LYDIAN: An Extensible Educational Animation
Environment for Distributed Algorithms

BORIS KOLDEHOFE

MARINA PAPATRIANTAFILOU
and

PHILIPPAS TSIGAS

Chalmers University of Technology

LYDIAN is an environment to support the teaching and learning of distributed algorithms. It
provides a collection of distributed algorithms as well as continuous animations. Users can combine
algorithms and animations with arbitrary network structures defining the interconnection and
behaviour of the distributed algorithm. Further, it facilitates the creation of own algorithm
descriptions as well as the creation of own network structures. This makes LYDIAN a flexible
tool to be used with students of different skills and backgrounds.

This article gives an overview about various ideas and concepts behind LYDIAN by describing
in detail the framework for an educational visualisation and simulation environment for learn-
ing/teaching distributed algorithms as well as discussing possible extensions which may improve
possibilities for user interaction. Moreover, in our effort to understand better what visualisation
and simulation environments such as LYDIAN need to provide we show results taken from a case
study integrating LYDIAN in an undergradute distributed systems course.

Categories and Subject Descriptors: K.3.1 [Computers and Education]: Computer Uses in
Education—distributed algorithms, visualisation; simulation

General Terms: Visualisation, Simulation, Animation

Additional Key Words and Phrases: distributed algorithms

1. INTRODUCTION

Distributed algorithms are algorithms that run concurrently on many intercon-
nected processing elements called processors or processes. The algorithms are sup-
posed to work correctly independent from the speed of the communication links
and the structure of the network. Understanding such algorithms including their
performance analysis and their correctness plays an important role in courses re-
lated to distributed systems, operating systems and computer networks. Mostly,
students try to achieve an understanding of the algorithm’s control flow and its
performance by following the explanations on the board and the pseudo-code de-
scription presented in a technical book or paper. This approach often suffers from
the large amount of data describing local state and complex interaction between
processes. Simulation and animation of distributed algorithms give students the
possibility to experience how the distributed algorithms evolves over time and test
the algorithm under different system behaviour. Compared to executing the algo-
rithms on a real system, the animation and simulation allows the student to interact
with the system state, pause the animation and execute an instance of an algorithm
multiple times. A simulator also enables students to trace behaviour which under
real circumstances rarely occurs, but is important to understand the correctness or

Submitted to ACM Journal on Educational Resources in Computing

2 . LYDIAN

asymptotic behaviour of the algorithm.

In this article we present LYDIAN, an environment to support the learning of
distributed algorithms. LYDIAN provides a database of distributed algorithms and
respective continuous animations. Students can write their own algorithm imple-
mentation in a high level language and test it with any arbitrary interconnection
of processes. The provided animation framework allows interactive demonstrations
of distributed algorithms. The animations do not use a fixed interconnection of
processes, but allow the students to create their own networks descriptions in a
visual way and apply them to the respective algorithm and animation. This way
teachers can use LYDIAN in various ways depending on the level and background
of their students.

Related Work. Compared to advanced system simulation tools like [Khanvilkar
and Shatz 2001] LYDIAN focuses on the educational aspects of algorithm visual-
isation which are mainly to support the student in reasoning on the analysis of
the distributed algorithm. At the time we introduced the concepts behind LY-
DIAN [Papatriantafilou and Tsigas 1998] and our work on building an animation
framework [Koldehofe et al. 1999; Koldehofe 1999] for distributed algorithms there
was only one known attempt towards a a set of animations of distributed protocols
for educational purposes, ZADA [Mester et al. 1995], based on the animation pack-
age Zeus, a Modula-3 based system for specialised platforms. The effort resulted
in a small archive of protocols, for each of which the set of views is fixed and the
implementation is the same program as the animation (this implies essentially fixed
timing, workload, etc).

Of relevance was also the interesting work by Ben-Ari in [Ben-Ari 1997] and [Ben-
Ari 2001]. There, the focus is on providing a framework for writing distributed
algorithms (in a portable language) that allows students to interact with the states
of a process and this way understand state changes and data structures of the
algorithm. Subsequently, more tools with emphasis on different educational aspects
evolved.

VADE [Moses et al. 1998] is a system that supports algorithms to be executed
as Java processes on a server, and providing the client with a consistent view
on algorithm events that happens on the server. The visualisation is based on
WEB approach where users can view on a web page the visualisation of a selected
algorithm by downloading the respective Java client. The animations supports
multiple views, but makes no distinction between views for special educational
purposes. The approach is mainly designed to make students view a prepared
protocol, but not to implement protocols on their own. It seems that it was even
thought to prevent an observer from viewing the code behind an algorithm. To the
best of our knowledge, there is no recent development of this tool.

In the contrary ViSiDiA [ViSiDiA 2000] supports, like LYDIAN, an integrated ap-
proach of simulation and animation of algorithms and in this respect covers closest
the aspects addressed by LYDIAN. The interconnection of processes is abstracted
by a communication graph model, which can be created interactively by the user.
The provided algorithms implemented in Java can be run on top of the selected
network. Hereby, the code for processes is simulated with Java threads. Users can
also create own protocols by using the provided library functions. However, the

Submitted to ACM Journal on Educational Resources in Computing

An extensible educational animation environment for distributed algorithms . 3

user has no influence on defining timing behaviour for communication links of the
network. The animations show the graph model visualising events and states by dis-
playing labels attached to links and processes. The visualisation mainly addresses
to visualise the current states, but does not provide the user with information on
other issues, such as causal relations and message complexity.

The work presented in [Schreiner 2002] provides a nice object oriented framework
which allows a simple specification of protocols in Java. The specification protocols
reflect the automaton model presented in textbooks on distributed algorithms such
as [Lynch 1996]. The animation, because of its non-continuous nature, cannot give
the user a picture about actions that happen concurrently and it does not address
other aspects in educational visualisation. Moreover, the network is specified with
the definition of a process, i.e. the code for each process identifies the respective
neighbours of processes.

Organisation of this article. This article is organised to give first a general over-
view of LYDIAN’s components. In the following sections we present in detail the
framework used for the provided animations of LYDIAN, where we give special
attention to the educational aspects of the animations (see Section 3). Further,
in Section 4 we introduce how LYDIAN supports the creation of own protocols
with LYDIAN’s simulator. The concepts behind are explained on a simple exam-
ple, presenting how to implement a broadcast algorithm with LYDIAN. Section 5
describes a case study integrating LYDIAN in a basic distributed systems course.
We evaluate a distributed system assignment in which students used LYDIAN to
implement their algorithms. In our study neither the teachers nor the students
had earlier class experience with LYDIAN. In Section 6 we discuss an extension of
the visualisation framework based on Virtual Reality technology to increase possi-
bilities for user interactivity. Finally, in Section 7 we present our conclusions and
future work.

2. AN OVERVIEW ON LYDIAN

LYDIAN is intended to serve a wide range of educational purposes. For instance,
one can use LYDIAN (i) to give a demonstration of prepared animations, (ii) to let
students create their own network structures, which can be linked to the respective
animations, or (iii) to let students create own protocols, which can be executed
on LYDIAN’s simulator. The interaction with LYDIAN is based on a graphical
user interface (GUI) written in TCL/TK [Ousterhout 1994] which allows to access
LYDIAN’s archive of created created resources as well as to create own resources.
Since in the execution of a protocol there are many components involved, LY-
DIAN introduced the concept of experiments in which the user can describe the
properties for relevant components. An experiment contains information about

—the protocol the user wants to execute,

—the underlying network structure describing how processes are interconnected
and the characteristics of the timing behaviour,

—a trace file in which during the execution of the algorithm significant events are
stored which can be traced by the user,

Submitted to ACM Journal on Educational Resources in Computing

4 . LYDIAN

LYDIAN USER
EXPERIMENT
Create (select) a Create (select) a Create (select) an
distributed algorithm network description file animation
Select area !]
distributed system Simulator Animator

CORN

Fig. 1. An overview on LYDIAN'’s functionality from a users perspective.

—and an animation which can give a graphical representation of the events in the
trace file.

The experiment is abstracted by a single window containing all experiment specific
information. The user interacts with the experiment by pressing buttons repre-
senting different actions or modification choices. There are two actions a user can
perform on an experiment. It is possible to “run” the experiment, i.e. the respec-
tive protocol will be executed as specified in the experiment, or one can “animate”
an experiment, i.e. an animation will be shown which respects the specification of
the experiment.

When a user selects to “run” the experiment, the simulator of LYDIAN will be
started and in the protocol defined events written into a trace file. The user can
specify in its experiment further data evaluating the protocol. It is even possible
to add own events by adding debug lines to the protocol. In order to view the
data the user can choose between graphical or text output for the animation. The
text output is useful if users added own events and wish to see all information
created by the simulator. However, most users will prefer the graphical visualisation
which provides an animation with respect to the components selected within the
experiments. We will describe the framework used in LYDIAN to show animations
in more detail in Section 3.

The GUI of LYDIAN is designed such that the user can view all relevant infor-
mation in one window and can change components of a selected experiment on the
fly. For instance, in order to change the network, a user simply selects another

Submitted to ACM Journal on Educational Resources in Computing

An extensible educational animation environment for distributed algorithms . 5

Experiment file |ack_brd_castexp Select
Save Save as

Protocol Broadcast with acknowledgeme Select
Hetwork. ack_brdcast_15_un.ipf Select

_1 Protocal tolerates link failures?
Maximun number of faulty links [0, type of failures:
4 Stop failures
~~ Intennittent failures

Debug options

M Action info

_{ Timer info

1 Process and message timing info
I Eventinfo

I Protocol defined info

Run |1 times

® Visualization {on/off), type:
.~ ascii monitoring
Display update frequency (0-3) [T
4 Graphical Animation

Debug file ack_brd_castexp Select
Animation Program [ack_brdcast Select

Graph Structure [ack_bricast_15_un.gsf Select.

Default | Run Animate | OK Cancel |

=l

nodes: 16 edges: 30 undo: 8/0 229.24 558.E2

Fig. 2. The experiment dialogue and the graphwin drawing tool.

network description file in the experiment and can run the experiment and view
the animation as before, but with respect to the new network structure.

It is important for students to experiment with different network structures.
LYDIAN provides an easy visual way to create their own network descriptions. This
component is based on LEDA [Mehlhorn and Néher 1999], a library for efficient
data structures and algorithms, providing many algorithms to manipulate graphs
and draw them efficiently. In LYDIAN the user simply draws a network based on
a graph in which vertices represent processes and edges links between processes.
Besides moving the vertices in order to achieve a pleasant layout, the user can
apply a wide range of layout algorithms. For specifying the timing behaviour of the
network, it is possible to choose among many different distributions valid for all
processes, but also define a specific behaviour for a link or process. When saving
the graph the files will be available for the simulator as well as for the animator.
This way the user can see the same network in the animation as it was drawn in
the graph editor.

3. THE ANIMATION FRAMEWORK OF LYDIAN

This section is on our work in building animations of distributed algorithms to
demonstrate (i) the “key ideas” of the functionality of the algorithms, (%) their
behaviour under different timing and workload of the system, (74) their com-
munication and time complexities. The visualisation takes as input any possible
execution trace of the respective algorithm, so that students (users) can view it in

Submitted to ACM Journal on Educational Resources in Computing

6 : LYDIAN

any possible execution that they can select. We propose the use of a set of views,
which also take into account two inherent difficulties in understanding distributed
algorithms executions. These difficulties stem from the absence of global time in
the system, which implies

—that processes need to rely on their knowledge of causal relations among events
in the system,

—and that in order to measure the length of an execution in time, we need to employ
some mechanism related to the dependencies induced by each algorithm.

In the following we describe the set views that we provide for each animation
and also motivate our decisions, by explaining the role each one plays in assisting
the understanding of the algorithms. The code for all but one (“special”) view
is modularly used by all algorithms, as they are to assist in understanding issues
which are common in all distributed algorithms. The idea behind the “special”
view is to illustrate the special concepts for each algorithm (therefore the view
needs to be different for each algorithm).

For our animation programs we use the Polka library [Stasko 1995], which is
highly portable, friendly to use and has very good features for visualisation, includ-
ing possibility for multiple views, speed tuning, step-by-step execution and callback
events to assist interactive animation.

Animation Views

It should be noted that all views evolve continuously as the execution of the al-
gorithm evolves (continuous motion). The user can decide which views should be
shown. The views can be selected by a menu window. Also a further control
window enables the user in changing the speed or even halt animations in order
to watch interesting parts or skip uninteresting parts of the algorithms execution.
Moreover, the user has the possibility in zooming into interesting parts of the an-
imations as he/she can move to any area of a view. This is important since by
nature some animations will not be able to take place in a bounded window frame
because the animator has not any previous knowledge of further executions of the
algorithm. With exception of the basic view, in which an individual animation for
each algorithm was developed, the offered views were designed such that they are
transferable for any distributed algorithm for a message passing system although
they allow some specifications. Thus further development will have to concentrate
only on the main ideas of algorithms.

The accompanying figures! illustrate a snapshot of the animation of an execution
of the ECHO algorithm (broadcast with acknowledgements) [Tel 1994]. The problem
and the algorithm are as follows: One process(or) needs to broadcast a message to
all the others and to also know when all have received it. It can only communicate
with its neighbours in the network, so it sends the message to them. Each process,
upon receiving the broadcast message for the first time, propagates the message to
its other neighbours and waits to receive acknowledgements from all of them. Once,
a process received all acknowledgements, it starts sending its own acknowledgement

Ithey are in colour, hence the reader may find them more explanatory if the file is printed in
colour

Submitted to ACM Journal on Educational Resources in Computing

An extensible educational animation environment for distributed algorithms . 7

Fig. 3. Basic view of the broadcast-with-acknowledgements algorithm animation.

to the one process from which it received the message for the first time. Any process
receiving the broadcast message again acknowledges immediately to that sender and
does not propagate it again.

Basic View (cf. Figure 3). Tt illustrates the basic idea of the algorithm, hence
Basic Views of different algorithms most likely look different. However, for many
algorithms it is of interest to see the state of processes and messages which are
sent along links. This can be achieved by showing the communication network,
by colouring its nodes (processes) according to their state, and by showing moving
arrows which are coloured according to the kind of message sent along an edge (link).
In the particular algorithm the Basic View shows the communication network, the
propagation of the broadcast and the acknowledgement messages (arrows in green
and blue respectively) and colours (green or blue) the nodes (processes) that have
received the broadcast message and/or the acknowledgements, accordingly (initially
all nodes are yellow, except from the one that initiates the broadcast, which is
always shown in red). As the algorithm execution evolves, waiting chains are
formed among processes. Each process in the chain waits for an acknowledgement
from its next one in the chain. These chains also determine the time complexity
of the algorithm. The edges between two consecutive processes in the chains are
marked in red. In this particular algorithm they also form a spanning tree of the
network at the end of the algorithm.

Submitted to ACM Journal on Educational Resources in Computing

8 . LYDIAN

EE
OaNB LN NOOE IR

N
T
(INTY

av. 0 1 2 8 4 & 6 7 8 O 10 11 12 18 14
Processors

2

Fig. 4. Views showing (a) the communication induced by each process(or) the average and
(b) the causality and logical times (e.g. as would be seen by a monitoring process.

Communication View (cf. Figure 4). This view assists in measuring the commu-
nication complexity of the algorithm and is often helpful in finding relationships
between communication complexity and the structure of the communication graph.
It shows the contribution of each process(or) in the traffic (messages) induced by
the algorithms execution and it also shows the average number of messages per pro-
cess(or) during the execution. The number of messages are displayed in a bar chart
where bars grow online with the number of messages sent by a process(or). In this
example it is easy to observe that the amount of traffic induced by each process(or)
is proportional to its degree in the communication graph (shown in figure 3).

For some algorithm it is also of interest to have a measure of the bit complexity
of messages. The actual known maximum size of a message (represented in bits) is
displayed below every processes bar. The size of a message is represented by a circle
of which its area content is proportional to its message size. As the message size
increases online the user is able to observe how fast message sizes are increasing.

In our example algorithm the bit complexity of a message was constant so that
the bit complexity is not of any interest and thus not shown in Figure 4.

Causality View (cf. Figure 4). Tt illustrates the causal relation between events in
the system execution (arrows represent message transmission). It also shows how
the processes logical clocks are incremented during the execution. Even though
logical clocks are not used in all algorithms, the view is always available. Its purpose
is to show how would a monitoring process view the execution, based on traces as
would be given by each process separately. This is important, as the processes in a
distributed system do not have global knowledge of time. Besides, as consecutive
causally related events change colour, overlapping arrows with different colours
visualise the degree of asynchrony in the execution. It should be noted that showing
the maximum directed path in the resulting graph shows the length of the execution
in units of message transmission times.

Naturally, only a part of the whole view can be shown in the window, but the
user is able to go back and return (as well as to zoom in and out), as it is possible
in all other views.

Submitted to ACM Journal on Educational Resources in Computing

An extensible educational animation environment for distributed algorithms . 9

Processr:
State:
Event
Message:

Titne:

Fig. 5. Process step view and process occupation view.

Process Step View (cf. Figure 5). This gives the user the possibility to click on
any node in the basic view window, to receive information about its status (state,
last event processed, last message received/sent, etc.) at any point during the
animation (or even after it has completed). It is also possible to view interactively
the whole execution of the selected process. This can be done for any process in
the system.

Process Occupation View (cf. Figure 5). Tt shows in actual times, i.e. as given
by the simulation trace, the period that each process is kept busy by the algorithm
during the animated execution. If it is required by the algorithm it is also possible
to distinguish how long a process was kept busy in a certain state. Therefore, a
user may come to a better understanding of the algorithms time complexity by
retracing, for instance with the Process Step View, why a specific process was
kept busy for a long time. In this example, it can be easily observed that the
initiator of the broadcast is the first to start and the last to finish. By receiving the
acknowledgements from its neighbours, i.e. its children in the induced spanning
tree, it knows that the broadcast message reached everybody, hence it terminates.

4. WRITING OWN PROTOCOLS

In courses assignments often require to write own protocols since the implemen-
tation helps the student to reflect in more detail on the main concepts behind an
algorithm. However, writing own protocols on “real systems”, i.e. based on li-
braries as MPI [Gropp et al. 1996] can become a complex task requiring a lot of
time for the students to understand the respective library. LYDIAN offers a simula-
tor including a simple language and data structures that allow to implement quickly
own protocols. Although the language is based on C syntax, it requires the user to
know only about the most elementary commands, e.g. needed for loops and case
analysis. The simulator helps the students to implement their ideas closely to the
way they are represented in ordinary textbooks and avoids much of the overhead
needed when learning a real system. The simulation also gives the possibility to
test the program under user defined behaviour, needed to test cases which rarely
occur, while in a real system a user may be unlikely to encounter the same situation.
After the execution the user can trace significant information about the execution
of the algorithm within the user experiment.

Submitted to ACM Journal on Educational Resources in Computing

10 : LYDIAN

LYDIAN’s simulator called DIAS is based on the work for DSS [Spirakis et al.
1992]. The simulator is implemented by using the concept of Communicating Finite
State Machines which allows to model the distributed system as a collection of
processes communicating via communication links with messages. The simulation
is event driven, i.e. when an event takes place the process performs a computation
depending on its state.

As a first crucial step a programmer has to consider the states, messages and
events of the algorithm and understand how the algorithm is supposed to behave
on the occurrence of an event. Therefore the programmer creates a table of tran-
sitions which associate with each pair, consisting out of a state and an event, the
appropriate function call to be executed. The defined code associated with a func-
tion call is valid for all processes of the network observing the same event in the
same state. This way it is not required to create special code for a process, and the
programmer is supported to create code valid for any interconnection of processes.

The table of events is created interactively when a user chooses to create a new
protocol within LYDIAN. Depending on the states and messages of the protocol,
LYDIAN will ask for each possible transition the respective function call. Finally,
the user is asked to specify a file which contains the function calls for the defined
transitions. LYDIAN links all this information together and creates a protocol,
which a user can select within an experiment and run it with different network
structures.

In the following we will illustrate the concept behind the simulator of LYDIAN
by outlining how to implement a simple broadcast algorithm. The main idea behind
the algorithm is to send a piece of information from one source to all processes of
the network. The process starting the algorithm sends a message containing this
information to all its neighbours. A process receiving the information for the first
time, sends this message to all its neighbours, while a process that received the
information before ignores the message.

Recall that the first step to implement an algorithm is to identify the states and
messages needed. In order to distinguish between the state where a process has not
received a message yet and the state where a process can ignore the information, we
introduce two states: sleeping and received. For propagation of the information
only one message denoted by broadcast is needed.

From this information LYDIAN creates the following transitions, where on the
right hand side of the arrow we have to specify corresponding actions inform of a
function call:

sleeping X INITPROTOCOL — start ()

sleeping X RECMES (BROADCAST) — forward()
received X init — illegal()
received X RECMES (BROADCAST — ignore()

Since ignore() and illegal() are just place holders for doing nothing or throwing
an exception because the algorithm entered an illegal state, the only functions which
remain to be implemented are start() and forward() (ct. Figure 6).

The function start() is called when the protocol is initialised. We assume that
the protocol is executed on a network such that only one single process is woken
up by receiving the event INITPROTOCOL. To create such a network with the

Submitted to ACM Journal on Educational Resources in Computing

An extensible educational animation environment for distributed algorithms . 11
start()

MESSAGE * mess;
int i;

debug(DEBUG,’ >START %d %d’’,me,get_time());

for (i=0; i< PCB[me].adjacents; i++) {
mess = create_message();
mess—kind = BROADCAST;
send_to(mess, i);
debug(DEBUG,’ > SEND_BROADCAST ¥%d %d %d’’,me,PCB[me].adjust[i].id,
get_time());

}

new_state = RECEIVED;

forward()

{
MESSAGE * mess;

int i;
debug(DEBUG, ’’REC_BROADCAST ¥%d %d %d’’, me, CURMESS—from, get_time());

for (i=0; i< PCB[me].adjacents; i++) {
if (CURMESS—port # i) {
mess = create_message();
mess—kind = BROADCAST;
send_to(mess, i);
debug(DEBUG, ’>SEND_BROADCAST %d %d %d’’, me,
PCB[me].adjustl[i].id, get_time());
}
}
new_state = RECEIVED;
}

Fig. 6. The code implementing the simple broadcast algorithm.

respective properties we can use LYDIAN’s graph drawing tool (see also section 2).
The process receiving the event INITPROTOCOL is the initiator of the broadcast
algorithm. It creates a new message and sends it to all adjacent vertices. Creat-
ing and sending a message is done by using the commands create_message() and
send_message() from the simulators library. The function calls require to use the
data structure Message, which allows us to define the type of the message, but
also to send information with the message. In order to communicate with its neigh-
bours a process must be able to know about the link information. Therefore, the
simulator provides a data structure called PCB from which a process can extract

Submitted to ACM Journal on Educational Resources in Computing

12 . LYDIAN

information which must be known locally to a process, for instance the number of
adjacent processes. Finally, the process changes its state by setting the variable
new_state to the new valid state of the process.

The function forward() behaves similar to the function start(), however it occurs
when a process receives a message. In our description the message will not be
forwarded to the sender. The contents of the received message is available in the
variable CURMESS.

For evaluation of the protocol in both functions we defined debug messages.
After running the protocol the user can view within the trace file of the respective
experience the global order of events as they were executed within the simulator.

The example demonstrates only the most elementary functionality of the simula-
tor, sufficient for most introductory assignments though. However, the simulator of
LYDIAN provides a wide range of functions as timeout events and the possibility to
specify parameters with the protocol which also makes LYDIAN usable in graduate
education and could even assist researchers to implement and test ideas of their
own.

5. COURSE INTEGRATION

In this section we present a case study of integrating a simulation-visualisation
environment into a distributed system course. We present the evaluation of a
distributed system assignment in which students used LYDIAN to implement their
algorithms. In our study neither the teachers nor the students had earlier class
experience with LYDIAN. The feedback received gives valuable information on what
simulation-visualisation environments for distributed algorithms need to provide in
order to be successfully used in class. We are not aware of any similar study in the
area of distributed computing. However, the feedback we have received shows the
significance of such evaluations to help users improve their performance and help
them to acknowledge the wealth of tools they are provided.

The study is based on results taken from a compulsory basic undergraduate
course in computer science and engineering -distributed systems-, at our university.
The teachers taking part in this study have not used LYDIAN in class before, but
were positive in using it from what they heard and read about it. The feedback
received shows that students succeeded well in the implementation of an algorithm.
Many students experienced some behaviour of the algorithm they did not expect
before, and this helped them in better understanding the algorithm. The feedback
also shows that students should be asked to test their implementations by exploit-
ing various parameters inherent in network topologies to improve their knowledge.
Naturally, good simulation-visualisation environments should provide such possi-
bilities. One should also remark that animation, as expected, is of good help. For
students being able to successfully exploit features of these environments, places
also high demands on the documentation of the respective tool.

5.1 Description of Study

The evaluation is based on results taken from a basic undergraduate compulsory
distributed system course at our university. We received answers from 50 students of
the course. The questionnaire was anonymous. The main subject of most students
was computer science and engineering, however there were also some students with

Submitted to ACM Journal on Educational Resources in Computing

An extensible educational animation environment for distributed algorithms . 13

other major subjects. Most students were in their final year of studies, but all of
them had studied for at least two years in a program at our university. Hence,
most of the students were experienced in programming. The percentage of female
students participating in the study was around 10%. The age of students varied
from 21 to 40, where most of the students were younger than 25.

For our study it is important to mention that neither the students nor the teachers
had earlier class experience with LYDIAN. The teachers had to work out their
own assignment, which would correspond to approximately one week of work for
each student. The idea was to use LYDIAN for a programming assignment in
which students had to implement some distributed algorithm based on elementary
algorithms introduced in the course, i.e. the echo broadcast algorithm, logical
clocks and voting. The students could choose to implement one of the following
algorithms:

—Ileader election, based on an echo-broadcast approach,
—Ileader election, based on a voting approach,
—resource allocation, based on logical clocks.

The outline of the algorithms was given with the assignments, so the students
essentially had to understand the algorithm and try to implement it. Parts of the
algorithms, as the echo broadcast, were also available together with an animation,
but needed to be changed to be usable within the algorithm. Most students decided
to implement the algorithm based on the echo broadcast approach. This is probably
because this concept seemed easier to realise. The algorithms were supposed to work
on any arbitrary network structure.

For our study and evaluation our interest was focused on the following aspects:

—the students’ performance in implementing an algorithm,
—how students test and reason about their implementation,

—whether /how much can LYDIAN help the students get an insight into distributed
algorithms and their behaviour,

—whether students consider LYDIAN to be helpful,
—general feedback on the tools administration and maintenance.

5.2 Qutcome and observations

The questions of this study and the answers received are summarised in Table I and
Table II. In Table III, we examine the correlation between answers of students, in
order to examine the relation between:

—the factors that helped the students most in getting a better insight into dis-
tributed algorithms,

—the help that the students got from using LYDIAN and their performance in
carrying out the assignment,

—and the students performance in the assignment and their appreciation of LY-
DIAN.
Because of the anonymity of the answered questionnaire, we cannot associate
the success of the students in their assignment with the answers that they gave to

Submitted to ACM Journal on Educational Resources in Computing

14 . LYDIAN

(1) Approximately how long have you used LYDIAN?
hours 0-4 | 5-8 | 9-12 | 13-16 | 17-20 | 21-40

students 2 11 17 7 9 4
(2) Which algorithm did you select to implement?
Election Election Resource
with Echo | with Voting | Allocation
41 5 4

(3) Approximately how long did it take you to understand LYDIAN’s interface?
hours 0-4 | 5-8 | 9-12 | 13-16 | o0

students || 30 8 7 2 4
(4) Approximately how long time did you spend on studying the algorithm that you had to
implement?

hours 1 2 1314115
students || 31 | 11 | 4 | 3| 1
(5) Approximately how long did it take you to implement and test the same algorithm in LY-

DIAN?
hours 0-4 | 5-8 | 9-12 | 13-16 | 17-20 | 21-30
students 13 | 17 9 5 2 4
(6) Did you try to use the animation part of LYDIAN?
yes | no
24 | 26

Table I. Questions and Answers

our questions. We simply trust their answers regarding their understanding of the
assignment material. Below we discuss the results of our study.

—About 60% of the students were done with understanding how to use LYDIAN
and with implementing and testing their solution in 1.5 working-days?, while 80%
of them were done in 2.5 to 3 working days. It should be mentioned here that
the whole assignment was intended to take a maximum of 5 working days.

—Nearly half of the students tried the animation part —although it was not re-
quired in the assignment. As expected, animation stimulates the students’ inter-
est in studying.

—LEvery third student experienced some behaviour/property of the algorithm they
implemented, which they had not thought about before. Of those students the
majority thought that this experience helped them to understand the algorithm
better. The animation part of LYDIAN can be even more beneficial in this aspect,
since the same execution can be seen multiple times, and difficult scenario can
be ”scrutinised” and digested better by the students’ minds.

—Approximately 60% of the students tested their implementations on more than
one network structures.

—Although some students experienced some difficulties with using specific parts of
the tool —mainly where documentation was not sufficiently detailed— the overall
impression is that the class found the tool to be useful or relatively useful for
understanding distributed algorithms.

2measured with 8 hours per working day

Submitted to ACM Journal on Educational Resources in Computing

(7

®)

9)

(10)

(11)

(12)

(13)

(14)

An extensible educational animation environment for distributed algorithms . 15

When or after you implemented the distributed algorithm in LYDIAN, did you experience
any behaviour of the algorithm that you did not think about before?
yes | no

17 | 33

If yes, did this help you understand better the algorithm or other material discussed in the
course?
yes | no

12 5
How many different network topologies did you use when testing your implementation?
number || 0-1 | 2-5 | 15
students || 21 | 28 1
LYDIAN is useful for understanding algorithm in distributed computing.
Strongly | Disagree | Neutral | Agree | Strongly
disagree agree
4 10 14 21 1
LYDIAN is easy to use.
Strongly | Disagree | Neutral | Agree | Strongly

disagree agree
17 22 7 4 0
Which parts of LYDIAN do you think need to be improved?
Documentation Example Interface
in general implementations
39 17 27
Stability Documentation on No
network creation comment
14 21 5

What is your year of study?
year 314|567
students || 9 | 30 | 1 |1]9
Age.
age 21-23 | 24-26 | older

students 27 13 5

Table II. Questions and Answers

—The majority of students who got better insight into their algorithm also tried

the animation part. Maybe these students were more interested in the subject.
However, the use of animations does not show any relation to the number of
network topologies students used for testing purposes.

Conforming to our expectation, the students who got more insight into the algo-
rithm they implemented, tried more network structures in their testing. It seems
worth the effort to try to stimulate students to test more and experiment more
with their implementations. It is also good that LYDIAN’s supported simulator
provides this possibility.

—One main observation is that students who experienced unexpected behaviour of

their algorithm mainly thought LYDIAN to be helpful.

—Students who used many network topologies did not think that LYDIAN is more

helpful than those who did not use this feature. However the opinion is more

Submitted to ACM Journal on Educational Resources in Computing

16 : LYDIAN

Students who experienced some behaviour of their algorithm they did not expect before, gave the
following answers to these questions:

(1) Did you try to use the animation part of LYDIAN?

yes | no
10 7
(2) Approximately how long did it take you to implement and test the same algorithm in LY-
DIAN?
hours 0-4 | 5-8 | 9-12 | 13-16 | 17-20 | 22
students 4 8 2 2 0 1

(3) How many different network topologies did you use when testing your implementation?
number || 0-1 | 2-5 | 15
students 7 10 1
(4) LYDIAN is useful for understanding algorithm in distributed computing.
Strongly | Disagree | Neutral | Agree | Strongly
disagree agree

1 1 3 12 0

The following groups of students thought as follows about LYDIAN being helpful:

(1) Students tested their algorithm only with one network topology or were not aware of them.

Strongly | Disagree | Neutral | Agree | Strongly

disagree agree
2 2 9 8 0

(2) Students tested their algorithm with multiple network topologies.

Strongly | Disagree | Neutral | Agree | Strongly

disagree agree
2 8 5 13 1

(3) Students who tested the animation part of LYDIAN.

Strongly | Disagree | Neutral | Agree | Strongly

disagree agree
0 7 4 13 0

(4) Students who experienced behaviour they did not expect before.

Strongly | Disagree | Neutral | Agree | Strongly

disagree agree
1 1 3 12 0

Table ITI. Correlation between answers

biased, i.e. students who experienced with this feature have a stronger attitude
whether they like or dislike LYDIAN in a course, while students who did not use
it tended to be more neutral.

—A similar observation can be made for people who used the animation feature of
LYDIAN.

An analysis of these results, from the perspective of seeing what such simulation-
visualisation tools need to provide in order to be successfully used in class and how
users (teachers, students) can be helped to improve the performance of the learning
process, leads to the following lessons:

Tools. Since the “bottleneck” in understanding distributed algorithms is the ac-
tual concurrency and the parameters that can affect the step interleaving in each

Submitted to ACM Journal on Educational Resources in Computing

An extensible educational animation environment for distributed algorithms . 17

execution, it is very important for a tool which aims at facilitating the learning
process in this area, to provide:

—means for the user to experiment by varying all parameters (this helps in revealing
a scenario that the user had not thought about before),

—a good way to visualise concurrency,
—the possibility for a user to observe the same execution multiple times,

—a good documentation and good user guides.

Users. Since more experimentation is shown to be effective, it is important that
instructors are explicit —e.g. as part of an assignment— in asking the students to use
the visualisation/animation possibilities, as well as to experiment by changing the
parameters of the system and by coming up with “special”, unusual constellations.

5.3 Discussion

Teaching is improved by pointing out unexpected properties/instances of the taught
material. This is especially important in teaching distributed algorithms and sys-
tems, where there is a large number of parameters that affect the sequence of steps
that a process will follow in each execution. LYDIAN was shown to be of good value
in this respect, since it helped students to observe such instances, in an efficient
manner.

Furthermore, teachers can help and get helped by using such tools in class to
provide special case studies, to test cases, and to stimulate students to do own
experimentation. Simulation and animation environments such as LYDIAN are
shown to be useful in this respect, as well. Animation helps in understanding and
also stimulates students.

LYDIAN helped in providing insight into the taught material, even though it had
not been used in class by the teachers before and even though there were parts of the
documentation which were not complete. The effort to improve on the supporting
material —improved manuals, more examples— is expected to be appreciated and
further increase the tools use-basis.

6. ENVIDIA: A VIRTUAL REALITY EXTENSION

In this section we describe an extension of LYDIAN’s visualisation framework,
which is intended to improve the interaction with the users. In difference to the
approach described in Section 3 EnViDiA represents the communication structure
in a 3D-model in which users are immersed. This way a natural interaction based
on real world behaviour is possible. As it it is the case for the 2D-animations
of LYDIAN, the algorithms are required to work correctly using any arbitrary
interconnection of processes represented by a communication graph. However, in
contrast to ordinary 2D-worlds, complex non-planar graph models can be nicely
represented in three dimensions with the perspective adapting to the movements
of the user. Further, within such a world the orientation is facilitated providing
spatial sound. It assists the user becoming aware of the important system events.

Students working within such an environment can be more active since they
walk or fly through the distributed system world in a game like scenario. EnViDiA

Submitted to ACM Journal on Educational Resources in Computing

18 : LYDIAN

Fig. 7. This screenshot shows the EnViDiA interface on a desktop computer executing an
algorithm based on resource allocation.

Fig. 8. An animation based on a student project allowing multiple users to collaborate on
the concept of self-stabilisation.

has been developed by undergraduate students within the CAVE, an immerse VR,
environment. The animation framework is based on the problems the students
experienced themselves when studying the distributed algorithms for the first time.
Although EnViDiA is intended to be used in immerse VR environments, the tool
can also be used in a simpler version on ordinary desktop computers supporting
3D-graphics. At its current state EnViDiA supports three distributed algorithms
namely simple broadcast, broadcast with acknowledgement and resource allocation

Submitted to ACM Journal on Educational Resources in Computing

An extensible educational animation environment for distributed algorithms . 19

based on the algorithm by Ricart and Agrawala. These algorithms are taught in
a basic distributed system course at Chalmers University of Technology. Besides
adding more algorithms and evaluating the tool at its current state, the main focus
is on providing features to support multiple user collaboration, which are tested
at the distributed concept of self-stabilisation [Koldehofe and Tsigas 2001]. The
focus here is on removing the constraints of the traditional communication model
in order to allow more user interaction with the distributed concept and among
multiple users themselves (cf. Figure 8).

7. CONCLUSION

Although simulation and animations cannot be a replacement for students to study
carefully material presented in textbooks or classes, it can well assist the student
in perceiving a better understanding on the functionality of the algorithm as well
as to reflect on its performance behaviour and correctness. LYDIAN provides an
extensible framework which includes a wide range of material sufficient to cover a big
part taught in a distributed system course. LYDIAN has been successfully tested
at various universities in courses on distributed systems for students of various
backgrounds.

The results presented in Section 5 show that LYDIAN can help students by point-
ing out unexpected instances of the taught material. This is consistent with our
own experience in using LYDIAN in class. We find that programming assignments
with LYDIAN can help to improve the quality of students solutions, especially if
the students were encouraged to test their solutions using different network topolo-
gies. Similar effects we could observe from students adapting animations provided
with LYDIAN to work with their own protocols. The input from the simulator and
the visual execution of the protocol facilitates to observe bad behaviour of a proto-
col execution and this way also improved the quality of students assignments. We
have also good experience with encouraging students to execute prepared protocols
and their animations in combination with tasks in which students should verify
properties, e.g. by finding an execution which matches the worst case behaviour
of an algorithm. We think that this helps students to understand proof ideas and
concepts and can help students to develop competence in creating own proofs.

LYDIAN is freely available and easy to deploy for Linux and UNIX platforms.
Recent work has dealt with removing barriers for using LYDIAN in class by facili-
tating the installation, increasing portability, and allowing users to adapt LYDIAN
according to their needs.

The future development of LYDIAN will happen within an open source initia-
tive [LYDIAN 2005]. We see this step in line with the suggestions proposed in [Naps
et al. 2003] and hope that this will help to improve LYDIAN in two ways:

(1) remove barriers for using LYDIAN by gathering more feedback and provide
discussion forums

(2) increase the amount of educational resources and teaching material for LY-
DIAN.

In addition we are working on several extensions to LYDIAN which aim on the one
hand to facilitate the development of own animations, but on the other hand also
support collaborative work among students to learn distributed concepts.

Submitted to ACM Journal on Educational Resources in Computing

20 : LYDIAN

Acknowledgements

We would like thank Phuong Hoai Ha for his contributions to teaching material
distributed with LYDIAN, especially for his work on the LYDIAN manual. More-
over, we are grateful to the teachers who participated in the evaluation as well as
students who have supported the development of LYDIAN.

REFERENCES

BEN-ARI, M. 1997. Distributed algorithms in Java. In Proceedings of the 1st Annual
SIGCSE/SIGCUE Conference on Innovation and Technology in Computer Science Education
(ITiCSE’97). ACM Press, 62-64.

BEN-ARI, M. 2001. Interactive execution of distributed algorithms. ACM Journal of Educational
Resources in Computing (JERIC) 1, 2es, 2-8.

Groprp, W., Lusk, E., Doss, N., AND SKJELLUM, A. 1996. A high-performance, portable imple-
mentation of the MPI Message Passing Interface Standard. Parallel Computing 22, 6 (Sept.),
789-828.

KHANVILKAR, S. AND SHATZ, S. M. 2001. Tool integration for flexible simulation of distributed
algorithms. Software: Practice and Ezxperience 31, 14 (Nov.), 1363-1380.

KOLDEHOFE, B. 1999. Animation and analysis of distributed algorithms. M.S. thesis, Universitat
des Saarlandes.

KOLDEHOFE, B., PAPATRIANTAFILOU, M., AND T'siGAs, P. 1999. Distributed algorithms visualisa-
tion for educational purposes. In Proceedings of the 4th Annual SIGCSE/SIGCUE Conference
on Innovation and Technology in Computer Science Education (ITiCSE’99). ACM Press, 103—
106.

KOLDEHOFE, B. AND TsiGas, P. 2001. Using actors for an interactive animation in a graduate
distributed system course. In Proceedings of the 6th Annual SIGCSE Conference on Innovation
and Technology in Computer Science Education (ITiCSE’2001). ACM press, 149-152.

LYDIAN 2005. The LYDIAN open source project.
hitp://sourceforge.net/projects/lydian/ .

LyNcH, N. 1996. Distributed Algorithms. Morgan Kaufmann.

MEHLHORN, K. AND NAHER, S. 1999. LEDA: A Platform of Combinatorial and Geometric Com-
puting. Cambridge University Press, Cambridge, England.

MESTER, A., HERRMANN, P., JAGER, D., MATTICK, V., SENSKEN, M., KukascH, R., RITTER, A.,
BUNEMANN, S., UNFLATH, P., BERNHARD, M., AUSTEL, F., ALDERS, T., AND ROHRBACH, A.
1995. Zada: Zeus-based animations of distributed algorithms and communication protocols.
hitp://ls4-www. cs.uni-dortmund.de/RVS /zada.html.

MosES, Y., POLUNSKY, Z., TAL, A., AND ULITSKY, L. 1998. Algorithm visualization for distributed
environments. In IEEE Symposium on Information Visualization. T1-78.

Naps, T., COOPER, S., KOLDEHOFE, B., LEskaA, C., RLING, G., DANN, W., KORHONEN, A., MALMI,
L., RANTAKOKKO, J., Ross, R. J., ANDERSON, J., FLEISCHER, R., KUITTINEN, M., AND Mc-
NaLLy, M. 2003. Evaluating the educational impact of visualization. ACM SIGCSE Bul-
letin 35, 4, 124-136.

OUSsTERHOUT, J. K. 1994. Tcl and Tk Toolkit. Addison-Wesley.

PAPATRIANTAFILOU, M. AND TsiGas, P. 1998. Towards a library of distributed algorithms and
animations. In 4th International Conference on Computer Aided Learning and Instruction in
Science and Engineering (CALISCE ’98). Gothenborg, Sweden, 407-410.

SCHREINER, W. 2002. A Java toolkit for teaching distributed algorithms. In Proceedings of the 7th
Annual SIGCSE Conference on Innovation and Technology in Computer Science Education
(ITiCSE’2002). ACM press, 111-115.

SPIRAKIS, P., TAMPAKAS, B., PAPATRIANTAFILLOU, M., KONSTANTOULIS, K., VLAXODIMITROPOU-
Los, K., ANTONOPOULOS, V., KAzAzis, P., METALLIDOU, T., AND SPARTIOTIS, S. 1992. Dis-
tributed system simulator (DSS). In Proceedings of Symposion on Theoretical Aspects of Com-
puter Science (STACS ’92). LNCS, vol. 577. Springer-Verlag, 615-616.

Submitted to ACM Journal on Educational Resources in Computing

An extensible educational animation environment for distributed algorithms . 21

STASKO, J. 1995. POLKA animation designer’s package. Tech. rep., Georgia Institute of Tech-
nology.

TEL, G. 1994. Introduction to Distibuted Algorithms. Cambridge Press.

ViSiDiA 2000. Visidia project: Visualization and simulation of distributed algorithms (2000).
http://www.labri.fr/Recherche/LLA fvisidia/.

Submitted to ACM Journal on Educational Resources in Computing

