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Abstract

Snap-shot mechanisms are used to read a globally con-
sistent set of variable values. Such a mechanism can be
used to solve a variety of communication and synchroniza-
tion problems, including system monitoring and control of
real-time applications. Methods based on locking (e.g.
using semaphores) are penalized by blocking, which typi-
cally leads to difficulties in guaranteeing deadlines of high
priority tasks. Lock-free methods, which take a snap-shot
and then check if it corresponds to a consistent system state,
have unpredictable timing-behavior, since they may have to
retry an unpredictable number of times. Clearly, a method
which combines the predictability of locking-based methods
with the low interference (no blocking) of lock-free methods
is desirable.

In this paper we present one such method, based and
the concept ofwait-freeness. A wait-free method is a lock-
free method which is guaranteed to correctly complete in
a bounded number of steps. The price to pay for this pre-
dictability in the timing domain is the need for more than
one copy of the shared objects. In addition to proving our
method correct, we evaluate it analytically by formulat-
ing and comparing schedulability equations for snapshots
in systems using lock-based, lock-free, and our wait-free
method. We also outline how the different snapshot meth-
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ods can be used in distributed (CAN-based) systems. The
performance of the single node and distributed systems sce-
narios are evaluated experimentally by simulation. These
evaluations indicate that our method is an efficient and safe
alternative to traditional lock-based and lock-free methods.

1. Introduction

In most systems, access to shared resources and synchro-
nization among tasks is controlled bylocking. Methods that
provide upper bounds on the time a higher priority task has
to wait for locks held by lower priority tasks (the block-
ing time) have been introduced (e.g. the priority inheritance
protocol, the priority ceiling protocol, and the immediate
priority ceiling protocol [7, 14, 18, 20]). The key mecha-
nism in these protocols is to dynamically adjust priorities,
thereby avoiding priority inversion, i.e. situations in which
a high-priority task is delayed by lower priority tasks that
have preempted a task holding a lock for which the high-
priority task is competing. Priority inversion is a serious
problem because it can make a task wait too long and miss
its deadline. A recent example is the priority inversion prob-
lem in the Mars Pathfinder which caused the operating sys-
tem to repeatedly reset the system [23].

Avoiding locking: Wait-free and lock-free interprocess
communication/coordination permit access to concurrent
objects without the use of locking. Therefore, they elim-
inate the problem of priority inversion altogether. In the
lock-freeapproach,processes(or tasks)1 access shared ob-
jects concurrently without the use of locks. In cases with
overlapping accesses, some of them might have to repeat
the operation in order to correctly complete it. This implies
that there might be cases in which the timing may cause
some process(es) to have to retry a potentially unbounded
number of times, leading to a for hard real-time systems
unacceptable worst-case behavior. In await-freeprotocol

1throughout the paper the termsprocessandtaskare used interchange-
ably.



each task is guaranteed tocorrectlycomplete any operation
in a boundednumber of its own steps, regardless of over-
laps and the execution speed of other processes; i.e. while
the lock-free approach might allow (under very bad timing)
individual processes to starve, wait-freedom strengthens the
lock-free condition to ensure individual progress for every
task in the system.

Intuitively, both approaches imply that, for reasons of
correctness and/or time-efficiency, there may be a need both
for keeping more than one copy of the shared object and
to have some form of coordination among the processes
to direct readers and writers to the appropriate copy. Both
methods offer guarantees not only regarding efficiency, but
also regardingfault-tolerance, as opposed to the traditional,
exclusion-based methods, i.e. they avoid situations in which
a process that crashed while holding a lock prevents other
precesses from making progress..

Actually, the first suggestion for lock-free synchroniza-
tion [12] and the wait-free approach to real-time commu-
nication were first discussed at least two decades ago [21],
but was “lost” in the real-time systems community until re-
cently, when it was revived by Kopetz and Reisinger [11],
followed by a series of interesting results and the consistent
research effort by Anderson et.al. (including [3]) and the
more recent work by Chen and Burns [8].

The work presented in this paper addresses thesnapshot
problem, which involves taking an “instantaneous" picture
of a set of variables, all in one atomic operation. The snap-
shot is taken by one task, thescanner, while each of the
snapshot variables may concurrently and independently be
updatedby other processes (calledupdaters). A snapshot
object is also called acomposite register, consisting of a
number ofcomponents(indexed1 throughc), which con-
stitute the entities which can be updated and snap-shot. We
will use the two terms (snapshot object and composite reg-
ister) interchangeably.

Snapshot objects are particularly useful and important
tools for interprocess communication and coordination.
Since they can return to the scanner a consistent global state
of the system, they can provide support for decision algo-
rithms and they can also be used to solve a variety of com-
munication and synchronization problems, e.g., consistency
checking in transaction-based systems, distributed debug-
ging, stable property detection (deadlock, termination de-
tection, etc.), concurrent time-stamping, system monitoring
and control, including many real-time applications, such as
automotive or avionics control systems [15, 17].

It should be noted that lock/wait-freedom is a desired
property of snapshot solutions not only because it avoids
priority inversion, but because it enables the scanner to ob-
tain a consistent view of the systemwithout freezingit.

Given its importance, the problem has been extensively
studied in the literature of wait-free protocols (cf. e.g. [1, 2,
5, 10])

An implementation of a composite register (snapshot ob-
ject) consists of a data structure of appropriately initialized
shared variables and a set of procedures to implement the
scanandupdate operations. Thetime complexityof an im-
plementation is the maximum number of accesses to the
shared memory per operation, while thespace complexityis
the number of shared variables needed. We measure them
as a function of the number of processes which share the
composite register.

The lock-free and wait-free conditions are relevant to the
timing of the the implementation; the basiccorrectnesscon-
dition is linearizability [9] (atomicity). This condition re-
quires that although operations may overlap in time, their
effects must be the same as the effects of somesequential
execution, i.e. that an external observer conclude that they
happen in sequence.

Our contribution: We build on previous work on the
problem and on wait-free implementations with applica-
tions in real-time systems [10, 8] and we propose more effi-
cient wait-free protocols for scanning, updating, and the use
of this snapshot implementation for real-time systems ap-
propriate for automotive/avionics monitoring/control. We
make no assumptions about relative speeds of the differ-
ent system parts; hence, our solutions are appropriate for
completely asynchronous uniprocessor and multiprocessor
systems.

Our wait-free protocols are based on the principal idea
of the deterministic solutions for one scanner task in [10],
which leads to a wait-free snapshot implementation with-
out imposing more than a minimal (constant) overhead per
update and per scan operation, retaining the (necessary) lin-
ear time complexity for the (single) scanner. This makes the
protocol suitable for the considered application domains. To
the best of our knowledge, none of the other wait-free pro-
tocols in the literature can achieve this performance for the
case of a single scanner process. Inspired by the work of
Chen and Burns [8], we propose an enhancement by a sub-
protocol that achieves multiple-phase agreement between
pairs of processes, using simple booleanTEST&SETvari-
ables [8]. Despite the fact that these variables have been
shown to have higher synchronization power than needed
for solving the problem in a wait-free manner in general
systems [9], as we show, by using them, we have significant
gain in the memory requirements and in the time-efficiency
of the solution, both of which are very important for em-
bedded real-time systems. Moreover, these variables are al-
ways available and are not costly (cf. section 4). This en-
hancement enables significant savings in space (namely by
2n shared variables in a system withn processes) and time



(namely by at least2n sub-operations per scan), compared
to the solution in [10].

We evaluate our algorithms analytically and we present
the results of our experimental study and evaluation in
a simulated real-time system appropriate for automo-
tive/avionics monitoring/control. The system consists of
CAN-bus-connected nodes, each of which is connected to
a set of devices, whose measurements activate the updates
in the system via I/O controllers. The scan operations are
executed by a specific controller task in the system. We per-
form a comparative study and evaluation among lock-based,
lock-free and our wait-free snapshot. Our results suggest
that our algorithms are promising, more efficient and safe
alternatives to lock-based algorithms for the above and sim-
ilar real-time applications, and that they do not really imply
additional cost to the system, compared to the lock-based
approach. Compared to the lock-free approach, our wait-
free solution not only provides stronger guarantees, but it
is also more predictable; i.e. retains its performance under
more frequent updates, when the lock-free scan may take
longer time, or even not terminate at all. In multi-node sys-
tems it seems that the lock-free method is not useful at all,
while our algorithms perform good in both single and multi-
node systems.

2. The wait-free snapshot solution

To get better intuition on the requirement on a consistent
snapshot, one must keep in mind that we do not want the
scan to return inconsistent values, e.g., values written by
updates that have occurred after an already scanned value
has been updated. Figure 1 shows undesired behavior by a
scan (i.e. part of an inconsistent snapshot). In the figure the
horizontal lines represent the duration in time of the opera-
tions. If componentsk; l record fuel level in two fuel tanks
of a vehicle and the updates report consumption the snap-
shot in figure 1 will erroneously lead to the conclusion that
the system has more fuel left than it actually does.

Component k

Component l

UPDATE UPDATE

UPDATE

SCAN returns for k, l

Figure 1. An inconsistent snapshot

The snapshot protocol presented here is based on the fol-
lowing idea: if each scan returns for each component a value

which is not overwritten (cf. figure 2(c)) and which is writ-
ten by an update which started before the start of the scan
(cf. figure 2(a,b)), then the solution satisfies an atomicity
criterion [2, 10] that enables us to argue for each compo-
nent separately and hence leads to a more modular proof.
The criterion and the proof that the solution satisfies are pre-
sented formally in section 5. For the following paragraphs
and the intuitive understanding of the solution, the reader
should keep in mind that the intuitive presentation of the
criterion is summarized in figure 2.
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c) Scan NEVER returns a value from an Update that has been overwritten by an Update that sterted before scan started. 
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d) Scan NEVER returns ia value from an Update that started after the Scan started.

a) Scan can return a value from concurrent Updates that started befor SCAN started.

b) Scan can return a value from the Update that immediately precedes it.

Figure 2. The atomicity/linearizability criterion satisfied
by our wait-free solution

First consider the case where for each component there
is only one updater (i.e. no concurrent updates in a com-
ponent); this is also the case in figures 3 and 4. To guar-
antee the behavior required by the criterion that we infor-
mally explained above, for each component there are sev-
eral shared variables (only 3 suffice, as we show later) to
hold the value of the component. All that an updater has
to do is to write its value where it is told to by the scanner
through a pointer. With its first sub-operation in each scan,
the scanner forwards a pointer for each component (array
NEXTin figure 4) to one of these sub-registers; by not read-
ing these sub-registers in the current scan, it achieves not to
return values written by write operations which start after
its own starting point (cf. fig. 2(a),(b),(d)). Moreover, by
reading the remaining sub-registers in eachBUFFER[k] in
the reverse order from the one that they were forwarded (by
the previous writes ofNEXT) in previous scans and by re-
turning for each componentk the first non-empty value, it
achieves to return non-overwritten values ((cf. fig. 2(c)).

To guarantee that this will work as intended, the scanner
must make sure that when it chooses a sub-register to for-
ward, that sub-register is not about to be used by an update
that started earlier and was guided to write there. Failing
to do so, the scanner may miss updates. Therefore, there



/ variables shared among scanner, updater processes /
var BUFFER: array [1::c][1::3] of shared valtype;

/ the actual value-holders /
NEXT: array [1::c] of shared1::3;

/ index variable: the scanner guides the updaters /
PREF_SCAN, PREF_UPDATE: array [1::c] of shared1::3;

/ index variables for the tracing game /
SMTU: array [1::c] of shared boolean;

/ Scanner Must Trace Updater /
TS: array [1::c] of shared Test&Set boolean;

procedure update(k : 1::3; val : valtype)
/ update procedure for componentk /

varcopy_next, wptr : 1::3 ; / local variables /
begin

RESET(TS[k]);
SMTU[k] := 1;
copy_next:= READ(NEXT[k]);
WRITE (PREF_UPDATE[k] := copy_next);
if TEST&SET(TS[k]) then

wptr := copy_next; / copy_nextequalsPREF_UPDATE[k] /
else

wptr := READ(PREF_SCAN[k]);
end_if
WRITE (BUFFER[k][wptr] := val);

end

Figure 3. Wait-free snapshot (single updater per compo-
nent,c components): Shared variables andupdateproce-
dure

must be sometracing involved, so that ascan, before de-
ciding which sub-registers will be forwarded in the next in-
vocation ofscan(and before “clearing” those sub-registers),
knows which are the “dangerous” ones. For this, each scan
plays a “tracing” game for each component,if it detects the
start of an update operation after the last scan. The trac-
ing game is based on a multiple-phase agreement between
pairs of processes, using simple booleanTEST&SETvari-
ables [8]. To remember the “dangerous” sub-registers (be-
sides the one most recently forwarded), it keeps an array
prev_trace. Roughly speaking, in thekth entry of this ar-
ray, the scanner keeps information about which of the three
sub-registers inBUFFER[k] will the most recently started
update to thekth component use to write its value.

In the case where there are multiple tasks that may con-
currently update a component (say,m updaters per compo-
nent), the basic idea of the algorithm remains the same. The
scanner, in order to keep track of their actions,interacts with
each updater separately, while the order and the reason-
ing of its actions remains the same as in the single-updater
case. This necessitates the extension of each data structure
for each component into an array, each entry of which is to
give guidance or trace information to/from a specific scan-
ner. It also necessitates the availability of one value-holder

procedure scan(): array [1..c] of valtype
vark : 1::c; / local variables /

prep_next, prev_trace: array [1::c] of static int;
last_read_value: array [1::c] of static valtype;
order: array [1::c][1::3] of static 1..3;

/ scanner remembers the order to scan the subregisters /

procedure read_registers(k : 1::c): valtype
/ auxiliary procedure to find last value for componentk /

var i : 1::2;
tmp: valtype;

begin
for i = 2; ::1 do / read component-k’s, subregisters /
tmp := READ(BUFFER[k][order[k][i]);

/ ... in the reverse order that they were forwarded /
if tmp 6= nil return (tmp) end_if

end_for
return (last_read_value[k]);

end

procedure rearrange_order(k : 1::c)
/ auxil. procedure to prepare componentk structure for next scan /
begin

{set prep_next[k] s.t. 6= prep_next[k]^ 6= prev_trace[k]};
/ prepareNEXTto forward in next scan /

{ left-rotate the values inorder[k][x] , ...,order[k][3],
whereorder[k][x] = prep_next[k]}

/ i.e. order[k][3] := prep_next[k]; /
/ also keep the order to use inread_registersnext time /

end

begin / main body for procedure scan /
WRITE (NEXT:= prep_next);
for k = 1; : : : ; c do

/ for each componentk do /
last_read_value[k] := read_registers(k);
if SMTU[k] = 1 then

/ then must trace update; elseprev_trace[k] remains as it is /
SMTU[k] := 0;
WRITE (PREF_SCAN[k] := prep_next[k]);

/ prep_next[k] equalsNEXT[k] /
if TEST&SET(TS[k]) then

prev_trace[k] := prep_next[k];
/ prep_next[k] equalsPREF_SCAN[k] /

else
prev_trace[k] := READ(PREF_UPDATE[k]);

end_if
end_if
rearrange_order(k);
WRITE (BUFFER[k][prep_next[k]] := nil );

/ must “clean” it before the next scan /
end_for
return (last_read_value);

end

Figure 4. Wait-free snapshot (single updater per compo-
nent,c components): Thescanprocedure

sub-registerfor eachconcurrent update for each compo-
nent; hence, for each component now we need theBUFFER



array to be of dimensionm + 2, instead of 3 which was
the case for the single updater per component. It must be
pointed out that, during eachscan, a uniquesub-register is
forwarded to the updaters of each componentk, as before.
It is the asynchrony among the updaters that necessitates
tracing each one separately, hence having situations ofm

“dangerous” sub-registers for a component.

3. Analytical evaluation

In this section we define equations to calculate the over-
head that each type of snapshot implementation imposes
to the RT-system. We then analytically compare our wait-
free snapshot algorithm with lock-based and lock-free im-
plementations. We will focus on uniprocessor systems even
though our wait-free algorithm also can be used, without
modifications, in a multiprocessor system.

We assume that we haven tasks in the system, indexed
t1 : : : tn. For taskti we will use the standard notationsTi,
Ci, Ri, Di andBi to denote the period, worst case exe-
cution time, worst case response time, deadline and block-
ing time (the time the task can be delayed by lower priority
tasks), respectively. Also,lp(i) andhp(i) denote the set of
tasks with less and higher priority than taskti, andpri(i)
denotes the priority of taskti. We usecs(i) to denote the
set of critical sections2 that taskti accesses,Ci;s to denote
the worst case execution time for taskti in critical section
s, andceil(s) to denote the ceiling priority of critical sec-
tion s. The ceiling priority is the highest priority of any
task that may access the critical section. Finally, to estimate
how much other tasks will be affected by the snapshot, we
letni;op denote the number of times taskti makes the oper-
ationop andCop denote the worst case execution time for
making the operationop.

For a system to be safe, no task should miss its deadlines,
i.e. 8i j Ri � Di. The response timeRi for a task in the
initial system can be calculated using the standard response
time analysis [6] as:

Ri = Ci +

X
j2hp(i)

�
Ri

Tj

�
Cj (1)

The summand in the formula gives the time that taski may
be delayed by higher priority tasks. As noted before, we
assume a uniprocessor system and to simplify the formu-
las we assume that tasks have no jitter, can be preempted
at arbitrary points during their execution, has unique prior-
ities (given in a deadline monotonic order), do not experi-
ence blocking, and that there are no overheads for context
switching or interrupt handling. We also assume that one of

2throughout this section we often abuse the termcritical sectionto also
denote “access to shared data” even in the lock-free and wait-free cases

the tasks in the system acts as a snapshot task, saytsnap, but
in the original system doesn’t have any mechanism to get a
consistent snapshot.

In the following subsections we estimate the overhead,
both ontsnap and on the other tasks in the system, that each
type of snapshot implementation will impose to the original
system. As we shall see bothRi andCi will be changed.

The Wait-Free Protocol: The cost for running our wait-
free implementation of the snapshot algorithm is easily
bounded. We only have to add the extra computation time
to each task for performing memory accesses, (i.e.,reador
write) needed to determine and control where the snapshot
task will be reading (see the code in figure 3 and 4). For
other memory accesses no modifications are needed, but
we have to add two extra buffers for each component of
the composite register (snapshot object). The response time
equation forall tasks becomes:

Ri = C 0
i
+

X
j2hp(i)

�
Ri

Tj

�
C 0
j

(2)

where the execution timeCi for all tasks except the snap-
shot task has been extended to include the extra time to do
update operations instead of write operations, i.e:

C 0
i
= Ci + ni;update � (Cwfupdate � Cwrite) (3)

and for the snapshot task,tsnap:

C 0
i
= Ci + ni;scan � (Cwfscan � Cread) (4)

Lock-based protocols: In a lock-based protocol, each
component of the composite register (snapshot object) con-
sists of one atomic sub-register that holds the value of the
component and has a lock associated with it3. An update
must get the lock of the component that it wants to update
before writing the new value to the sub-register. A scan
must get the locks of all the sub-registers (i.e. mustfreezeall
the updaters) before reading the components values. During
theactual reading time there is no overlapping write (they
have to wait for the locks), hence the snapshot obtained is
consistent.

As mentioned in the introduction, the use of locking
must be accompanied by the use of an appropriate method
to prevent priority inversion. The priority ceiling proto-
col (PCP) [14] and the immediate priority ceiling protocol
(IPCP) [20] ensure that a taski can only be blocked (or de-
layed) at most byonecritical section of any lower priority
task locking a semaphore with ceiling greater than or equal
to the priority of taski.

3Another solution is to have a unique lock for all the components, but
this would reduce the concurrency even further.



When having lock-based snapshot in the system, both
PCP and IPCP have a response time formula forall tasks
like:

Ri = C 0
i
+Bi +

X
j2hp(i)

�
Ri

Tj

�
C 0
j

(5)

where

Bi = maxf j;s j j2lp(i) ^ s2cs(j) ^ ceil(s)�pri(i) gCj;s (6)

and

C 0
i
= Ci + ni;take � Ctake + ni;rel � Crel (7)

and take and rel are the operations to take and release
semaphores, respectively. The maximum blocking time,Bi,
which a taski can wait for a lower priority task to execute,
is calculated by investigating all tasks with lower priority
than taski and all the semaphores that these tasks can lock.
For those semaphores with a ceiling higher than or the same
as the priority of taski, the maximum blocking time is the
longest computation time a lower priority task might exe-
cute in a critical section.

In a uni-processor system we can exploit the priority
structure of the tasks so that semaphore taking and releas-
ing can be implemented using just priority changes. But
still these priority changes will be costly concerning execu-
tion time when they will be implemented using operating
system calls. If we implement the snapshot task as a low
priority task most high priority tasks will also experience
large amount of blocking.

Lock-free Protocols: A very simple lock-free snapshot im-
plementation, with minimal overhead in each update and
memory requirements is the following:

Each component of the composite register (snapshot ob-
ject) consists of one atomic sub-register that holds the value
of the component, as in the lock-based case. In addition, the
implementation requires a boolean variableNOTE, shared
by the scanner and all the updater tasks. On each update,
in an atomic operation, the updater also makes a note (by
writing the value 1 toNOTE) together with writing the new
value to its component. A scan starts to take the snapshot by
resettingNOTE to 0 and subsequently reading the values of
all the components; it then checks whether there have been
overlapping updates (by checking the value ofNOTE) and
decides whether it should retry.

For estimating the worst case response time for the snap-
shot task, assume that the snapshot task gets preempted (by
a higher priority task) when it is almost finished, i.e., the
scan is invalidated just before it successfully completed.

We can observe that a high priority task which restarts
the snapshot will never restart it more than once during the

same instance, since it will execute until completion be-
fore the snapshot task (which executes at lower priority) can
restart.

The response time formula therefore becomes:

Ri = C 0
i
+

X
j2hp(i)

�
Ri

Tj

�
C 0
j

(8)

whereC 0
i
= Ci for tasks that do not access the snapshot

memory,C 0
i
= Ci+Cwrite for tasks that accesses snapshot

memory and

C 0
i
= C 00

i
+

X
9sjj2hp(i)^s2cs(i)^s2cs(j)

�
Ri

Tj

�
� C 000

i
(9)

where

C 00
i
= Ci + Cwrite + Cread + Ccompare (10)

C 000
i

= Clfscan + Cwrite + Cread + Ccompare (11)

for the snapshot tasktsnap.

The summand in the outer formula (8) gives the time
that the scan can be delayed by higher priority tasks and
the summand in the inner formula (9) gives an upper limit
on how much time the snapshot task might spend in retry
loops.

We note thatC 0
i

can become quite large for the snap-
shot task when we are spending time in retry loops. Each
timeRi is recalculated, the worst possible computation time
must also be recalculated. Actually, Equation 9 is very pes-
simistic, in that it for each preemption of a potentially in-
terfering task assumes the worst-case interference (i.e., that
the scan has to be restarted immediately before it success-
fully completes). It shall be noted that it is only tasks with
priority lower than the snapshot task that will have modified
response times. This should be compared to the lock-based
approach, where all tasks except the ones with lowest prior-
ity are penalized.

The major disadvantage with lock-free snapshot imple-
mentations is that the risk for repeated retries, especially
when we are running the scan at low priority (and running
it at a high priority will penalize a larger set of tasks).

Schedulability Testing: To evaluate which snapshot im-
plementation gives highest chance for schedulability, we
started by creating a system without a snapshot mechanism,
but with a snapshot tasktsnap that just reads the snapshot
values without providing any guarantee that they are consis-
tent. In the evaluation we only use task sets, including such
a tsnap task, that are schedulable using the schedulability
formula (1).



Three different systems using the three different snap-
shot mechanisms (lock, lock-free and wait-free) are then
added and new schedulability tests are performed on each
system.

We use high priority tasks with relatively short execution
time (Ci) to model I/O-devices. In our evaluation, we fixed
the number of tasks and I/O-devices and their fraction of the
system load, but varied the total system load. Every task and
I/O-device except for the snapshot task, continously updates
a different component register. The snapshot tasks conti-
nously takes snaphots of the components. Each snapshot is
fixed to involve 5 components, randomly chosen. The tim-
ing figures for scanning, reading and etceras where assumed
to be fixed, and were fetched from a RTOS called RTEMS
and by doing manual WCET analysis by cross-compiling
and cycle counting. The system is assumed to be running
using a Motorola MC68020 20Mhz CPU. TheCi, Pi, Di

andcs(i) parameters for each task were randomly generated
between specified limits. The parameters used are given in
figure 6. The analysis results are presented in figure 5 (a)
and (b). With schedulability probability we are measuring
how many of the analysed systems that still are schedulable
after adding the different snapshot algorithms.

The result clearly indicates that for the parameters used
both the wait-free and lock-free methods outperform the
lock-based one. Other observations from this and related
experiments is that when the number of updates or the num-
ber of components involved in the snapshot increases, the
lock-free method deteriorates, since the chance of repeated
retries increases. In the lock-based method the blocking for
high priority tasks increase with the number of snapshot val-
ues, hence larger number of values gives lower chance of
schedulability.

4. Experimental evaluation

We have done several simulation studies, in which we com-
pared our wait-free snapshot algorithm with the lock-based
and lock-free methods outlined in Section 3.

Experimental Architecture: The basic component of our
experimental architecture is a micro-controller with sev-
eral I/O-devices, one CPU (without cache) and RAM mem-
ory. Furthermore, we assume a real-time operating system
which supports preemption, that the I/O-devices produce
values by reading sensors regularly, and that they interrupt
the CPU when they need I/O transfer from the device to
memory. Upon an interrupt, the CPU executes the code
given in a user-provided interrupt routine.

We also extend our study to the case of several nodes
connected via an interconnection network, e.g., a CAN-
bus, which is the network we will consider. Basically, the

MEMORY

CPU

CAN-BUS

CAN-CONTROLLER

INTERNAL
BUS

NODE

CAN-BUS

I/O-DEVICE

SENSORS

Figure 7. A CAN-based architecture with four micro-
controllers

CAN-bus arbitration works as a priority driven scheduler,
where the highest prioritized message at any of the con-
nected nodes will be transmitted. The CAN-bus is broadcast
bus on which all nodes conceptually receive all messages si-
multaneously. On each node, network accesses are handled
by a CAN controller, which can be seen as an I/O-processor
for message handling. When a message arrives, the CPU
is notified by an interrupt. Tindell et.al. [22] have showed
that the fixed priority response time equations can be easily
extended for analysis of CAN-bus message delays.

We assume that the tasks in each node read values from
the sensors as well as produce values that other tasks can
use in their computations. The hardware supports Test&Set
operations (used by the wait-free snapshot) and the oper-
ating system provides the semaphores needed for the lock-
based schemes. We further assume that only the most re-
cent sensor value can be buffered at the corresponding I/O-
device, that the interrupt handlers (I/O-controllers) have pri-
ority over application tasks, and that higher priority inter-
rupts can preempt lower priority interrupts.

Snapshot in a single node system:The simulations are
made using a discrete event simulator written in the pro-
gramming language Erlang [4]. A selection of the same sce-
narios generated for the schedulability tests are simulated to
get an average performance. For each considered CPU load,
10 different scenarios are simulated during a period of 1 000
000 time units. Any missed deadlines are detected during
the simulation and the probability for schedulability is cal-
culated. The experiment results are presented in figures 8
(a) and (b).

Similar to the analysis, the experiment also indicates that
the wait-free and lock-free methods behave better than the
locked-based one. The lock-free method behaved extraordi-
narily good, and during the simulation only a maximum of
one retry was detected. The reason for this is the very short
time it takes to redo the scan compared to the much longer
time in average between each update.

Snapshot in CAN-multiple-node systems:We have also
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Figure 5. Schedulability admission tests for system with the parameters given in figure 6.

Fixed values
Nr of tasks 10 Tasks Tot CPU load 90%
Nr of devices 15 Devices Tot CPU load 10%
Ctake 35�s Cread; Cwrite 1�s
Crel 33�s Clfscan 15�s
Cwfupdate 26�s Ccompare 1�s
Cwfscan 239�s Analysis per Load 100

Varying values Min Max Min Max
Task nr of accesses to
component

1 20 Device nr of ac-
cesses to component

1 2

Task CompTime (Ci) 100 10000�s Device CompTime 50 500�s
Task Period (Pi) 10000 190000�s Device Period 1000 150000�s
Task Deadline (Di) 50000 250000�s Device Deadline 1000 100000�s

Figure 6. Schedulability analysis parameters

studied snapshots in multiple micro-controller CAN-bus
connected systems, assuming that the scanner task is run-
ning in one of the controllers in the system and that the
snapshot involves all the I/O devices and sensors in the sys-
tem. When the scanner takes a snapshot it sends a snapshot-
request message (with high or low priority, depending on
how urgently the snapshot is needed) on the CAN-bus. This
message will reach all the nodes at almost the same time
and each CAN-controller will raise an interrupt to its CPU.

Below we explain how the snapshot implementations
of the previous sections are made for this system. In all
three approaches the update protocols are as before, and the
scanner protocols start by sending a single broadcast “scan-
start” message on the bus. Then the different scan protocols
behave as follows:

The lock-based approach

1. on reception of the “scan-start” message, the processes
responsible for the scan in each node locks all the lo-
cal variables of the node components and reads and
returns their values (via messages over the CAN-bus)
in response to the above message

2. the scanner waits to receive responses from all nodes
and then sends an "unfreeze" message on the bus

3. the process responsible for the scan in each node un-
locks its components in response to the "unfreeze"

message

The lock-free approach

1. on reception of the “scan-start”, the process responsi-
ble for the scan in each node resets itsNOTEvariable,
reads the values of its components in the node and re-
ports them to the scanner via the bus

2. the scanner waits to hear from all nodes and then sends
a new message requesting the nodes to check their
NOTEvariables

3. the process responsible for the scan in each node re-
ports the value of itsNOTEvariable to the scanner

4. the scanner checks whether all theNOTEvariables are
0, in which case the snapshot is complete and consis-
tent, otherwise it repeats the scan, starting with the first
step above.

The wait-free approach: In response to the “scan-start”
message, theWRITE (NEXT := prep_next;) is executed
in each component and the process responsible for the scan
in each node is activated to execute the scan on the local
components, after which it reports the values to the global
scanner. The difference in the initiation time between dif-
ferent nodes can safely be assumed (cf. CAN-behavior de-
scription earlier in this section) to be smaller than the time
it takes an update to complete uninterrupted, hence the cor-
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Figure 8. Schedulability experiments for a single-node system

rectness of the solution is guaranteed (cf. also section 5)

The simulation experiments are done in a similar envi-
ronment to the single-node analysis and experiment. The
system consists of 10 nodes with similar task sets compared
to the single-node experiment, the last node also has an ex-
tra task that manages the multi-snapshot. The CAN-bus is
simulated without any other contention than created when
applying the different methods. The system is simulated
for different system loads (each CPU has this load), and the
response time for the multi-snapshot is measured. All of
the 24 components in each node are scanned by the local
snapshot tasks, which run at the same priority as the multi-
snapshot task. Each node also has a simulated CAN-bus
high priority interrupt that manages the incoming messages.
The three different protocols were simulated with the snap-
shot tasks running at either low or medium priority. The
systems were simulated during a period of 2 000 000 time
units. The additional (compared to the single-node experi-
ment) parameters are presented in figure 9. The results of
the experiments are presented in figure 10 (a) and (b), and
figure 11 (a) and (b) for the average respective the maxi-
mum response time for the multi-snapshot.

The experiments show clearly that the wait-free method
performs much better than the other methods. It should be
noted that the lock method also continues to execute on the
local snapshot tasks on each node for some time even af-
ter the multi-snapshot has finished, thus limiting the maxi-
mum rate for succeeding multi-snapshots. It is also obvious
that the lock method affects the other tasks response times
more than what the wait-free does, because on the exper-
iment with lowest priority snapshots and the highest cpu
load, the lock method did not terminate, most probably be-
cause of system overload. The lock-free method performed
extremely poor, it only succeeded for system scenarios with
very low system load, otherwise it did not even terminate.

5. Correctness of wait-free snapshots

The basic correctness condition for a wait-free implementa-
tion of an object islinearizability, i.e. although operations
of concurrent processes may overlap in time, each one of
them appears to have effect instantaneously, in an order that
preserves the register actions’ semantics.

In a global time model each operationq “occupies" a
time interval [bq; fq ] on one linear time axis(bq < fq);
There is a precedence relation on operations (denoted by
‘!’), which is a strict partial order:q1 ! q2 means that
q1 ends beforeq2 starts; Operations incomparable under!

are calledoverlapping. The precedence relation is extended
to relate sub-operations of operations; naturally, ifq1 ! q2,
then for any sub-operationsop1 andop2 of q1 andq2, re-
spectively, it holds thatop1 ! op2.

A run is an execution of an arbitrary number of oper-
ations according to the respective protocols. Given a run
of a composite register implementation, areading function
�k for any componentk is a function that assigns an up-
date operationu to each scan operations, such that the
value returned bys for componentk —according to the
scanoperation performed— is written byu —according to
theupdateoperation performed. It is assumed that for each
component there exists an update operation which initial-
izes the component and precedes all other operations on it.

A run on a composite register construction isatomicor
linearizable, if the partial order! on its operations can be
extended to a stricttotal order), such that for any scans
and for each componentk it holds that [13]:

1. �k(s) ) s and
2. there is no updateu onXk such that�k(s) ) u) s.

A construction is atomic if all its runs are atomic. When
sub-registers are atomic, the precedence relation! is a to-



Fixed values
Cwfscan 1094�s Creceive scan 256�s
Clfscan 72�s Csend msg 10�s
Csend scan 240�s Creceive msg 26�s
Snapshot Period 100000�s Nr of nodes 10

Figure 9. Multi-node experiment parameters
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Figure 10. Average response time experiments for a multi-node system

tal order when restricted to sub-operations on a single sub-
register.

Lemma 1 [Atomicity Criterion, [2, 10]] A construction
of a single scanner composite register (snapshot object) is
atomic if and only if for each componentXk, the updates on
it can be serialized by a total order)k, which is compatible
with the precedence relation! and satisfies the following
conditions:

1. Each component independently is a consistent
atomic register; i.e. each)k and �k satisfy all the
following:

� (No-Irrelevant)for each scans, it is not the case
thats! �k(s)

� (No-Old) for each scans there exists no update
u onXk so that�k(s))k u! s

� (No-New-Old-Inversion)for any two scanss1
and s2 and for any componentXk, it is not the
case that:s1 ! s2 and�k(s2))k �k(s1).

2. For any pair of componentsXk andXl and for any
scans, it is not the case that there exist updatesv and
u onXk andXl respectively such that�k(s))k v !

u
=
)l �l(s), whereu

=
)l �l(s) means that either

u)l �l(s) or u = �l(s).

The second condition guarantees that a scan may not re-
turn for one component a value which is very old compared
to the value it returns for another component (cf. fig.1).

The proof here follows the lines of the proof of the de-
terministic snapshot implementation in [10]. The following
lemma enables to argue abouteach component separately,
which means a great simplification.

Lemma 2 If a snapshot implementation satisfies the first
condition of the atomicity criterion of lemma 1 and it also
satisfies that, for every run, for each scans and each com-
ponentk, if u = �k(s) or u)k�k(s) thenbu < bs, then
the implementation also satisfies the second condition of the
atomicity criterion of lemma 1.

Proof: Suppose, towards a contradiction, that there are up-
datesv and au on two componentsXk andXl, respectively,
such that�k(s))k v ! u

=
)l �l(s). Then, since by hy-

pothesisbw < bs, we get that�k(s))k v ! s, a contradic-
tion. 2

Since we have a single scanner case, we have that the
scan operations are totally ordered in time, hence we can
enumerate them, havings[i] denote theith scan. We also
define for each scans, tag(s) = i if s = s[i]. Simi-
larly, enumerate the instances ofNEXT, as they become for-
warded by the scan operations (via the firstWRITE in each
of them); NEXT[i] is forwarded bys[i]. Let also, if some
x = NEXT[i][k], thentag(x) = i. In other words, by the
enumerating the scans, we assign to each pointer to a sub-
register that is being forwarded atag, which equals thetag
of the scan that forwards it (viaNEXTand the copy that it
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Figure 11. Maximum response time experiments for a multi-node system

writes inPREF_SCAN).

For any updateu let uptru denote the pointer to the
sub-register whereu writes its value. Let thentag(u) =

tag(uptru). In other words, each updateu inherits the tag
of the scan that forwarded the pointer to the sub-register
whereu writes its value.

The lemmas below prove one-by-one the conditions re-
quired by the lemma 2 for an arbitrary runr and an arbi-
trary componentk, first for thesingleupdater per compo-
nent case, i.e.,)k is actually!k.

Lemma 3 (No-Irrelevant)for each scans, it is not the case
thats! �k(s)

Proof: (outline) It is straightforward from the protocol, that
a scan returns values only from updates which have com-
pleted. 2

Lemma 4 If u, u0 are updates in componentk andu! u0,
thentag(u) � tag(u0).

Proof: (outline) Each update assigns towptr a value that it
read fromNEXT[k] or from PREF_SCAN[k]. Clearly, the
tag of the value thatu0 reads fromNEXT[k] is greater that or
equal to the tag of value thatu reads fromNEXT[k], since
it is either the same or there has been some new scan that
forwarded a new instance ofNEXTin betweenu andu0 read
of NEXT. Moreover, the tag of the value that any updateu

gets fromPREF_SCAN[k] (if it reads PREF_SCAN[k] at
all, i.e. if it fails in theTEST&SETinvocation) is greater
that or equal to the tag of value that it reads fromNEXT[k].
This is because in order that fails in theTEST&SETin-
vocation, there must be an overlapping scans which in-
voked theTEST&SET(TS[k]) after u reset it and before
u invoked it. This scans’s PREF_SCAN[k] has the same

tag as itsNEXT, and there can be no other scan in between
that write of PREF_SCAN[k] by s and the invocation of
TEST&SET(TS[k]) by u (because of theSMTU[k] check-
ing), hence the claim holds. 2

Lemma 5 (No-Old)For each scans there exists no update
u onXk so that�k(s)!k u! s.

Proof: (outline) By contradiction, using the previous
lemma, and the fact that from the scanner procedure we
have (sub-procedureread_registers) that the sub-registers
in BUFFER[k] are read in decreasing tag value. 2

Lemma 6 For each scans, if u = �k(s) or u!k�k(s) then
bu < bs.

Proof: (outline) Suppose, towards a contradiction that ex-
istss such thatb�k(s) > bs, i.e. thats returns a value written
by an update that starts afters has started.

Since every update completes with the atomic write of
its value to a place inBUFFER[k], it holds thatfu < fs, i.e.
that�k(s) completes befores completes.

We know that the value that�k(s) reads forNEXT
is the one written bys. Using similar reasoning as in
lemma 4 (using theSMTU and TEST&SETtracing game
between the scanner and the updater) it follows that�k(s)

will write its value in the register pointed to byNEXT[k]
(as s wrote it and�k(s) read it). But s does not read
BUFFER[k][NEXT[k]], hence we have the contradiction.

Since it holds thatb�k(s) < bs, it will also hold thatbu <
bs for anyu thatu!k�k(s). 2

Lemma 7 (No-New-Old-Inversion)for any two scanss1
ands2 and for any componentXk, it is not the case that:
s1 ! s2 and�k(s2)!k �k(s1).



Proof: (outline) By contradiction, using the previous
lemma. 2

For themultiple-updater-per-component case, we need
to define)k. Define the total order among updates in one
component, using theirtag values, as defined above; up-
dates with same tag write on the same sub-register, hence
order them by the atomicity of that sub-operation. The
proof then follows the same lines, using the defined order-
ing.
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