
Randomized Adaptive Test Cover

Peter Damaschke

Department of Computer Science and Engineering
Chalmers University, 41296 Göteborg, Sweden

ptr@chalmers.se

Abstract. In a general combinatorial search problem with binary tests
we are given a set of elements and a hypergraph of possible tests, and the
goal is to find an unknown target element using a minimum number of
tests. We explore the expected test number of randomized strategies. We
obtain several general results on the ratio of the expected and worst-case
deterministic test number, as well as complexity results for hypergraphs
of small rank, and we state some open problems.

Keywords: combinatorial search, randomization, game theory, LP duality,
fractional graph theory

1 Introduction

A hypergraph H is a set U of n elements (vertices) equipped with a family of
subsets called the edges. We consider a search problem on hypergraphs, therefore
we also call the edges tests: One unknown element u ∈ U is the target. A searcher
can apply any tests T from H. The test answers positive if u ∈ T , and negative
else. The searcher aims to identify u efficiently from the outcomes of some tests
from H. The primary goal is to minimize the number of tests. We will silently
assume that H is separating, that is, no two targets cause the same outcomes of
all tests (otherwise it would be impossible to distinguish them).

Combinatorial search has applications, e.g., in biological testing [2, 3]. A num-
ber of more specific, classic combinatorial search problems can be formulated in
the above way, perhaps the foremost example is the group testing problem [7]
which found various applications. Note that even problems like sorting by com-
parisons fit in this framework. (There the target is a sorted sequence of numbers,
the elements are all permutations, and a test finds out the relation between two
numbers.) One may also think of H as a system of binary attributes of objects,
and then an efficient test strategy is also a compact classification system.

A search strategy can work in rounds, where all tests in a round are done in
parallel, without waiting for each other’s outcomes. An adaptive strategy per-
forms only one test per round. In a deterministic strategy, the choice of tests
for each round is uniquely determined by the outcomes of earlier tests. In a ran-
domized strategy, the choice of tests for each round can, additionally, depend on
random decisions. We stress that the tests still behave deterministically; here

we assume neither random errors nor target probability distributions, only the
searcher’s choice of tests may be randomized. Also note that deterministic strate-
gies are by definition a special case of randomized strategies, they just do not
use the possibility to take random decisions. A deterministic strategy is optimal
among all deterministic strategies if it minimizes the worst-case number of tests,
and a randomized strategy is optimal if it minimizes the worst-case expected
number of tests, where the worst case refers to maximization over all targets.
For clarity we give formal definitions of the test numbers.

Definition 1. For a separating hypergraph H let Det(H) and Rand(H) de-
note the set of all deterministic and randomized search strategies, respectively,
on H. Note that Det(H) ⊂ Rand(H). For A ∈ Rand(H) and an element
u ∈ U , let tA(H, u) denote the expected number of tests done by A if u is
the target. (If A ∈ Det(H), this “expected” number is simply the determin-
istic number of tests.) The test number of A is tA(H) := maxu∈U tA(H, u).
We define the optimum test numbers as trand(H) := minA∈Rand(H) tA(H) and
tdet(H) := minA∈Det(H) tA(H). We may also limit the number r of rounds of
strategies A, in which case we write trand,r(H) and tdet,r(H).

Trivially we have trand,r(H) ≤ tdet,r(H). As we will see, the randomized test
number can be significantly smaller, however, note that trand,1(H) = tdet,1(H),
since tA(H, u) is the same for all u ∈ U if A has only one round. In other words,
meaningful randomized strategies need at least two rounds.

The case r = 1 (thus restricted to the deterministic setting) is well known
as the test cover problem and can be rephrased as follows: Given a separating
hypergraph, find a smallest subset of the edges of H that still form a separat-
ing hypergraph. The complexity of the test cover problem has been intensively
studied [1, 3, 5, 6, 8, 10], whereas very little is known for r > 1; see [12] for some
combinatorial results. The rank of a hypergraph H is the maximum size of its
edges. The test cover problem with fixed rank found independent interest, since
already this restricted case has practical relevance [2, 4, 9].

To the best of our knowledge, there is no study of the search problem in
full generality and in the randomized setting so far, although randomization has
well been used in many specific search problems. E.g., Quicksort is a famous
sorting algorithm, and randomized constructions have been extensively studied
for group testing (however we cannot possibly give a survey here).

Contributions. We focus on adaptive testing. An obvious question is how much
the test number can benefit from randomization. That is, we study the ratio
tdet(H)/trand(H). As a preparation we express the search problem as a matrix
game and linear program, which implies some simple lower bounds on trand(H).
We use them to show that tdet(H)/trand(H) is, essentially, at least 2 for large
hypergraphs of fixed rank, and the ratio can be up to 4 in certain hypergraphs.
By a certain composition of small hypergraphs we get examples where the ra-
tio is away from 1 even when the test number is logarithmic, i.e., close to the
information-theoretic lower bound. The largest possible ratio remains an open

problem. For rank-2 hypergraphs we also relate the search problem to some
standard graph problems. They do not exactly correspond to the search prob-
lem but enable a 7

6 -approximation algorithm for the randomized test number.
This approximation is based on the primal-dual method and certain half-integral
solutions to the minimum fractional edge cover problem. While the actual com-
plexity of computing trand(H) remains open even in the rank-2 case, we show
that finding optimal deterministic strategies is NP-hard already for rank 3.

2 Game-Theoretic Interpretation and Lower Bounds

Any randomized search strategy on a hypergraph H can be viewed as a probabil-
ity distribution on the (finite) set of the deterministic strategies on H, also called
a mixed strategy. This allows us to apply the classic theory of zero-sum games.
The searcher applies a mixed strategy as above, and an adversary plays a mixed
strategy, too, which is a probability distribution on U specifying the probability
of each element being the target. We also refer to it as a target distribution. By
von Neumann’s minimax theorem, a special case of LP strong duality, we get:

Proposition 1. There exists a pair of optimal mixed strategies such that the
player does an expected number of at most trand(H) tests whatever the target is,
and every deterministic strategy needs an expected number of at least trand(H)
tests. Only deterministic strategies that attain this expected value can be involved
with nonzero probability in an optimal mixed search strategy.

The optimal strategies can be computed by a linear program (LP), with
the caveat that the number of deterministic strategies to consider may not be
polynomial in n. In the following note that any tests T and U \T are equivalent.

Proposition 2. The following lower bounds hold.
Averaging bound: trand(H) ≥ minA∈Det(H)

1
n

∑
u∈U tA(H, u); in words: the best

average deterministic test number lower-bounds the randomized test number.
Set cover lower bound: For any fixed u ∈ U , replace all tests T 3 u with their
complements. Then trand(H) is at least the size of a smallest set cover of U \{u}.

Proof. By Proposition 1, any target distribution yields a lower bound on trand(H).
The uniform target distribution yields the averaging bound. The target distri-
bution that concentrates probability 1 on some fixed u ∈ U yields the set cover
lower bound, since every non-target must occur in some negative test. ut

Definition 2. For some arbitrary but fixed order of U , we call the vector of the
n values tA(H, u) the test number vector of strategy A on H.

Hence the test number vector of any randomized strategy is a convex linear
combination of test number vectors of some deterministic strategies.

A deterministic strategy can be viewed as a strategy tree with n leaves for
the n elements. Every inner node is marked with the set of tests applied in a
round. Depending on their outcomes, the searcher is sent to a child node for the
next round. The depth of the tree is the maximum number of rounds.

Proposition 3. Let H be a hypergraph on n = 2k +m elements, where 2k ≤ n
is the largest power of 2 not exceeding n. Then we have:
trand(H) ≥ 1

n ((n− 2m)k + 2m(k + 1)) = k + 2m
n .

Proof. (Sketch.) Since parallel tests could also be done sequentially, the test
number vector of any deterministic strategy is the vector of distances of the
n leaves to the root in some binary tree. Due to simple exchange arguments,
among the binary trees with a fixed number n of leaves, the average test number
is minimized if n− 2m numbers are k and 2m numbers are k+ 1. Together with
the averaging bound in Proposition 2 this yields the assertion. ut

This bound is particularly useful in practical computations of optimal strate-
gies for small instances H: First we check whether H allows deterministic strate-
gies A with k + 2m

n tests on average, since (by Proposition 1) only such A can
build a randomized strategy with k + 2m

n expected tests. For small H there are
not so many possible strategy trees. We enumerate them and solve the LP that
balances the expected test numbers for all targets. If the LP has no balanced
solution, then we know trand(H) > k + 2m

n . Thus we would next include deter-
ministic strategies A where 1

n

∑
u∈U tA(H, u) is by 1

n larger, solve the extended
LP, and so on. (Calculation examples are omitted due to space limitations.)

3 Some Structural Lemmas

Lemma 1. Let H be a hypergraph and u an element such that {u} is not an edge.
Let Hu be the hypergraph H with the edge {u} inserted. Then tdet(Hu) = tdet(H).

Proof. Trivially, tdet(Hu) ≤ tdet(H). To show that tdet(H) is not strictly larger,
we consider an optimal deterministic strategy Au for Hu. Let A be the strategy
for H that mimics Au, and whenever Au wants to test {u}, strategy A skips
this non-existing test and continues as Au would do if this test were negative.
Strategy A can be incomplete in the sense that it may not find the target. Below
we discuss how to complete it, using tdet(Hu) tests in the worst case.

Consider any leaf ` of the strategy tree of A. If the strategy has not skipped
{u} on the path to `, then A has behaved as Au, thus a target is identified.
The other case is that A has skipped {u} on the path to `. The path to ` is
identical to the corresponding path in Au, except that test {u} is not done and
a negative outcome assumed. Moreover, Au would have identified some target v
on this path. The only missing information is now that u is in fact negative. It
follows that at most two candidates, u and v, remain at `. Since H is separating,
we can append any test to distinguish u and v. Since one test was skipped, the
path to ` in A is strictly shorter than the one in Au, hence adding a test at the
end does not increase the test number compared to Au. ut

Lemma 2. Let H be a hypergraph containing an edge {u}. Against any de-
terministic searcher, there is an optimal adversary strategy (enforcing at least
tdet(H) tests) that gives a negative answer whenever {u} is tested.

Proof. When the searcher tests {u} and the answer is positive, then u is identified
as the target, and {u} was the last test. Hence the adversary cannot miss a
longest path in the strategy tree by giving a negative answer instead. ut

Definition 3. We define the composition H . J of hypergraphs H and J as
follows. Let U = {u1, . . . , un} and V be the vertex sets of H and J , respectively.
We replace every element ui ∈ U with a copy of J , denoted by Ji, on a vertex
set Vi. Every edge E of H is kept in H.J , by replacing the elements: We define
E in H . J as the union of those Vi with ui ∈ E in H.

Informally, we substitute J into every element ofH, orH.J models a hierar-
chical classification where H gives a coarse classification refined by J . While the
following Lemma is not too surprising, the proof becomes somewhat tricky. Be-
sides the previous Lemmas it uses a technique that often simplifies lower-bound
proofs for search problems: An adversary may reveal more information than
the searcher has asked for. Since this only helps the searcher, any lower bound
obtained in this way is also a lower bound for the original search problem.

Lemma 3. The deterministic test number of the composition of any two hyper-
graphs is additive: tdet(H . J) = tdet(H) + tdet(J).

Proof. Subadditivity is easy to see: In order to search H .J one can first run an
optimal strategy on H to determine the copy of J containing the target, followed
by an optimal strategy for J applied to this copy. The reverse tdet(H . J) ≥
tdet(H) + tdet(J) is much less obvious, as the searcher may interleave tests in
H and in the copies of J . Define H1 as the hypergraph obtained from H by
inserting all singleton edges {u} that are not yet in H. We claim:
tdet(H . J) ≥ tdet(H1 . J) ≥ tdet(H1) + tdet(J) = tdet(H) + tdet(J).
The first inequality is trivial, and the equation holds due to Lemma 1. To show
tdet(H1 .J) ≥ tdet(H1)+ tdet(J) we describe an adversary on H1 .J forcing the
searcher to do at least tdet(H1) + tdet(J) tests. We follow an optimal adversary
strategy on H1 with the property from Lemma 2, as long as the searcher keeps
on testing edges of H1. Whenever the searcher tests an edge from a copy of J ,
say Ji, although the copy containing the target is not yet identified, we answer
negatively and also reveal that the target is not in Vi at all. This gives the
searcher the same information as if she had tested Vi, which equals the edge
{ui} of H1, and received a negative answer. Moreover, this still complies with
our optimal adversary strategy on H1. Thus we have “indirectly forced” the
searcher to test only edges of H1 until the set Vk with the target is identified.
Since the adversary has run an optimal strategy, at least tdet(H1) tests have
been done so far. At this moment there still remains the set Vk of candidates,
and no tests have been performed in Jk. From this it is clear that the searcher
needs tdet(J) further tests in the worst case. ut

4 The Case of Singleton Tests

The rank of a hypergraph H is the maximum number of elements in an edge.
First we briefly settle the case of rank 1. Since H is separating, at least n− 1 of
its n elements must be singleton edges.

Proposition 4. Let H be a hypergraph of rank 1. If H has exactly n− 1 edges
then trand(H) = n−1. If H has n edges then trand(H) = 1

n (
∑n
i=1 i−1) = n+1

2 −
1
n .

Proof. The assertion for n − 1 edges follows from the set cover lower bound in
Proposition 2 and the trivial fact that n− 1 tests suffice. If H has n edges then
the available test number vectors are all permutations of the following vector:
(1, 2, 3, . . . , n − 3.n − 2, n − 1.n − 1). We take one of them and its cyclic shifts,
each with probability 1

n . This yields the claimed test number. Optimality is seen
by assigning the target probability 1

n to every element. ut

The above strategy needs log2 n random bits. Using only one random bit we
can combine the test number vector (1, 2, 3, . . . , n− 3.n− 2, n− 1.n− 1) and its
reverse, each with probability 1

2 . Then the balance is not perfect, still the inner
elements have an expected test number n+1

2 which is only slightly worse. Note
that tdet(H)/trand(H) tends to 2 as n grows. This raises the question is how
large tdet(H)/trand(H) can ever be for general hypergraphs. We will address it
later. Similarly we ask how large tdet,r(H)/trand,r(H) can ever be.

Back to rank 1, next suppose that only r rounds are permitted. For ease of
presentation we state only the asymptotic result. In particular, we assume that
r divides n, and the nth test must be done even if n− 1 tests were negative.

Proposition 5. Let H be a hypergraph of rank 1, with all n edges. Then we

have trand(H) = r(r+1)
2 · nr ·

1
r = n

2 (1 + 1
r) subject to lower-order terms.

Proof. (Sketch.) We divide U into r bins of n
r elements, arrange the bins in a

cycle, and in each round we test all elements of one bin, following the cyclic
order and starting at a random bin. Then every element is tested in each round
with the same probability 1/r, and the expected number of tests is as claimed.
To show optimality we take again the uniform target distribution. The expected
test number of any deterministic r-round strategy is then uniquely determined
by the numbers xi of elements tested in rounds i = 1, . . . , r, and it amounts to
1
n

∑r
j=1 xj(

∑j
i=1 xi), where

∑r
i=1 xi = n. By standard methods for multivariate

extremal problems with constraints, this expression is minimized if all xi equal
n
r , and then it becomes r(r+1)

2 · n
2

r2 ·
1
n = n

2 (1 + 1
r) again. ut

5 Deterministic vs. Randomized Test Number

The rank-1 case suggests that tdet(H)/trand(H) might typically be around 2 if
the rank is small compared to n. In the following we study this question. We
consider hypergraphs H of arbitrary but fixed rank. Let ν := ν(H) be the size of

a minimum edge cover in H, that is, a subset of edges that covers all elements in
U . Since H is separating, at most one element u ∈ U is in no edge, and if such
u exists, we define ν to be the size of a minimum edge cover of U \ {u}.

Theorem 1. Consider all hypergraphs H of any fixed rank h. There we have
tdet(H) = ν ± O(1). If the edges of H cover all elements, then we also have
trand(H) < ν

2 +O(1). Thus, for any ε > 0, all large enough H without uncovered
elements satisfy tdet(H)/trand(H) > 2− ε.

Proof. We can test the edges of any fixed minimum edge cover E in one round.
For any test outcomes there remain at most h candidates for the target, and
we can trivially distinguish them by fewer than h more tests in a second round.
This shows tdet,2(H) < ν+h. Next we argue that even an adaptive deterministic
strategy cannot be essentially better in the worst case: All test outcomes could
be negative until the tested edges cover all elements. Then we have to do at
least ν − 1 tests. In short, tdet(H) ≥ ν − 1. From the set cover lower bound in
Proposition 2 we also get trand(H) ≥ ν if some element is in no edge. Thus, in
the following we consider only hypergraphs where the edges cover all elements.

Now, an obvious randomized strategy is to test the edges of E in random
order. More precisely, we may take all cyclic shifts of some fixed order or two
reverse orders, with equal probability, just as in the case of rank 1. We argue that
every fixed target is found after ν

2 + h expected tests. We assign every element
u arbitrarily to some edge E ∈ E with u ∈ E, called the designated edge of u.
Due to the random order of E , the designated edge of any target u appears after
at most ν

2 + 1 expected tests, and then fewer than further tests identify u as the
target. This yields the assertions and finishes the proof. ut

By modifying the proof for r rounds and using the randomized strategy from
Section 4, we similarly obtain tdet,r(H)/trand,r(H) > 2r

r+1 − ε.
One might conjecture that shuffling disjoint edges is already the best use of

randomization, which would imply that ratio 2 is the best. But in the end of
the proof of Theorem 1 we notice that element u may appear earlier, in some
non-designated edge, hence trand(H) might be smaller in a specific hypergraph.
The following example demonstrates that, indeed, the ratio can be up to 4.

Proposition 6. For any fixed h and ε > 0 there exist hypergraphs H of rank h

where tdet(H)/trand(H) > 4(h+1)
(h+3) − ε.

Proof. An h-simplex is the set of all h + 1 possible edges of size h in a set of
h + 1 elements Let H consist of k disjoint h-simplices. Clearly, ν = 2k. Now
we arrange the h-simplices in random order and first test one random edge
from every h-simplex. With probability h

h+1 we hit the target, and fewer than

h further tests identify it. In this case we do an expected number of k
2 + O(1)

tests (remember that h is fixed). With probability 1
h+1 we miss the target, but

there remains only one candidate in every h-simplex. In this case we test a
second edge from every h-simplex to find the target. Thus we do an expected
number of k+ k

2 +O(1) tests in total. Hence the overall expected test number is

h
h+1 ·

k
2 + 1

h+1 ·
3k
2 +O(1) = h+3

2(h+1)k+O(1). Our ratio tends to 2k·2(h+1)
(h+3)k = 4(h+1)

(h+3)

for large k. ut

Problem: Is tdet(H)/trand(H) < 4 for all H? Is it bounded by any constant?

Next we look into a different direction. One may conjecture that random-
ization significantly helps “bad” instances only, where linearly many tests are
needed. However we show that tdet(H)/trand(H) can be away from 1 even for
“good” hypergraphs where O(log n) tests are enough.

Theorem 2. Let H be any hypergraph with g elements, such that tdet(H) = t,
and tdet(H)/trand(H) ≥ c. Then there exist hypergraphs with arbitrarily large
numbers n of elements, such that tdet(L)/trand(L) ≥ c as well, and tdet(L) =
t

log2 g
log2 n.

Proof. Let L be the k-fold composition of H with itself: L := H H (k
terms). One may think of L as a “tree of hypergraphs H” with degree g and
depth k. Clearly L has n := gk elements. An obvious randomized strategy that
goes recursively down this tree needs at most k · trand(H) expected tests for
every target, by linearity of expectation. Hence trand(L) ≤ k · trand(H). Lemma
3 inductively applied to k factors yields tdet(L) = k · tdet(H). Furthermore, note

that k = log2 n
log2 g

. Together these bounds imply the assertions. ut

To give an example, let H consist of three elements and singleton tests. Then
g = 3, t = tdet(H) = 2, trand(H) = 5

3 , thus we get hypergraphs L with ratio
c = 6

5 and tdet(L) = 3
log2 5−log2 3 log2 n. It would be interesting to figure out the

largest possible ratio c for any given factor of log2 n.

6 The Case of Graphs

Next we consider hypergraphs H of rank 2. For convenience we look at usual
graphs only, where all edges have exactly two elements. This is not a severe
restriction, due to the following reasoning. Small instances could be solved ex-
haustively, and for large instances, where also tdet is large, we do not have to
care about one test more or less. Now, let {u} be any singleton edge. Unless u is
isolated, it also belongs to some edge {u, v}. Any given strategy can be changed
in the way that it tests {u, v} rather than {u}. In the negative case this is even
more efficient. In the positive case, either one further test of an edge {u,w} or
{v, w} can distinguish u and v, or u and v form a connected component. In the
latter case we modify the instance by removing v and keeping the edge {u} only.
Altogether, subject to differences of at most 1 in the test numbers, it suffices to
study usual graphs G = (V,E) with edges of size 2, except that isolated vertices
are also considered as edges.

A fractional independent set assigns a non-negative weight to every vertex,
such that every edge has a total weight at most 1. In particular, isolated vertices
can get the weight 1.

Proposition 7. If H has a fractional independent set of total weight α, then
trand(H) ≥ α

2 −O(1).

Proof. We normalize the assumed fractional independent set, that is, divide all
weights by α, such that the weights sum up to 1 and hence form a probability
distribution on V . It suffices to show that every deterministic strategy A needs
an expected number of at least α

2 −O(1) tests on this target distribution. As long
as all tests are negative, strategy A tests the edges in some specific order. Since
every edge has a probability mass of at most 1

α , the first i tests cover elements of

total probability mass at most i
α , for every i. By a simple exchange argument,

the expected number of tests until A hits the target is minimized if every tested
edge covers new elements whose total probability mass is exactly 1

α . This yields
the assertion. ut

A fractional edge cover assigns a non-negative weight xe to every edge e ∈ E,
such that every vertex is incident to edges with a total weight at least 1. In
particular, isolated vertices (recall that we count them as edges) must get the
weight 1. Finding a maximum-weight fractional independent set and a minimum-
weight fractional edge cover are natural LP relaxations of the corresponding
integral optimization problems, and they form a well-known pair of dual LPs,
hence due to LP strong duality they achieve the same optimal value on a given
graph.

A function with range [0, 1] is called half-integral if it attains only the values
0, 12 , 1. Although half-integrality is well studied for several optimization problems
and is a tool for approximation algorithms (e.g., in [11]), we are not aware of an
earlier proof of the following structural result that we will use to approximate
the randomized test number.

Theorem 3. In every graph, the fractional edge cover problem has an optimal
solution that is half-integral, with the additional property that the edges e with
xe = 1

2 form vertex-disjoint odd cycles. Moreover, this solution can be obtained
in polynomial time.

Proof. Consider any optimal fractional edge cover. Observe xe ≤ 1 for all edges,
since otherwise we could reduce xe to 1 and get a better valid solution. We call
an edge e fractional if 0 < xe < 1. A tour is an sequence of edges that starts
and ends in the same vertex; note that edges may appear several times in a tour
and be traversed in arbitrary directions. The length of a tour is the number of
edges, where repeatedly traversed edges are counted again.

Let C be a tour of fractional edges, and assume that C has even length. We
may change the weights of the edges alternatingly by some amount +ε and −ε.
This changes neither the sum of weights incident to any vertex, nor the total
weight. As for multiple edges e in C, note that the net effect on xe is the sum of
all changes applied there, and it may be zero. In the latter case we call e an inert
edge. Suppose that C has some non-inert edge. Then, by increasing ε (starting
from ε := 0) we reach a value where some xe becomes 0 or 1 while all other xe
are still in [0, 1]. Altogether we get an optimal solution with one fractional edge

less. Iterating the procedure we can destroy all even tours that do not consist of
inert edges only.

Now, in the graph F induced by the fractional edges, every connected com-
ponent has at most one cycle, and it has odd length. Namely, any even cycle is
obviously an even tour of non-inert edges, any two intersecting odd cycles also
contain an even cycle, and any two disjoint odd cycles connected by a path can
be merged into one even tour where not all edges are inert. Next, F cannot have
any vertex of degree 1, since the only incident edge would have weight 1 and
thus not be fractional. It follows that every connected component of F is merely
an odd cycle. Finally, any cycle of length k has a fractional edge cover size of at
least k

2 (just sum up all constraints for the k vertices), and giving each edge in
the cycle the weight 1

2 is a valid solution.

An optimal fractional vertex cover is obtained by solving an LP, and the
above transformations of xe values in even tours can be done in polynomial
time. ut

Now we devise an algorithm to compute a randomized search strategy on a
given graph G. Note that, in the case of graphs, a search strategy is completely
specified by a (random) sequence of edges to be tested until the first positive
test occurs. If two target candidates remain at this moment, then one more test
identifies the target. Hence, for any target u, the expected test number equals
(up to one test) the expected position of the first edge where u occurs in the
sequence.

First we compute a fractional edge cover according to Theorem 3. From every
odd cycle we randomly choose one vertex, called the left-over vertex. Let M be
the set of all edges e with xe = 1 (note that this includes all isolated vertices) plus
disjoint edges that cover the odd cycles except their left-over vertices. (Clearly,
any path with an even number of vertices is covered by a unique set of disjoint
edges.) Let L be a further set of edges, one for each left-over vertex. That is,
every edge in L contains a left-over vertex and some arbitrary neighbor. It is
important to notice that M ∪ L is still an edge cover, thus every vertex occurs
in some edge of M ∪ L.

Let α be the total weight of our fractional edge cover, and let ` := |L|.
Observe that |M | = α− `

2 . Let c be the length of a shortest odd cycle C in our
fractional edge cover. Our algorithm chooses among two strategies as follows.

Strategy 1 tests the edges of M ∪L in random order. Since |M |+ |L| = α+ `
2 ,

the expected test number is at most α
2 + `

4 .

Strategy 2 tests the edges of M in random order, followed by the edges of L
in random order. Then any fixed vertex occurs already in M with probability at
least c−1

c , and it occurs only in L with probability at most 1
c . Hence the expected

position of its first occurence is at most

c− 1

c
· |M |

2
+

1

c
·
(
|M |+ `

2

)
=
c− 1

c
·
(
α

2
− `

4

)
+

1

c
·α =

c+ 1

2c
·α− c− 1

c
· `

4
.

For any fixed ` this is maximized when c has the smallest possible value, c = 3,
and then it becomes 2

3 (α− `
4). (Actually we have already used the idea of Strategy

2 in the example that proves Proposition 6.)
Numbers α and ` are known from the fractional edge cover. We choose Strat-

egy 1 or 2 with the smaller bound on the expected test number. The cut-off
point is ` = α

3 , hence the bound is at most 7
12α. Together with the lower bound

1
2α from Proposition 7 we finally obtain:

Theorem 4. For hypergraphs H with rank 2 we can approximate trand(H) within
a factor 7

6 in polynomial time.

7 The P-NP Borderline

The algorithm from Theorem 4 could be refined, e.g., by treating odd cycles
of different length differently and analyzing the expecting target position more
carefully. The lower bound from Proposition 7 can be raised, too. However, our
main point in Theorem 4 was to achieve a rather good approximation ratio.
Before making more efforts, one would like to know the real complexity status
of computing trand(H) for hypergraphs of rank 2. As we have seen, the problem
is closely related to some standard fractional optimization problems. Moreover,
we can solve it in polynomial time for special graphs. For instance, for graphs
possessing a perfect matching it is not hard to show that it is optimal to test the
matching edges in random order. The difficulty in general graphs is to schedule
the tests that cover further, single vertices. Still it seems quite possible that the
problem is polynomial-time solvable in graphs. We state this as an open problem.
For rank 3 we have the following hardness result.

Theorem 5. The problem of computing tdet(H) for hypergraphs H of rank 3 is
NP-complete.

Proof. We give a reduction from the NP-complete Exact 3-Cover problem. An
instance of Exact 3-Cover consists of a set U of 3k elements and a family of
triples, i.e., subsets of U with 3 elements. The problem is to cover U by k of them.
We construct a hypergraph H on U ∪ {x, y, z} where x, y, z are new elements.
The edges of U are the given triples and all singletons. Trivially, the construction
is polynomial. We claim that the Exact 3-Cover instance is affirmative if and
only if tdet(H) ≤ k + 2.

If we can cover U by k triples, then we can test these k edges and are left
with three target candidates, for any possible test outcomes. Then two further
tests are sufficient (and necessary) to spot the target. Hence tdet(H) ≤ k + 2.

For the reverse direction, suppose that we cannot cover U by k triples. Then
any k edges within U cover at most 3k−1 elements. It follows that any k−1 edges
within U cover at most 3k−2 elements. Consider any deterministic strategy and
an adversary giving negative answers to the first k−1 edges in U that are tested.
These edges do not cover x, y, z and at least two more elements of U . Let e ⊂ U
be the kth test in U . Note that e still leaves some u ∈ U uncovered. Regardless

when and in which order {x}, {y}, {z} and e are tested, after the first three of
them we still have at least two target candidates. Namely, if e is among the first
three tests, then some elements both in U and outside U are yet uncovered, and
if e is the last of these four tests, then two elements in U are yet uncovered.
Altogether, (k − 1) + 3 = k + 2 tests do not determine the target. ut

It appears natural to conjecture that computing trand(H) for hypergraphs
H of rank 3 is NP-complete as well. An attempt would be to combine the same
reduction idea with the averaging bound. However this looks more challenging.
We remark that tdet,2(H) is computable in polynomial time if H has rank 2: It
is optimal to test some maximum matching in round 1. (Details are omitted due
to space limitations.) So we conclude with the following

Problem: What is the complexity status of computing trand(H) for hypergraphs
H of any fixed rank?

References

1. Basavaraju, M., Francis, M.C., Ramanujan, M.S., Saurabh, S.: Partially Polyno-
mial Kernels for Set Cover and Test Cover. In: Seth, A., Vishnoi, N.K. (Eds.)
FSTTCS 2013. LIPIcs, vol. 24, pp. 67–78, Dagstuhl (2013)

2. de Bontridder, K.M.J., Halldórsson, B.V., Halldórsson, M.M., Hurkens, C.A.J.,
Lenstra, J.K., Ravi, R., Stougie, L.: Approximation Algorithms for the Test Cover
Problem. Math. Progr. Series B 98, 477–491 (2003)

3. de Bontridder, K.M.J., Lageweg, B.J., Lenstra, J.K., Orlin, J.B., Stougie, L.:
Branch-and-Bound Algorithms for the Test Cover Problem. In: Epstein, L., Fer-
ragina, P. (Eds.) ESA 2002. LNCS, vol. 2461, pp. 223–233, Springer, Heidelberg
(2002)

4. Crowston, R., Gutin, G., Jones, M., Muciaccia, G., Yeo, A.: Parameterizations of
Test Cover with Bounded Test Sizes. CoRR abs/1209.6528 (2012)

5. Crowston, R., Gutin, G., Jones, M., Saurabh, S., Yeo, A.: Parameterized Study of
the Test Cover Problem. In: Rovan, B., Sassone, V., P Widmayer, P. (Eds.) MFCS
2012. LNCS, vol. 7464, pp. 283–295, Springer, Heidelberg (2012)

6. Cui, P.: A Tighter Analysis of Set Cover Greedy Algorithm for Test Set. In: Chen,
B., Paterson, M., Zhang, G. (Eds.) ESCAPE 2007. LNCS, vol. 4614, pp. 24–35,
Springer, Heidelberg (2007)

7. Du, D.Z., Hwang, F.K.: Combinatorial Group Testing and Its Applications. Series
on Appl. Math. vol. 3. World Scientific (2000)

8. Fahle, T., Tiemann, K.: A Faster Branch-and-Bound Algorithm for the Test-Cover
Problem Based on Set-Covering Techniques. ACM J. Experim. Algor. 11 (2006)

9. Fernau, H., Raible, D.: A Parameterized Perspective on Packing Paths of Length
Two. In: Yang, B., Du, D.Z., Wang, C.A. (Eds.) COCOA 2008. LNCS, vol. 5165,
pp. 54–63, Springer, Heidelberg (2008)

10. Gutin, G., Muciaccia, G., Yeo, A.: (Non-)existence of Polynomial Kernels for the
Test Cover Problem. Info. Proc. Letters 113, 123–126 (2013)

11. Hochbaum, D.S.: Solving Integer Programs over Monotone Inequalities in Three
Variables: A Framework for Half Integrality and Good Approximations. Eur. J.
Operational Res. 140, 291–321 (2002)

12. Wiener, G.: Rounds in Combinatorial Search. Algorithmica 67, 315–323 (2013)

