Evaluating the performance of wait-free snapshots in real-time systenis

Bjorn Allvint Andreas Ermedafil Hans Hanssdn Marina Papatriantafilol
Hakan Sundell Philippas Tsigas
Abstract ods can be used in distributed (CAN-based) systems. The

performance of the single node and distributed systems sce-
Snap-shot mechanisms are used to read a globally con-narios are evaluated experimentally by simulation. These
sistent set of variable values. Such a mechanism can beEvaluations indicate that our method is an efficient and safe
used to solve a variety of communication and synchroniza-2alternative to traditional lock-based and lock-free methods.

tion problems, including system monitoring and control of
real-time applications. Methods based on locking (e.g.
using semaphores) are penalized by blocking, which typi-
cally leads to difficulties in guaranteeing deadlines of high
priority tasks. Lock-free methods, which take a snap-shot
and then check if it corresponds to a consistent system stateln most systems, access to shared resources and synchro-
have unpredictable timing-behavior, since they may have tonization among tasks is controlled lmcking Methods that

retry an unpredictable number of times. Clearly, a method provide upper bounds on the time a higher priority task has
which combines the predictability of locking-based methodsto wait for locks held by lower priority taskghe block-

with the low interference (no blocking) of lock-free methods ing time have been introduced (e.g. the priority inheritance

is desirable. protocol, the priority ceiling protocol, and the immediate

In this paper we present one such method, based andPriority ceiling protocol [7, 14, 18, 20]). The key mecha-
the concept ofvait-freeness A wait-free method is a lock- NiSM in these protocols is to dynamically adjust priorities,
free method which is guaranteed to correctly complete in thereby qvo!dmg priority inversion, i.e. situations in which
a bounded number of steps. The price to pay for this pre-2 high-priority task is delayeq by lower prlorlty tasks that
dictability in the timing domain is the need for more than have preempted a task holding a lock for which the high-
one copy of the shared objects. In addition to proving our Priority task is competing. Priority inversion is a serious
method correct, we evaluate it analytically by formulat- Problem because it can make a task wait too long and miss
ing and comparing schedulability equations for snapshots IS dgadllne. Arecent .e-xample'ls the prlorltymversmr} prob-
in systems using lock-based, lock-free, and our wait-free lem in the Mars Pathfinder which caused the operating sys-
method. We also outline how the different snapshot methfém to repeatedly reset the system [23].

1. Introduction

Avoiding locking: Wait-free and lock-free interprocess
*This is a revised and extended version of a paper with the title Wait- communication/coordination permit access to concurrent

free Snapshots in Real-time Systems: Algorithms and their Performance, bi ith h f locki Th i h l
presented at the 5th International Conference on Real-Time Computing®PIECtS without the use of locking. Therefore, they elim-

Systems and Applications (RTCSA '98). This work is performed within inate the problem of priority inversion altogether. In the
the “A network for Real-Time research and graduate Education in Sweden” |ock-freeapproachprocessegor tasksl access shared ob-
(ARTES) programme, supported by the Swedish Foundation for StrateglcjectS concurrently without the use of locks. In cases with

Research (SSF). | . f th iaht h
tDepartment of Computer Systems and Computer Engineering, overlapping accesses, some of them might have to repeat

Malardalen University, Malardalen Real-Time Research Centre the operation in order to correctly complete it. This implies
¥This work is performed within the Advanced Software Technology that there might be cases in which the timing may cause
(ASTEC) competence center, supported by the Swedish board fortechnicalsome process(es) to have to retry a potentially unbounded

development (NUTEK) b 1i leadi for hard I-ti
§ Department of Computer Systems, Uppsala University. number of times, leading to a for hard real-time systems

1 Department of Computing Science, Chalmers Univercity of Technol- Unacceptable worst-case behavior. lwait-free protocol
ogy and Goteborg University

llPartially supported by a grant of the Swedish Research Council for lthroughout the paper the termpmcessandtaskare used interchange-
Engineering Sciences (TFR) ably.

each task is guaranteeddorrectlycomplete any operation Given its importance, the problem has been extensively
in a boundednumber of its own steps, regardless of over- studied in the literature of wait-free protocols (cf. e.g. [1, 2,
laps and the execution speed of other processes; i.e. whilé, 10])

the lock-free approach might allow (under very bad timing)

individual processes to starve, wait-freedom strengthens theArl implementation of a composite register (snapshot ob-

lock-free condition to ensure individual progress for every ject) consists of a data structure of appropriately initialized
task in the system shared variables and a set of procedures to implement the

.) scanandupdate operationsThetime complexityf an im-
Intuitively, both approaches imply that, for reasons of pjementation is the maximum number of accesses to the
correctness and/or time-efficiency, there may be a need bo“%hared memory per operation, while $pEce complexitis

for keeping more than one copy of the shared object andy,e nymper of shared variables needed. We measure them
to have some form of coordination among the processes,g 5 fynction of the number of processes which share the
to direct readers and writers to the appropriate copy. Both composite register.

methods offer guarantees not only regarding efficiency, but The lockf d wait-f diti | ttoth
also regardingault-tolerance as opposed to the traditional, imi N ?fh i trﬁ ean lwal i tre? cc?rt1h| '8 ns are r(ta evantiothe
exclusion-based methods, i.e. they avoid situations in which Iming of the the Implementation, the basorrectnesson-

a process that crashed while holding a lock prevents otherdition is linearizability [9] (atomicity. This condition re-
precesses from making progress quires that although operations may overlap in time, their

effects must be the same as the effects of seetpiential

~ Actually, the first suggestion for lock-free synchroniza- gyecytion, i.e. that an external observer conclude that they
tion [12] and the wait-free approach to real-time commu- happen in sequence.

nication were first discussed at least two decades ago [21],

but was “lost” in the real-time systems community until re- Our contribution: We build on previous work on the
cently, when it was revived by Kopetz and Reisinger [11], problem and on wait-free implementations with applica-
followed by a series of interesting results and the consistenttions in real-time systems [10, 8] and we propose more effi-
research effort by Anderson et.al. (including [3]) and the cientwait-free protocols for scanning, updating, and the use
more recent work by Chen and Burns [8]. of this snapshot implementation for real-time systems ap-
propriate for automotive/avionics monitoring/control. We
make no assumptions about relative speeds of the differ-
The work presented in this paper addressessti@pshot ent system parts; hence, our solutions are appropriate for

problem which involves taking an “instantaneous” picture completely asynchronous uniprocessor and multiprocessor
of a set of variables, all in one atomic operation. The snap-systems.

shot is taken. by one task, trseanner Wh"e’? each of the Our wait-free protocols are based on the principal idea
shapshot variables may concurrently and independently be

updatedby other processes (callepdatery. A snapshot of t'he deterministic golutlons for one scanner taslf in [10],
o ; . L which leads to a wait-free snapshot implementation with-
object is also called @omposite registerconsisting of a

number ofcomponentgindexedl throughc), which con- out imposing more than a minimal (constant) overhead per

stitute the entities which can be updated and snap-shot. Weu pdate and per scan operation, retaining the (necessary) lin-

will use the two terms (snapshot object and composite reg-ear time complexity for the (s.ingle) scanner. This mal_<es the
) . protocol suitable for the considered application domains. To
ister) interchangeably. ;

the best of our knowledge, none of the other wait-free pro-

Snapshot objects are particularly useful and importantocols in the literature can achieve this performance for the
tools for interprocess communication and coordination. case of a single scanner process. Inspired by the work of
Since they can return to the scanner a consistent global statenen and Burns [8], we propose an enhancement by a sub-
of the system, they can provide support for decision algo- protocol that achieves multiple-phase agreement between
rithms and they can also be used to solve a variety of COM-pairs of processes, using simple bool@&BT&SE Tvari-
munication and synchronization problems, e.g., consistencygp|es [8]. Despite the fact that these variables have been
checking in transaction-based systems, distributed debugshown to have higher synchronization power than needed
ging, stable property detection (deadlock, termination de-for solving the problem in a wait-free manner in general
tection, etc.), concurrent time-stamping, system monitoring systems [9], as we show, by using them, we have significant
and control, including many real-time applications, such as gain in the memory requirements and in the time-efficiency
automotive or avionics control systems [15, 17]. of the solution, both of which are very important for em-

It should be noted that lock/wait-freedom is a desired bedded real-time systems. Moreover, these variables are al-
property of snapshot solutions not only because it avoidsways available and are not costly (cf. section 4). This en-
priority inversion, but because it enables the scanner to ob-hancement enables significant savings in space (namely by
tain a consistent view of the systemithout freezingt. 2n shared variables in a system witlprocesses) and time

(namely by at leas?n sub-operations per scan), compared which is not overwritten (cf. figure 2(c)) and which is writ-
to the solution in [10]. ten by an update which started before the start of the scan

We evaluate our algorithms analytically and we present (cf. figure 2(a,b)), then the solution satisfies an atomicity
the results of our experimental study and evaluation in criterion [2, 10] that enables us to argue for each compo-
a simulated real-time system appropriate for automo- nent separately and hence leads to a more modular proof.
tive/avionics monitoring/control. The system consists of The criterion and the proof that the solution satisfies are pre-
CAN-bus-connected nodes, each of which is connected toSe€nted formally in section 5. For the following paragraphs
a set of devices, whose measurements activate the updaté&nd the intuitive understanding of the solution, the reader
in the system via I/O controllers. The scan operations areshould keep in mind that the intuitive presentation of the
executed by a specific controller task in the system. We per-cfiterion is summarized in figure 2.
form a comparative study and evaluation among lock-based

a) Scan can return a value from concurrent Updates that started befor SCAN started

lock-free and our wait-free snapshot. Our results suggest L ScAN I
that our algorithms are promising, more efficient and safe / @
Component k lH_H_H_: ILI

alternatives to lock-based algorithms for the above and sim-
ilar real-time applications, and that they do not really imply | ®sen e rewmavalue rom the Updste that immediately precedes i

additional cost to the system, compared to the lock-based ‘7_' @
approach. Compared to the lock-free approach, our wait-| comoreik A3 0 _ _momi

free solution not only provides stronger guarantees, DUL It | ... uever rswrns avatue froman Upcats that has beem overwriten by an Update hatserted before scan sared.
is also more predictable; i.e. retains its performance under s

more frequent updates, when the lock-free scan may take rontey @

longer time, or even not terminate at all. In multi-node sys- | ™" = t=='

d) Scan NEVER returns ia value from an Update that started after the Scan started.

tems it seems that the lock-free method is not useful at all, L AN i

while our algorithms perform good in both single and multi- @E/ @

node systems. componetk i b L !

2. The wait-free snapshot solution Figure 2. The atomicity/linearizability criterion satisfied

by our wait-free solution

To get better intuition on the requirement on a consistent
snapshot, one must keep in mind that we do not want the First consider the case where for each component there
scan to return inconsistent values, e.g., values written byis only one updater (i.e. no concurrent updates in a com-
updates that have occurred after an already scanned valugonent); this is also the case in figures 3 and 4. To guar-
has been updated. Figure 1 shows undesired behavior by antee the behavior required by the criterion that we infor-
scan (i.e. part of an inconsistent snapshot). In the figure themally explained above, for each component there are sev-
horizontal lines represent the duration in time of the opera- eral shared variables (only 3 suffice, as we show later) to
tions. If components, I record fuel level in two fuel tanks ~ hold the value of the component. All that an updater has
of a vehicle and the updates report consumption the snapo do is to write its value where it is told to by the scanner
shot in figure 1 will erroneously lead to the conclusion that through a pointer. With its first sub-operation in each scan,
the system has more fuel left than it actually does. the scanner forwards a pointer for each component (array
NEXTin figure 4) to one of these sub-registers; by not read-
UPDATE ing these sub-registers in the current scan, it achieves not to
— return values written by write operations which start after
SCAN rewurmsor k.| @ its own starting point (cf. fig. 2(a),(b),(d)). Moreover, by

UPDATE

Component k

reading the remaining sub-registers in e&tWFFERK] in

the reverse order from the one that they were forwarded (by
the previous writes oREXT) in previous scans and by re-
turning for each componeitthe first non-empty value, it
achieves to return non-overwritten values ((cf. fig. 2(c)).

To guarantee that this will work as intended, the scanner

Figure 1. An inconsistent snapshot must make sure that when it chooses a sub-register to for-

ward, that sub-register is not about to be used by an update

The snapshot protocol presented here is based on the folthat started earlier and was guided to write there. Failing
lowing idea: if each scan returns for each component a valueto do so, the scanner may miss updates. Therefore, there

Component |

/ variables shared among scanner, updater processes
BUFFER array [1..c][1..3] of shared valtype
/ the actual value-holders /
NEXT: array [1..c] of shared1..3;
/index variable: the scanner guides the updaters
PREF_SCANPREF_UPDATEarray [1..c] of shared1..3;
/ index variables for the tracing game /|
SMTU array [1..c] of shared boolean
/ Scanner Must Trace Updater /
T'S: array [1..c] of shared Test&Set boolean

var

-~

procedure updaték : 1..3, val : valtype)
/ update procedure for component

varcopy_nextwptr : 1..3; /local variables /

begin
RESETT'S[k]);
SMTUk] = 1;

copy_next READ(NEXTk]);
WRITE (PREF_UPDATEL] := copy_next
if TEST&SETI'S[k]) then
wptr := copy_next /copy_nex¢qualsPREF_UPDATH]/

else
wptr := READ(PREF_SCAR]);
end_if
WRITE (BUFFERk][wptr] := val);
end

Figure 3. Wait-free snapshot (single updater per compo-
nent,c components): Shared variables angdateproce-
dure

must be soméracing involved, so that acan before de-
ciding which sub-registers will be forwarded in the next in-
vocation ofscan(and before “clearing” those sub-registers),
knows which are the “dangerous” ones. For this, each scarn
plays a “tracing” game for each componehtt detects the
start of an update operation after the last scan. The trac

ing game is based on a multiple-phase agreement between

pairs of processes, using simple bool&S5T&SETvari-
ables [8]. To remember the “dangerous” sub-registers (be-
sides the one most recently forwarded), it keeps an array
prev_trace Roughly speaking, in théth entry of this ar-
ray, the scanner keeps information about which of the three
sub-registers iIBUFFERk] will the most recently started
update to théith component use to write its value.

In the case where there are multiple tasks that may con-
currently update a component (sayupdaters per compo-

/

begin

procedure scan(): array [1..c] of valtype

vark : 1..c; /'local variables /
prep_nextprev_trace array [1..c] of static int;
last_read_valuearray [1..c] of static valtype;
order. array [1..c][1..3] of static 1..3;

/ scanner remembers the order to scan the subregister:

procedure read_registergk : 1..c): valtype
[auxiliary procedure to find last value for componérit
var i:1..2;
tmp: valtype;
begin
for i =2,..1do / read component’s, subregisters /
tmp := READ(BUFFERk][order{k][7]);
/ ... in the reverse order that they were forwarded
if tmp # nil return (¢mp) end_if
end_for
return (last_read_valug]);
end

procedure rearrange_ordetk : 1..c)
[auxil. procedure to prepare componérgtructure for next scan /
begin
{setprep_nextk] s.t. # prep_nexk]A # prev_tracék]};
/ prepareNEXTto forward in next scan /
{left-rotate the values inrder{k][z], ...,order[k][3],
whereorder|k][z] = prep_nexXi]}
/i.e. order{k][3] := prep_nextk]; /
/ also keep the order to useriead_registersiext time /
end

/ main body for procedure scan /
WRITE (NEXT.= prep_next
fork=1,...,cdo
| for each componerit do /
last_read_valugk] := read_registerék);
if SMTUK] = 1then
/ then must trace update; elgeev_tracék] remains as itis /
SMTUk] :=0;
WRITE (PREF_SCARN] := prep_nexi]);
/ prep_nextk] equalsNEXTk]/
if TEST&SETI'S[k]) then
prev_tracék] := prep_nexk];
 prep_neXtk] equalsPREF_SCAR] /
else
prev_tracék] := READ(PREF_UPDATE]);
end_if
end_if
rearrange_ordetk);
WRITE (BUFFERE][prep_nextk]] := nil);
/ must “clean” it before the next scan /
end_for
return (last_read_valug

end

nent), the basic idea of the algorithm remains the same. The
scanner, in order to keep track of their actianggracts with
each updater separatelwhile the order and the reason-
ing of its actions remains the same as in the single-updater

case. This necessitates the extension of each data structure

for each componentinto an array, each entry of which is to

Figure 4. Wait-free snapshot (single updater per compo-
nent,c components): Thecanprocedure

s/

give guidance or trace information to/from a specific scan- sub-registeffor eachconcurrent update for each compo-
ner. It also necessitates the availability of one value-holdernent; hence, for each component now we nee®thEFER

array to be of dimensiom + 2, instead of 3 which was the tasks in the system acts as a snapshot task;,sgy but

the case for the single updater per component. It must bein the original system doesn’t have any mechanism to get a
pointed out that, during eadtan auniquesub-register is consistent snapshot.

forwarded to the updaters of each comporigras before. In the following subsections we estimate the overhead,
It is the asynchrony among the updaters that necessitategoth ont,,,, and on the other tasks in the system, that each
tracing each one separately, hence having situatioms of type of snapshot implementation will impose to the original
“dangerous” sub-registers for a component. system. As we shall see baft) andC; will be changed.

The Wait-Free Protocol: The cost for running our wait-
free implementation of the snapshot algorithm is easily
bounded. We only have to add the extra computation time
In this section we define equations to calculate the over-to each task for performing memory accesses, feador

head that each type of snapshot implementation imposeswrite) needed to determine and control where the snapshot
to the RT-system. We then analytically compare our wait- task will be reading (see the code in figure 3 and 4). For
free snapshot algorithm with lock-based and lock-free im- other memory accesses no modifications are needed, but
plementations. We will focus on uniprocessor systems evenwe have to add two extra buffers for each component of
though our wait-free algorithm also can be used, without the composite register (snapshot object). The response time

3. Analytical evaluation

modifications, in a multiprocessor system. equation forall tasks becomes:

We assume that we havetasks in the system, indexed R,
t1...t,. Fortaskt; we will use the standard notatioff, Ri=C; + Z {_’w C]’. 2)
C;, R;, D; and B; to denote the period, worst case exe- jehp(i) T;

cution time, worst case response time, deadline and block- o
ing time (the time the task can be delayed by lower priority Where the execution tim€’; for all tasks except the snap-
tasks), respectively. Alsdp(i) andhp(i) denote the set of shot task has been extended to include the extra time to do

tasks with less and higher priority than taisk andpri(i) update operations instead of write operations, i.e:
denotes the priority of task. We usecs(i) to denote the ,
set of critical sectiorfsthat task; accessesy; , to denote Ci = Ci + njupdate * (Cwpupdate = Cuwrite) — (3)

the worst case execution time for taskin critical section
s, andceil(s) to denote the ceiling priority of critical sec-
tion s. The ceiling priority is the highest priority of any o , _

task that may access the critical section. Finally, to estimate Ci = Ci+ nisean * (Cufacan = Cread) @

how much other tasks will be affected by the snapshot, we

letn; ,, denote the number of times tagkmakes the oper- Lock-based protocols: In a lock-based protocol, each
ationop andC,,, denote the worst case execution time for component of the composite register (snapshot object) con-
making the operationp. sists of one atomic sub-register that holds the value of the

For a system to be safe, no task should miss its deadlinesCOmpPonent and has a lock associated V‘{ﬁh An update
i.e.Vi| R; < D;. The response tim&; for a task in the must get the lock of the component that it wants to update

initial system can be calculated using the standard respons@€fore writing the new value to the sub-register. A scan
time analysis [6] as: must get the locks of all the sub-registers (i.e. nfiestzeall

the updaters) before reading the components values. During

and for the snapshot task,,,:

_ R; the actualreading time there is no overlapping write (they
Ri=Ci+ . Z [_A Cj (1) have to wait for the locks), hence the snapshot obtained is
J€hp(i) consistent.
The summand in the formula gives the time that tasiay As mentioned in the introduction, the use of locking

be delayed by higher priority tasks. As noted before, we must be accompanied by the use of an appropriate method
assume a uniprocessor system and to simplify the formu-to prevent priority inversion. The priority ceiling proto-
las we assume that tasks have no jitter, can be preemptedol (PCP) [14] and the immediate priority ceiling protocol
at arbitrary points during their execution, has unique prior- (IPCP) [20] ensure that a taslcan only be blocked (or de-
ities (given in a deadline monotonic order), do not experi- layed) at most bynecritical section of any lower priority
ence blocking, and that there are no overheads for contextask locking a semaphore with ceiling greater than or equal
switching or interrupt handling. We also assume that one ofto the priority of task.

2throughout this section we often abuse the teritical sectionto also 3Another solution is to have a unique lock for all the components, but
denote “access to shared data” even in the lock-free and wait-free cases this would reduce the concurrency even further.

When having lock-based snapshot in the system, bothsame instance, since it will execute until completion be-
PCP and IPCP have a response time formulaafbtasks fore the snapshot task (which executes at lower priority) can

like: restart.
R; The response time formula therefore becomes:
Ri=Cj+Bi+ »_ {—w) (5)
j€hp() ' 7 _ R;
Ri=Ci+ {Tl o (8)
where ichp(i) ' Y

whereC! = C; for tasks that do not access the snapshot
memory,C} = C; + Cyyri. for tasks that accesses snapshot
and memory and

B; = Maxry ;s | jeip(i) A s€es(j) A ceil(s)>pri(i) }Cj,s (6)

CZI =C; + Nitake * Crake + N rel * Crel (7) i

Ci=Ci' + > [—l «C" (9)
and take and rel are the operations to take and release 3s|jehp(i)AsEes(i)AsEes(j) |
semaphores, respectively. The maximum blocking tiBye,
which a taski can wait for a lower priority task to execute,
is calculated by investigating all tasks with lower priority
than taski and all the semaphores that these tasks can lock.
For those semaphores with a ceiling higher than or the same

where

Cz{l = Cz + Cwm'tg + Cread + Ccompare (10)

as the priority of tgsk','the maximum 'blqcking timg is the C!" = Cltsean + Curite + Cread + Ceompare (1)
longest computation time a lower priority task might exe-
cute in a critical section. for the snapshot task,,,.

In & uni-processor system we can exploit the priority The summand in the outer formula (8) gives the time
structure of.the tasks so thgt se'maphc')re. taking and releashat the scan can be delayed by higher priority tasks and
ing can be implemented using just priority changes. But the summand in the inner formula (9) gives an upper limit

still these priority changes will be costly concerning execu- on how much time the snapshot task might spend in retry
tion time when they will be implemented using operating |oops.

system calls. If we implement the snapshot task as a low
priority task most high priority tasks will also experience
large amount of blocking.

We note thatC] can become quite large for the snap-
shot task when we are spending time in retry loops. Each
time R; is recalculated, the worst possible computation time

Lock-free Protocols: A very simple lock-free snapshotim- Must also be recalculated. Actually, Equation 9 is very pes-

plementation, with minimal overhead in each update and simistic, in that it for each preemption of a potentially in-
memory requirements is the following: terfering task assumes the worst-case interference (i.e., that

. . the scan has to be restarted immediately before it success-
Each component of the composite register (shapshot ob- y

. . . . fully completes). It shall be noted that it is only tasks with
ject) consists of one atomic sub-register that holds the value y b) y

) . riority lower than the snapshot task that will have modified
of the component, as in the lock-based case. In addition, theFesponse times. This should be compared to the lock-based
implementation requires a boolean variatN®TE, shared

roach, where all tasks ex he ones with low rior-
by the scanner and all the updater tasks. On each update approach, where all tasks exceptthe ones with lowest prio

. . . ity are penalized.

in an atomic operation, the updater also makes a note (by) . ,)
writing the value 1 tdNOTE) together with writing the new The major disadvantage with lock-free snapshot imple-
value to its component. A scan starts to take the snapshot bynentations is that the risk for repeated retries, especially
resettingNOTE to 0 and subsequently reading the values of When we are running the scan at low priority (and running
all the components; it then checks whether there have beer &t & high priority will penalize a larger set of tasks).
overlapping updates (by checking the valueNGJTE) and

decides whether it should retry. Schedulability Testing: To evaluate which snapshot im-

S) plementation gives highest chance for schedulability, we
For estimating the worst case response time for the snapstarted by creating a system without a snapshot mechanism,

shot task, assume that the snapshot task gets preempted (I3t with a snapshot task,,,, that just reads the snapshot

a higher priority task) when it is almost finished, i.e., the yajyes without providing any guarantee that they are consis-

scan is invalidated just before it successfully completed. tent. In the evaluation we only use task sets, including such
We can observe that a high priority task which restarts a ¢,,,, task, that are schedulable using the schedulability

the snapshot will never restart it more than once during theformula (1).

Three different systems using the three different snap- R T st T NODE

shot mechanisms (lock, lock-free and wait-free) are then H o pEvice
added and new schedulability tests are performed on each E %
system. CAN-BUS

MEMORY

We use high priority tasks with relatively short execution
time (C;) to model 1/O-devices. In our evaluation, we fixed % SR
the number of tasks and I/O-devices and their fraction of the % _I&
system load, but varied the total system load. Every task and)
I/O-device except for the snapshot task, continously updates
a different component register. The snapshot tasks conti-
nously takes snaphots of the components. Each snapshot is
fixed to involve 5 components, randomly chosen. The tim-
ing figures for scanning, reading and etceras where assumed
to be fixed, and were fetched from a RTOS called RTEMS CAN-bus arbitration works as a priority driven scheduler,
and by doing manual WCET analysis by cross-compiling Where the highest prioritized message at any of the con-
and Cyc]e Counting_ The system is assumed to be runninwected nodes will be transmitted. The CAN-bus is broadcast
using a Motorola MC68020 20Mhz CPU. T, P;, D; bus on which all nodes conceptually receive all messages si-
andcs(i) parameters for each task were randomly generatedmultaneously. On each node, network accesses are handled
between specified limits. The parameters used are given irPy @ CAN controller, which can be seen as an I/O-processor
figure 6. The analysis results are presented in figure 5 (a)for message handling. When a message arrives, the CPU
and (b). With schedulability probability we are measuring is notified by an interrupt. Tindell et.al. [22] have showed
how many of the analysed systems that still are schedulabldhat the fixed priority response time equations can be easily
after adding the different snapshot algorithms. extended for analysis of CAN-bus message delays.

The result clearly indicates that for the parameters used ~We assume that the tasks in each node read values from

both the wait-free and lock-free methods outperform the the sensors as well as produce values that other tasks can
lock-based one. Other observations from this and relateduse in their computations. The hardware supports Test&Set
experiments is that when the number of updates or the num-operations (used by the wait-free snapshot) and the oper-
ber of components involved in the snapshot increases, theating system provides the semaphores needed for the lock-
lock-free method deteriorates, since the chance of repeate#ased schemes. We further assume that only the most re-
retries increases. In the lock-based method the blocking forcent sensor value can be buffered at the corresponding 1/0-
high priority tasks increase with the number of snapshot val- device, that the interrupt handlers (1/O-controllers) have pri-

ues, hence larger number of values gives lower chance ofrity over application tasks, and that higher priority inter-
schedulability. rupts can preempt lower priority interrupts.

Figure 7. A CAN-based architecture with four micro-
controllers

) . Snapshot in a single node system:The simulations are
4. Experimental evaluation made using a discrete event simulator written in the pro-
gramming language Erlang [4]. A selection of the same sce-

We have done several simulation studies, in which we com-harios generated for the schedulability tests are simulated to

pared our wait-free snapshot algorithm with the lock-based9d€t an average performance. For each considered CPU load,
and lock-free methods outlined in Section 3. 10 different scenarios are simulated during a period of 1 000

000 time units. Any missed deadlines are detected during
Experimental Architecture: The basic component of our the simulation and the probability for schedulability is cal-
experimental architecture is a micro-controller with sev- culated. The experiment results are presented in figures 8
eral I/O-devices, one CPU (without cache) and RAM mem- (a) and (b).
ory. Furthermore, we assume a real-time operating system Similar to the analysis, the experiment also indicates that
which supports preemption, that the I/O-devices producethe wait-free and lock-free methods behave better than the
values by reading sensors regularly, and that they interrupjocked-based one. The lock-free method behaved extraordi-
the CPU when they need I/O transfer from the device t0 narily good, and during the simulation only a maximum of
memory. Upon an interrupt, the CPU executes the codegne retry was detected. The reason for this is the very short
given in a user-provided interrupt routine. time it takes to redo the scan compared to the much longer

We also extend our study to the case of several nodedime in average between each update.

connected via an interconnection network, e.g., a CAN-
bus, which is the network we will consider. Basically, the Snapshot in CAN-multiple-node systems:We have also

Low Priority Snapshot Task
100

o ——%5—x :
AH-a et
e RIS e

¥

TR BBy
o Sk

-

40

Schedulability Probability

0 L L L L

LOCK —-—

WAIT-FREE -+-
LOCK-FREE -8--

0 0.2 0.4 0.6 0.8
CPU Load

(a) low priority snapshot task

Figure 5. Schedulability admission tests for system with the parameters given in figure 6.

Fixed values

Nr of tasks 10 Tasks Tot CPU load 90%

Nr of devices 15 Devices Tot CPU load 10%

Ctake 35#5 Creada Curite 1#5

Chrel 33us lescan 15us

waupdate 26LLS Ccompare lMS
wfscan 23%s | Analysis per Load 100

Medium Priority Snapshot Task
T

100

-
s
-

SCEoiiae]
-
e
¥

RocENGRs
ot Sk R o 9
SN R BB
R A

40

Schedulability Probability

0 L L L L

B LOCK ——
WAIT-FREE -+-
LOCK-FREE -8--

0 0.2 0.4 0.6 0.8
CPU Load

(b) medium priority snapshot task

Varying values Min Max Min Max
Task nr of accesses to 1 20 Device nr of ac- 1 2
component cesses to component

Task CompTime;) 100 1000@s Device CompTime 50 5065
Task Period P;) 10000 190000s | Device Period 1000 150008
Task Deadline D;) 50000 250000s | Device Deadline 1000 100008

Figure 6. Schedulability analysis parameters

studied snapshots in multiple micro-controller CAN-bus
connected systems, assuming that the scanner task is ru
ning in one of the controllers in the system and that the
snapshot involves all the 1/0O devices and sensors in the sys- 1.
tem. When the scanner takes a snapshot it sends a snapshot-
request message (with high or low priority, depending on
how urgently the snapshot is needed) on the CAN-bus. This
message will reach all the nodes at almost the same time 2.
and each CAN-controller will raise an interrupt to its CPU.

Below we explain how the snapshot implementations
of the previous sections are made for this system. In all 3.
three approaches the update protocols are as before, and the
scanner protocols start by sending a single broadcast “scan-4.
start” message on the bus. Then the different scan protocols

behave as follows:
The lock-based approach

message

r]1-'he lock-free approach

NOTEvariables

on reception of the “scan-start”, the process responsi-
ble for the scan in each node resetdN@TEvariable,
reads the values of its components in the node and re-
ports them to the scanner via the bus

the scanner waits to hear from all nodes and then sends
a new message requesting the nodes to check their

the process responsible for the scan in each node re-
ports the value of itfNOTEvariable to the scanner

the scanner checks whether all M@TEvariables are

0, in which case the snapshot is complete and consis-

tent, otherwise it repeats the scan, starting with the first

step above.

1. onreception of the “scan-start” message, the processeshe wait-free approach: In response to the “scan-start”
responsible for the scan in each node locks all the lo- message, the&/RITE (NEXT := prep_next) is executed
cal variables of the node components and reads andin each component and the process responsible for the scan
returns their values (via messages over the CAN-bus)in each node is activated to execute the scan on the local
components, after which it reports the values to the global
2. the scanner waits to receive responses from all nodescanner. The difference in the initiation time between dif-

in response to the above message

and then sends an "unfreeze" message on the bus

ferent nodes can safely be assumed (cf. CAN-behavior de-

3. the process responsible for the scan in each node unscription earlier in this section) to be smaller than the time
locks its components in response to the "unfreeze" it takes an update to complete uninterrupted, hence the cor-

Schedulability Probability

100

80

60

40

20

Low Priority Snapshot Task
il il

P YoM

7

LOCK —<—

WAIT-FREE —+-
LOCK-FREE -8

\

Schedulability Probability

100

80

60

40

20

Medium Priority Snapshot Task
FE b

VoY Vo

7

LOCK ——

WAIT-FREE -+-
#t % LOCK-FREE -8

L L 4 L L 4
0 0.2 0.4 0.8 1 0 0.2 0.4 0.8 1

(a) low priority sﬁapshot task

0.
CPU Load

(b) medium priority snapshot task

Figure 8. Schedulability experiments for a single-node system

rectness of the solution is guaranteed (cf. also section5) 5. Correctness of wait-free snapshots

The simulation experiments are done in a similar envi-

ronment to the single-node analysis and experiment. TheThe basic correctness condition for a wait-free implementa-
system consists of 10 nodes with similar task sets comparedjon of an object idinearizability, i.e. although operations
to the S|ng|e'n0de expe”ment, the last node also has an eXOf concurrent processes may Over|ap in timE, each one of

tra task that manages the multi-snapshot. The CAN-bus isthem appears to have effect instantaneously, in an order that
simulated without any other contention than created whenpreserves the register actions’ semantics.

applying the different methods. The system is simulated In a global time model each operatign‘occupies” a
for different system loads (each CPU has this load), and the,. . ' . . .
response time for the multi-snapshot is measured. All of time |n'terval [bg, f,] on one I!near time aX|.$bq < fo):
the 24 S| h nod db -th | There is a precedence relation on operations (denoted by
D CoponeTts 1 ch o e scanned Y1 5620, s it patal ordery > s means

P ' P y 1 ends befores, starts; Operations incomparable under

f\?ipsnoiita}sni. rrEa(;rt]hnct)?ne slso h?ﬁ ai‘nSImr#ilr?teri CAN-bu re callecbverlapping The precedence relation is extended
Tr?e t?lrgetgiﬁe?enlip rot?)coli1 vjtgrzssin?ulz;gd wiEtJh trelzssa:wgae S_'to relate sub-operations of operations; naturally, i+ g,
P P then for any sub-operationg; andop, of ¢; andgq,, re-

shot tasks running at either low or medium priority. The . .
: . . . ively, it holds th .
systems were simulated during a period of 2 000 000 “mespect © y tholdst a?pl — P2 ,
A run is an execution of an arbitrary number of oper-

units. The additional (compared to the single-node experi- ! ‘)
ment) parameters are presented in figure 9. The results ofitions according to the respective protocols. Given a run

the experiments are presented in figure 10 (a) and (b), and®f & COMposite register implementatiomeading function

figure 11 (a) and (b) for the average respective the maxi-T+ for any component: is a function that assigns an up-
mum response time for the multi-snapshot. date operation; to each scan operatiof) such that the

. . value returned by for component: —according to the
The experiments show clearly that the wait-free method scaroperation performed— is written by —according to

performs much better than the other methods. It should betheupdate)peration performed. It is assumed that for each

Ir:)%taeldstr?:;;?]itki;zkn;e;zosailﬁc;]ggzt}gl:iztmos)t(ﬁgtgvzztgﬁ:omponent there exists an update operation whiph initia!-
ter the multi-snapshot has finished, thus limiting the maxi- izes the component ar?d prec-edes al other_operatl(.)ns on it
mum rate for succeeding multi-snapshots. It is also obvious A 'Un on a composite register constructioratemicor

that the lock method affects the other tasks response timedin€arizable if the partial order— on its operations can be
more than what the wait-free does, because on the experéXtended to a striabtal order=, such that for any scasn
iment with lowest priority snapshots and the highest cpu nd for each componeatit holds that [13]:

load, the lock method did not terminate, most probably be- 1. m4(s) = s and

cause of system overload. The lock-free method performed 2. there is no update on X}, such thatry (s) = u = s.
extremely poor, it only succeeded for system scenarios with

very low system load, otherwise it did not even terminate. A construction is atomic if all its runs are atomic. When

sub-registers are atomic, the precedence relatids a to-

Fixed values

wascan
lfscan

send-scan

Snapshot Period

1094us

72us
24Qus

100006

Creceive_scan 256”5
Csend_msg 10u3
Creceive_msg ZGUS
Nr of nodes 10

Figure 9. Multi-node experiment parameters

Low Priority Snapshot Tasks
100000 T T

80000

60000

40000

Average Snapshot Response Time (us)

20000

LOCK -—
WAIT-FREE —+-
LOCK-FREE -8B

. .
0 0.2 04 .
System Load

(a) low priority snapshot tasks

L
0.8

Average Snapshot Response Time (us)

100000

80000

60000 |

40000

20000

Medium Priority Snapshot Tasks
T T

LOCK —-—
WAIT-FREE -+~
LOCK-FREE -8

. . . .
02 0.4 0 08 1
System Load

(b) medium priority snapshot tasks

Figure 10. Average response time experiments for a multi-node system

tal order when restricted to sub-operations on a single sub- The proof here follows the lines of the proof of the de-

register.

Lemma 1 [Atomicity Criterion, [2, 10]] A construction

of a single scanner composite register (snapshot object) is

atomic if and only if for each componekt,, the updates on
it can be serialized by a total ordes,, which is compatible
with the precedence relatiors and satisfies the following

conditions:

terministic snapshot implementation in [10]. The following
lemma enables to argue abastich component separately
which means a great simplification.

Lemma 2 If a snapshot implementation satisfies the first
condition of the atomicity criterion of lemma 1 and it also
satisfies that, for every run, for each scaand each com-
ponentk, if u = m(s) or u=m(s) thenb, < bs, then

1. Each component independently is a consistentthe implementation also satisfies the second condition of the
atomic register; i.e. eacks; and r; satisfy all the

following:

¢ (No-Irrelevant)for each scars, it is not the case

thats — 7 (s)

¢ (No-Old) for each scars there exists no update
uon Xy, so thatrg(s)=r u — s

¢ (No-New-Old-Inversion)or any two scanss;

and s, and for any componenty, it is not the

case thatis; — s and g (s2)=k 7k (s1)-

2. For any pair of component; and X; and for any
scans, it is not the case that there exist updatesnd

u on X}, and X; respectively such that (s)= v —

u =; m(s), whereu =; m(s) means that either

u=> m(s) or u = m(s).

atomicity criterion of lemma 1.

Proof: Suppose, towards a contradiction, that there are up-
datesy and au on two component¥;, andX;, respectively,
such thatry,(s)= v — u =; m(s). Then, since by hy-
pothesid,, < bs, we get thatr,(s)= v — s, a contradic-
tion. |

Since we have a single scanner case, we have that the
scan operations are totally ordered in time, hence we can
enumerate them, having?! denote theth scan. We also
define for each scas, tag(s) = i if s = sl. Simi-
larly, enumerate the instancesNIEXT, as they become for-
warded by the scan operations (via the M&RITE in each
of them); NEXT is forwarded bys!d. Let also, if some
x = NEXT[k], thentag(x) = i. In other words, by the

The second condition guarantees that a scan may not reenumerating the scans, we assign to each pointer to a sub-
turn for one component a value which is very old compared register that is being forwardedag, which equals theag
to the value it returns for another component (cf. fig.1).

of the scan that forwards it (vilEXTand the copy that it

Low Priority Snapshot Tasks Medium Priority Snapshot Tasks
T — T T

100000

100000 T

LOCK —<— LOCK ——
WAIT-FREE —+- WAIT-FREE -+-
LOCK-FREE -8 LOCK-FREE -8

80000 80000

60000

60000

40000 40000

Maximum Snapshot Response Time (us)
Maximum Snapshot Response Time (us)

20000 M g 20000

.
X 0. 08 1 0 0.2 0.4 0.6 0.8 1
System Load System Load

(a) low priority snapshot tasks (b) medium priority snapshot tasks

L
0 0.2

Figure 11. Maximum response time experiments for a multi-node system

writes inPREF_SCAN tag as itsNEXT, and there can be no other scan in between
For any update: let uptr, denote the pointer to the that write of PREF_SCAR] by s and the invocation of

sub-register where writes its value. Let themag(u) = TEST&SETLS[k]) by u (because of th&MTUk] check-

tag(uptr,). In other words, each updateinherits the tag iNg), hence the claim holds. 0

of the scan that forwarded the pointer to the sub-register

whereu writes its value. Lemma 5 (No-Old) For each scars there exists no update

The lemmas below prove one-by-one the conditions re- % 0N X}, S0 thatry(s) =y u — s.
quired by the lemma 2 for an arbitrary ranand an arbi-
trary componenk, first for thesingleupdater per compo-
nent case, i.e=, is actually— .

Proof: (outline) By contradiction, using the previous
lemma, and the fact that from the scanner procedure we
have (sub-procedunead_registersthat the sub-registers

Lemma 3 (No-Irrelevantfor each scam, it is not the case in BUFFER[] are read in decreasing tag value. =

thats — 7 (s)
Lemma 6 For each scam, if u = m(s) or u— 7 (s) then

Proof: (outline) Itis straightforward from the protocol, that by < bs.

a scan returns values only from updates which have com-

pleted. O Proof: (outline) Suppose, towards a contradiction that ex-

istss such thab,, ;) > bs, i.e. thats returns a value written
by an update that starts aftehas started.

! 1 !
Lhemma4 Ifu, u are updates in componeh@ndu — u’, Since every update completes with the atomic write of
thentag(u) < tag(u'). its value to a place iBUFFER], it holds thatf, < f, i.e.
thatm (s) completes before completes.

We know that the value that;(s) reads forNEXT
is the one written bys. Using similar reasoning as in
lemma 4 (using th&&sMTU and TEST&SETtracing game
at%etween the scanner and the updater) it follows thak)
will write its value in the register pointed to BYEXT£]
(as s wrote it andm(s) read it). Buts does not read
BUFFERE][NEXTk]], hence we have the contradiction.

Proof: (outline) Each update assignsugtr a value that it
read fromNEXT[k] or from PREF_SCARN:]. Clearly, the
tag of the value thai’ reads frorNEXT[k] is greater that or
equal to the tag of value thatreads frorNEXT[k], since

it is either the same or there has been some new scan th
forwarded a new instance NEXTin between: andu’ read

of NEXT. Moreover, the tag of the value that any update
gets fromPREF_SCAN] (if it reads PREF_SCAN] at

all, i.e. if it fails in the TEST&SETinvocation) is greater Since it holds thaby,) < bs, it will also hold thath, <
that or equal to the tag of value that it reads fridEXT[%]. bs for anyu thatu— . (s). m
This is because in order that fails in tH&EST&SETin-

vocation, there must be an overlapping seawhich in- Lemma 7 (No-New-Old-Inversionfor any two scans

voked theTEST&SETI'S[k]) after u reset it and before and s, and for any componenty, it is not the case that:
u invoked it. This scan’s PREF_SCARN] has the same s; — sy andmy(s2)—k 7k (s1).

Proof:

(outline) By contradiction, using the previous

lemma. O

For themultiple-updater-per-component casee need
to define=-,. Define the total order among updates in one
component, using theiag values, as defined above; up-
dates with same tag write on the same sub-register, hence

order them by the atomicity of that sub-operation.
proof then follows the same lines, using the defined order-

ing.

The

References

(1]

(20]

(11]

(12]

(23]

Y. AFEK, H. ATTIYA, D. DOLEV, E. GAFNI, M. MERRITT, AND
N. SHAVIT Atomic snapshots of shared memaody.Assoc. Comp.
Mach, 40:4(1993), 873—-890.

J. ANDERSON Composite registers.Distributed Computing
6(1993), 141-154. Multi-writer comosite registerBistributed
Computing7 (1994), pp. 175-195.

J. ANDERSON S. RAMAMURTHY, M. MOIR, AND K. JEF-

FAY Lock-Free Transactions for Real-Time Systerfeal-Time
Database Systems: Issues and ApplicatignBestavros, K.J. Lin,
and S.H. Son, (eds.), Kluwer Academic Publishers, pp. 215-234,
May 1997.

J. ARMSTRONG AND R. VIRDING AND C. WIKSTROM AND
M. WiLLIamMs Concurrent programming in ErlandPrentice Hall,
1996.

H. ATTIYA, M. HERLIHY AND O. RACHMAN Efficient Atomic
Snapshots Using Lattice AgreemeRtoc. of the 6th Int'l Workshop
on Distributed Algorithmspp. 35-53, 1992.

N.C. AUDSLEY, A. BURNS, R.l. Davis, K.W. TINDELL AND
A.J. WELLINGSFixed Priority Pre-emptive Scheduling: An Histor-
ical PerspectiveReal-Time Systemsol. 8, Num. 2/3, pp. 129-154,
1995.

T. BAKER Stack-based scheduling on real-time procesBesl-
Time Systems$(1), pp. 97-69, March 1991.

J. CHEN AND A. BURNS Asynchronous Data Sharing in Mulipro-
cessor Real-Time Systems Using Process Conseb8tisEuromi-
cro Workshop on Real-Time Systert998. also Research report,
Department of Computer Science, Un. of York, 1997.

M. HERLIHY Wait-Free SynchronizatiotACM TOPLASVol. 11,
No. 1, Jan. 1991, pp. 124-149.

L.M. KIROUSIS, P. SPIRAKIS AND PH. TSIGAS Reading Many
Variables in One Atomic Operation: Solutions with Linear or Sub-
linear Complexity.lEEE Transactions on Parallel and Distributed
Systems5(7), pp. 688-696, July 1994.

H. KOPETZ AND J. REISINGERThe Non-Blocking Write Protocol
NBW: A Solution to a Real-Time Synchronization Problermoc.
of the 14th Real-Time Systems Symp. 131-137, 1993.

L. LAMPORTConcurrent Reading and WritinGomm. of the ACM
Vol. 20, No. 1, Nov. 1977, pp. 806-811.

L. LAMPORT(1986) On interprocess communication, part i: basic
formalism, part ii: basic algorithm®istributed Computindl, 77-
101.

[14]

[15]

[16]

[27]

(18]

[29]

[20]

[21]

[22]

[23]

J.P. LEHOCZKY AND L. SHA AND J.K. STROSNIDER Aperi-
odic Responsiveness in Hard Real-Time Environments. Proc. of the
IEEE Real-Time Systems Symp., pp. 262-270, 1987.

C.D.LOCKE, L. Lucas, AND J. GOODENOUGHGeneric Avionics
Software Specification, Technical Report CMU/SEI-90-TR-8, Soft-
ware Engineering Institute, Carnegie Mellon University, December
1990.

M. PAPATRIANTAFILOU AND PH. TSIGASWait-Free Consensus in
In-Phase Multiprocessor Systenfoc. of the 7th IEEE Symp. on
Parallel and Distributed Processingp. 312-319, 1995.

C.-S. EENG, K.J. LIN, AND C. BOETTCHERReal-Time Database
Benchmark Design for Avionics Systeni&oc. of the First Interna-
tional Workshop on Real-Time Databases: Issues and Applications
pp. 92-99, March 1996.

R. RAJKUMAR Synchronization in Real-Time Systems — A Priority
Inheritance ApproactKluwer Academic Publicationd991.

S. RAMAMURTHY, M. MOIR, AND J. ANDERSONReal-Time Ob-
ject Sharing with Minimal System SuppoRroc. of the 15th Annual
ACM Symp. on Principles of Distributed Computingp. 233-242,
May 1996.

L. SHA, R. RAJKUMAR, AND J. P. LEHOCZKY Priority Inheri-
tance Protocols: An Approach to Real-Time SynchronizatiBEE
Trans. on Computersol. 39, pp. 1175-1185, Sep. 1990.

P. SORENSEN AND V. HEMACHER A Real-Time System design
Methodology.INFOR, 13(1), Feb 1975, pp.1-18.

K.W. TINDELL AND H. HANSSON AND A.J. WELLINGS
Analysing Real-Time Communications: Controller Area Network
(CAN). Proc. of IEEE RTSS'94p. 259-263, 1994.

D. WILNER Keynote Address at the8th IEEE Real-Time Systems
Symp, 1997.

