
latency, which is interesting for systems with real time constraints.

A general observation is that the throughput of all designs is
reduced for small window advance (WA), especially for large window
sizes (WS). This is because smaller WA trigger aggregations more
frequently and in addition, the larger windows aggregate more data,
hence the problem becomes more bandwidth demanding.

The performance of the reference Flink software confirms the claim
that CPU memory management does not suit the considered SWAG
requirements as it offers 2-3 orders of magnitude lower throughput
and 4-7 orders of magnitude higher latency compared to DFEs.

DFEs exhibit similar latency, as DFE(B+Q+D) has on average 90%
and 99% the latency of DFE(D) and DFE(B+D), respectively.

The DRAM-only design, DFE(D), which follows the design prin-
ciples of [13], [14], achieves the lowest throughput out of the three
DFEs, supporting up to 15% of the line rate because it handles
inefficiently the window update accesses. More precisely, it requires

1E-1

1E+1

1E+3

1E+5

1E+7

1E+9

1E+11

1E+13

1E-2

1E-1

1E+0

1E+1

1E+2

1E+3

1E+4

1 4 16 64 1 4 16 64 256 1 4 16 64 256 1024 1 4 16 64 256 1024 4096

WA (WS=64) WA (WS=256) WA (WS=1024) WA (WS=4096)

L
at

en
cy

 (
µ

s)
 -

lo
g
1
0

sc
al

e

T
h

ro
u

g
h

p
u

t
(M

T
/s

)
-

lo
g
1
0

sc
al

e Throughput Flink Throughput DFE (D) Throughput DFE (B+D) Throughput DFE (B+Q+D)
Latency Flink Latency DFE(D) Latency DFE(B+D) Latency DFE (B+Q+D)

Theoretical	Line-rate	(156	MT/s)

Fig. 5. Throughput and latency of DFEs and Flink.

6000

0

20

40

60

104

80

100

T
hr

ou
gh

pu
t (

%
 L

in
e-

ra
te

)

4000
WS

102

WA
2000

1000

AM(D)
AM(B+D)
AM(B+Q+D)

(a)

6000
0

20

40

60

104

80

100

T
hr

ou
gh

pu
t (

%
 L

in
e-

ra
te

)

4000

WS
102

WA
2000

1000

DFE(D)
DFE(B+D)
DFE(B+Q+D)

(b)

Fig. 6. (a) Throughput estimated by our model. (b) Throughput measured for
the actual DFE implementations.

slow and bandwidth wasteful read-modify-writes, since value size
(2B) is smaller than DRAM line (64B). However, for small WA (1)
and large WS (1024-4096) it offers about the same throughput as
the other two DFE designs. This is due to the following reasons.
First, in these cases the aggregation traffic dominates and therefore
the inefficient handling of window updates has negligible effect.
Second, DFE(B+D) and DFE(B+Q+D) cannot take advantage of the
added aggregation bandwidth offered by BRAM and BRAM+QDR-
SRAM, respectively, because for large WS the dominant portion of
the window is stored in DRAM which becomes the bottleneck.

Adding BRAM to form a BRAM+DRAM DFE, DFE(B+D), im-
proves throughput offering up to 30% of the line rate. Although better
than DFE(D), the DFE(B+D) memory system is still inefficient. For
the given large number of keys, BRAM capacity is too small to fit
an entire DRAM line per key, and so cannot completely eliminate
read-modify-writes. It can store only two values per key in BRAM,
so compared to DFE(D) it reduces the expensive read-modify-write
DRAM operations to half, offering better but still limited throughput.

Adding another memory level between BRAM and DRAM solves
the above problem and supports up to 90% of the theoretical
line rate, which in practice matches the actual maximum rate of
incoming tuples on the board. The off-chip QDR-SRAM employed
in DFE(B+Q+D) offers the capacity required for storing an entire
DRAM line of key-values before flushing to DRAM, completely
eliminating read-modify-writes. Moreover, it offers higher aggregate
memory bandwidth. This is mostly evident in problems with small
WA and WS, because in small WAs, aggregation traffic dominates
and in small WS, significant part of the window is not in DRAM,
e.g., for WS=64, half of the window is in the lower memory levels.

D. Accuracy of the analytical performance model

Figure 6(a) and (b) show for various WS and WA the system
throughput estimated by our analytical model (AM) and measured
in our actual implemented DFEs, respectively. The mean absolute
percentage error (MAPE) is 12%, but as it can be observed the trend
is estimated correctly which is sufficient to guide well our heuristic.

E. Comparison with related work

Compared to existing works, our approach offers higher perfor-
mance for larger problems due to the use of MLQs.

The DFE(D) implementation follows the design of existing
DRAM-only FPGA approaches [13], [14] and is 6-8× slower than our
3-level MLQ design. Another advantage of our approach compared
to DRAM-only designs is that it handles skewed key distributions
without additional support. The design in [13] would suffer from
consecutive tuples of the same key as it would create read after
write hazards in the pipeline. The design presented in [14] uses
an additional cache structure before the DRAM controller to deal
with consecutive DRAM accesses by tuples of the same key. On
the contrary, our designs perform all window updates in the fastest
level-1 which offers single cycle access and therefore there are no
read-after-write-hazards. Moreover, the more recently received values
of each key are at the lower levels supporting better performance.
We experimented with skewed distribution traffic (from real-world
datasets [27], [28]) with the same set of associative and non-
associative aggregation functions, and confirmed that the throughput
of our design is agnostic to the key-distribution. Finally, BRAM-only
FPGA designs such as the ones presented in [3]–[5] can support only
4 orders of magnitude smaller stream aggregation problems; that is
up to WS=8 for the considered query and number of keys.

To the best of our knowledge, the only GPU-based stream process-
ing hardware accelerator that supports non-associative functions (i.e.,
median), therefore using a non-incremental aggregation approach
is Gasser [12]. However, Gasser supports queries with only a single
key, hence small problem sizes, and also does not capture tuples
from the network. We experimented with a single key query and
DFE(B+Q+D) was able to achieve similar throughput (line rate)
comparable to Gasser for varying WS/WA. The throughput readings
are similar to the experiment with uniform key distribution traffic
as shown in Figure 5. However, DFE achieves this at a much lower
latency, which is 3-4 orders of magnitude lower than Gasser.

V. CONCLUSION

This paper introduced Multi-level Queues (MLQs), a specialized
memory hierarchy for stream aggregation. MLQs use multiple mem-
ory levels to form logical queues that offer on-chip SRAM (BRAM)
bandwidth for window updates and DRAM capacity. In addition, they
employ the aggregate bandwidth of all levels in the hierarchy, offering
higher aggregation throughput. Compared to BRAM-only stream
aggregation designs, MLQ supports 4 orders of magnitude larger
problems. Compared to DRAM-only designs, it achieves up to 8×
higher throughput. Even compared to hybrid BRAM+DRAM designs,
MLQ has up to 4× higher throughput. Finally, MLQ offers the same
throughput as GPUs, but in addition supports group-by operations –
up to 128K keys rather than one key offered by the competing GPU
systems– and 4 orders of magnitude lower aggregation latency.

ACKNOWLEDGMENT

The authors would like to thank Maxeler Technologies for provid-
ing infrastructure for running the experiments. This work was partly
funded by the Swedish Research Council under the ScalaNetS project
(2016-05231).

REFERENCES

[1] J. Gantz and D. Reinsel, “The digital universe in 2020: Big data, bigger
digital shadows, and biggest growth in the far east,” December 2012.

[2] H. C. Andrade, B. Gedik, and D. S. Turaga, Fundamentals of stream
processing: application design, systems, and analytics. Cambridge
University Press, 2014.

[3] R. Mueller, J. Teubner, and G. Alonso, “Streams on wires: a query
compiler for fpgas,” VLDB, vol. 2, no. 1, pp. 229–240, 2009.

[4] J. Li, D. Maier, K. Tufte, V. Papadimos, and P. A. Tucker, “No pane,
no gain: efficient evaluation of sliding-window aggregates over data
streams,” ACM SIGMOD, vol. 34, no. 1, 2005.

[5] Y. Oge, M. Yoshimi, T. Miyoshi, H. Kawashima, H. Irie, and T. Yoshi-
naga, “An efficient and scalable implementation of sliding-window
aggregate operator on fpga,” in CANDAR. IEEE, 2013, pp. 112–121.

[6] J. Gray, S. Chaudhuri, A. Bosworth, A. Layman, D. Reichart, M. Venka-
trao, F. Pellow, and H. Pirahesh, “Data cube: A relational aggregation
operator generalizing group-by, cross-tab, and sub-totals,” Data Min.
Knowl. Dis., 1(1), 1997.

[7] V. Gulisano, Y. Nikolakopoulos, I. Walulya, M. Papatriantafilou, and
P. Tsigas, “Deterministic real-time analytics of geospatial data streams
through scalegate objects,” in ACM DEBS. ACM, 2015.

[8] V. Gulisano, Z. Jerzak, S. Voulgaris, and H. Ziekow, “The debs 2016
grand challenge,” in ACM DEBS. ACM, 2016, pp. 289–292.

[9] V. Gulisano, Z. Jerzak, R. Katerinenko, M. Strohbach, and H. Ziekow,
“The debs 2017 grand challenge,” in ACM Int. Conf. on Distributed
Event-based Systems (DEBS), 2017, pp. 271–273.

[10] M. Najafi, K. Zhang, M. Sadoghi, and H.-A. Jacobsen, “Hardware
Acceleration Landscape for Distributed Real-time Analytics: Virtues and
Limitations,” in ICDCS, 2017.

[11] A. Koliousis, M. Weidlich, R. Castro Fernandez, A. L. Wolf, P. Costa,
and P. Pietzuch, “Saber: Window-based hybrid stream processing for
heterogeneous architectures,” in Int. Conf. on Manag. of Data, 2016.

[12] T. De Matteis, G. Mencagli, D. De Sensi, M. Torquati, and M. Danelutto,
“Gasser: An auto-tunable system for general sliding-window streaming
operators on gpus,” IEEE Access, vol. 7, 2019.

[13] P. R. Geethakumari, V. Gulisano, B. J. Svensson, P. Trancoso, and
I. Sourdis, “Single window stream aggregation using reconfigurable
hardware,” in Int’l Conf. on FPT. IEEE, 2017.

[14] P. R. Geethakumari, V. Gulisano, P. Trancoso, and I. Sourdis, “Time-
swad: A dataflow engine for time-based single window stream aggrega-
tion,” in Int’l Conf. on FPT, 2019.

[15] S. Iyer, R. R. Kompella, and N. McKeown, “Analysis of a memory
architecture for fast packet buffers,” in IEEE W. on High Perf. Switching
and Routing, 2001, pp. 368–373.

[16] J. Garcia, J. Corbal, L. Cerda, and M. Valero, “Design and implemen-
tation of high-performance memory systems for future packet buffers,”
in IEEE/ACM MICRO, 2003.

[17] J. Garcia-Vidal, M. March, L. Cerda, J. Corbal, and M. Valero, “A
dram/sram memory scheme for fast packet buffers,” IEEE Trans. on
Computers, vol. 55, no. 5, pp. 588–602, 2006.

[18] S. Iyer, R. R. Kompella, and N. McKeown, “Designing packet buffers
for router linecards,” IEEE/ACM Trans. Netw., vol. 16, no. 3, p. 705–717,
Jun. 2008.

[19] A. Mutter, “A novel hybrid sram/dram memory architecture for fast
packet buffers,” in ACM/IEEE Symp. on ANCS, 2009, p. 183–184.

[20] A. Kirsch, M. Mitzenmacher, and G. Varghese, “Hash-based techniques
for high-speed packet processing,” in Algorithms for Next Generation
Networks, 2010.

[21] Z. István, D. Sidler, and G. Alonso, “Caribou: Intelligent distributed
storage,” VLDB Endowment, vol. 10, no. 11, 2017.

[22] S. A. Fahmy, P. Y. Cheung, and W. Luk, “Novel fpga-based implemen-
tation of median and weighted median filters for image processing,” in
IEEE FPL, 2005.

[23] “Qdr sram,” https://intel.ly/2GxJl6m.
[24] “Apache flink,” https://flink.apache.org/.
[25] A. Arasu, M. Cherniack, E. Galvez, D. Maier, A. S. Maskey, E. Ryvkina,

M. Stonebraker, and R. Tibbetts, “Linear road: a stream data manage-
ment benchmark,” in Int. Conf. on VLDB, 2004, pp. 480–491.

[26] “Tcpreplay,” http://tcpreplay.appneta.com/.
[27] J. Wilkes, “Google cluster data,” https://github.com/google/cluster-data.
[28] H. Ziekow and Z. Jerzak, “The debs 2014 grand challenge,” in 8th ACM

DEBS, vol. 14, 2014.

