
Efficient and Reliable Lock-Free Memory Reclamation
Based on Reference Counting

Anders Gidenstam, Marina Papatriantafilou, Håkan Sundell, Philippas Tsigas
Department of Computing Science

Chalmers University of Technology and Göteborg University

412 96 Göteborg, Sweden

E-mail: {andersg,ptrianta,phs,tsigas}@cs.chalmers.se

Abstract

We present an efficient and practical lock-free implemen-
tation of a memory reclamation scheme based on reference
counting, aimed for use with arbitrary lock-free dynamic
data structures. The scheme guarantees the safety of lo-
cal as well as global references, supports arbitrary memory
reuse, uses atomic primitives which are available in mod-
ern computer systems and provides an upper bound on the
memory prevented for reuse. To the best of our knowledge,
this is the first lock-free algorithm that provides all of these
properties. Experimental results indicate significant perfor-
mance improvements for lock-free algorithms of dynamic
data structures that require strong garbage collection sup-
port.

1. Introduction

Memory management is essential for building dy-
namic concurrent data structures. Concurrent algorithms
for data structures and related memory management are
commonly based on mutual exclusion. However, mu-
tual exclusion causes blocking and can consequently incur
serious problems as deadlocks, priority inversion or star-
vation. Researchers have addressed these problems by
introducing non-blocking synchronization algorithms,
which are not based on mutual exclusion. Lock-free al-
gorithms are non-blocking, and guarantee that always at
least one operation can progress, independently of the ac-
tions taken by the concurrent operations. Wait-free [3] al-
gorithms are lock-free, and moreover guarantee that all op-
erations can finish in a finite number of their own steps, re-
gardless of the actions taken by the concurrent operations.
The common consistency requirement for non-blocking al-
gorithms is called linearizability [6].

In this paper we are focusing on practical and efficient
memory management in the context of lock-free dynamic

data structures. For an operation of an algorithm to be lock-
free, all sub-operations must be at least lock-free. Conse-
quently, lock-free dynamic data structures typically require
lock-free memory management. The memory management
problem is normally divided into the sub-problems of dy-
namic memory allocation versus garbage collection. Please
note that we in this paper interpret the notion of garbage
collection in a wider sense, to also include memory recla-
mation schemes that are guided by the applications. More-
over, as lock-free garbage collection implicitly and in a
de-centralized manner would involve all concurrent partici-
pants in the garbage detection and reclamation process, this
consequently rules out fully automatic garbage collection
schemes (e.g. as used in Java).

Valois as well as Michael and Scott [16, 12] presented a
lock-free memory allocation scheme for fixed-sized mem-
ory segments; this scheme has to be used in combination
with the corresponding garbage collection scheme. Lock-
free memory allocation schemes for general use have been
presented by Michael [11] and Gidenstam et al. [2].

In the scope of lock-free garbage collection and memory
reclamation, Michael [9, 10] proposed the hazard pointer
algorithm that focuses on local references, and have been
shown to be highly efficient for compatible data structures.
A similar scheme has been proposed and patented by Her-
lihy et al. [5]; this scheme uses unbounded tags and is
based on the double-width CAS1 atomic primitive. As these
schemes only guarantee the safety of local pointers from the
threads, they cannot support arbitrary lock-free algorithms
that might require to always being able to trust global ref-
erences (i.e. pointers from within the data structure) to ob-
jects. This constraint can be strong and restrictive, and may
force the algorithms to retry their traversals in the possi-
bly large data structures, with resulting large performance

1 A compare-and-swap operation that can atomically update two adja-
cent memory words, which is available in some 32-bit and very few
64-bit architectures.



penalties that increase with the level of concurrency.
Garbage collection schemes that are based on reference

counting can guarantee the safety of global as well as local
references to objects. Valois et al. [16, 12] presented a lock-
free reference counting scheme that can be implemented us-
ing available atomic primitives, though it is limited to be
used only with the corresponding algorithm for memory al-
location. Detlefs et al. [1] presented a scheme that allows
also arbitrary reuse of reclaimed memory, but it is based on
DCAS2. Herlihy et al. [4] presented and patented a modi-
fication of the previous scheme such that it only uses CAS
(compare-and-swap) for the reference counting part. How-
ever, this scheme relies on another scheme that itself re-
quires double-width CAS. It has been identified in [12] that
reference counting techniques can potentially cause a refer-
ence from a thread to block (due to the ability of creating
recursive references) arbitrarily number of nodes from be-
ing reclaimed.

In the context of wait-free memory management, a wait-
free extension of Valois’ scheme has been presented by Sun-
dell [14]. Hesselink and Groote [7] have presented a wait-
free memory management scheme that is restricted to the
specific problem of sharing tokens.

This paper combines the strength of reference count-
ing with the efficiency of hazard pointers, with the aim
of keeping only the advantages of the involved techniques
while avoiding the respective drawbacks. Our new lock-free
memory reclamation scheme is lock-free and linearizable,
is compatible with arbitrary schemes for memory alloca-
tion, can be implemented using commonly available atomic
primitives, and guarantee the safety of local as well as
global references. We also show how to bound the amount
of unreclaimed memory that can be temporarily held by any
thread.

The rest of the paper is organized as follows. In Sec-
tion 2 we describe the type of systems that our implemen-
tation is aiming for. Section 3 describes the specifics of the
problem of garbage collection we are focusing on. The ac-
tual algorithm is described in Section 4. We conclude the
paper with Section 5.

2. System Description

Each node of the shared memory multi-processor sys-
tem contains a processor together with its local memory.
All nodes are connected to the shared memory via an inter-
connection network. A set of co-operating tasks is running
on the system performing their respective operations. Each
task is sequentially executed on one of the processors, while

2 A double-word compare-and-swap operation that can atomically up-
date two arbitrary memory words, which is not available on any mod-
ern architecture.

each processor can serve (run) many tasks at a time. The co-
operating tasks, possibly running on different processors,
use shared data objects built in the shared memory to co-
ordinate and communicate. Tasks synchronize their opera-
tions on the shared data objects through sub-operations on
top of a cache-coherent shared memory. The shared mem-
ory may not though be uniformly accessible for all nodes
in the system; processors can have different access times on
different parts of the memory.

The shared memory system should support atomic read
and write operations of single memory words, as well as
stronger atomic primitives for synchronization. In this pa-
per we use the Fetch-And-Add (FAA) and the Compare-
And-Swap (CAS) atomic primitives. These read-modify-
write style of operations are available on most common ar-
chitectures or can be easily derived from other synchroniza-
tion primitives [13] [8].

3. Problem Description

In this paper we are aiming to solve the garbage collec-
tion problem in the context of dynamic lock-free data struc-
tures. Lock-free data structures typically consist of a set of
memory segments, callednodesthat each contain arbitrary
data. These nodes are interconnected by referencing each
other in an arbitrary pattern. The references are typically
implemented by usingpointersthat can identify each indi-
vidual node by the mean of memory addresses. Each node
may contain an arbitrary number of pointers, calledlinks,
that reference other nodes. The operation to follow the ref-
erenced node through a link is calleddereferencing. Some
nodes are typically always part of the data structure, all oth-
ers nodes are part of the data structure when they are refer-
enced by a node that itself is a part of the data structure. In a
dynamic and concurrent data structure, arbitrary nodes can
continuously and concurrently be added or removed from
the data structure. As systems have limited amount of mem-
ory, the occupied memory of these nodes needs to be dy-
namically allocated and reclaimed from/to the system.

In a sequential implementation of a data structure, the
memory of a node is typically explicitly reclaimed to the
system when the last reference to it has been removed, i.e.
when the node has beendeleted. In a concurrent environ-
ment this should also include possible local references to a
node that any thread might have, as an access to the mem-
ory of a reclaimed node might be fatal to the correctness of
the data structure and/or the whole system. The logical unit
that correctly decides about reclaiming is called thegarbage
collectorand should thus have the following property:

Property 1 The garbage collector should only re-
claim nodes that are not part of the data structure and
for which future access by any thread is not possi-
ble.



Guarantees the Bounded number of Compatible with Suffices with
safety of shared unreclaimed deleted standard memory single-word

references (Property 5) nodes (Property 2) allocators (Property 4) compare-and-swap

New algorithm Yes Yes Yes Yes
Detlefs et al. [1] Yes No e Yes No a

Herlihy et al. [5] No Yes Yes No b

Herlihy et al. [4] Yes No e Yes No c

Michael [9, 10] No Yes Yes Yesd

Valois et al. [16, 12] Yes No e No Yes

a The LFRC algorithm uses the double-word compare-and-swap (DCAS) atomic primitive.
b The pass-the-buck (PTB) algorithm uses the double-width compare-and-swap atomic primitive.
c The SLFRC algorithm is based on the pass-the-buck (PTB) algorithm, and thus uses double-width compare-and-swap.
d The hazard pointer algorithm uses only atomic reads and writes.
e These reference count-based schemes allow arbitrary long chains of deleted nodes that recursively reference each other to be created. In addition, deleted

nodes that cyclically reference each other (i.e. cyclic garbage) will be not be reclaimed ever.

Table 1. Properties of different approaches to non-blocking memory management.

It should also always be possible to predict the maxi-
mum amount of memory that is used by the data structure,
thus adding this requirement to the garbage collector:

Property 2 At any time, there should be an upper bound on
the number of nodes that is not part of the data structure,
but not yet reclaimed to the system.

In actual implementations of a garbage collector (GC)
these properties can be very hard to achieve, as local refer-
ences to nodes might not be accessible globally (e.g. they
might be stored in processor registers). Therefore imple-
mentations of GC’s typically need to interact with the in-
volved threads and put restrictions on the access to the
nodes, e.g. by providing special operations for dereferenc-
ing links and demanding that the data structure implemen-
tation explicitly calls the garbage collector when a node has
been deleted.

Moreover, as the underlying data structures of interest
are lock-free and typically also linearizable, the garbage
collector also has to guarantee these features:

Property 3 All operations of the garbage collector for
communication with the underlying data structure imple-
mentation should be lock-free and linearizable.

In order to minimize the whole system’s total amount of
occupied memory for the various data structures, we some-
time would like to fulfill the following property:

Property 4 The memory that is reclaimed by the garbage
collector should be available for any arbitrary future reuse;
i.e. the garbage collector should be compatible with the sys-
tem’s default memory allocator.

In a concurrent environment it might frequently occur
that a thread is holding a local reference to a node that has
been deleted (i.e. removed from the data structure) by some
other thread. In these cases it may be very useful for the

structure Node
mm_ref:integer /* Initially 0 */
mm_trace:boolean/* Initially false */
mm_del:boolean/* Initially false */
... /* Arbitrary user data and links follows */
link[NR_LINKS_NODE]: pointer to Node /* initially NULL */

Figure 1. The Node structure

first thread to be able to use the deleted node’s links, e.g. in
search procedures in large data structures:

Property 5 A thread that has a local reference to a node,
should also be able to dereference all of the links that are
contained in that node.

The new algorithm in this paper fulfills all of these prop-
erties in addition to the property of only using atomic primi-
tives that are commonly available in modern systems. Table
1 shows a comparison of the fulfilled properties with previ-
ously presented lock-free garbage collection schemes. All
of the schemes fulfill properties 1 and 3, whereas only a
subset of the other properties is met by the previously pre-
sented schemes.

4. The New Lock-Free Algorithm

In order to fulfill all of the requested properties in Section
3 as well as providing an efficient and practical method, our
aim is to devise a reference counting method which can also
employ thehazard pointer(HP) scheme of Michael [9, 10].
Roughly speaking, hazard pointers are used to guarantee the
safety of local references and reference counts are used to
guarantee the safety of internal links in the data structure.
Thus, the reference count of each node should indicate the
number of globally accessible links that reference that node.
Figure 1 describes the node structure as it is used in our



algorithm. As in the HP scheme, each thread maintains a
list of nodes that are deleted but not yet reclaimed, and this
list is scanned for possible reclamation when its length has
reached a certain threshold (i.e.THRESHOLD_2).Some
of the deleted nodes might be prevented from reclamation
because of a fixed number of hazard pointers, while some
deleted nodes might be prevented because of a positive ref-
erence count adherent to links. Thus, it is important to keep
the number of references to deleted nodes from links to
a minimum. Before we continue with the techniques for
bounding the size of the deletion lists, we introduce an as-
sumption about what could be required by the lock-free data
structure algorithm:

Assumption 1 For each of the links in a deleted node that
reference a deleted node, it should be possible to replace it
with a reference to an active node, with retained semantics
for any of the involved threads.

The intuition behind this assumption lays behind an ob-
servation why links of a deleted node should be useful to
dereference by a thread that has a local reference to it. The
thread with a local reference to a deleted node surely wants
to find an appropriate active node and therefore takes ad-
vantage of the links. If the corresponding reference also ad-
heres to a deleted node, the previous step is repeated. From
the point of view of the thread of interest, it would not make
any difference if some other thread helped with the proce-
dure and already made sure that the links of the deleted node
all references active node. The procedure of replacing the
links of a deleted node with references to active nodes is
calledclean-up.

As described earlier, besides hazard pointers, nodes in
the deletion lists are possibly prevented from reclamation
by links in other deleted nodes. These nodes might be in
the same deletion list or in some other thread’s deletion list.
For this reason, all threads’ deletion lists are accessible for
reading by any thread. When the length of the deletion list
reaches a certain threshold (THRESHOLD_1) thethread
performs a clean-up of all the nodes in its deletion list. If all
of the nodes are still prevented from reclamation, this must
be due to nodes in some other thread’s deletion list, and
thus the thread tries to perform a clean-up of all the other
threads’ deletion lists as well. As this procedure is repeated
until the length of the deletion list is below the threshold,
the amount of deleted nodes that are not yet reclaimed is
bounded. The actual calculation ofTHRESHOLD_1 is de-
scribed in Section 4.2. The thresholdTHRESHOLD_2 is
set according to the HP scheme and is less than or equal to
THRESHOLD_1.

4.1. Application Programming Interface

Figure 2 describes the functions for safe handling of the
reference counted nodes.

/* Global variables */
HP[NR_THREADS][NR_INDICES]:pointer to Node;
DL_Nodes[NR_THREADS][THRESHOLD_1]:pointer to Node;
DL_Claims[NR_THREADS][THRESHOLD_1]:integer;
DL_Done[NR_THREADS][THRESHOLD_1]:boolean;
/* the above matrixes should be initialized to the values of
NULL, NULL, 0 respective false */

/* Local static variables */
threadId:integer; /* Unique and fixed number for each thread
between 0 and NR_THREADS-1 */

dlist: integer; /* Initially ⊥ */
dcount:integer; /* Initially 0 */
DL_Nexts[THRESHOLD_1]:integer;

/* Local temporary variables */
node, node1, node2, old:pointer to Node;
thread, index, new_dlist, new_dcount:integer;
plist: array of pointer to Node;

function DeRefLink(link:pointer to pointer to Node):
pointer to Node

D1 Choose index such that HP[threadId][index]=NULL
D2 while true do
D3 node := *link;
D4 HP[threadId][index] := node;
D5 if *link = nodethen
D6 return node;

procedureReleaseRef(node:pointer to Node)
R1 Choose index such that HP[threadId][index]=node
R2 HP[threadId][index]:= NULL;

function CompareAndSwapRef(link:pointer to pointer to Node,
old: pointer to Node, node:pointer to Node):boolean

C1 if CAS(link,old,node)then
C2 if node6= NULL then
C3 FAA(&node.mm_ref,1);
C4 node.mm_trace:=false;
C5 if old 6= NULL then FAA(&old.mm_ref,-1);
C6 return true ;
C7 return false;

procedureStoreRef(link:pointer to pointer to Node,
node:pointer to Node)

S1 old := *link;
S2 *link := node;
S3 if node6= NULL then
S4 FAA(&node.mm_ref,1);
S5 node.mm_trace:=false;
S6 if old 6= NULL then FAA(&old.mm_ref,-1);

function NewNode :pointer to Node
NN1 node :=Allocate the memory of node (e.g. using malloc)
NN2 node.mm_ref := 0;
NN3 node.mm_del :=false;
NN4 Choose index such that HP[threadId][index]=NULL
NN5 HP[threadId][index] := node;
NN6 return node;

procedureDeleteNode(node:pointer to Node)
DN1 ReleaseRef(node);
DN2 node.mm_del :=true; node.mm_trace :=false;
DN3 Choose index such that DL_Nodes[threadId][index]=NULL
DN4 DL_Done[threadId][index]:=false;
DN5 DL_Nodes[threadId][index]:=node;
DN6 DL_Nexts[index]:=dlist;
DN7 dlist := index; dcount := dcount + 1;
DN8 while true do
DN9 if dcount= THRESHOLD_1then CleanUpLocal();
DN10 if dcount≥ THRESHOLD_2then Scan();
DN11 if dcount= THRESHOLD_1then CleanUpAll();
DN12 else break;

Figure 2. Reference counting functions



The functionDeRefLink safely de-references a given
link, and sets a hazard pointer to the de-referenced node,
thus guaranteeing the future safety to access the returned
node. The procedureReleaseRef should be called when a
given node will not be accessed by the current thread any-
more. It will clear the corresponding hazard pointer.

To update a link for which there might be concurrent
updates to the link, the functionCompareAndSwapRef
should be used, which gives result whether the update was
successful or not. The procedure will make sure that any
thread that callsDeRefLink on the link can safely do so,
if the thread has a hazard pointer reference to the node
which contains the link. The requirements are that the call-
ing thread ofCompareAndSwapRef should have a haz-
ard pointer to the given node that should be stored.

To update a link for which there cannot be any concur-
rent updates the procedureStoreRef should be called. The
procedure will make sure that any thread that callsDeRe-
fLink on the link can safely do so, if the thread has a haz-
ard pointer reference to the node which contains the link.
The requirements are that the calling thread ofStoreRef
should have a hazard pointer to the given node that should
be stored, and that no other thread will possibly write con-
currently to the link (otherwiseCompareAndSwapRef
should be invoked instead).

The functionNewNode allocates a new node, sets a free
hazard pointer to it for guaranteeing the future safety for ac-
cess, and then returns it. The procedureDeleteNode should
be called when a node is removed from the data structure
and which memory should be possible to reclaim for reuse.
The user operation that calledDeleteNode is responsible
for removing all references to the deleted node from the ac-
tive nodes in the data-structure. This is similar to what is re-
quired when using a memory allocator in a sequential data-
structure. The memory manager will not reclaim the deleted
node until it is safe to do so.

Callbacks Figure 3 outlines the callbacks that have to be
defined by the designer of each specific data structure. The
procedureTerminateNode will make sure that none of the
links in the given node will have any claim on any other
node.TerminateNode is called on a deleted node when
there are no claims from any other node or thread to the
node. The procedureCleanUpNode will make sure that
all claimed references from the links of the given node will
only point to active nodes, thus removing redundant pas-
sages through an arbitrary number of deleted nodes.

Auxiliary Procedures Figure 4 describes auxiliary func-
tions for internal use by the reference counting scheme.
The procedureScan will search through all not yet re-
claimed nodes deleted by this thread and reclaim only those
that does not have any matching hazard pointer and do not
have any counted references from any links inside of nodes.

procedureTerminateNode(node:pointer to Node,concurrent:boolean)
TN1 if not concurrentthen
TN2 for all x where link[x] of node is reference-counteddo
TN3 StoreRef(node.link[x],NULL);
TN4 else
TN5 for all x where link[x] of node is reference-counteddo
TN6 repeatnode1 := node.link[x];
TN7 until CompareAndSwapRef(&node.link[x],node1,NULL);

procedureCleanUpNode(node:pointer to Node)
CN1 for all x where link[x] of node is reference-counteddo

retry:
CN2 node1:=DeRefLink(&node.link[x]);
CN3 if node16= NULL and node1.mm_delthen
CN4 node2:=DeRefLink(&node1.link[x]);
CN5 CompareAndSwapRef(&node.link[x],node1,node2);
CN6 ReleaseRef(node2);
CN7 ReleaseRef(node1);
CN8 goto retry;
CN9 ReleaseRef(node1);

Figure 3. Callback functions

The procedureCleanUpLocal will try to remove redun-
dant claimed references from links in deleted nodes that has
been deleted by this thread. The procedureCleanUpAll will
try to remove redundant claimed references from links in
deleted nodes that have been deleted by any thread.

4.2. Algorithm Correctness and Bounds on Unre-
claimed Memory

Theorem 1 The algorithm implements a lock-free and lin-
earizable scheme for garbage collection.

Theorem 2 For each threadpi the maximum number of
deleted but not reclaimed nodes in the dlist forpi is at most
N · (k+ lmax +α+1), whereN is the number of threads in
the system,k is the number of hazard pointers per thread,
lmax is the maximum number of links a node can contain
and α is the maximum number of links in live nodes that
may transiently point to a deleted node. (The number de-
pends on the application.)

Corollary 1 The cleanup threshold, THRESHOLD_1, used
by the algorithm should be set toN · (k + lmax + α + 1).

Corollary 2 The number of deleted but not yet reclaimed
nodes in the system is bounded from above byN2 · (k +
lmax + α + 1)

Due to space restrictions, the corresponding proofs of the
above theorems are left to the full version of the paper.

5. Conclusions

To the best of our knowledge, we have presented the first
lock-free algorithmic implementation of a lock-free garbage
collection scheme based on reference counting that has all
the following features: i) guarantees the safety of local as



procedureCleanUpLocal()
CL1 index := dlist;
CL2 while index 6= ⊥ do
CL3 node:=DL_Nodes[threadId][index];
CL4 CleanUpNode(node);
CL5 index := DL_Nexts[index];

procedureCleanUpAll()
CA1 for thread := 0to NR_THREADS-1do
CA2 for index := 0to THRESHOLD_1-1do
CA3 node:=DL_Nodes[thread][index];
CA4 if node6= NULL and not DL_Done[thread][index]then
CA5 FAA(&DL_Claims[thread][index],1);
CA6 if node= DL_Nodes[thread][index]then
CA7 CleanUpNode(node);
CA8 FAA(&DL_Claims[thread][index],-1);

procedureScan()
SC1 index := dlist;
SC2 while index 6= ⊥ do
SC3 node:=DL_Nodes[threadId][index];
SC4 if node.mm_ref= 0 then
SC5 node.mm_trace :=true;
SC6 if node.mm_ref6= 0 then node.mm_trace :=false;
SC7 index := DL_Nexts[index];
SC8 plist :=∅; new_dlist:=⊥; new_dcount:=0;
SC9 for thread := 0to NR_THREADS-1do
SC10 for index := 0to NR_INDICES-1do
SC11 node := HP[thread][index];
SC12 if node6= NULL then
SC13 plist := plist+ node;
SC14Sort and remove duplicates in array plist
SC15while dlist 6= ⊥ do
SC16 index := dlist;
SC17 node:=DL_Nodes[threadId][index];
SC18 dlist := DL_Nexts[index];
SC19 if node.mm_ref= 0 and node.mm_traceand node6∈ plist then
SC20 DL_Nodes[threadId][index]:=NULL;
SC21 if DL_Claims[threadId][index]= 0 then
SC22 TerminateNode(node,false);
SC23 Free the memory of node
SC24 continue;
SC25 TerminateNode(node,true);
SC26 DL_Done[threadId][index]:=true;
SC27 DL_Nodes[threadId][index]:=node;
SC28 DL_Nexts[index]:=new_dlist;
SC29 new_dlist := index;
SC30 new_dcount := new_dcount + 1;
SC31 dlist := new_dlist;
SC32 dcount := new_dcount;

Figure 4. Internal functions.

well as global references, ii) provides an upper bound of
deleted but not yet reclaimed nodes, iii) is compatible with
arbitrary memory allocation schemes, and iv) uses atomic
primitives which are available in modern architectures.

We have performed experiments with applying the new
scheme on the lock-free deque algorithm by Sundell and
Tsigas [15]. Results indicate that our new lock-free garbage
collection scheme can significantly improve the perfor-
mance and reliability of implementations of lock-free dy-
namic data structures that require the safety of global ref-
erences. We believe that our implementation is a powerful
complement to Michael’s hazard pointer scheme in the aim
of designing highly efficient dynamic data structures.

References

[1] D. Detlefs, P. Martin, M. Moir, and G. Steele Jr. Lock-free
reference counting. InProceedings of the 20th Annual ACM
Symposium on Principles of Distributed Computing, Aug.
2001.

[2] A. Gidenstam, M. Papatriantafilou, and P. Tsigas. Allo-
cating memory in a lock-free manner. InProceedings of
the 13th Annual European Symposium on Algorithms, pages
329–242. LNCS vol. 3669, Springer Verlag, 2005.

[3] M. Herlihy. Wait-free synchronization.ACM Transactions
on Programming Languages and Systems, 11(1):124–149,
Jan. 1991.

[4] M. Herlihy, V. Luchangco, P. Martin, and M. Moir. Dynamic-
sized lock-free data structures. InProceedings of the twenty-
first annual symposium on Principles of distributed comput-
ing, pages 131–131. ACM Press, 2002.

[5] M. Herlihy, V. Luchangco, and M. Moir. The repeat of-
fender problem: A mechanism for supporting dynamic-sized,
lock-free data structure. InProceedings of 16th International
Symposium on Distributed Computing, Oct. 2002.

[6] M. Herlihy and J. Wing. Linearizability: a correctness condi-
tion for concurrent objects.ACM Transactions on Program-
ming Languages and Systems, 12(3):463–492, 1990.

[7] W. H. Hesselink and J. F. Groote. Wait-free concurrent mem-
ory management by create and read until deletion (CaRuD).
Distributed Computing, 14(1):31–39, Jan. 2001.

[8] P. Jayanti. A complete and constant time wait-free imple-
mentation of cas from ll/sc and vice versa. InDISC 1998,
pages 216–230, 1998.

[9] M. M. Michael. Safe memory reclamation for dynamic lock-
free objects using atomic reads and writes. InProceedings of
the 21st ACM Symposium on Principles of Distributed Com-
puting, pages 21–30, 2002.

[10] M. M. Michael. Hazard pointers: Safe memory reclama-
tion for lock-free objects. IEEE Transactions on Parallel
and Distributed Systems, 15(8), Aug. 2004.

[11] M. M. Michael. Scalable lock-free dynamic memory allo-
cation. InProceedings of the 2004 ACM SIGPLAN Con-
ference on Programming Language Design and Implemen-
tation, pages 35–46, June 2004.

[12] M. M. Michael and M. L. Scott. Correction of a memory
management method for lock-free data structures. Technical
report, Computer Science, University of Rochester, 1995.

[13] M. Moir. Practical implementations of non-blocking syn-
chronization primitives. InProceedings of the 15th Annual
ACM Symposium on the Principles of Distributed Comput-
ing, Aug. 1997.

[14] H. Sundell. Wait-free reference counting and memory man-
agement. InProceedings of the 19th International Parallel
& Distributed Processing Symposium. IEEE, Apr. 2005.

[15] H. Sundell and P. Tsigas. Lock-free and practical dou-
bly linked list-based deques using single-word compare-and-
swap. InProceedings of the 8th International Conference
on Principles of Distributed Systems, pages 240–255. LNCS
vol. 3544, Springer Verlag, Dec. 2004.

[16] J. D. Valois. Lock-Free Data Structures. PhD thesis, Rens-
selaer Polytechnic Institute, Troy, New York, 1995.


