
Journal of Parallel and Distributed Computing 62, 818–842 (2002)
doi:10.1006/jpdc.2001.1829

1Re

Proj. A

ALCO
2To
3ID

0743-7

200
All rig
Self-Stabilization of Wait-Free Shared
Memory Objects1

Jaap-Henk Hoepman2,3

Department of Computer Science, University of Twente, The Netherlands

E-mail: hoepman@cs.utwente.nl

and

Marina Papatriantafilou and Philippas Tsigas

Department of Computing Science, Chalmers University of Technology, Sweden

E-mail: ptrianta@cs.chalmers.se, tsigas@cs.chalmers.se

Received January 5, 2000; accepted January 11, 2002

This paper proposes a general definition of self-stabilizing wait-free shared

memory objects. The definition ensures that, even in the face of processor

failures, every execution after a transient memory failure is linearizable except

for an a priori bounded number of actions. Shared registers have been used

extensively as communication medium in self-stabilizing protocols. As an

application of our theory, we therefore focus on self-stabilizing implementa-

tion of such registers, thus providing a large body of previous research with a

more solid foundation. In particular, we prove that one cannot construct a

self-stabilizing single-reader single-writer regular bit from self-stabilizing

single-reader single-writer safe bits, using only a single bit for the writer. This

leads us to postulate a self-stabilizing dual-reader single-writer safe bit as the

minimal hardware needed to achieve self-stabilizing wait-free interprocess

communication and synchronization. Based on this hardware, adaptations of

well-known wait-free implementations of regular and atomic shared registers

are proven to be self-stabilizing. # 2002 Elsevier Science (USA)

Key Words: shared memory; wait-free constructions; self-stabilization;

fault tolerance; distributed computing.
search partially supported by the Dutch Foundation for Scientific Research (NWO) through NFI

LADDIN (Contr. NF 62-376) and a NUFFIC Fellowship, and by the EC ESPRIT II BRA Proj.

M II (Contr. 7141). A preliminary version of this paper appeared as [12].

whom correspondence should be addressed.

: waitfree-stab.tex, v 1.15 2002/01/30 17:45:14 hoepman Exp.

818315/02 $35.00

2 Elsevier Science (USA)
hts reserved.

SELF-STABILIZATION OF WAIT-FREE SHARED MEMORY OBJECTS 819
1. INTRODUCTION

In the past, research on fault tolerant distributed systems has focused

either on system models in which processors fail, or on system models

in which the memory is faulty. In the first model a distributed system must

remain operational while a certain fraction of the processors are malfunctioning.

When constructing shared memory objects like atomic registers, this issue is

addressed by considering wait-free constructions which guarantee that any

operation executed by a single processor is able to complete even if all other

processors crash in the meantime [5, 10]. In the second model, a distributed

system is required to overcome arbitrary changes to its state within a

bounded amount of time. If the system is able to do so, it is called self-stabilizing

[7, 20].

To develop truly reliable systems both failure models must be considered

together. Research in this area has started to emerge (see Section 1.2 for an

overview). However, these works have taken the existence of a fault tolerant

and self-stabilizing means of communication (either by message exchange or

through shared memory) for granted. Also, most research on self-stabilization

uses shared memory}and shared registers in particular}for communication, to

simplify reasoning about the protocols under study. Again, the shared memory

objects themselves are implicitly assumed to be self-stabilizing. Moreover, no

consideration is given to the so-called corrupted actions that are active while a

transient error occurs. Instead it is assumed that all atomic actions happen

instantaneously and that any such error occurs only in between calls to atomic

actions.

It is not immediately clear that these assumptions are indeed reasonable. Any

operations, even atomic ones, do take some time to complete, during which an error

can occur. This paper, however, shows that these assumptions are valid by

thoroughly exploring the relation between self-stabilization and wait-freedom in

shared memory objects, especially shared registers.

Shared registers are shared objects reminiscent of ordinary variables, that

can be read or written by different processors concurrently. They are distinguished

by the level of consistency guaranteed in the presence of concurrent operations [15].

A register is safe if a read returns the most recently written value, unless the

read is concurrent with a write in which case it may return an arbitrary value. A

register is regular if a read returns the value written by a concurrent or an

immediately preceding write. A register is atomic if all operations on the register

appear to take effect instantaneously and act consistent with a sequential execution.

Shared registers are also distinguished by the number of processors that may

invoke a read or a write operation, and by the number of values they may assume.

These dimensions imply a hierarchy with single-writer single-reader (1W1R) binary

safe registers (a.k.a. bits) on the lowest level, and multi-writer multi-reader (nWnR)

z-ary atomic registers on the highest level. A construction or implementation of a

register is comprised of (i) a data structure consisting of memory cells called sub-

registers and (ii) a set of read and write procedures which provide the means to

access it.

HOEPMAN, PAPATRIANTAFILOU, AND TSIGAS820
1.1. Summary of Results

We give a general definition of self-stabilizing wait-free shared memory objects,

and focus on studying the self-stabilizing properties of wait-free shared registers. Our

work, finally, provides a solid foundation for the use of shared registers as the basis

of communication in most previous research on self-stabilization. Single-writer

single-reader safe bits}traditionally used as the elementary memory units to build

these registers with}are shown to be too weak for our purposes. Focusing on

registers, being the weakest type of shared memory objects, allows us to determine

the minimal hardware needed for a system to be able to converge to legal

behaviors after transient memory faults, as well as to remain operative in the

presence of processor crashes. Moreover, registers are extensively used in

the construction of even more complex shared memory objects, and are the primary

means of communication in most self-stabilizing protocols.

Our contribution in this paper is fourfold.

First and foremost, in Section 3, we propose a general definition of a self-

stabilizing wait-free shared memory object, that ensures that all operations after a

transient error will eventually behave according to their specification even in the face

of processor failures. This definition is not limited to shared registers only, but

encompasses all possible shared memory objects that can be defined by a sequential

specification.

Second, in Section 3, we prove that within this framework one cannot construct a

self-stabilizing single-reader single-writer regular bit from single-reader single-writer

safe bits, if we restrict the writer to write only a single bit. We conjecture that this

impossibility result also holds for the general case, where we allow an arbitrary

number of bits written by the writer. Note that single-reader single-writer safe bits

have traditionally been used as the basic building blocks in wait-free shared register

implementations. Moreover, we prove that no construction of multi-reader registers

from single-reader registers can be made to stabilize immediately after a transient

error. The first operation of each processor must be allowed to behave arbitrarily.

Our first impossibility result requires us to postulate a self-stabilizing dual-reader

single-writer safe bit, which, from a hardware point of view, resembles a flip-flop

with its output wire split in two. Using this dual-reader safe bit as a basic building

block, we formally prove in Section 4 that adaptations of well-known wait-free

implementations of regular and atomic shared registers are self-stabilizing. This

shows that our definition of self-stabilizing wait-free shared objects is viable}in the

sense that it is neither trivial nor impractical. Section 5 concludes this paper with a

thorough discussion of our results and directions for further research.

1.2. Related Work

Anagnostou and Hadzilacos [4] show that no self-stabilizing, fault-tolerant,

protocol exists to determine, even approximately, the size of a ring. Gopal and Perry

[9] present a ‘compiler’ to turn a fault-tolerant protocol for the synchronous rounds

message-passing model into a protocol for the same model which is both fault-

tolerant and self-stabilizing. A combination of self-stabilization and wait-freedom in

the construction of clock-synchronization protocols is presented in [8, 19].

SELF-STABILIZATION OF WAIT-FREE SHARED MEMORY OBJECTS 821
Another approach for combining processor and memory failures is put forward by

Afek et al. [2, 3] and Jayanti et al. [14]. They analyze whether shared objects do or do

not have wait-free (self)-implementations from other objects of which at most t are
assumed to fail. Objects may fail by giving responses which are incorrect, or by

responding with a special error value, or even by not responding at all. In the so-

called gracefully degrading constructions, operations on the ‘high-level’ object

during which more than t ‘low-level’ objects fail are required to fail in the same

manner as these ‘low-level’ objects.

Li and Vit!aanyi [16] and Israeli and Shaham [13] were the first to consider self-

stabilization in the context of shared memory constructions. Both papers implicitly

call a shared memory construction self-stabilizing if for every fair run started in an

arbitrary state, the object behaves according to its specification except for a finite

prefix of the run. We feel that this notion of a self-stabilizing object does not agree

well with the additional requirement that the object is wait-free. On wait-free shared

objects, a single processor can make progress even if all other processors have

crashed. This definition of self-stabilization, on the other hand, only guarantees

recovery from transient errors in fair runs (in which no processors crash). Moreover,

both Li and Vit!aanyi [16] and Israeli and Shaham [13] do not consider the possibility

of corrupted operations (that are already active when the transient error occurs).

2. DEFINING SELF-STABILIZING WAIT-FREE OBJECTS

In the definition of shared memory objects we follow the concept of linearizability

(cf. [10, 11]), which we, for the sake of self-containment, briefly paraphrase here. We

will then discuss our processor model and how this affects implementing shared

memory objects in Section 2.1, and proceed with our new definition of self-stabilizing

shared memory objects in Section 2.2. Finally, we will discuss our model in

Section 2.4.

Consider a distributed system of n sequential processors. A shared memory object

is a data-structure stored in shared memory that may be accessed by several

processors concurrently. Such an object defines a set of operations O which provide

the only means for a processor to modify or query the state of the object. The set of

processors that can invoke a certain operation may be restricted. Each operation

O 2 O takes zero or more parameters v on its invocation and returns a value r as its
response (r ¼ OðvÞ). We sometimes write Op to indicate that processor p is executing

operation O.4 Each such operation execution is called an action, and takes a non-zero

amount of time to complete. We denote by tI ðAÞ50 the invocation time of an action

A and by tRðAÞ > tI ðAÞ its response time (on the real time axis). For incomplete

actions, tRðAÞ ¼ 1 and the response is unknown. An object is wait-free if an action

always can complete within an a priori bounded amount of time, irrespective of the

actions or crashes of other processor.

4Although the notation might imply otherwise, we consider OpðuÞ and OpðwÞ to be different operations.

In other words, both the processor p executing O and the actual parameters v to O are part of the name

OpðvÞ. The set O contains all these different operations.

HOEPMAN, PAPATRIANTAFILOU, AND TSIGAS822
The desired behavior of an object is described by its sequential specification S.

This specifies the set of possible states of the object, the initial state of the object, and

for each operation its effect on the state and its (optional) response. We write ðs; r ¼
OðvÞ; s0Þ 2 S if invoking O with parameters v in state s changes the state of the object
to s0 and returns r as its response.

A run over the object is a tuple hA;-i with actions A and partial order - such

that for A;B 2 A, we write A-B iff tRðAÞ5tI ðBÞ. If two actions A;B are

incomparable under - (i.e., if neither A-B nor B-A) they are said to overlap.

Then we write AjjB. We write AKB if A-B or AjjB. Because processors are

sequential, we require for every run that no two actions A and B executed by the

same processor overlap. Furthermore, runs start with no processor accessing the

object. Runs have infinite length, and capture the real-time ordering}as could be

observed externally without a stopwatch}between actions invoked by the

processors.

A run is called complete, if all actions that start in it have finished in it, i.e., if no

crashes occurred. A non-complete run can be completed by including an arbitrary

response for each pending action, where the inserted responses are ordered after all

other actions in the run, and ordered arbitrarily among each other.5 This complete

run is called the completion of the run. A run may have many completions (by using

all possible values for the unknown responses).

A sequential execution hA;)i over the object is a run where all actions are totally

ordered according to the transitive irreflexive order). In other words, A consists of

actions A1;A2; . . . and Ai) Aj if and only if i5j. A run hA;-i corresponds to a

sequential execution hA;)i if the set of actions A is the same in both runs, and if

) is a total extension of - (i.e., A-B implies A) B). Stated differently, the

sequential execution corresponding to a run, is a run in which no two actions are

concurrent but in which the ‘observable’ order of actions in the run is preserved.

Note that there may be more than one sequential execution corresponding to a single

run, because the order between two concurrent actions can be fixed either way. A

sequential execution satisfies sequential specification S if there exists a sequence of

states s1; s2; . . . such that s1 is the initial state of S and ðsi;Ai; siþ1Þ in S for all Ai

in A.

Definition 1. A run hA;-i over an object is linearizable w.r.t. sequential

specification S, if for at least one of its completions there exists a corresponding

sequential execution hA;)i that satisfies S.

An object is linearizable w.r.t. its sequential specification S if all possible runs

over the object are linearizable w.r.t. S. Informally speaking, an object is

linearizable w.r.t. to specification S if all actions appear to take effect

instantaneously and act according to S. The challenge in implementing such

linearizable objects is to avoid all non-linearizable runs.

5Pending actions may have had an effect on other concurrent actions, and therefore should be

‘serialized’ in time before these actions in the corresponding sequential execution. In order to verify that

the sequential specification is satisfied, the arbitrary response of this action must be fixed.

SELF-STABILIZATION OF WAIT-FREE SHARED MEMORY OBJECTS 823
2.1. Implementing Shared Memory Objects

When implementing compound objects from lower level ones, the operations of

the compound object are implemented by means of a sequential procedure that can

invoke an operation on one of the primitive objects or do some local computations.

The implementation must be such that from the known properties of the primitive

objects and the order of the steps taken by the procedure, correct behavior of the

compound object can be proven. Processors are sequential and, therefore, cannot

invoke an action if their previously invoked action has not responded yet. An

implementation of a shared object is wait-free if each invocation of an operation by a

processor can respond within a bounded number of steps, irrespective of the

behavior of the other processors. This includes the case when all other processors

have crashed.

A complication arises when we consider transient errors that can corrupt an

arbitrary part of the system state, including, for instance, the programming counter

or other parts of the internal CPU state of one or more of the processors. We limit

the effect of such errors by viewing the abstract processor (or indeed an arbitrary

shared memory object) to be an IO automaton [10, 18] in the following way.

A shared memory object is an IO automaton, that has a distinct input action for

each possible combination of operation, invoking processor, and possible parameter

values. For each input action, one or more distinct output actions are defined that

signal the end of the operation execution and the return value if defined. An

implementation of a shared memory object is again an IO automaton that defines

internal actions, states and a transition function such that when it is combined with

the IO automata implementing the lower level objects, each input action results in an

output action such that the resulting run is linearizable.

In this model, the adversary controlling the effect of the transient error can only

pick the state of the whole IO automaton, and execution starts from this state.

Translating this model to ordinary system architectures boils down to the following.

Based on the current state, the program to execute and the current program counter,

the instruction scheduler decides which instruction to execute next. Both the machine

state and the current program counter can be changed by the adversary controlling

the effect of the transient error. In particular, the adversary can pick an arbitrary

instruction and start executing this instruction, independent of the program state.

However, the adversary cannot pick the current program counter independent of the

currently executing instruction (thus further influencing the selection of the next

instruction to schedule). Instead, the program counter is guaranteed always to

correspond to the instruction currently executed. Implementations of such a

scheduler could enforce this by verifying at the end of each instruction execution that

the current program counter indeed points to the instruction executed last, using the

uncorrupted program segment.

This prevents the adversary from executing an arbitrary instruction and then

selecting a completely unrelated instruction as the start of the executing following the

error. Instead, both instructions must be possible successors as described by the

program executed. This restriction is exploited by two of our constructions, using a

fixed programmed sequence of actions instead of while- or for-loops (cf. Section 4.2).

HOEPMAN, PAPATRIANTAFILOU, AND TSIGAS824
Note also, that in this model calls to operations on lower level objects should be

interpreted as macros, not subroutine calls, because otherwise the return address

could be corrupted by the adversary.

2.2. Adding Self-Stabilization

Li and Vit!aanyi [16] and Israeli and Shaham [13] were the first to consider self-

stabilizing wait-free constructions. Both papers implicitly use the following

straightforward definition of a self-stabilizing wait-free object.

Definition 2. A shared wait-free object is self-stabilizing if every fair run (in

which all operations on all processors are executed infinitely often) that is started in

an arbitrary state, is linearizable except for a finite prefix.

A moment of reflection shows that assuming fairness may not be very reasonable

for wait-free shared objects. The above definition requires that after a transient error

all processors cooperate to repair the fault. This clearly violates the wait-free

property which states that processors can make sensible progress even if other

processors have crashed. This observation leads us to the following stronger, still

informal, definition of a self-stabilizing wait-free shared object.

Definition 3. A shared wait-free object is self-stabilizing, if every run started in

an arbitrary state is linearizable except for a bounded finite prefix.

Let us develop a formal version of this definition. To model self-stabilization we

need to allow runs that start in an arbitrary state; in particular, we have to allow runs

in which a subset of the processors start executing an action at an arbitrary point

within its implementation. Such runs model the case in which transient memory

errors occur during an action, or, rather, the case where alteration of the program

counter by the transient error forces the processor to jump to an arbitrary point

within the procedure implementing the operation. For such so-called corrupted

actions A, and for such actions alone, we set tI ðAÞ ¼ 0.

Consider a run hA;-i. For all A 2 A, define countðAÞ ¼ 0 for all corrupted

actions A, i.e., with tI ðAÞ ¼ 0, and define countðAÞ equal to i if A is executed by p as

its ith non-corrupted action. Then the first action A executed by processor p either

has countðAÞ ¼ 0 (if it is corrupted) or countðAÞ ¼ 1 (if not). As each processor

executes sequentially, and actions are unique and executed by a single processor,6

count is well defined.

We are now ready to present the formal definition of a self-stabilizing wait-free

shared memory object.

Definition 4. A run hA;-i is linearizable w.r.t. sequential specification S after k
processor actions, if for some completion of the run there exists a corresponding

sequential execution hA;)i and a sequence of states s1; s2; . . . such that for all

Ai 2 A, if countðAiÞ > k then ðsi;Ai; siþ1Þ 2 S.

6There is no concept like joint actions as in CSP.

SELF-STABILIZATION OF WAIT-FREE SHARED MEMORY OBJECTS 825
Definition 5. A shared object is k-stabilizing wait-free with sequential

specification S if the object is wait-free and all its runs are linearizable w.r.t. S

after k processor actions. We call k the stabilization delay of the object.

These definitions allow all corrupted actions, and the first k actions of each

processor to behave arbitrarily (even so far as to allow e.g., a read action to behave

as a write action or vice versa). However, the effect of such an arbitrary action

should be globally consistent.

Observe also that in a sequential execution, the count values of the actions may

not be monotonically increasing. Fast processors may reach the stabilization delay k
of the object much earlier in the sequential execution than some slow processor. In

this case the actions may behave according to the sequential specification for a long

time (their count value being larger than k), until a slow processor executes an action

A with countðAÞ4k changing the object state in an arbitrary way. Again, this change

should be globally consistent, in the sense that all fast processors must agree on the

effect of this action A.
We see that all fast processors must agree}after k operations}on the arbitrary

behavior of the slow processors. In particular, for k ¼ 0 and in the absence of

corrupted actions, the definition implies that all actions should reach agreement on

the effect of the transient error on the state of the object. For example, for a

0-stabilizing shared register all reads that occur immediately after a transient error

should return the same value. Intuitively, one could say that 0-stabilization means

that each processor has at most one corrupted initial action.

Definition 5 is general and considers all atomic objects whose behavior is described

by a sequential specification. Because linearizability can be and generally is used to

specify the behavior of arbitrary wait-free atomic shared memory objects, our

extension of these definitions to include self-stabilization is equally universal.

Of course, we want to know whether such self-stabilizing shared objects exist and

how they can be implemented. Traditionally, in the non-self-stabilizing case, atomic

objects have been built using several layers. Starting with safe registers as the

minimal hardware available for interprocess communication, regular registers, multi-

reader registers and finally atomic registers were constructed. We take a similar

approach. Therefore, we also need to define when safe and regular registers are self-

stabilizing, as their behavior is not described by a sequential specification.

2.3. Shared Registers: Safeness and Regularity

A register is a shared object on which read operations R and write operations W ðvÞ
are defined. A nWmR register is a register that may be written by n processors and

may be read by m processors. Except for 1W1R registers, we otherwise assume that a

processor writing a register can also read this register using a read operation (and not

by examining its local state, as is customary to assume). In particular, a 1W2R

register is one that can be written by a single processor, and can be read by two

processors, one of which is the writer.

For a run hA;-i over such a register, partition the set of actions A into a set of

reads R and a set of writes W, where R may contain ‘bad’ writes (behaving as reads)

HOEPMAN, PAPATRIANTAFILOU, AND TSIGAS826
whereas Wmay contain ‘bad’ reads (behaving as writes). LetV be the value-domain

of the register, and fix an arbitrary value assignment valð�Þ from the set of actions A

to V. Also for W 2 W and R 2 R define W directly precedes R, W Ð R, if W-R and

if there is no W 0 2 W such that W-W 0-R. If no such write exists, we take the

imaginary initial write W? responsible for writing the arbitrary initial value valðW?Þ.
Define the feasible writes of a read R as all A 2 W such that A Ð R or AjjR.

A write W ðvÞ on a register behaves correctly if valðW ðvÞÞ ¼ v and W ðvÞ 2 W. A read

R on a safe register behaves correctly if R 2 R and valðRÞ ¼ valðAÞ for an A 2 W with

A Ð R, or there is an A 2 W such that AjjR. A read R on a regular register behaves

correctly if R 2 R and valðRÞ ¼ valðAÞ for some feasible write A of R.

Definition 6. A safe or regular register is k-stabilizing wait-free if the register is

wait-free and for all its runs the set of actions can be partitioned in setsR andW and

can be assigned values valð�Þ such that all actions A with countðAÞ > k behave

correctly.

2.4. Discussion

The definition of self-stabilizing wait-free shared memory objects given in the

previous section is only one possible definition for such objects. We will later show

that this definition is viable, by presenting constructions of shared registers from

weaker ones that satisfy this definition. In this section we discuss possible variations

on the definition, and explain our particular choice of definition.

First, we initially thought that the corrupted actions could pose serious problems

to the self-stabilization of shared memory objects. Indeed, in [12] we wrote

Slow [corrupted] actions can carry the effects of a transient error arbitrarily far
into the future. Hence we can only say something meaningful about that part
of a run after the time that all [corrupted] actions have finished, or the
processors on which these [corrupted] actions run have crashed.

Our definitions therefore included explicit reference to crash actions cp, and we only

required that actions not overlapping with corrupted actions would behave correctly.

This is a rather weak requirement because it allows very slow processors to delay

self-stabilization indefinitely.

Luckily, our initial intuition turns out to be pessimistic. In fact, even though

corrupted actions can behave arbitrary, they can be forced to do so consistently, in

the sense that other actions have to agree on their (incorrect) behavior. Thus, even

actions overlapping corrupted actions can be forced to behave according to the

specification of the object (at the cost of using dual-reader registers, as we shall see

later). This removes the need to explicitly mention the crash action in our model,

keeping our definitions cleaner and closer to the original definition of linearizability

[10, 11]. It also makes our definitions stronger, resulting in stronger self-stabilizing

objects.

Finally, in our definition the stabilization delay k is taken to be independent of the

type of operations performed by a processor, while one might very well feel that the

difficulty of stabilizing different types of operations on the same object may vary.

SELF-STABILIZATION OF WAIT-FREE SHARED MEMORY OBJECTS 827
Indeed, preliminary versions of this definition were more fine grained and included

separate delays for different types of operations (e.g., allowing the first kw writes and

the first kr reads performed by a processor on a read/write register to be arbitrary). It

turns out that this amount of detail is really unnecessary, essentially because

different types of operations on a shared object already need to reach some form of

agreement on the state of the object. Hence if one type of operation can be made to

stabilize within delay k, then so can all other types of operations on the same object,

apparently at no significant cost.

3. SOME IMPOSSIBILITY RESULTS

The impossibility results to be presented in this section help to set the scene for the

actual constructions of stabilizing shared registers in the sections to come. First we

prove that stabilizing 1W1R safe bits7 are not strong enough to implement k-
stabilizing wait-free regular registers, if we restrict the writer to write a single bit. We

conjecture that this impossibility remains even if the writer can write more than 1 bit.

This immediately implies that stronger self-stabilizing objects, like atomic registers,

cannot be implemented using such safe registers, either. Second, we show that 0-

stabilizing 1WnR (multi-reader) atomic registers}and similar multi-user objects}

cannot be constructed from 0-stabilizing 1W1R (single-reader) atomic registers.

We note that it is a common convention to view the scheduling of processor steps

as being chosen by an adversary, who seeks to force the protocol to behave

incorrectly. The adversary is in control of (i) choosing the configuration of the

system after a transient error and (ii) scheduling the processors’ steps in a run.

Theorem 1. There exists no deterministic implementation of a k-stabilizing wait-free

1W1R binary regular register using 0-stabilizing 1W1R binary safe sub-registers where

the writer writes a single bit.

Proof. Suppose that such an implementation exists. Since we look for a

contradiction we may safely restrict attention to runs with no corrupted actions.

Any implementation of a 1W1R binary regular register from stabilizing 1W1R

safe binary sub-registers must use two sets of sub-registers (that can be considered as

two ‘‘big’’ sub-registers): one (S-W) that is written by the writer and read by the reader

and one (SR) that is written by the reader and read by the writer. By assumption, SW

consists of a single bit. Then the whole state of the implementation is described by a

configuration C ¼ ðlr; lw; sr; swÞ, where lr, lw denote the reader’s and writer’s local

states, and sr, sw denote the contents of SR, SW , respectively.

A read action on the regular register may involve several sub-reads of SW ;

however, in the course for a contradiction, attention may be restricted to runs in

which all those sub-reads observe the same value of SW . Then the value returned by

each read is determined by a reader function F ðlr; swÞ. Furthermore, let F xðlr; swÞ
denote the value returned by the xth read of a sequence of non-interfered reads that

7All objects considered in this paper are wait-free; for brevity we will not always explicitly mention this

when referring to an object.

FIG. 1. The runs constructed in the proof of Theorem 1.

HOEPMAN, PAPATRIANTAFILOU, AND TSIGAS828
start from a configuration with local state lr while all reads find SW ¼ sw. Let C) v
denote F kþ1ðCÞ ¼ v.

Consider an arbitrary initial configuration C such that C) 1. Schedule k þ 1

reads. The last read returns 1 by assumption. Next schedule k þ 1 writes. Then

schedule a write of 0. Call the resulting state C0. Because the run must be stabilized

now, C0) 0. Then schedule a write of 1. Call the resulting state C1. Now C1) 1,

and in fact a read following the write of 1 must return 1. The complete execution

appears in Fig. 1A.

Clearly, lr in C0 equals lr in C1. So to make sure that C1) 1 while C0) 0, the

write of 1 must write and flip the bit in SW . If this write writes the safe bit several

times, consider the last time it does so. Call this action w.
Consider the same execution (A) as before, except that an extra read action is

scheduled overlapping the write of 1, and in fact overlapping the last write to the safe

bit w such that all reads of the safe bit are interfered by w. By the safeness properties

of this bit and the fact that C0 and C1 differ only in the value of the single bit in SW ,

this read can be made to observe exactly the same state as a read starting in C0 in

execution (A). This read must, by assumption, return 0. Call the state after both read

and write have finished C0
1. Note that in C0

1, the state (both local and shared) of the

reader may be different from C1. Moreover, the write of 1 may, after its w action

observe the interfering read and perform additional actions. Still C0
1) 1, and in fact

a read following the write of 1 must return 1. See Fig. 1B.

Now let a transient error start the system in state C0 where lw is taken from C0,

and sw; lr; sr are taken from C. Schedule again k þ 1 reads, leading to C00. These

reads cannot distinguish C0 from C, so the last read (called R1) again returns 1 and lr
and sr in C00 now have the same value as in C0. Now schedule a write of 1. Call this

write W . This write cannot distinguish C0 from C00, so it will perform the same

actions up to and including the action w that flips the bit in SW . See Fig. 1C.

Again schedule a read (called R2) overlapping the write of 1, and in fact

overlapping the sub-action w such that all reads of the safe bit are interfered by w. By

SELF-STABILIZATION OF WAIT-FREE SHARED MEMORY OBJECTS 829
the safeness property, R2 can be made to observe the same value for SW as in C0.

Because in C00 the local state lr of the reader equals that of C0, R2 will return 0.

Moreover, the resulting state after R2 and W have finished is equal to C0
1 of execution

(B). Now schedule another read R3. By the last observation, R3 will return 1.

We now have arrived at a contradiction. The only feasible write for R3 is W .

Because R3 returns 1, W must have written 1. The only feasible write for R1 equals

the initial write, or one of the preceding reads. This feasible write also must have

written 1. Because countðR1Þ and countðR2Þ are larger than k by construction, neither

of them can behave as a write. Hence R2 must return the value of a feasible write,

which is either W or the write feasible for R1. Both wrote 1, so R2 should have

returned 1. This is a contradiction.]

We believe that such an implementation does not exist even if we allow the

writer to write an arbitrary number of safe bits. The intuition behind this is as

follows. Since the writer cannot read the sub-registers it writes, in order to know

their contents and converge into correct stabilized behaviors, it has to rely on

information that either is local or is passed to it through shared sub-registers that can

be written only by the reader. The same reasoning holds for the registers written

by the reader. The adversary can set the system in a state in which this information is

inconsistent. Subsequently, by scheduling the sub-actions of both the reader

and the writer on the same sub-register to be concurrent, the adversary can destroy

the information propagation because of the weak consistency that safeness

guarantees.

Conjecture 1. There exists no deterministic implementation of a k-stabilizing wait-

free 1W1R binary regular register using 0-stabilizing 1W1R binary safe sub-registers.

The next theorem shows that in order to implement a n-reader self-stabilizing

register we must either

* settle for k-stabilization with k > 0, but using single reader registers in our
construction, or

* achieve 0-stabilization, but using m-reader (e.g., dual reader), m5n, registers
in our construction.

The construction of a 1-stabilizing wait-free nWnR atomic register from stabilizing

1W2R regular ones in Section 4.3 uses this approach.

Theorem 2. For n > 1 and z > 1 there does not exist a deterministic implementation

of a 0-stabilizing wait-free 1WnR z-ary atomic register from 0-stabilizing wait-free

1W1R atomic registers.

Proof. Let all sub-registers be 1W1R. Then reads of the atomic register executed

by different processors must obtain a value by reading disjoint sets of sub-registers.

For every processor and each possible return value v of a read, the adversary can set

the configuration of the processor (i.e., local state plus values read from the sub-

registers) independently such that if this processor executes its first read without any

interference, this read returns v. Also note that each processor uses separate local

HOEPMAN, PAPATRIANTAFILOU, AND TSIGAS830
variables and shared registers in the implementation of each atomic register, so that

the adversary can set the configuration of each of these atomic registers independently.

Now suppose, to the contrary, that a 0-stabilizing wait-free implementation of a

1WnR z-ary atomic register A exists. W.l.o.g. (z > 1) assume that 0 and 1 are among

the values stored in register A. Let p0 and p1 (n > 1) be two processors accessing A,

and let the adversary set the configuration of p0 such that its first read on its own will

return 0, while the configuration of p1 is such that its first read on its own will

return 1. Consider all runs over A started in this configuration with only two actions:

a read R0 executed by p0 and a read R1 executed by p1, both non-corrupted. Then

according to Definition 5 in all such runs R0 and R1 must return the same value.

Also, there is a run (the one where R0 executes without interference) where 0 is the

return value, and there is a run (the one where R1 executes without interference)

where 1 is the return value.

This construction now can be used to solve the two processor consensus problem

as follows. Consider two copies A0 and A1 of the above 0-stabilizing wait-free

implementation of a nWnR z-ary atomic register. Let the initial configuration of A0

be such that read R0ðA
0Þ (of processor p0) on its own returns 0, and the read R1ðA

0Þ
(of processor p1) on its own returns 1. Similarly, let the initial configuration of A1 be

such that read R0ðA
1Þ (of processor p0) on its own returns 1, and the read R1ðA

1Þ (of
processor p1) on its own returns 0.

The protocol for pi, where i 2 f0; 1g, to propose a value v 2 f0; 1g simply is to read

and return RiðA
i�vÞ, where � denotes the bitwise exclusive or. To see that this

protocol solves 2-processor consensus consider the following two cases.

If p0 and p1 propose complementary values v and 1� v, respectively, then both

read the same register Av, and by the observation of the second to last paragraph both

must return the same value. This value is either v or 1� v, both of which are proposed.

If p0 and p1 propose the same value v, they will not read the same register, and

hence these reads will execute on their own. If pi proposes v, it reads RiðA
i�vÞ which,

according to the initializations described in the previous paragraph, will return v if

executed on its own. Hence both processors decide v as required.

The above construction, although involving 0-stabilizing registers, does not

involve any errors and is started in an initial state for each of the 1W1R 0-stabilizing

atomic registers used to construct Ai with no corrupted actions pending on these

registers. Any run over Ai induces a run over each of the 1W1R 0-stabilizing atomic

registers, that, because of the above observation, corresponds to a run over an

ordinary, non-self-stabilizing, 1W1R atomic register. Therefore, constructing Ai

using such ordinary registers would result in the same behavior in the described

setting, and would, in particular, solve 2-processor consensus as well.

Loui and Abu-Amara [17] showed that deterministically solving 1-resilient

consensus (where only one processor may fail) using atomic read/write registers is

impossible. We conclude that therefore a deterministic implementation from 0

stabilizing wait-free 1W1R atomic registers of a 0-stabilizing wait-free 1WnR z-ary
atomic register does not exist.]

It is straightforward to generalize Theorem 2 and its proof to similar multi-user

objects that are known not to be strong enough to solve consensus (e.g., regular

FIG. 2. Repeating actions does not make an object 1-stabilizing.

SELF-STABILIZATION OF WAIT-FREE SHARED MEMORY OBJECTS 831
registers and atomic snapshot memories [1]). Also note that the proof of Theorem 2

would also hold for the construction of k-stabilizing registers, if the first k reads were
allowed to behave arbitrary but not as a write. This shows that any such

strengthening of Definition 5 (by imposing restrictions on the arbitrary behavior

of the first k actions of a processor) would be infeasible because implementations of

such objects do not, by extensions to Theorem 2, exist.

We also would like to point out that a k-stabilizing shared object cannot simply be

transformed into a 1-stabilizing one by executing each operation k times in a row.

Consider the counterexample in Fig. 2 for k ¼ 2. The first read (before the write W ,

and whose only feasible write is the initial write) returns 1. The third read (that starts

after the write W , which constitutes its only feasible write) also returns 1. Hence the

initial write and the write W both must have written 1. This contradicts the fact that the

second read returns 2 (due to the fact that the first sub-write behaves arbitrary and writes

2 instead of 1), whose only feasible writes (write W and the initial write) both wrote 1.

4. SELF-STABILIZING CONSTRUCTIONS OF SHARED REGISTERS

The results of the previous section raise the question whether any self-stabilizing

shared objects can be built or do exist at all. We answer this question affirmatively,

by giving constructions of regular and atomic self-stabilizing shared registers using

dual-reader safe self-stabilizing registers, that allow the writer to read the values it

writes to its own registers. We believe there is no fundamental difference between

assuming that a 1W1R safe bit exists and assuming that a 1W2R safe bit exists. After

all, the first models a flip-flop with a single output wire, whereas the latter models a

flip-flop with its output wire split in two.

We therefore assume the existence of such 1W2R safe bits and use these as basic

building blocks in the construction of a 1W2R 0-stabilizing regular bit (Section 4.1),

a 1W2R z-ary 0-stabilizing regular register (Section 4.2), and a nWnR z-ary
1-stabilizing atomic register (Section 4.3). All these constructions are minor

modifications of well-known constructions of the non-self-stabilizing, single-reader,

equivalents. We do not present explicit constructions of single-reader self-stabilizing

registers, because the dual-reader registers come more or less for free given a dual

reader safe bit as basic building block. Moreover, we need dual-reader registers in

the construction of the multi-writer atomic register. Note that (as usual) the writer is

also one of the readers of the same register.

HOEPMAN, PAPATRIANTAFILOU, AND TSIGAS832
A few words on the programming notation are in order. We use :¼ to denote

assignment, name to denote local variables, NAME to denote shared variables, and

name for keywords.

4.1. A 0-Stabilizing 1W2R Regular Bit

Protocol 4.1 presents the adaptation of Lamport’s [15] construction of a 1W1R

regular bit from a 1W1R safe bit, into the construction of a 0-stabilizing wait-free

1W2R regular bit using a wait-free 0-stabilizing 1W2R safe bit. Instead of relying on

a local copy of the value of the bit, the writer now actually reads the bit (over its

second ‘wire’) to determine whether its value has to be changed. We proceed by

proving correctness of the protocol.

Theorem 3. Protocol 4.1 implements a wait-free 0-stabilizing 1W2R regular binary

register using one wait-free 0-stabilizing 1W2R safe binary register.

Proof. Let hA;-i be an arbitrary run of reads R and writes W over the regular

bit. By Protocol 4.1 this induces an order - over the safe bit S. Let us use RðSÞ
(W ðSÞ) to denote the read from (write to) the safe bit S performed by read R (write

W) on the regular bit. Let w? be the initializing write of safe bit S, and set valðW?Þ ¼
valðw?Þ for the initializing write W? of the regular bit. If hA;-i has a corrupted

write W , set valðW Þ to the value of S just after W ; this is the value an interference free

read starting after W will read. In case of such a corrupted write, set valðw?Þ (and
valðW?Þ) to :valðW Þ. For all other, non-corrupted, writes set valðW ðvÞÞ ¼ v. For all
non-corrupted reads, set valðRÞ ¼ valðRðSÞÞ.

According to Definition 6 it remains to show that in hA;-i all non-corrupted

reads R return the value written by a feasible write. Protocol 4.1 is trivially wait-free.

If a read overlaps a corrupted write W , then both W and W? are feasible writes for

this read. By the definition of valð�Þ above, valðW Þ=valðW?Þ and hence R always

returns the value written by a feasible write.

To complete the proof we need the following claim.

Claim 1. If RðSÞ is interference free and not-corrupted and W Ð RðSÞ then

valðW Þ ¼ valðRðSÞÞ.

Proof. Let W Ð RðSÞ and let valðRðSÞÞ ¼ a. If W ¼ W? or W is a corrupted write,

then valðW Þ ¼ a by definition. Otherwise, note that a write W ðxÞ reads S by R0ðSÞ
without interference. Either valðR0ðSÞÞ ¼ x so W does not write S or valðR0ðSÞÞ ¼ :x
and W does write x to S by W ðSÞ. Note that S is 0-stabilizing, and that none of these

actions on S is corrupted.

S : stabilizing 1W2R safe bit

For i 2 f0; 1g: operation Write0ðv : f0; 1gÞ
operation Readið Þ : f0; 1g if Read0ðSÞ=v

return ReadiðSÞ ; then Write0ðS; vÞ ;

PROTOCOL 4.1. A 0-stabilizing 1W2R regular bit.

SELF-STABILIZATION OF WAIT-FREE SHARED MEMORY OBJECTS 833
In the first case, as there cannot be another write to S between R0ðSÞ and RðSÞ,
valðRðSÞÞ ¼ valðR0ðSÞÞ ¼ x ¼ valðW Þ. In the second case, as W ðSÞ Ð RðSÞ,
valðRðSÞÞ ¼ valðW ðSÞÞ ¼ x ¼ valðW Þ.]

Now consider a read R not overlapping a corrupted write. If RðSÞ is interference-

free, then by Claim 1, for a write W with W Ð RðSÞ we have valðW Þ ¼ valðRðSÞÞ ¼
valðRðSÞÞ and W is feasible for R.

If RðSÞ is interfered, there is a write W ðxÞ with W jjR writing S and W cannot be

corrupted by assumption. W reads S by R0ðSÞ and valðR0ðSÞÞ ¼ :x. By Claim 1 and

the fact that R0ðSÞ cannot overlap another write (because it is executed by one), for

W 0 with W 0 Ð W we must have valðW 0Þ ¼ :x. As W jjR, then W 0 Ð R or W 0jjR, so
both W and W 0 are feasible for R. One of these writes 0 and the other writes 1, so

valðRÞ equals the value written by a feasible write.

4.2. A 0-Stabilizing 1W2R z-Ary Regular Register

Protocol 4.2 presents the adaptation of Lamport’s [15] construction of a 1W1R z-
ary regular register from z regular 1W1R bits, into the construction of a wait-free 0-

stabilizing 1W2R z-ary regular register using z wait-free 0-stabilizing 1W2R regular

bits. It differs from the original construction on two points. First, a check is added

to detect that the end of the bit array is reached without reading a 1 in any of the

bits, in which case a default value (z� 1) is returned. Second, instead of using a while

loop to zero some registers, a fixed programmed sequence of writes is used

(see Section 2.1).

Suppose the writer would use the following code:

while v=0 do v :¼ v� 1 ; WriteðSv; 0Þ ;

to zero all registers Sv�1; . . . ;S0 that ‘lie below’ the written value v. Consider the

following scenario (see also Fig. 3), where a corrupted write writes 0 to Sa at the time

of the error, but holds v ¼ c > a in its local state. After this write, it starts writing

0 to all Sc�1; . . . ;S, writing 0 again to Sa some time later. Furthermore,

assume that at the time of the error for some b, a5b5c with Sb ¼ 1, we have

S . . .Sz�1: stabilizing 1W2R regular bit

operation Write0ðv : f0; . . . ; z� 1gÞ
For i 2 f0; 1g: x : f0; 1g ;
operation Readið Þ : f0; . . . ; z� 1g x :¼ 1 ;
w : f0; . . . ; zg ; goto v

w :¼ 0 ; z� 1: Write0ðSz�1; xÞ ; x :¼ 0 ;
while w5z^ ReadiðSwÞ ¼ 0
do w :¼ wþ 1 ;

z� 2: Write0ðSz�2; xÞ ; x :¼ 0 ;

if w ¼ z then return z� 1 ;
..
.

else return w ; 1: Write0ðS
0; xÞ ; x :¼ 0 ;

0: return

PROTOCOL 4.2. A 0-stabilizing 1W2R z-ary regular register.

FIG. 3. The danger of using a while loop.

HOEPMAN, PAPATRIANTAFILOU, AND TSIGAS834
Sj ¼ 0 for all j=a with 04j5b. Then a read R3 started after the corrupted

write (on the z-ary register) will read Si ¼ 0 for all i5c and hence will return a value

v35c. A read R1 started just after the error will read Si ¼ 0 for all i5a, may read

Sa ¼ 1 (because the corrupted write is writing this register concurrently), and

therefore may return v1 ¼ a. Another read R2 started just after R1 will also read

Si ¼ 0 for all i5a, may read Sa ¼ 0 (because the corrupted write is writing this

register concurrently), and then will continue reading Si ¼ 0 for all a5i5b, until it
finds Sb ¼ 1 and thus returns v2 ¼ b. These three reads return three different values

v1, v2 and v3, while there are only two feasible writes W? (the initial write) and W 0

(the corrupted write) for these reads. This contradicts the 0-stabilizing regularity of

the register.

4.2.1. Proof of correctness. Let hA;-i be an arbitrary run over the regular z-
ary register. By Protocol 4.2 this induces an order - on the actions on the regular

bits S0; . . . ;Sz�1. Because there is only a single writer, we can number all the writes

consecutively, writing W i for the write with index countðW Þ ¼ i. Then W 0 is the

corrupted write if it exists, and we set the index of W? (the initializing write of the z-
ary register) to �1. Let us write RðSvÞ for the read of Sv by read R, and let us write

W ðSvÞ for the write to Sv by a write W . We define the index of W ðSvÞ to equal the

index of W . Note that this way, indices of consecutive writes to such a sub-register

may differ by more than 1. For non-corrupted reads R of a sub-register Sv define

pðRÞ to be the largest index i such that W i (of Sv) is feasible for R and we have

valðW iÞ ¼ valðRÞ. This so-called reading-function is well defined because by

0-stabilizing regularity of Sv, such write always exists.

We now fix an assignment of valðW Þ for all write actions W and show that given

this assignment, all non-corrupted reads return values written by feasible writes. For

W? ¼ W �1 we set valðW?Þ to the minimal v such that valðW?ðS
vÞÞ ¼ 1, setting

valðW?Þ ¼ z� 1 if no such v exists. Suppose there is a corrupted write W 0. Let Sa be

the first register written by this write. Then set valðW 0Þ to the minimal v such that

valðW 0ðSvÞÞ ¼ 1 if v4a, and valðW?ðS
vÞÞ ¼ 1 if v > a, setting valðW 0Þ ¼ z� 1 if no

such v exists. This way, valðW 0Þ equals the value read by a non-interfered read

starting after W 0. For all other writes W ðvÞ set valðW ðvÞÞ ¼ v.

SELF-STABILIZATION OF WAIT-FREE SHARED MEMORY OBJECTS 835
We first prove the following claim:

Claim 2. Let R be a read reading Swþ1. If pðRðSwÞÞ > 0 then pðRðSwÞÞ4pðRðSwþ1ÞÞ.
If W i with i51 is a write such that W i-R, then for all registers Sv read by R, we have

pðRðSvÞÞ5i:

Proof. If R reads Swþ1, then valðRðSwÞÞ ¼ 0. If pðRðSwÞÞ ¼ i > 0 then

valðW iðSwÞÞ ¼ 0 and hence (by Protocol 4.2 and the fact that W i for i > 0 is not

corrupted) W i must write to Swþ1 as well. Now by W iðSwÞKRðSwÞ and W i �
ðSwþ1Þ-W iðSwÞ and RðSwÞ-RðSwþ1Þ we get W iðSwþ1Þ-RðSwþ1Þ and hence i4pðR
ðSwþ1ÞÞ which proves the result.

The second part easily follows using induction and the observation that W i-R
implies pðRðS0ÞÞ5i.]

Theorem 4. Protocol 4.2. implements a 0-stabilizing 1W2R z-ary regular register

using z 0-stabilizing 1W2R regular binary registers.

Proof. According to Definition 6 we have to show that in every run hA;-i over

the register all non-corrupted reads return the value written by a feasible write.

Protocol 4.2 is trivially wait-free.

Consider a read R with valðRÞ ¼ v. Then R reads Sv and valðRðSvÞÞ ¼ 1, unless v ¼
z� 1. Let pðRðSvÞÞ ¼ i. Then W iKR. If valðRðSvÞÞ ¼ 0 (and hence v ¼ z� 1), by the

protocol, either i ¼ �1 or i ¼ 0 (because only W 0 or W? can possibly write 0 to Sz�1).

If i > 0 then valðW iÞ ¼ v, because W i wrote 1 to Sv in this case. If i ¼ 0, the

construction of the writer is such that even the corrupted write W 0 writes a 1 to at

most one register, and if it does, it will not later overwrite this 1. Therefore also

valðW 0Þ ¼ v. And if W 0 writes Sz�1 with valðW 0ðSz�1ÞÞ ¼ 0 then it also writes 0 to all

other registers and hence valðW 0Þ ¼ z� 1 by definition.

In both cases, W i is not a feasible write for R only if there exists a W j such that

W i-W j-R (and so i5j and in particular j > 0). But then by Claim 2

pðRðSvÞÞ5j > i, a contradiction.

The only case that remains is i ¼ �1. By Claim 2, then pðRðSwÞÞ equals 0 or �1 for

all w5v (or else pðRðSvÞÞ > �1). Now there are two cases.

If pðRðSwÞÞ ¼ �1 for all w5v, then valðW �1ðSwÞÞ ¼ 0 for w5v. Hence v ¼
valðW �1Þ and so valðRÞ ¼ valðW �1Þ. Moreover, RKW i for i50 (or else pðRðSwÞÞ50

for some w) so W �1 is feasible for R.
If pðRðSwÞÞ ¼ 0 for some w5v, then we have W 0ðSwÞKRðSwÞ Consider the first

register Sa written by W 0. Clearly, w4a. Moreover, if w5a, then using RðSwÞ-
RðSaÞ and W 0ðSaÞ-W 0ðSwÞ we have W 0ðSaÞ-RðSaÞ and hence pðRðSaÞÞ ¼ 0. We

have by assumption that pðRðSvÞÞ ¼ i ¼ �1, so R continues to read past register Sa.

Then it reads 0 from Sa, and hence valðW 0ðSaÞÞ ¼ 0. Because W 0 always writes 0 to

all registers except perhaps the first it writes, valðW 0ðSiÞÞ ¼ 0 for all i5a as well. For

all w with a5w4v we have pðRðSwÞÞ ¼ �1. Hence valðRÞ ¼ v corresponds to the

minimal v such that valðW 0ðSvÞÞ ¼ 1 if v4a, and valðW?ðS
vÞÞ ¼ 1 if v > a, setting

valðW 0Þ ¼ z� 1 if no such v exists. In other words, valðRÞ ¼ valðW 0Þ. Finally, note
that RKW i for i51 (or else pðRðSwÞÞ51 for some w), so W 0 is feasible for R.]

This completes our proof of correctness for Protocol 4.2.

HOEPMAN, PAPATRIANTAFILOU, AND TSIGAS836
4.3. A 1-Stabilizing nWnR z-Ary Atomic Register

Protocol 4.3 presents the adaptation of the Vit!aanyi–Awerbuch [6, 21] multi-writer

atomic register construction from 1W1R multi-valued regular registers, into a wait-

free 1-stabilizing nWnR z-Ary atomic register using n2 wait-free 0-stabilizing 1W2R

1-ary regular registers.

To make this construction self-stabilizing the values have become part of the labels

used to determine the most recently written value. In the original construction this is

not necessary because any value stored with a tag, processor id pair always

corresponds to the value written by that processor during that invocation. Moreover,

every label written in the propagation phase is read back and used in the next write.

This prevents a corrupted write from injecting two different bad values in the register

(one by the corrupted sub-write and the other by the erroneous value of the current

label to be written). Finally, the propagation phase only terminates if the validation

phase has made certain that all registers that have to be written indeed contain the

same value. Clearly, this check is superfluous for almost all cases, except when we

consider corrupted actions. In that case, the check ensures that if the corrupted

action writes any register at all, then it will continue writing registers until all

registers contain the same value (see Lemma 1).

The main difficulty}and difference}in the proof of correctness exists in showing

that the first few actions of a processor behave in line with Definition 4. We prove

correctness of the protocol below.

In the protocol, V is the domain of values read and written by the multi-writer

register. The construction uses n2 regular 0-stabilizing registers Sij written by

processor i and read by processor i and j. These registers store a label consisting of

an unbounded tag, a processor id with values in the domain f1; . . . ; ng, and a value

in V. Labels are lexicographically ordered by 4, and ? is the minimal label.

S11 . . .Snn: 0-stabilizing 1W2R function Validateiðv : VÞ : ftrue; falseg
regular: IN � f1; . . . ; ng �V return (ReadiðSi1Þ ¼ v
(with fields tag, id, and val) ^ReadiðSi2Þ ¼ v

For i 2 f1; . . . ; ng: ..
.

function ReadCurið Þ : V ^ReadiðSinÞ ¼ vÞ ;
cur : IN � f1; . . . ; ng �V ;

cur :¼? ; function Propagateiðv : VÞ
cur :¼ maxðcur;ReadiðS1iÞÞ ; repeat WriteiðSi1; vÞ ; v :¼ ReadiðSi1Þ ;
cur :¼ maxðcur;ReadiðS2iÞÞ ; WriteiðSi2; vÞ ; v :¼ ReadiðSi2Þ ;
..
. ..

.

cur :¼ maxðcur;ReadiðSniÞÞ ; WriteiðSin; vÞ ; v :¼ ReadiðSinÞ ;
return cur ; until ValidateiðvÞ

operation Readið Þ : V operation Writeiðv : VÞ
cur : IN � f1; . . . ; ng �V cur; new : IN � f1; . . . ; ng �V

cur :¼ ReadCurið Þ ; cur :¼ ReadCurið Þ ;
PropagateiðcurÞ ; new :¼ hcur:tagþ 1; i; vi ;
return cur:val ; PropagateiðnewÞ ;

PROTOCOL 4.3. A 1-stabilizing nWnR z-Ary atomic register.

SELF-STABILIZATION OF WAIT-FREE SHARED MEMORY OBJECTS 837
The sequential specification of an atomic register simply states that a write updates

the state to be the value written, whereas a read returns the state of the register. Let

hA;-i be a complete run of the above protocol.

Lemma 1. Let A 2 A be an action executed by processor i. If A writes at least one

register Sij for some j, then at the end of A we have ð8j; k :: Sij ¼ SikÞ:

Proof. Looking at Protocol 4.3, we see that every write to a register is (eventually)

followed by a call to ValidateiðvÞ which only returns true (allowing the action to

terminate) if ð8j :: Sij ¼ vÞ.]

Now remove from A all actions that do not write a single register as a sub-action.

This can only affect corrupted actions}all other actions write at least n registers. We

will show that the resulting run hA;-i is linearizable to hA;)i. The corrupted

actions we remove can all be considered reads returning arbitrary values, and can be

ordered before all other actions in hA;)i.
Now define for A 2 A, labelðAÞ as the label written by the last sub-write performed

by A. For all correct reads R, labelðRÞ corresponds to the value returned by the read,

and for all correct writes W , labelðW Þ corresponds to the value written. Then the

following is an immediate corollary of Lemma 1 (recall that we have removed all

corrupted actions from the run that do not write any register).

Corollary 1. For all A 2 A performed by i, we have ð8j :: Sij ¼ labelðAÞÞ
immediately after termination of A.

We are going to partition A into a set R of actions that behave as reads and a set

W of actions that behave as writes. To this end, define

F ¼ fA 2 AjcountðAÞ41g;

R� ¼ fA 2 AjcountðAÞ > 1 and A is a readg

and
W� ¼ fA 2 AjcountðAÞ > 1 and A is a writeg:

ThenF corresponds to the set of actions that, according to Definition 4, may behave

arbitrarily. We further subdivide F into actions FW that seem to behave as a write

and actions FR that seem to behave as a read, making sure that no two apparent

writes write the same label (because the remainder of the proof, especially the

definition of the reading function p depends on this).

Define for a set of actions F, labelðFÞ ¼ flabelðF ÞjF 2 Fg. Set

L ¼ labelðFÞ\labelðW�Þ, the set of labels not written by a real write in W�, and

let FW be an arbitrary subset of F such that

(F1) labelðFW Þ ¼ L,
(F2) For all A;B 2 FW , if labelðAÞ ¼ labelðBÞ then A ¼ B, and
(F3) For all A 2 FW and B 2 F, if labelðAÞ ¼ labelðBÞ then tI ðAÞ5tI ðBÞ.

Now set FR ¼ F\FW and define W ¼ W� S
FW and R ¼ R� S

FR.

HOEPMAN, PAPATRIANTAFILOU, AND TSIGAS838
Note that we can construct a set FW satisfying these conditions by considering in

turn all actions in F ordered by their unique invocation times, and adding to FW

every action whose label is not yet in FW .

Lemma 2. If A-B then labelðAÞ4labelðBÞ. If B 2 W� this inequality is strict.

Proof. Let A be performed by processor i and B be performed by processor j. By
Corollary 1, after A we have Sij ¼ labelðAÞ. If A-B, either B reads labelðAÞ from Sij

(because it is a 0-stabilizing register) or a later sub-write to Sij by some action C of i
is a feasible write to the sub-read of Sij of B. In the first case, because B picks the

maximum of the values read, labelðAÞ4labelðBÞ.
In the second case labelðCÞ4labelðBÞ and there is a sequence of actions C1, C2 etc.

executed by i between A and C, i.e., A ¼ C0-C1-C2 � � �-C. By Corollary 1, after

Ci we have Sii ¼ labelðCiÞ as well. Because Ciþ1 reads Sii, we have labelðCiÞ4
labelðCiþ1Þ. We conclude labelðAÞ4labelðCÞ and therefore labelðAÞ4labelðBÞ.

In either case, if B is a write, then it increases the tag by one and hence

labelðAÞ5labelðBÞ.]

The next lemma basically shows that every read returns a value written by some

write. Uniqueness of this write is established in Lemma 4.

Lemma 3. For all R 2 R there exists a W 2 W such that labelðW Þ ¼ labelðRÞ and

WKR.

Proof. Consider actions A executed by processor i and actions B executed by

processor j. Let W ðA;BÞ be the last sub-write to Sij by action A, and let RðB;AÞ be the
first sub-read from Sij by action B. Define A+B iff labelðAÞ ¼ labelðBÞ and

W ðA;BÞ’RðB;AÞ. Note that for all A;B with countð�Þ > 1 we cannot have both A+B
and B+A because all reads by A and B precede their writes (see Protocol 4.3). In

other words, A+B if B could have copied its label from A. Clearly, A+B implies

AKB. Similarly, A-B and labelðAÞ ¼ labelðBÞ implies A+B, because then

W ðA;BÞKRðB;AÞ.
Now let R 2 R be arbitrary, and pick a B 2 A such that B+R and for no A 2 A,

A+B. If no such B exists, set B ¼ R. If B 2 W we are done, so assume B 2 R.

Suppose countðBÞ > 1. Then there is an operation C on the same processor with

countðCÞ ¼ 1 and C-B. If labelðCÞ ¼ labelðBÞ then C+B, while if labelðCÞ5
labelðBÞ (the only other possible case according to Lemma 2) then the contents of the

register from which B obtains labelðBÞ}note that since B is a read it writes the

maximal label it reads}has changed after C read that same register. This register

then is written by an operation D with labelðDÞ ¼ labelðBÞ before B reads it. Then

D+B. This contradicts the assumption that there is no A such that A+B.
We conclude that countðBÞ41 and hence B 2 F. This implies labelðBÞ 2 labelðFÞ.

So either there exists a W 2 W� such that labelðW Þ ¼ labelðBÞ ¼ labelðRÞ, or labelðBÞ
2 L and by (F1) there exists aW 0 2 FW with labelðW 0Þ ¼ labelðBÞ ¼ labelðRÞ. In the first

case, by Lemma 2, WKR as required. In the second case, since B 2 F we must have by

(F3), tI ðW 0Þ5tI ðBÞ. Then as B+R implies BKR, this in turn implies W 0KR.]

SELF-STABILIZATION OF WAIT-FREE SHARED MEMORY OBJECTS 839
The next lemma shows that different write actions write different labels. Together

with the previous lemma this establishes that the maximal label read by a read action

uniquely determines the write action that wrote the value this read returns.

Lemma 4. For all W ;W 0 2 W if labelðW Þ ¼ labelðW 0Þ then W ¼ W 0.

Proof. There are three cases:

W ;W 0 2 W�: By Protocol 4.3 W and W 0 must be executed by the same processor

(or else their id-fields differ). If labelðW Þ ¼ labelðW 0Þ, and using Lemma 2, neither

W-W 0 nor W 0-W . Hence W ¼ W 0.

W 2 W �;W 0 2 FW : Then labelðW Þ =2 L by definition of L, and labelðW 0Þ 2 L by

(F1). This is a contradiction.

W ;W 0 2 FW : If labelðW Þ ¼ labelðW 0Þ, then by ðF 2Þ we have W ¼ W 0.]

Define for a particular run hA;-i a reading function p : R/W by pðRÞ ¼ W if

labelðRÞ ¼ labelðW Þ and W 2 W. This is a proper definition by the next lemma.

Lemma 5. For all R 2 R, pðRÞ is defined and unique, RQpðRÞ, and R returns the

value written by pðRÞ.

Proof. That pðRÞ is defined and RQpðRÞ follows from Lemma 3. That it is unique

follows from Lemma 4. If pðRÞ 2 W�, then (stretching notation somewhat)

labelðpðRÞÞ:val equals the value written by pðRÞ. If pðRÞ 2 FW we define the

(arbitrary) value written by pðRÞ to equal labelðpðRÞÞ:val.]

We now show that every run hA;-i with the above reading function p is atomic.

Define for W 2 W its clan ½W � by

½W � ¼ fW g [fR 2 RjpðRÞ ¼ W g

and let G ¼ f½W �jW 2 Wg be the set of all clans. Define -0 over G by

½W �-0½W 0� , ð9A 2 ½W �;B 2 ½W 0� :: A-BÞ:

Lemma 6. For all W 2 W and A;B 2 ½W � we have labelðAÞ ¼ labelðBÞ. Also if

W=W 0, then for all A 2 ½W �;B 2 ½W 0� we have labelðAÞ=labelðBÞ.

Proof. The first part follows from the definition of ½W � and pðRÞ. The second part

follows from Lemma 4.]

Lemma 7. -0 is an acyclic partial order over G.

Proof. Suppose not. Then there exists a chain

½W1�-0½W2�-0 � � �-0½Wm�-0½W1�

with m > 1, and Wi=Wj if i=j. This implies that for all i with 14i4m there exist

actions Ai;Bi 2 ½Wi� such that Ai-Biþ1 (where mþ 1 ¼ 1). By Lemma 2 and 6

HOEPMAN, PAPATRIANTAFILOU, AND TSIGAS840
labelðAiÞ4labelðBiþ1Þ ¼ labelðAiþ1Þ. We conclude that labelðA1Þ ¼ labelðA2Þ, con-

trary to Lemma 6.]

Applying these lemmas and the results of [6] we arrive at the following theorem.

Theorem 5. Protocol 4.3 implements a 1-stabilizing nWnR z-ary atomic register

using n2 stabilizing 1W1R 1-ary regular registers.

Proof. Define a total order) over A extending - as follows. First extend -0

over G to a total order)0 (according to Lemma 7, this is possible). Now for A 2 ½W �
and B 2 ½W 0� let A) B if ½W �)0 ½W 0� (a). This extends - because if A-B, then by

the definition of -0, ½W �-0½W 0� and thus ½W �)0 ½W 0�. For A;B 2 ½W � fix an arbitrary

extension) of- such that for the only writer W 2 ½W � we have for all other C 2 ½W �
that W) C (b). This is an extension of - because by Lemma 5, CQW .

Now) is a total order over all actions A such that for all R 2 R we have

pðRÞ) R by Lemma 5 and (b). Moreover, there does not exists a W 2 W such that

pðRÞ) W) R, because by (a) and the fact that R =2 ½W � by Lemma 6, either W)
½pðRÞ� or R) ½W �. Hence W) pðRÞ or R) W .

We conclude that all reads R return the value written by the most recently

preceding write in the sequential execution hA;)i.]

5. CONCLUSIONS AND FURTHER RESEARCH

Our results are a first, but important, step towards exploring the relation between

self-stabilization and wait-freedom in the construction of shared objects. This is a

new area of research and there are still a lot of interesting questions in this area that

remain unanswered. First of all, this paper is a proposal for a reasonable and general

definition of self-stabilizing wait-free shared objects. The impossibility proofs and

the constructions presented here are evidence for the viability of our approach. They

show that our definitions are neither trivial nor impractical, but further research is

necessary to assess their true value. In particular, the question is whether shared

memory objects exist that only have k-stabilizing implementations for k > 1 (or even

k > 0).

Second, we would like to prove (or refute) our conjecture that single reader safe

bits are in general not strong enough to implement a self-stabilizing regular register.

Third, the construction of the 1-stabilizing nWnR atomic register uses unbounded

time stamps to invalidate old values. We would like to know whether this is

necessarily so, or if the space requirements of a k-stabilizing atomic register can be

bounded. Moreover, we would like to know whether we can close the gap between

Protocol 4.3 and Theorem 2, i.e., whether it is possible either to construct a

1-stabilizing nWnR atomic register using single reader 0-stabilizing regular registers,

or to construct a 0-stabilizing nWnR atomic register using 0-stabilizing 1W2R

regular registers.

Fourth, the ramifications of}so far}having only 1-stabilizing atomic registers

available for communication in self-stabilizing protocols should be investigated

further.

SELF-STABILIZATION OF WAIT-FREE SHARED MEMORY OBJECTS 841
Finally, following the work of Aspnes and Herlihy [5], it is an interesting venture

to classify, based on their sequential specification, all k-stabilizing shared memory

objects that can be constructed from k0-stabilizing atomic registers, and to provide a

general method to do so. In particular, we would be interested to know whether there

are general methods to decrease the stabilization delay of a shared memory object

from k to k05k.

ACKNOWLEDGMENTS

It is a pleasure to thank Moti Yung for his encouragement in this work. We are grateful to referee R and

the other anonymous referees for their accurate and insightful comments, and to the MPI and the CWI for

their hospitality during mutual visits. Due to unforeseen circumstances we were not able to publish our

initial results [12] in a thorough and more polished form any earlier. We apologise for this delay and the

inconveniences it may have caused.

REFERENCES

1. Y. Afek, H. Attiya, D. Dolev, E. Gafni, M. Merritt, and N. Shavit, Atomic snapshots of shared

memory, in ‘‘9th Annual Symposium on Principles of Distributed Computing,’’ Quebec City, Quebec,

Canada, August 22–24, pp. 1–13, Assoc. Comput. Mach. Press, New York, 1990.

2. Y. Afek, D. S. Greenberg, M. Merritt, and G. Taubenfeld, Computing with faulty shared memory, in

‘‘11th Annual Symposium on Principles of Distributed Computing,’’ Vancouver, BC, Canada, August

10–12, pp. 47–58, Assoc. Comput. Mach. Press, New York, 1992.

3. Y. Afek, M. Merritt, and G. Taubenfeld, Benign failure models for shared memory, in

‘‘7th International Workshop on Distributed Algorithms,’’ Lausanne, Switzerland, September

27–29 (A. Schiper, Ed.), Lecture Notes in Computer Science, Vol. 725, pp. 69–83, Springer-Verlag,

Berlin/New York, 1993.

4. E. Anagnostou and V. Hadzilacos, Tolerating transient and permanent failures, in ‘‘7th International

Workshop on Distributed Algorithms,’’ Lausanne, Switzerland, September 27–29 (A. Schiper, Ed.),

Lecture Notes in Computer Science, Vol. 725, pp. 174–188, Springer-Verlag, Berlin/New York, 1993.

5. J. Aspnes and M. P. Herlihy, Wait-free data structures in the asynchronous model, in ‘‘2nd Annual

Symposium on Parallel Algorithms and Architectures,’’ Crete, Greece, July, pp. 340–349, Assoc.

Comput. Mach. Press, New York, 1990.

6. B. Awerbuch, L. M. Kirousis, E. Kranakis, and P. M. B. Vit!aanyi, A proof technique for register

atomicity, in ‘‘8th Conference on Foundations of Software Technology and Theoretical Computer

Science,’’ Pune, India, (K. V. Nori and S. Kumar, Eds.), Lecture Notes in Computer Science, Vol. 338,

pp. 286–303, Springer-Verlag, Berlin/New York, 1988.

7. E. W. Dijkstra, Self-stabilizing systems in spite of distributed control, Commun. Assoc. Comput. Mach.

17 (1974), 643–644.

8. S. Dolev and J. L. Welch, Wait-free clock synchronization, in ‘‘12th Annual Symposium on Principles

of Distributed Computing,’’ Ithaca, NY, August 15–18, pp. 97–108, Assoc. Comput. Mach. Press,

New York, 1993.

9. A. S. Gopal and K. J. Perry, Unifying self-stabilization and fault-tolerance, in ‘‘12th Annual

Symposium on Principles of Distributed Computing,’’ Ithaca, NY, August 15–18, pp. 195–206, Assoc.

Comput. Mach. Press, New York, 1993.

10. M. P. Herlihy, Wait-free synchronization, Assoc. Comput. Mach., Trans. Programming Languages

Systems, 13 (1991), 124–149.

HOEPMAN, PAPATRIANTAFILOU, AND TSIGAS842
11. M. P. Herlihy and J. M. Wing, Linearizability: A correctness condition for concurrent objects, Assoc.

Comput. Mach., Trans. Programming Languages Systems 12 (1990), 463–492.

12. J.-H. Hoepman, M. Papatriantafilou, and P. Tsigas, Self-stabilization of wait-free shared memory

objects, in ‘‘9th International Workshop on Distributed Algorithms,’’ Le Mont-Saint-Michel, France,

September 12–15 (J.-M. H!eelary and M. Raynal, Eds.), Lecture Notes in Computer Science, Vol. 972,

pp. 273–287, Springer-Verlag, Berlin, 1995.

13. A. Israeli and A. Shaham, Optimal multi-writer multi-reader atomic register, in ‘‘11th Annual

Symposium on Principles of Distributed Computing,’’ Vancouver, BC, Canada, August 10–12,

pp. 71–82, Assoc. Comput. Mach. Press, New York, 1992.

14. P. Jayanti, T. D. Chandra, and S. Toueg, Fault-tolerant wait-free shared objects, in ‘‘33rd Symposium

on Foundations of Computer Science,’’ Pittsburgh, PA, October 24–27, pp. 157–166, IEEE Comput.

Soc. Press, Los Alamitos, CA, 1992.

15. L. Lamport, On interprocess communication, I, Basic formalism, II, Algorithms, Distrib. Comput. 1

(1986), 77–101.

16. M. Li and P. M. B. Vit!aanyi, ‘‘Optimality of Wait-Free Atomic Multiwriter Variables,’’ Tech. Rep. CS-

R9128, Stichting Mathematisch Centrum (CWI), Amsterdam, June 1991.

17. M. C. Loui and H. H. Abu-Amara, Memory requirements for agreement among unreliable

asynchronous processes, in ‘‘Advances in Computing Research’’ (F. P. Preparata, Ed.), Vol. 4,

pp. 163–183, JAI Press, Greenwich, CT, 1987.

18. N. A. Lynch and M. R. Tuttle, An introduction to input/output automata, CWI Quart. 2 (1988),

219–246.

19. M. Papatriantafilou and P. Tsigas, On self-stabilizing wait-free clock synchronization, in ‘‘4th

Scandinavian Workshop on Algorithm Theory,’’ (AArhus, Denmark, July, Lecture Notes in Computer

Science, Vol. 824, pp. 267–277, Springer-Verlag, Berlin/New York, 1994.

20. M. Schneider, Self-stabilization, ACM Comput. Surveys 25 (1993), 45–67.

21. P. M. B. Vit!aanyi and B. Awerbuch, Atomic shared register access by asynchronous hardware, in

‘‘27th Symposium on Foundations of Computer Science,’’ Toronto, Ont., Canada, October 27–29,

pp. 233–243, IEEE Comput. Soc. Press, Los Alamitos, CA, 1986.

JAAP-HENK HOEPMAN received an M.Sc. in computer science from the University of Groningen in

1989 and a Ph.D. in computer science from the University of Amsterdam in 1996. He is currently an

assistant professor at the University of Twente, the Netherlands. His research focusses on algorithmic

aspects of security, cryptography and fault tolerance.

MARINA PAPATRIANTAFILOU is an associate professor at Chalmers University of Technology,

Sweden. She received the B.Sc. and Ph.D. from the Department of Computer Engineering and

Informatics, University of Patras, Greece. She has also worked at the Institute for Mathematics and

Computer Science (CWI), Amsterdam and at the Max-Planck Institute for Computer Science (MPII)

Saarbruecken, Germany. She is interested in research on distributed and multiprocessor computing,

including synchronization, communication/coordination, networking, scalability, real-time and fault-

tolerance aspects.

PHILIPPAS TSIGAS’ research interests include communication/coordination in asynchronous

systems, fault-tolerance, mobile computing. He received a B.Sc. in mathematics from the University of

Patras, Greece and a Ph.D. in computer engineering and informatics from the same university. Philippas

spent a year at the CWI, Amsterdam and three years at the MPI for computer science, Saarbr .uucken,

Germany. At present he is an associate professor at Chalmers University of Technology and G .ooteborg

University, Sweden.

	1. INTRODUCTION
	2. DEFINING SELF-STABILIZING WAIT-FREE OBJECTS
	3. SOME IMPOSSIBILITY RESULTS
	FIGURE 1
	FIGURE 2

	4. SELF-STABILIZING CONSTRUCTIONS OF SHARED REGISTERS
	FIGURE 3

	5. CONCLUSIONS AND FURTHER RESEARCH
	ACKNOWLEDGMENTS
	REFERENCES

